Local Picard groups and theta series

Jan Hendrik Bruinier

December 14, 2001

Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, D-69120 Heidelberg, Germany
E-mail: bruinier@mathi.uni-heidelberg.de

1 Introduction

The purpose of the present note is to present some of the results on local Picard groups and Borcherds products obtained in joint work with E. Freitag [BF].

Let (V, q) be a real quadratic space of signature $(2, l)$ with $l>2$ and $L \subset V$ an even lattice. To simplify the exposition we assume throughout that L is unimodular. For the general case we refer the reader to $[\mathrm{BF}]$.

Let $\mathrm{O}^{\prime}(V)$ be the spinor kernel of the orthogonal group of V and K a maximal compact subgroup. Then the quotient $\mathcal{H}_{l}=\mathrm{O}^{\prime}(V) / K$ is a Hermitean symmetric domain of complex dimension l. The orthogonal group $\mathrm{O}(L)$ of L is an arithmetic subgroup of $\mathrm{O}(V)$. The group $\Gamma=\mathrm{O}(L) \cap \mathrm{O}^{\prime}(V)$ acts properly discontinuously on \mathcal{H}_{l}, and the quotient \mathcal{H}_{l} / Γ is a non-compact normal complex space. Let X_{L} be the Baily-Borel compactification of \mathcal{H}_{l} / Γ. It is obtained by adjoining finitely many boundary curves to \mathcal{H}_{l} / Γ. According to the theory of Baily-Borel, X_{L} has a structure as a projective algebraic variety over \mathbb{C}.

The Picard group $\operatorname{Pic}\left(X_{L}\right)$ is an important invariant of X_{L}. It can be studied by looking at divisors on X_{L}. A particular class of divisors, called Heegner divisors, arises from embedded quotients of smaller dimension $l-1$ analogous to X_{L}.

Using Borcherds' lifting from nearly-holomorphic modular forms for $\mathrm{SL}_{2}(\mathbb{Z})$ to meromorphic modular forms for Γ, one obtains explicit relations among these Heegner divisors, and thereby some information about their position in $\operatorname{Pic}\left(X_{L}\right)$ [Bo1, Bo2].

The local Picard group $\operatorname{Pic}\left(X_{L}, s\right)$ of X_{L} at a point $s \in X_{L}$ is defined as the direct limit

$$
\begin{equation*}
\operatorname{Pic}\left(X_{\Gamma}, s\right)=\xrightarrow{l i m} \operatorname{Pic}\left(U_{\mathrm{reg}}\right), \tag{1.1}
\end{equation*}
$$

where U runs through all open neighborhoods of s, and $U_{\text {reg }}$ denotes the regular locus of U. The group $\operatorname{Pic}\left(X_{L}, s\right)$ is zero, if s is a nonsingular point, and a torsion group, if s is an elliptic fixed point. It is much more complicated, if s is a boundary point of X_{L}. We
will consider the case that s is a generic boundary point, which means in particular that s does not belong to the zero dimensional boundary components of X_{L}.

By means of certain local Borcherds products the positions of the images of Heegner divisors in $\operatorname{Pic}\left(X_{L}, s\right)$ can be precisely determined up to torsion. They can be described in terms of the Fourier coefficients of certain theta series attached to the 1 dimensional boundary component containing s.

In contrast to the general study of $\operatorname{Pic}\left(X_{L}, s\right)$, in our main result we exploit the unimodularity of L in a vital way. By means of a result of Waldspurger, it can be proved that a linear combination of Heegner divisors is torsion in the Picard group of X_{L}, if and only if it is torsion in $\operatorname{Pic}\left(X_{L}, s\right)$ for every one-dimensional boundary component B and a generic point $s \in B$. As a consequence we find a converse theorem for the Borcherds lifting [Bo1]: Any meromorphic modular form for the group Γ, whose divisor is a linear combination of Heegner divisors, must be a Borcherds product. This was also proved in greater generality in [$\mathrm{Br} 1, \mathrm{Br} 2$]. However, in these papers a completely different argument is used, which does not say anything about the local Picard groups of X_{L}.

2 Heegner divisors and modular forms

We stick to the notation introduced in the introduction.
Let m be a negative integer. If $\lambda \in L$ with $q(\lambda)=m$, then $\left(V \cap \lambda^{\perp}, q\right)$ is a real quadratic space of signature $(2, l-1)$. Let $\mathrm{O}^{\prime}(V)_{\lambda}$ and K_{λ} be the stabilizers of λ in $\mathrm{O}^{\prime}(V)$ and K, respectively. Then $H_{\lambda}=\mathrm{O}^{\prime}(V)_{\lambda} / K_{\lambda}$ is a Hermitean symmetric space isomorphic to \mathcal{H}_{l-1} and the natural embedding

$$
\mathrm{O}^{\prime}(V)_{\lambda} / K_{\lambda} \hookrightarrow \mathrm{O}^{\prime}(V) / K
$$

identifies H_{λ} with an analytic divisor of \mathcal{H}_{l}. The Heegner divisor of discriminant m is defined by

$$
H(m)=\sum_{\substack{\lambda \in L \\ q(\lambda)=m}} H_{\lambda} .
$$

It is a Γ-invariant divisor on \mathcal{H}_{l}, which is the inverse image of an algebraic divisor on X_{L} (also denoted by $H(m)$). These Heegner divisors can be viewed as higher dimensional generalizations of Heegner points on modular curves and Hirzebruch-Zagier divisors on Hilbert modular surfaces [Bo2].

With the theory of Borcherds products it is possible to construct explicit relations among Heegner divisors (cf. [Bo1] Theorem 13.3). Since the existence of Borcherds products is controlled by the space S_{κ} of elliptic cusp forms of weight $\kappa=1+l / 2$ for the group $\mathrm{SL}_{2}(\mathbb{Z})$, the position of Heegner divisors in $\operatorname{Pic}\left(X_{L}\right)$ can be described in terms of such cusp forms (cf. [Bo2] Theorem 3.1). Let $\widetilde{\operatorname{Pic}}\left(X_{L}\right)$ be the quotient of $\operatorname{Pic}\left(X_{L}\right)$ modulo the subgroup generated by the canonical bundle.

Theorem 2.1 (Borcherds). An integral linear combination $\sum_{m<0} c(m) H(m)$ of Heegner divisors is a torsion element of $\widetilde{\operatorname{Pic}}\left(X_{L}\right)$, if $\sum_{m<0} c(m) a(-m)=0$ for every cusp form $f \in S_{\kappa}$ with Fourier coefficients a(n). In other words, the generating series

$$
G(\tau)=\sum_{n>0} H(-n) e(n \tau)
$$

is a cusp form of weight κ for $\mathrm{SL}_{2}(\mathbb{Z})$ with values in the (finite dimensional) subspace \mathcal{P} of $\widetilde{\operatorname{Pic}}\left(X_{L}\right) \otimes_{\mathbb{Z}} \mathbb{C}$ generated by the Heegner divisors. Here τ denotes the variable in the complex upper half plane $\mathbb{H}=\{z \in \mathbb{C} ; \Im(z)>0\}$ and $e(\tau)=e^{2 \pi i \tau}$ as usual.

This is a sufficient condition for a linear combination of Heegner divisors to being torsion in $\widetilde{\operatorname{Pic}}\left(X_{L}\right)$. Similar results, but without precise information on the level of G, were obtained earlier in a completely different way by Kudla-Millson.

3 Local Heegner divisors and theta series

Let B be a 1-dimensional boundary component of X_{L} and $s \in B$ a generic point. We want to determine the position of the image of $H(m)$ in the local Picard group $\operatorname{Pic}\left(X_{L}, s\right)$ at s.

The 1-dimensional boundary components of X_{L} are parametrized by Γ-classes of 2dimensional isotropic subspaces of $L \otimes_{\mathbb{Z}} \mathbb{Q}$ (see [BF]). Let F be a 2-dimensional isotropic subspace of $L \otimes_{\mathbb{Z}} \mathbb{Q}$ corresponding to B. It can be shown that the image of $H(m)$ in the local Picard group $\operatorname{Pic}\left(X_{L}, s\right)$ is given by the local Heegner divisor

$$
H_{F}(m)=\sum_{\substack{\lambda \in L \cap F^{\perp} \\ q(\lambda)=m}} H_{\lambda} \subset \mathcal{H}_{l} .
$$

This divisor is invariant under the stabilizer Γ_{s} of s and thereby defines an element of $\operatorname{Pic}\left(X_{L}, s\right)$.

Let $\tilde{F} \subset L \otimes_{\mathbb{Z}} \mathbb{Q}$ be a complementary isotropic subspace for F. Then $D=L \cap F^{\perp} \cap \tilde{F}^{\perp}$ is a negative definite even unimodular lattice of rank $l-2$. We consider theta series associated with D.

We write (\cdot, \cdot) for the bilinear form corresponding to $q(\cdot)$ such that $q(x)=\frac{1}{2}(x, x)$. The homogeneous polynomial

$$
Q(u, v)=(u, v)^{2}-\frac{(u, u)(v, v)}{l-2}, \quad u, v \in D \otimes_{\mathbb{Z}} \mathbb{R}
$$

is harmonic in u and v. Hence standard results on theta series imply that

$$
\Theta_{D}(\tau, v)=\sum_{\lambda \in D} Q(\lambda, v) e(-q(\lambda) \tau), \quad \tau \in \mathbb{H},
$$

belongs to S_{κ} for every $v \in D \otimes_{\mathbb{Z}} \mathbb{R}$. The minus sign in the exponential term comes from the fact that D is negative definite. We denote by S_{κ}^{D} the subspace of S_{κ} generated by the theta series $\Theta_{D}(\tau, v)$ with $v \in D$. Proposition 5.1 of $[\mathrm{BF}]$, specialized to our situation that L is unimodular, says:

Theorem 3.1. An integral linear combination $\sum_{m<0} c(m) H_{F}(m)$ of local Heegner divisors is a torsion element of $\operatorname{Pic}\left(X_{L}, s\right)$, if and only if $\sum_{m<0} c(m) a(-m)=0$ for every $f \in S_{\kappa}^{D}$ with Fourier coefficients $a(n)$.

In the proof one uses local analogues of Borcherds products or more precisely of the generalized Borcherds products introduced in [Br1]. We briefly indicate how these local Borcherds products are defined, referring to $[\mathrm{BF}]$ for more details. We introduce adapted coordinates $Z=\left(z_{1}, z_{2}, \mathfrak{z}\right)$ with respect to F for $Z \in \mathcal{H}_{l}$ as in [BF], where $\mathfrak{z} \in D \otimes_{\mathbb{Z}} \mathbb{C}$, $z_{1}, z_{2} \in \mathbb{C}$, and $q(\Im(Z))>0, \Im\left(z_{2}\right)>0$. If $e_{1}, e_{3} \in L$ denote primitive isotropic vectors such that $L \cap F=\mathbb{Z} e_{1}+\mathbb{Z} e_{3}$, then the local Heegner divisor $H_{F}(m)$ on \mathcal{H}_{l} can be written as

$$
H_{F}(m)=\sum_{\substack{\lambda \in D \\ q(\lambda)=m}} \sum_{\nu_{1}, \nu_{3} \in \mathbb{Z}} H_{\lambda+\nu_{1} e_{1}+\nu_{3} e_{3}}
$$

Notice that the first sum over λ is finite. The local Borcherds product associated with $H_{F}(m)$ is defined by

$$
\Psi_{F, m}(Z)=\prod_{\substack{\lambda \in D \\ q(\lambda)=m}} \prod_{n \in \mathbb{Z}}\left[1-e\left(\sigma_{n}\left(n z_{2}+(\lambda, \mathfrak{z})\right)\right)\right]
$$

for $Z=\left(z_{1}, z_{2}, \mathfrak{z}\right) \in \mathcal{H}_{l}$. Here

$$
\sigma_{n}= \begin{cases}+1, & \text { if } n \geq 0 \\ -1, & \text { if } n<0\end{cases}
$$

is a sign, which is needed in order that the product converges. It is easily checked that the divisor of $\Psi_{F, m}(Z)$ is precisely $H_{F}(m)$. Consequently the image of $H_{F}(m)$ in $\operatorname{Pic}\left(X_{L}, s\right)$ is determined by the automorphy factor

$$
J_{F, m}(g, Z)=\Psi_{F, m}(g Z) / \Psi_{F, m}(Z) \quad\left(g \in \Gamma_{s}\right)
$$

It can be computed explicitly in terms of the above polynomials $Q(u, v)$. Thereby the Chern class of $H_{F}(m)$ in $H^{2}\left(\Gamma_{s}, \mathbb{Z}\right)$ can be described. Combining this with results on the local cohomology due to Ballweg [Ba], the theorem is derived.

The fact that the condition in Theorem 3.1 is both, necessary and sufficient, may be used to infer:

Corollary 3.2. The condition in Theorem 2.1 is also necessary. In other words, the natural map $\mathcal{P}^{*} \rightarrow S_{\kappa}$ given by $\ell \mapsto \sum_{n>0} \ell(H(-n)) e(n \tau)$ is surjective. Here \mathcal{P}^{*} denotes the dual vector space of \mathcal{P}.

Proof. Let $H=\sum_{m<0} c(m) H(m)$ be an integral linear combination of global Heegner divisors which is a torsion element of $\widetilde{\operatorname{Pic}}\left(X_{L}\right)$. This means that H is the divisor of a meromorphic modular form for Γ with some multiplier system of finite order. Then the
local Heegner divisors $\sum_{m<0} c(m) H_{F}(m)$ are clearly torsion elements of $\operatorname{Pic}\left(X_{L}, s\right)$ for all 1 -dimensional boundary components B and a generic point $s \in B$. In view of Theorem 3.1 this implies that

$$
\begin{equation*}
\sum_{m<0} c(m) a(-m)=0 \tag{3.1}
\end{equation*}
$$

for every $f=\sum_{n>0} a(n) e(n \tau) \in S_{k}^{D}$ and every negative definite even unimodular sublattice $D \subset L$ of rank $l-2$.

According to a theorem of Waldspurger, the sum $\sum_{D} S_{\kappa}^{D}$, where D runs through all negative definite even unimodular lattices of rank $l-2$, is equal to S_{κ} (see [Wal] and also [EZ] Theorem 7.4). But since every negative definite even unimodular lattice of rank $l-2$ can be realized as a sublattice of L, we find that (3.1) actually holds for all cusp forms $f \in S_{\kappa}$ with Fourier coefficients $a(n)$.

Corollary 3.3. Any meromorphic modular form for the group Γ, whose divisor is a linear combination of Heegner divisors, must be a Borcherds product in the sense of [Bo1] Theorem 13.3.

Proof. This is an immediate consequence of Corollary 3.2 and [Bo2] Therem 3.1.

References

[Ba] L. Ballweg, Die lokalen Cohomologiegruppen der Baily-Borel-Kompaktifizierung in generischen Randpunkten, Dissertation, University of Heidelberg (1992).
[Bo1] R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), 491-562.
[Bo2] R. E. Borcherds, The Gross-Kohnen-Zagier theorem in higher dimensions, Duke Math. J. 97 (1999), 219-233.
[Br1] J. H. Bruinier, Borcherds products on $\mathrm{O}(2, l)$ and Chern classes of Heegner divisors, preprint (May 2000), to appear in the Springer Lecture Notes in Mathematics series.
[Br2] J. H. Bruinier, Borcherds products and Chern classes of Hirzebruch-Zagier divisors, Invent. math. 138 (1999), 51-83.
[BF] J. H. Bruinier and E. Freitag, Local Borcherds Products, Ann. Inst. Fourier, Grenoble 51 (2001), 1-27.
[EZ] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math. 55 (1985), Birkhäuser.
[Wal] J.-L. Waldspurger, Engendrement par des séries thêta de certains espaces de formes modulaires, Invent. math. 50 (1979), 135-168.

