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LATTICES WITH MANY BORCHERDS PRODUCTS

JAN HENDRIK BRUINIER, STEPHAN EHLEN, AND EBERHARD FREITAG

Abstract. We prove that there are only finitely many isometry classes of
even lattices L of signature (2, n) for which the space of cusp forms of weight
1 + n/2 for the Weil representation of the discriminant group of L is trivial.
We compute the list of these lattices. They have the property that every
Heegner divisor for the orthogonal group of L can be realized as the divisor
of a Borcherds product. We obtain similar classification results in greater
generality for finite quadratic modules.

1. Introduction

Let L be an even lattice of signature (2, n) and write O(L) for its orthogonal
group. In his celebrated paper [Bo1] R. Borcherds constructed a map from vector
valued weakly holomorphic elliptic modular forms of weight 1−n/2 to meromorphic
modular forms for O(L) whose zeros and poles are supported on Heegner divisors.
Since modular forms arising in this way have particular infinite product expansions,
they are often called Borcherds products. They play important roles in different
areas such as Algebraic and Arithmetic Geometry, Number Theory, Lie Theory,
Combinatorics, and Mathematical Physics.

By Serre duality, the obstructions for the existence of weakly holomorphic mod-
ular forms with prescribed principal part at the cusp at ∞ are given by vector
valued cusp forms of dual weight 1 + n/2 transforming with the Weil representa-
tion associated with the discriminant group of L [Bo2]. In particular, if there are
no non-trivial cusp forms of this type, then there are no obstructions, and every
Heegner divisor is the divisor of a Borcherds product. A lattice with this property
is called simple.

It was conjectured by the third author that there exist only finitely many iso-
morphism classes of such simple lattices. Under the assumptions that n ≥ 3 and
that the Witt rank of L (i.e. the dimension of a maximal totally isotropic subspace
of L ⊗Z Q) is 2, it was proved by M. Bundschuh that there is an upper bound on
the determinant of a simple lattice [Bu]. Unfortunately, this bound is very large
and therefore not feasible for obtaining any classification results. The argument
of [Bu] is based on volume estimates for Heegner divisors and the singular weight
bound for holomorphic modular forms for O(L).

The purpose of the present paper is twofold. First, we show that for any n ≥ 1
(without any additional assumption on the Witt rank) there exist only finitely many
isomorphism classes of even simple lattices of signature (2, n); see Theorem 4.5 and
Corollary 4.7. Second, we develop an efficient algorithm to determine all of these
lattices. It turns out that there are exactly 362 isomorphism classes. Table 1 shows
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how many of those occur in the different signatures. The corresponding genus
symbols (see Section 2) of these lattices are listed in Tables 7, 8.1

Table 1. Number of simple lattices of signature (2, n).

n 1 2 3 4 5 6 7 8 9 10 11 ≤ n ≤ 17 18 19 ≤ n ≤ 25 26 n > 26

# 256 67 15 5 3 4 2 3 3 2 0 1 0 1 0

It is also interesting to record the Witt ranks of these lattices. For n = 1,
we have 26 anisotropic lattices. The corresponding modular varieties are Shimura
curves, while the remaining 230 modular varieties for n = 1 are modular curves.
For n = 2, there are 24 of Witt rank 1 and 43 of Witt rank 2 but no anisotropic
lattices. Finally, if n ≥ 3, all simple lattices have Witt rank 2.

Along the way, we obtain several results on modular forms associated with finite
quadratic modules which are of independent interest and which we now briefly
describe. A finite quadratic module is a pair consisting of a finite abelian group
A together with a Q/Z-valued non-degenerate quadratic form Q on A; see [Ni],
[Sk2]. Important examples of finite quadratic modules are obtained from lattices.
If L is an even lattice with dual lattice L′, then the quadratic form on L induces a
Q/Z-valued quadratic form on the discriminant group L′/L.

Recall that there is a Weil representation ρA of the metaplectic extension Mp2(Z)
of SL2(Z) on the group ring C[A] of a finite quadratic module A; see Section 3. If
k ∈ 1

2Z, we write Sk,A for the space of cusp forms of weight k and representation
ρA for the group Mp2(Z). We say that a finite quadratic module A is k-simple if
Sk,A = {0}. With this terminology, an even lattice L is simple if and only if L′/L
is (1 + n/2)-simple.

The dimension of the space Sk,A can be computed by means of the Riemann-
Roch theorem. Therefore a straightforward approach to showing that there are
non-trivial cusp forms consists in finding lower bounds for the dimension of Sk,A.
Unfortunately, the dimension formula (10) involves rather complicated invariants
of ρA at elliptic and parabolic elements, and it is a non-trivial task to obtain
sufficiently strong bounds. In the present paper we resolve this problem. For
instance, we obtain the following result (see Theorem 4.5 and Corollary 4.6).

Theorem. For every ε > 0, there is a Cε > 0 such that∣∣∣∣dim(Sk,A)− dim(M2−k,A(−1))− |A/{±1}| · k − 1

12

∣∣∣∣ ≤ Cε · |A/{±1}| ·Nε− 1
2

A

for every finite quadratic module A and every weight k ≥ 3
2 with 2k ≡ − sig(A)

(mod 4). Here NA is the level of A, and A(−1) denotes the abelian group A equipped
with the quadratic form −Q.

In Corollary 4.7 we conclude that there exist only finitely many isomorphism
classes of finite quadratic modules A with bounded number of generators such that
Sk,A = {0} for some weight satisfying the condition of the theorem. In particular,
there are only finitely many isomorphism classes of simple lattices. Note that there
do exist infinitely many isomorphism classes of 1

2 -simple finite quadratic modules;
see Remark 4.8.

1Tables with global realizations can be obtained from [Ehl].
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Since the constant Cε in the above theorem is large, it is a difficult task to
compute the list of all k-simple finite quadratic modules for a bounded number
of generators. We develop an efficient algorithm to address this problem. The
idea is to first compute all anisotropic finite quadratic modules that are k-simple
for some k. To this end we derive an explicit formula for dim(Sk,A) in terms of
class numbers of imaginary quadratic fields and dimension bounds that are strong
enough to obtain a classification (Theorem 4.10 and Table 5).

Next we employ the fact that an arbitrary finite quadratic module A has a
unique anisotropic quotient A0, and that there are intertwining operators for the
corresponding Weil representations. For the difference dimSk,A − dimSk,A0

very
efficient bounds can be obtained. This can be used to classify all k-simple finite
quadratic modules with a bounded number of generators; see Algorithm 5.5 and
the tables in Section 5.

To resolve the problem of finding all simple lattices of signature (2, n), it remains
to test which of these simple discriminant forms arise as discriminant groups L′/L of
even lattices L of signature (2, n). This is done in Section 6 by applying a criterion
of [CS]. Finally, in Section 6.1 we explain some applications of our results in the
context of Borcherds products.

2. Finite quadratic modules

Let (A,Q) be a finite quadratic module (also called a finite quadratic form or
discriminant form in the literature), that is, a pair consisting of a finite abelian
group A together with a Q/Z-valued non-degenerate quadratic form Q on A. We
denote the bilinear form corresponding to Q by (x, y) = Q(x + y) − Q(x) − Q(y).
Recall that Q is called degenerate if there exists an x ∈ A\{0} such that (x, y) = 0
for all y ∈ A. Otherwise, Q is called non-degenerate.

The morphisms in the category of finite quadratic modules are group homo-
morphisms that preserve the quadratic forms. In particular, two finite quadratic
modules (A,QA) and (B,QB) are isomorphic if and only if there is an isomorphism
of groups ϕ : A → B, such that QB ◦ ϕ = QA.

In this section we collect some important facts about finite quadratic modules,
which are well known among experts but not easily found in the literature. We
mainly follow Skoruppa [Sk3]. Other good references include [Ni], [No], [Sk2], [Str].

If L is an even lattice, the quadratic form Q on L induces a Q/Z-valued quadratic
form on the discriminant group L′/L of L. The pair (L′/L,Q) defines a finite
quadratic module, which we call the discriminant module of L. According to [Ni],
any finite quadratic module can be obtained as the discriminant module of an even
lattice L. If (b+, b−) then denotes the real signature of L, the difference b+ − b− is
determined by its discriminant module A modulo 8 by Milgram’s formula

1√
|A|

∑
a∈A

e(Q(a)) = e((b+ − b−)/8).

Here and throughout we abbreviate e(z) = e2πiz for z ∈ C. We call sig(A) :=
b+ − b− ∈ Z/8Z the signature of A.

We let N be the level of A defined by

N = min{n ∈ Z>0 | nQ(x) ∈ Z for all x ∈ A}.
It is easily seen that N is a divisor of 2|A|.
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If (A,QA) and (B,QB) are two finite quadratic modules, then the orthogonal
direct sum (A⊕B,QA + QB) also defines a finite quadratic module. Here (QA +
QB)(a + b) = QA(a) + QA(b) for a ∈ A and b ∈ B. We call a finite quadratic
module indecomposable if it is not isomorphic to such a direct sum with non-zero
A and B.

The finite quadratic module A is isomorphic to the orthogonal sum of its p-
components Ap = A⊗Z Zp with p running through the primes.

Next we describe a list of indecomposable finite quadratic modules.

Definition 2.1. Let p be a prime and t be an integer not divisible by p. We define
the following elementary finite quadratic modules:

At
pk =

(
Z/pkZ,

tx2

pk

)
for p > 2,

At
2k =

(
Z/2kZ,

tx2

2k+1

)
,

B2k =

(
Z/2kZ⊕ Z/2kZ,

x2 + 2xy + y2

2k

)
,

C2k =
(
Z/2kZ⊕ Z/2kZ,

xy

2k

)
.

Theorem 2.2.

(1) The finite quadratic modules listed in Definition 2.1 are indecomposable.
(2) Every indecomposable finite quadratic module is isomorphic to a finite qua-

dratic module as in Definition 2.1.
(3) Moreover, every finite quadratic module is isomorphic to a direct sum of

indecomposable finite quadratic modules.

Proof. Statement (1) is clear. The other two statements follow from the classifica-
tion of p-adic lattices. See [Ni] for details, in particular Proposition 1.8.1. �

Consider a decomposition of the p-components of a finite quadratic module A as
a direct sum

Ap = Ap,1 ⊕ . . .⊕Ap,lp ,

where each Ap,i is a direct sum of elementary finite quadratic modules Ati
qi ,Bqi , Cqi ,

with qi = pri , ri ≥ 1 and q1 < . . . < qr.
Such a decomposition is called a Jordan decomposition of A, and the direct

summands Ap,i are called Jordan components of A. We will also call any finite
quadratic module that is isomorphic to a direct sum of elementary finite quadratic
modules At

q,Bq, Cq for a fixed q a Jordan component.
We will now describe a handy notation for such a Jordan decomposition. The

symbols we use are essentially those introduced by Conway and Sloane [CS] for
the genus of an integral lattice, that is, its class under rational equivalence. The
following statement (see [Ni], Corollary 1.16.2) motivates the use of their symbols
for us.

Proposition 2.3. Two even lattices L and M that have the same real signatures
have isomorphic finite quadratic modules if and only if L and M are in the same
genus.

The following two lemmas are straightforward to prove (see also [Ni], Proposition
1.8.2).
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Lemma 2.4. Let p > 2 be a prime and let q = pr for a positive integer r.

(1) We have At
q
∼= As

q if and only if
(

s
p

)
=

(
t
p

)
.

(2) Suppose that
(

2s
p

)
= 1 and

(
2t
p

)
= −1. Then As

q ⊕As
q
∼= At

q ⊕At
q.

(3) In particular, if A is a Jordan component of the form

A =
n⊕

i=1

Ati
q ,

then A is isomorphic to

At
q ⊕

n−1⊕
i=1

As
q, with

n∏
i=1

(
2ti
p

)
=

(
2t

p

)

for any s with
(

2s
p

)
= 1.

Lemma 2.5. Let q = 2r for a positive integer r. Moreover, let s, t be odd integers.

(1) We have As
2 ≡ At

2 if and only if s ≡ t (mod 4).
(2) If r > 1, then As

q ≡ At
q if and only if s ≡ t (mod 8).

(3) Let s1, . . . , sn, t1, . . . , tn ∈ Z such that
n∑

i=1

si ≡
n∑

i=1

ti (mod 8) and

n∏
i=1

(si
2

)
=

n∏
i=1

(
ti
2

)

Then
n⊕

i=1

Asi
q

∼=
n⊕

i=1

Ati
q .

(4) We have Bq ⊕ Bq
∼= Cq ⊕ Cq.

(5) Moreover, we have At
q⊕Bq

∼= At1
q ⊕At2

q ⊕At3
q with t1+ t2+ t3 ≡ t (mod 8)

and
3∏

i=1

(
ti
2

)
= −

(
t

2

)
.

(6) Finally, At
q ⊕ Cq ∼= At1

q ⊕At2
q ⊕At3

q with t1 + t2 + t3 ≡ t (mod 8) and

3∏
i=1

(
ti
2

)
=

(
t

2

)
.

Definition 2.6. Using the preceding lemmas, we define a symbol for a Jordan
decomposition of a finite quadratic module as follows. First of all, by convention,
we write 1+1 or 1−1 for the trivial module A = {0} with the 0-map as quadratic
form.

Now let A be a Jordan component, p be a prime and q = pr.

(1) If p is odd, the two isomorphism classes of Jordan components in Lemma

2.4 (3) are denoted q±n, where
(

2t
p

)
= ±1.

(2) Let p = 2.
(a) We write q±n

t if A is isomorphic to At1
q ⊕ . . .⊕Atn

q with t1+ . . .+tn ≡ t

(mod 8) and
(
t1
2

)
· · ·

(
tn
2

)
= ±1. We normalize t to be contained in

the set {1, 3, 5, 7}, and if q = 2, we take t ∈ {1, 7}.
(b) We write q+2n if A is isomorphic to n copies of Cq.
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(c) And we write q−2n if A is isomorphic to n − 1 copies of Cq and one
copy of Bq.

For a general finite quadratic module, we concatenate the symbols of the Jordan
components as defined above.

Example 2.7. The Jordan decomposition A1
2⊕ (A1

3⊕A1
3) has the symbol 2+1

1 3+2,
and 2−24+3

3 3−1 is the symbol for the Jordan decomposition B2⊕(A1
4⊕A1

4⊕A1
4)⊕A1

3.

Proposition 2.8. Let A and B be finite quadratic modules and let p > 2 be a
prime. If Ap

∼= Bp, then the corresponding p-components of the genus symbols of
A and B coincide.

Proof. This follows from the uniqueness of the Jordan decomposition in the case of
an odd prime p (see, for instance, Theorem 5.3.2 in [Ki]). �

Remark 2.9. In contrast to Proposition 2.8, note that the symbol (and the Jordan
decomposition) for p = 2 is not uniquely determined by the isomorphism class. For
instance, the Jordan decompositions 2+1

1 4+1
1 and 2+1

7 4−1
3 correspond to isomorphic

finite quadratic modules. See also Theorem 2.14 in the next section.

For an integer n we define the n-torsion subgroup of a finite quadratic module
A by

A[n] = {γ ∈ A | nγ = 0} .
Moreover, we let An be the image of the multiplication by n map. Then we have
the exact sequence

0 −→ A[n] −→ A −→ An −→ 0,

and A is the orthogonal sum of A[n] and An. It follows from the theorem of
elementary divisors and the Jordan decompositon (Theorem 2.2) that

(1) |A[n]| ≤ 2n
|A|
N

.

The quantity d = dA := |A/{±1}| can be expressed in terms of the 2-torsion as

d =
|A|
2

+
|A[2]|
2

.(2)

2.1. Gauss sums and divisor sums. We now collect some facts about Gauss
sums and divisor sums associated to finite quadratic modules which we will need
later. For an integer n ∈ Z the Gauss sum G(n,A) is defined by

(3) G(n,A) =
∑
γ∈A

e(nQ(γ)).

We have the elementary properties

G(−n,A) = G(n,A),(4)

G(n+N,A) = G(n,A),(5)

G(n,A⊕B) = G(n,A)G(n,B).(6)

The following lemma is a consequence of [Bo3, Lemma 3.1].

Lemma 2.10. If (n,N) = 1, then |G(n,A)| =
√
|A|. For general n we have the

estimate

|G(n,A)| ≤
√
|A|

√
|A[n]|.
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We will also need explicit formulas for the Gauss sums in some cases in Section
4.1. These are easily proven by relating G(n,A) to the standard Gauss sums (see,
for instance, [Str]).

Proposition 2.11. Let p > 2 be a prime. We have G(n, p±1) = p if p | n and

G(n, p±1) = ±√
p
(p
2

)(
n

p

)
e

(
1− p

8

)
if (n, p) = 1.

Proposition 2.12. Let q = 2r. For n ∈ Z we put n′ = n/(n, q) and q′ = q/(n, q).
We have

G(n, q±1
t ) =

√
q
√
(n, q)

(
tn′

q′

)
·

⎧⎪⎪⎨
⎪⎪⎩
e
(

tn′

8

)
, if q � n,

0, if q || n,
1, if 2q | n.

Proposition 2.13. Let q = 2r with r ≥ 1. We have

G(n, q−2) = q(q, n)

(
3

q′

)
and

G(n, q+2) = q(q, n).

The following theorem is used later to decide when two given genus symbols
correspond to isomorphic finite quadratic modules.

Theorem 2.14 ([Sk3]). Let A and B be finite quadratic modules. Then A and B
are isomorphic if and only if their underlying abelian groups are isomorphic and

G(n,A) = G(n,B)

for all divisors n of the level of A and B.

Proof. It is clear that the condition G(n,A) = G(n,B) is necessary. Using this,
it is easy to prove the theorem for p-components with p > 2. If Ap and Bp are
finite quadratic modules of prime power level pr with G(pi, Ap) = G(pi, Bp) for all
i ∈ 0, . . . , r, then Ap

∼= Bp follows from Lemma 2.4 and the explicit formula for the
Gauss sum in Proposition 2.11. The general case is treated in [Sk3] in detail. �

For s ∈ C we define a divisor sum σ(s, A) associated to A by

σ(s, A) =
∑
a|N

as
√
|A[a]|.(7)

Here the sum runs over all positive divisors a of the level N of A. If B is another
finite quadratic module of level N ′ coprime to N , then

σ(s, A⊕B) = σ(s, A)σ(s,B).

Consequently, σ(s, A) is the product of the σ(s, Ap) for p running through the
primes dividing N .

Lemma 2.15. For s ∈ R we have the estimate

σ(s, A) ≤
√

2|A|
N

· σs+1/2(N),

where σs(N) =
∑

a|N as denotes the usual divisor sum.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1960 JAN HENDRIK BRUINIER, STEPHAN EHLEN, AND EBERHARD FREITAG

Proof. This is a direct consequence of the estimate (1). �

3. Vector valued modular forms

We write Mp2(Z) for the metaplectic extension of SL2(Z), realized as the group
of pairs (M,φ(τ )), where M =

(
a b
c d

)
∈ SL2(Z) and φ is a holomorphic function on

the upper complex half plane H with φ(τ )2 = cτ + d (see e.g. [Bo1], [Br1]). It is
well known that Mp2(Z) is generated by

T =

((
1 1

0 1

)
, 1

)
and S =

((
0 −1

1 0

)
,
√
τ

)
.

One has the relations S2 = (ST )3 = Z, where Z =
((−1 0

0 −1

)
, i
)
is the standard

generator of the center of Mp2(Z).
The Weil representation associated with A is a unitary representation ρA of

Mp2(Z) on the group algebra C[A]. If we denote the standard basis of C[A] by
(eγ)γ∈A, then ρA can be defined by the action of the generators S, T ∈ Mp2(Z) as
follows (see also [Sk2], [Bo1], [Br1], where the dual of ρA is used):

ρA(T )eγ = e(−Q(γ))eγ ,(8)

ρA(S)eγ =
e(sig(A)/8)√

|A|
∑
δ∈A

e((γ, δ))eδ.(9)

Let k ∈ 1
2Z. We denote by Mk,A the vector space of C[A]-valued modular forms

of weight k with representation ρA for the group Mp2(Z). The subspace of cusp
forms is denoted by Sk,A. It is easily seen that Mk,A = 0 if 2k ≡ sig(A) (mod 2).

The dimension of the vector space Mk,A can be computed using the Riemann-
Roch theorem or the Selberg trace formula. This is carried out in [Fr] and [Fi]
in a more general situation. In our special case the following formula holds (see
[Bo2], p. 228, and [Fr], Chapter 8.5, Theorem 5.1). For simplicity we assume that
2k ≡ − sig(A) (mod 4), since our application to simple lattices will only concern
this case. Then the d-dimensional subspace W = span{eγ + e−γ ; γ ∈ A} of C[A] is
preserved by ρA, and ρA(Z) acts by multiplication with e(−k/2) on W . We denote
by ρ the restriction of ρA to W . If M is a unitary matrix of size d with eigenvalues
e(νj) and 0 ≤ νj < 1 (for j = 1, . . . , d), we define

α(M) =
d∑

j=1

νj .

If k ≥ 3
2 , the dimension of Mk,A is given by

dim(Mk,A) = d+ dk/12− α
(
eπik/2ρ(S)

)
− α

((
eπik/3ρ(ST )

)−1
)
− α(ρ(T ))

(10)

+ dim(S2−k,A(−1)).

Furthermore, the dimension of Sk,A is given by

dim(Sk,A) = first line of (10)− |{γ ∈ A/{±1}; Q(γ) ∈ Z}|+ dim(M2−k,A(−1)).

(11)

Here A(−1) denotes the finite quadratic module given by the abelian group A
equipped with the quadratic form −Q. If k > 2, then M2−k,A(−1) vanishes. If
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k = 2, then M0,A(−1) is equal to the space of Mp2(Z)-invariants in C[A] for the

dual representation of ρA. Finally, when k = 3
2 , according to the Serre-Stark

theorem, the space M 1
2 ,A(−1) is generated by unary theta series. It was explicitly

computed by Skoruppa in [Sk1] and [Sk2] as follows. For every non-zero l ∈ Z we
write V (l) for the finite quadratic module of level 4|l| given by Z/2lZ equipped
with the quadratic form Q(x) = 1

4lx
2. Let ε be the automorphism of V (l) given by

multiplication by −1, and write C[V (l)]ε for the corresponding space of invariants.
According to [Sk2, Theorem 8] we have

M 1
2 ,A(−1)

∼=
⊕

l>0, 4l|N
N/4l squarefree

(
C[V (−l)]ε ⊗ C[A(−1)]

)Mp2(Z).(12)

Here the action of Mp2(Z) on the tensor products on the right hand side is given
by the Weil representation.

4. Dimension estimates

In this section we derive lower bounds for the dimension of Sk,A. In view of (10)
and (11) we have to estimate the quantities

α1 := α
(
eπik/2ρ(S)

)
,

α2 := α

((
eπik/3ρ(ST )

)−1
)
,

α3 := α(ρ(T )),

α4 :=
∣∣ {γ ∈ A/{±1}; Q(γ) ∈ Z}

∣∣.
We begin by recalling some trivial bounds from [Bu, Bemerkungen 2.2.1 and 2.2.5].
We have

α1 ≤ 1

2
d, α2 ≤ 2

3
d, α3 + α4 ≤ d.

If we insert these bounds into (11) we obtain the following corollary.

Corollary 4.1. If k > 14 and 2k ≡ − sig(A) (mod 4), then Sk,A = {0}.

Note that this bound on k is sharp, since there are no non-trivial scalar valued
cusp forms of weight 14 for SL2(Z).

To prove the existence of non-trivial cusp forms for smaller values of k by means
of the dimension formula, we need much better estimates for the αi. The quantities
α1 and α2 can be expressed in terms of Gauss sums associated with A. By means
of the estimate in Lemma 2.10, we obtain the following result (see Lemma 2 and
Corollary 3 in [Br2]).

Lemma 4.2. The quantities α1 and α2 satisfy the estimates

|α1 − d/4| ≤ 1

4

√
|A[2]|,(13)

|α2 − d/3| ≤ 1

3
√
3

(
1 +

√
|A[3]|

)
.(14)

Lemma 4.3. We have

|α4| ≤
|A[2]|
2

+

√
|A|
2

σ(−1, A),
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where σ(−1, A) is the divisor sum defined in (7).

Proof. We write α4 as

α4 =
1

2

∑
γ∈A[2]
Q(γ)∈Z

1 +
1

2

∑
γ∈A

Q(γ)∈Z

1.

The second term on the right hand side is equal to

1

2N

∑
γ∈A

∑
ν (N)

e(Q(γ)ν) =
1

2N

∑
ν (N)

G(ν,A).

Using Lemma 2.10, we obtain

|α4| ≤
|A[2]|
2

+
1

2N

∑
ν (N)

√
|A|

√
|A[ν]|

≤ |A[2]|
2

+

√
|A|

2N

∑
a|N

∑
μ (N/a)

(μ,N/a)=1

√
|A[aμ]|

≤ |A[2]|
2

+

√
|A|

2N

∑
a|N

N

a

√
|A[a]|

≤ |A[2]|
2

+

√
|A|
2

σ(−1, A).

This concludes the proof of the lemma. �

Before we consider α3, we introduce some additional notation. If x ∈ R, we write
[x] = max{n ∈ Z; n ≤ x} for the greatest-integer function. Moreover, we let

(15) B(x) = x− 1
2 ([x]− [−x])

be the 1-periodic function on R with B(x) = 0 for x = 0, 1 and B(x) = x− 1/2 for
0 < x < 1. By definition

α3 =
∑

γ∈A/{±1}
(−Q(γ)− [−Q(γ)]) .

Using B(x) and α4 we may rewrite this in the form

α3 =
d

2
− α4

2
−

∑
γ∈A/{±1}

B(Q(γ))

=
d

2
− α4

2
− 1

2

∑
γ∈A[2]

B(Q(γ))− β

2
,

where

β =
∑
γ∈A

B(Q(γ)).(16)

For γ ∈ A[2] we have Q(γ) ∈ 1
4Z, and therefore |B(Q(γ))| ≤ 1/4. Hence

|α3 − d/2 + α4/2| ≤ |A[2]|/8 + |β|/2.(17)
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Lemma 4.4. The quantity β satisfies

|β| ≤
√
|A|
π

(
3

2
+ ln(N)

)(
σ(−1, A)−

√
|A|
N

)
.

Proof. Exactly as in the proof of [Br2, Lemma 5], we derive

|β| ≤
√
|A|
π

N−1∑
ν=1

1

ν

√
|A[ν]|+

√
|A|

2πN

N−1∑
ν=1

√
|A[ν]|.

Rewriting the sum over ν, we obtain

|β| ≤
√
|A|
π

∑
a|N
a �=N

N/a∑
μ=1

(μ,N/a)=1

1

aμ

√
|A[a]|+

√
|A|

2πN

∑
a|N
a �=N

N/a∑
μ=1

(μ,N/a)=1

√
|A[a]|

≤
√
|A|
π

∑
a|N
a �=N

(1 + ln(N/a))
1

a

√
|A[a]|+

√
|A|

2πN

∑
a|N
a �=N

N

a

√
|A[a]|

≤
√
|A|
π

(
3

2
+ ln(N)

)(
σ(−1, A)−

√
|A|
N

)
.

Here we have also used the estimate
∑n

ν=1
1
ν ≤ 1 + ln(n). �

Putting the above lemmas together, we obtain the following estimate for the
dimension of the space Sk,A.

Theorem 4.5. If k ≥ 3
2 and 2k ≡ − sig(A) (mod 4), then∣∣∣∣dim(Sk,A)− dim(M2−k,A(−1))−

d(k − 1)

12

∣∣∣∣ ≤ R(A),

where

R(A) =

√
|A[2]|
4

+
1 +

√
|A[3]|

3
√
3

+
3

8
|A[2]|

+

√
|A|
4

σ(−1, A) +

√
|A|
2π

(
3

2
+ ln(N)

)(
σ(−1, A)−

√
|A|
N

)

is independent of k.

Proof. The dimension formula (11) states that

dim(Sk,A)− dim(M2−k,A(−1)) =
d(k + 12)

12
− α1 − α2 − α3 − α4

=
d(k − 1)

12
− (α1 −

d

4
)− (α2 −

d

3
)− (α3 −

d

2
+

α4

2
)− α4

2
.

Employing (17), Lemma 4.2, Lemma 4.3, and Lemma 4.4, we obtain the assertion.
�

Corollary 4.6. For every ε > 0 there exists a constant C (independent of k and
A) such that ∣∣∣∣dim(Sk,A)− dim(M2−k,A(−1))−

d(k − 1)

12

∣∣∣∣ ≤ CdNε− 1
2
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for every finite quadratic module A and every weight k ≥ 3
2 with 2k ≡ − sig(A)

(mod 4).

Proof. Using Theorem 4.5, the bound (1) for |A[a]|, and Lemma 2.15, we find that
there are constants C1, C2 > 0 (independent of k and A) such that

R(A) ≤ C1
|A|
N

+ C2
|A|√
N

σ−1/2(N)(1 + ln(N)).

By means of the estimate σ−1/2(N) �ε Nε we see that there exists a C > 0
(depending on ε) such that

R(A) ≤ C · dNε− 1
2 .

This proves the assertion. �

Corollary 4.7. Let r0 ∈ Z≥0. There exist only finitely many isomorphism classes
of finite quadratic modules A with minimal number of generators ≤ r0 such that
Sk,A = {0} for some weight k ≥ 3

2 with 2k ≡ − sig(A) (mod 4).

Proof. Since for any N0 ∈ Z>0 there are only finitely many isomorphism classes of
finite quadratic modules A with bounded minimal number of generators and level
N ≤ N0, we obtain the assertion from Corollary 4.6. �

Remark 4.8. i) In Corollary 4.7, the bound r0 on the minimal number of generators

is essential. For instance, if A = 3εn with n ∈ Z>0 odd and ε = (−1)
n−1
2 , then

sig(A) ≡ 2 (mod 4) and S3,A = {0}. This follows for instance from the dimension
formula in [Ha, Chapter 5.2.1, p. 93].

ii) Note that if k = 1
2 , it follows from [Sk2, Theorem 7] that there exist infinitely

many isomorphism classes of finite quadratic modules A such that S 1
2 ,A

= {0}. It

would be interesting to understand what happens in weight 1.

Under the assumptions of Corollary 4.7 it is possible to make the constants
appearing in the proof explicit and to derive an explicit lower bound N0 such that
Sk,A is non-trivial for all finite quadratic modules A with level larger than N0.
However, it turns out that such a bound is very large and therefore not useful for
a computer computation of the finite list of simple finite quadratic modules A. As
an example, for ε = 1/5 we can get C = 45.38, and this would give the bound
N0 ≥ 1.32 · 109 for k = 2. Therefore, a search for finite quadratic modules with
order up to 3.04 ·1036 would be required in the case of signature (2, 2), which is not
feasible. Even though it might be possible to find better parameters, we did not try
to optimize this. Instead, we use a more systematic approach to this computational
task. We first compute all anisotropic simple finite quadratic modules, and then
construct all remaining ones by means of isotropic quotients.

4.1. Anisotropic finite quadratic modules. A finite quadratic module (A,Q)
is called isotropic if there exists an x ∈ A \ {0} such that Q(x) = 0 ∈ Q/Z.
Otherwise it is called anisotropic. In this subsection we now consider anisotropic
finite quadratic modules. We show that there are only finitely many isomorphism
classes of anisotropic finite quadratic modules A for which Sk,A is trivial. The
following lemma is a direct consequence of Theorem 2.2 and the theory of quadratic
forms over finite fields.
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Lemma 4.9. Let (A,Q) be an anisotropic finite quadratic module of level N . Then
N = 2tN ′, where N ′ is an odd square-free number and t ∈ {0, 1, 2, 3}. If p is a
prime dividing N , then the p-component Ap of A belongs to the finite quadratic
modules given in Table 2.

Table 2. The non-trivial isomorphism classes of anisotropic finite
quadratic modules of prime-power order. The isomorphism classes
of the finite quadratic modules in the last line depend only on the
sum s + t. Here, d(A) is the discriminant of A, equal to |A| ∈
Q×/(Q×)2.

p genus symbol of A sig(A) d(A)

p ≡ 1 mod 4
p±1 4 + 2(1±

(
p
2

)
) p

p−2 4 0

p ≡ 3 mod 4
p±1 ±2

(
p
2

)
p

p+2 4 0

p = 2

2−2 4 0

2±n
nt , t = 1, 7, n = 1, 2, 3 nt 2n

4±1
t , t = 1, 3, 5, 7 t 0

2±1
s 4±1

t , s = 1, 7, t = 1, 3, 5, 7 s+ t 2

In the case of an anisotropic finite quadratic module it is also possible to obtain
an explicit formula for the quantity β defined in (16) in terms of class numbers.
Before we can state the precise result we need to introduce some more notation.

Let A be an anisotropic finite quadratic module of level N and write A =⊕
p|N Ap for its decomposition into p-components. For each prime divisor p of

N , we denote the minimal number of generators of Ap by rp. If Ap = qε·n with
q = pr we write εA(p) = ε. We define a divisor M of N by

M =
∏

p|N odd
rp=2

p ·
{
2, if A2 = 2−2,

1, otherwise.

For d | N we define the following auxiliary quantities:

S1(d) = {p prime; p | (d,M)},
ε1(d) = (−1)|S1(d)|,

a2(d) =

⎧⎪⎨
⎪⎩
1, if r2 = 0,

2r2−2, if r2 > 0 and d is odd,

2[
r2
2 ]−1, if r2 > 0 and d is even,
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S3(d) = {p prime ; p | d

(d,M)
, p ≡ 3 mod 4},

ε3(d) =

{
(−1)

|S3(d)|−1
2 , if |S3(d)| is odd,

(−1)
|S3(d)|

2 , if |S3(d)| is even.

For the p-components corresponding to odd primes, we define a sign

εodd(d) =
∏

p| d
(d,M)

odd

εA(p)
(p
2

)(
N/d

p

)
.

We let N2 be the even part of N and put N2,d = N2/(N2, N/d), Nd = N/
(d · (N/d,N2)) and d′ = d/(d,M · N2). Note that d′ is odd. If d is odd, we
let ε2(d) = 1. For even d, we define ε2(d) in Table 3. For simplicity, we also define
ε(d) = εodd(d)ε1(d)ε2(d)ε3(d).

Table 3. ε2(d) for even d.

A2 d′ ≡ 1 (mod 4) d′ ≡ 3 (mod 4)

2−2 0 1

2+r2
r2t , 4

±1
t

(
−N2,d

tNd

)
δ(r2)

(
N2,d

tNd

)
2+1
1 4+1

1 , 2+1
1 4−1

3

(
−8
N/d

)
0

2+1
1 4−1

5 , 2+1
1 4+1

7 0
(

8
N/d

)

Theorem 4.10. Let (A,Q) be an anisotropic finite quadratic module of level N .
We have

β = −
∑
d|N

d(d,M)≡0,3 mod 4

ε(d)a2(d) · (N/d,M)H(−d(d,M)).

Here, H(−n) is equal to the class number of primitive positive definite integral
binary quadratic forms of discriminant −n for n > 4 and H(−3) = 1/3 and
H(−4) = 1/2.

Proof of Theorem 4.10. Using the pointwise convergent Fourier expansion

B(x) = − 1

2πi

∑
n∈Z−{0}

e(nx)

n

we find

β = − 1

π

∞∑
n=1

1

n
�(G(n,A)) = − 1

π

∑
d|N

∑
n≥1

(n,N/d)=1

1

dn
�(G(dn,A)).

First, we assume thatN is odd. For a discriminant D, we write χD for the quadratic
Dirichlet character modulo |D| given by n �→

(
D
n

)
. Inserting the formula forG(n,A)
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from Proposition 2.11 and substituting N/d for d, we obtain

β = −
√
N

π

∑
d|N

∑
n≥1

(n,d)=1

(M,N/d)
√
(M,d)

n
√
N/d

× �
( ∏

p|d
rp=1

εA(p)
(p
2

)(
nN/d

p

)
e

(
1− p

8

) ∏
p|d

rp=2

(−1)

)

= −
√
N

π

∑
d|N

d(d,M)≡3 mod 4

ε(d) · (M,N/d)

√
(M,d)√
N/d

∑
n≥1

(n,d)=1

χ−d·(M,d)(n)

n

= −
∑
d|N

d·(d,M)≡3 mod 4

ε(d) · (M,N/d)

√
d · (M,d)

π
L(χ−d·(M,d), 1).

Here, we used that e
(
1−p
8

)
=

(
p
2

)
for p ≡ 1 (mod 4) and e

(
1−p
8

)
=

(
p
2

)
i for p ≡ 3

(mod 4). Therefore, only divisors congruent to 3 modulo 4 contribute to the sum.

Using that L(χD, 1)/π = H(D)/
√
|D| (cf. [Za], Teil II, §8, Satz 5) for a negative

discriminant D, we obtain the statement of the theorem in this case.
If N is even, we have to consider the different 2-adic components separately. The

case A2 = 2−2 is easy to obtain. We give a proof for A2 = 2+r2
rt . The remaining

cases are done analogously. Using the same argument as before together with the
results in Proposition 2.12, we obtain

β = −
√
N

π

∑
d|N

N/d odd

εodd(d)ε1(d) · (M,N/d)

√
(M,d)√
N/d

×
∑
n≥1

(n,d)=1

1

n

√
2
r2−2�

((
tnN/d

2

)r2

e

(
r2tnN/d

8

) ∏
p|d odd
rp=1

(
n

p

)
γp

)

− 1

π

∑
d|N

N/d≡0 mod 4

ε(d) · (M,N/d)

√
N · (M,d)√

N/d

∑
n≥1

(n,d)=1

1

n

(
−d · (M,d)

n

)
.

Here, γp = 1 for p ≡ 1 mod 4 and γp = i for p ≡ 3 mod 4. Using that
√
2
(
m
2

)
e
(
m
8

)
= 1 +

(−4
m

)
i, we obtain

√
2
r2−2�

((
tnN/d

2

)r2

e

(
r2tnN/d

8

) ∏
p|d odd
rp=1

(
n

p

)
γp

)

= a2(N/d)
∏

p|d odd
rp=1

(
n

p

)
·

⎧⎨
⎩
(

−4
tnN/d

)
, if d/(4 · (M,d)) ≡ 1 mod 4

δ(r2)
(

4
tnN/d

)
, if d/(4 · (M,d)) ≡ 3 mod 4,

which yields the statement of the theorem for A2 = 2+r2
nt . �

The following upper bound for the class number is well known.
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Lemma 4.11. Let −D be a negative discriminant. We have

H(−D) ≤
√
D lnD

π
.

Proof. We use again L(χD, 1)/π = H(D)/
√
|D| and argue as in the proof of Lemma

5.6 on page 172 in [Ge] to obtain L(χ−D, 1) ≤ lnD for D > 4. Note that the
bound for H(−D) is also valid for D = 3 and D = 4 with our normalization that
H(−3) = 1/3 and H(−4) = 1/2. �
Lemma 4.12. Let A be an anisotropic finite quadratic module. We have

|β| ≤ 1.71 · |A| 58 ln(2|A|).

Proof. We have by Theorem 4.10 and Lemma 4.11 that

|β| ≤ 1

π

∑
d|N

d(d,M)≡0,3 (mod 4)

a2(d)(N/d,M)
√
d(d,M) ln(d(d,M))

≤ 1

π
M ln(NM)c2(A)

∑
d|N

√
d

(d,M)
,

where c2(A) = 2 if r2 = 3 and c2(A) = 1, otherwise. We obtain

|β| ≤ 1

π
M ln(NM)c2(A)σ0(M)σ1/2(N/M).

If the order of A is odd, we have c2(A) = 1 and

Mσ0(M)σ1/2(N/M) = 1.76 · |A| 58 .
Moreover, if the order of A is a power of 2, then

c2(A)Mσ0(M)σ1/2(N/M) ≤ 3.05|A| 58 .
Using the multiplicativity of the divisor sum function, we see that

c2(A)Mσ0(M)σ1/2(N/M) ≤ 5.37 · |A| 58 .
Finally, using that NM ≤ 2|A| implies the statement of the lemma. �

Corollary 4.13. Let (A,Q) be an anisotropic finite quadratic module. If k ≥ 3
2 ,

then

dim(Sk,A) ≥
(|A|+ 1)(k − 1)

24
− 3.0− 0.86 · |A| 58 ln(2|A|).

Proof. Since A is anisotropic, we have α4 = 1. Hence the estimate of Theorem 4.5
can be refined to give∣∣∣∣dim(Sk,A)− dim(M2−k,A(−1))−

d(k − 1)

12

∣∣∣∣ ≤ R′(A),

where

R′(A) =

√
|A[2]|
4

+
1 +

√
|A[3]|

3
√
3

+
1

8
|A[2]|+ 1

2
+

|β|
2
.

Since A is anisotropic, Lemma 4.9 implies that

|A[2]| ≤ 8,

|A[3]| ≤ 9.
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Using in addition (2) and the estimates N ′ ≤ |A| and N ≤ 2|A|, we obtain

dim(Sk,A) ≥
(|A|+ 1)(k − 1)

24
−

√
2

2
− 4

3
√
3
− 3

2
− |β|

2
.

Together with Lemma 4.12 this proves the corollary. �
Corollary 4.14. Let (A,Q) be an anisotropic finite quadratic module such that
sig(A) ≡ −2k (mod 4). If |A| ≥ 4.79 · 107, then S 3

2 ,A
= {0}; and if k ≥ 2, then

Sk,A = {0} for |A| ≥ 5.4 · 106.

We implemented the dimension formula and some of the estimates used here in
python using sage[S+14]. Note that for the low weights k = 2 and k = 3

2 , we need
to calculate the dimension of the invariants of the Weil representation. N. Skoruppa
and S. Ehlen wrote a program that determines the invariants explicitly, and we in-
cluded this implementation in our repository [Ehl]. Our complete software package,
together with all required libraries, examples and documentation is available online
[Ehl].

We used our program to obtain a list of all anisotropic finite quadratic modules
such that Sk,A = {0} for k ≥ 3

2 .

Corollary 4.15. Let (A,Q) be an anisotropic finite quadratic module such that
sig(A) ≡ −2k (mod 4). Then Sk,A = {0} for k ≥ 3

2 exactly if A belongs to the lists
given in Tables 4 and 5.

Remark 4.16. The bound in Corollary 4.14 can be improved substantially for higher
weights. However, all of the bounds obtained this way are far away from the correct
bounds (the maximal order is 238 for k = 3

2 and 60 for k = 2) found in Tables 4
and 5.

Table 4. The 75 anisotropic finite quadratic modules A with
S 3

2 ,A
= {0}. Out of these, 59 have signature 1.

sig(A) 3
2 -simple finite quadratic modules

1
(
Z/2NZ, x2

4N

)
for 1 ≤ N < 37 square-free and

N ∈ {38, 39, 41, 42, 46, 47, 51, 55, 59, 62, 66, 69, 70, 71, 78, 87, 94, 95, 105,
110, 119}, 2+3

3 3+1, 2+3
5 3+2, 2+3

5 5+1, 4+1
7 3−1, 4+1

1 5−1, 4−1
5 5−2, 4−1

3 7−1,

2+1
7 3+15−2, 2+1

7 3−15−1, 2+1
1 3+17+1, 2+1

7 3+27−1, 4+1
1 13−1, 4+1

7 3+15+1,

2+1
7 5−17+1, 2+1

7 3+113+1

5 4−1
5 , 2+1

7 3+1, 2+3
5 , 2+1

1 5+1, 4+1
7 3+1, 4−1

3 3−1, 2+1
7 7−1, 4−1

5 5−1, 4+1
1 5+1,

2+3
3 3−1, 2+1

1 13+1, 4+1
1 3+2, 4+1

7 11+1, 2+1
1 5−2, 2+3

3 7+1, 2+3
3 3−15−1

4.2. Differences of dimensions. Here we give lower bounds for the difference
of the dimensions of Sk,A⊕B and Sk,A, where A is an arbitrary finite quadratic
module and B is an isotropic finite quadratic module of order p2 for large primes
p. We have to estimate the differences of the quantities occurring in the dimension
formula (10). To indicate the dependency of the finite quadratic module, we write
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Table 5. Anisotropic finite quadratic modules A with Sk,A = {0}
for k ≥ 2.

k sig(A) genus symbols

2 0 1+1, 5−1, 2+1
1 4+1

7 , 3+111−1, 2−25+1, 2+2
2 3+1, 2+2

6 3−1, 13−1, 2+2
6 7+1,

17+1, 3−17−1, 2+1
1 4+1

1 3+1, 2+2
6 3+15+1

2 4 2−2, 3+2, 5+1, 5−2, 2+1
1 4−1

3 , 3−111−1, 2−25−1, 2+2
2 3−1, 2+2

6 3+1, 13+1,
2+2
2 7+1, 17−1, 3+17−1, 2+1

1 4+1
1 3−1, 2+2

2 3−15−1

5
2 3 2+3

3 , 4−1
3 , 4−1

3 5−1, 2+1
1 3−1, 2+1

7 3+2, 2+1
1 7+1, 2+1

1 11−1, 4+1
1 7+1,

2+1
7 5+1, 4+1

1 3−1, 4−1
5 3+1, 2+1

1 3−15−1

5
2 7 2+1

7 , 4+1
7 , 2+1

1 3+1

k sig(A) genus symbols sig(A) genus symbols

3 2 3−1, 2+2
2 , 2−23+1, 7+1,

2+1
1 4+1

1 , 11−1, 3+15+1,
3−15−1, 2+2

2 5−1, 23+1

6 3+1

7
2 1 2+1

1 , 4+1
1 , 2+1

7 3−1, 2+1
1 5−1,

4−1
3 3+1

5 4−1
5

4 0 1+1, 5−1 4 5+1, 2−2

9
2 3 4−1

3 , 2+1
1 3−1 7 2+1

7

5 2 3−1, 2+2
2 , 7+1 6 3+1

11
2 1 2+1

1 , 4+1
1

6 0 1+1

7 2 3−1

15
2 1 2+1

1

8, 10, 14 0 1+1

αi(A) for the quantities αi associated to A defined at the beginning of Section 4.
We will make use of the following principle.

Definition 4.17. If A is a finite quadratic module and U ⊂ A is a subgroup, we
let

U⊥ = {a ∈ A | (a, u) = 0 for all u ∈ U}
be the orthogonal complement of U .

If U is a totally isotropic subgroup, that is, we have Q(u) = 0 for all u ∈ U ,
then the pair (U⊥/U,Q) also defines a finite quadratic module. We have |A| =
|U⊥/U ||U |2 and sig(A) = sig(U⊥/U).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LATTICES WITH MANY BORCHERDS PRODUCTS 1971

Proposition 4.18. Let A be a finite quadratic module and let B = U⊥/U for
some totally isotropic subgroup U ⊂ A. We have an injection Sk,B ↪→ Sk,A given
by f �→ F with Fα = 0 for α ∈ U⊥ and Fα = fα+U for α ∈ U⊥.

Proof. See Theorem 4.1 in [Sch2]. �

Proposition 4.19. If U ⊂ A is a maximal totally isotropic subgroup, then A0 =
U⊥/U is anisotropic. The isomorphism class of A0 is independent of the choice of
U , and we call A0 the anisotropic reduction of A.

Proof. It is easy to see that U⊥/U is anisotropic for a maximal totally isotropic
subgroup: Suppose that x ∈ U⊥/U is isotropic, x = 0. Then x = a + U for some
a ∈ U⊥ with Q(a) = 0. However, since a ∈ U⊥ and a ∈ U , this implies that the
subgroup U ′ of A generated by U and a is isotropic and strictly larger than U .

The uniqueness follows from the classification of the anisotropic finite quadratic
modules (see Table 2) and the fact that d(U⊥/U) = d(A) and sig(U⊥/U) = sig(A).

�

Lemma 4.20. Let A be an arbitrary finite quadratic module, and let B be an
isotropic finite quadratic module of order p2, where p is a prime not dividing 6|A|.
Then

dA⊕B − dA =
|A|
2

(p2 − 1),(18)

and

|α1(A⊕ B)− α1(A)− |A|
8

(p2 − 1)| ≤ 1

2

√
|A[2]|,

|α2(A⊕ B)− α2(A)− |A|
6

(p2 − 1)| ≤ 2

3
√
3

(
1 +

√
|A[3]|

)
,

|α3(A⊕ B)− α3(A)− |A|
4

(p2 − 1)| ≤ p− 1

2
|A|,

α4(A⊕B)− α4(A) ≤ (p− 1)|A|.

Proof. To prove (18), we use (2). Since p = 2, we have B[2] = {0}, and therefore

dA⊕B =
|A⊕B|

2
+

|A[2]⊕B[2]|
2

=
p2|A|
2

+
|A[2]|
2

.

This implies the stated formula.
The bounds for the differences of α1 and α2 directly follow from (18) and

Lemma 4.2 combined with the fact that B[3] = {0}.
Let κ0(A) denote the number of isotropic vectors in A. For α4 we use that

α4(A) =
1

2
(κ0(A) + κ0(A[2])) .

Since the 2-torsion of B is trivial and since p does not divide |A|, we find

α4(A⊕B)− α4(A) =
1

2
(κ0(A⊕B)− κ0(A))

=
1

2
κ0(A) (κ0(B)− 1) .

The quantity κ0(B) is bounded by 2p− 1 by the Jordan decomposition (Theorem
2.2), and κ0(A) is trivially bounded by |A|. This gives the claimed bound.
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We now turn to the estimate for α3. For x ∈ R we write {x} = x − [x] ∈ [0, 1)
for the fractional part of x. By definition we have

α3(A) =
∑

γ∈A/{±1}
{−Q(γ)}

=
1

2

∑
γ∈A

{−Q(γ)}+ 1

2

∑
γ∈A[2]

{−Q(γ)}.

Consequently,

α3(A⊕B)− α3(A) =
1

2

∑
γ∈A⊕B

{−Q(γ)} − 1

2

∑
γ∈A

{−Q(γ)}.(19)

For an arbitrary x ∈ R, we now estimate the sum

S(x,B) =
∑
γ∈B

{x−Q(γ)}.(20)

If B is the level p isotropic finite quadratic module (which has genus symbol pε·2

with ε = (−1)
p−1
2 ), we have

S(x,B) =
∑

a,b∈Z/pZ

{x− ab

p
}

= p{x}+ (p− 1)
∑

b∈Z/pZ

{x+
b

p
}

= p{x}+ (p− 1)

p−1∑
b=0

(
1

p
{px}+ b

p

)

= p{x}+ (p− 1){px}+ (p− 1)2

2
.

Inserting this into (19), we get

α3(A⊕B)− α3(A) =
1

2
(p− 1)

∑
γ∈A

(
{−Q(γ)}+ {−pQ(γ)}+ (p− 1)

2

)

and therefore

|α3(A⊕B)− α3(A)− |A|
4

(p2 − 1)| ≤ p− 1

2
|A|.(21)

If B is a finite quadratic module of level q = p2, we slightly modify the above

argument as follows. Let ε ∈ Z with
(

2ε
p

)
= ±1 such that B has the genus symbol

q±1. In this case we have

S(x,B) =
∑

a∈Z/p2Z

{x− ε
a2

p2
}

=
∑

a∈Z/pZ

∑
b∈Z/pZ

{x− ε
(a+ pb)2

p2
}

= p{x}+ (p− 1)2

2
+

∑
a∈(Z/pZ)×

{p(x− ε
a2

p2
)}.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LATTICES WITH MANY BORCHERDS PRODUCTS 1973

By means of this identity, we obtain the same bound (21) as in the earlier case. �

Theorem 4.21. Let A be an arbitrary finite quadratic module, and let B be an
isotropic finite quadratic module of order p2, where p is a prime not dividing 6|A|.
Then for k ≥ 3

2 , we have

dim(Sk,A⊕B)− dim(Sk,A) ≥
|A|(p2 − 1)

24

(
k − 1− 36p

p2 − 1

)
.

Proof. Let U be any totally isotropic subgroup of B ⊂ A ⊕ B. Then we have
|B| = p, U⊥ = A ⊕ U and A ∼= U⊥/U . Therefore, Proposition 4.18 implies that
the left hand side is non-negative. We use the dimension formula

dim(Sk,A) =
dA(k + 12)

12
− α1(A)− α2(A)− α3(A)− α4(A) + dim(M2−k,A(−1)).

Because of Proposition 4.18, we have dim(M2−k,(A⊕B)(−1)) ≥ dim(M2−k,A(−1)).
Employing Lemma 4.20, we obtain

dim(Sk,A⊕B)− dim(Sk,A) ≥
|A|(p2 − 1)

24
(k − 1)−

√
|A[2]|
2

− 2 + 2
√
|A[3]|

3
√
3

− 3

2
(p− 1)|A|.

The claim now follows by the trivial estimates |A[2]| ≤ |A| and 2+2
√

|A[3]|
3
√
3

≤ |A|. �

Corollary 4.22. With the same assumptions as in Theorem 4.21, we have Sk,A⊕B

= {0} for p ≥ pk given in Table 6.

Table 6. Bounds on p in Corollary 4.22.

k 3
2 2 5

2 3 7
2 4 9

2 ≤ k ≤ 13
2 7 ≤ k ≤ 9 k ≥ 19

2

pk 73 37 29 19 17 13 11 7 5

5. Simple finite quadratic modules

If A is a finite quadratic module and k is an integer, we say that A is k-simple if
Sk,A = {0}. We will now develop an algorithm that allows us to easily iterate over
all finite quadratic modules starting from anisotropic ones.

For a finite quadratic module A and an integer n, consider the finite set of finite
quadratic modules

B(A, n) = {A′ | A = U⊥/U for a totally isotropic subgroup U ⊂ A′ with |U | = n}.

For simplicity, we define a subset C(A, n) ⊂ B(A, n) using the following formal
rules. Let p be an odd prime and r ≥ 0 be an integer.

(To) 1+1 �→ pεp·2, where εp = 1 if p ≡ 1 (mod 4) and εp = −1, otherwise;
(O) (pr)±1 �→ (pr+2)±1.
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A rule can be applied to A if the module on the left hand side of the rule is a direct
summand of A. It is important to note that we can always apply the rule starting
with the trivial module 1+1. We should also remark that if r = 0 above, the left
hand side of the rule (O) is the trivial module. Therefore, for r = 0, we have the
rules 1+1 �→ (p2)+1 and 1+1 �→ (p2)−1. The application of any of these rules to the
genus symbol of A yields the genus symbol of a finite quadratic module in B(A, p).

Example 5.1. Consider the finite quadratic module A given by the genus symbol
3+19−17−3. Applying rule (To) to A for p = 3, we obtain 3−39−17−3. Note that
we can also apply rule (O) for both signs for p = 7 by writing 3+19−17−3 =
3+19−17+27−1 �→ 3+19−17+2343−1 and similarly 3+19−17−3 = 3+19−17−27+1 �→
3+19−17−2343+1. By applying both rules once in all possible cases, we obtain

C(A, 3) = {3−39−17−3, 3+19−27−3, 3+19+27−3, 9−127+17−3, 3+181−17−3},
C(A, 7) = {3+19−17+5, 3+19−17−349+1, 3+19−17−349−1, 3+19−17−2343+1,

3+19−17+2343−1},
C(A, p) = {3+19−17−3pεp·2, 3+19−17−3(p2)+1, 3+19−17−3(p2)−1} for p ∈ {3, 7}.

For p = 2, the rules we require are more complicated. Let q = 2r with r ≥ 1:

(Te1) 1+1 �→ 2+2,
(Te2) 1+1 �→ 2+2

0 ,
(E1) q+2 �→ (2q)+2,
(E2) q−2

4 �→ (2q)−2,
(E3) q±1

t �→ (4q)±1
t ,

(E4) 2+2 �→ 4+2
0 ,

(E5) 2−2 �→ 4−2
4 ,

(E6) 2+2
2t �→ 4+2

2t for t ∈ {1, 7},
(E7) 2+2

2t �→ 4−2
2t for t ∈ {1, 7}.

Remark 5.2. Note that 2+2
0

∼= 2−2
4 , and therefore rule (E2) applies to 2+2

0 as well.

Definition 5.3. We define C(A, p) to be the set of finite quadratic modules ob-
tained from A after application of a single rule as listed above, only involving
operations for p. For a prime power n = pr, we define C(A, pr) to be the set that
is obtained from r consecutive applications of rules only involving p. Finally, we
define C(A, n) for any positive integer n by induction on the number of different
primes dividing n by putting

C(A, prm) =
⋃

B∈C(A,m)

C(B, pr)

for (m, p) = 1.

We use these formal rules because it is very easy to implement them on a com-
puter.

Theorem 5.4. Let A be a finite quadratic module and let A0 be its anisotropic
reduction. Then A can be obtained from A0 in finitely many steps using the rules
given above. More precisely, we have A ∈ C(A0, n) for n2 = |A|/|A0|.

Proof. It is enough to prove the claim for a p-module, that is, a finite quadratic
module of prime-power order pn. Let us first assume that p is odd and that A has
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a genus symbol of the form q±n with q = pr. Then it is easy to see that if r is even,
we can obtain the symbol q±1 starting from the trivial finite quadratic module

1+1 �→ (p2)±1 �→ . . . �→ (pr)±1.

Applying the same rule n times, we obtain the symbol q±n. If r is odd instead, we
start with the anisotropic symbol p±1. We obtain

p±1 �→ (p3)±1 �→ . . . �→ (pr)±1.

We have now seen that we can obtain any finite quadratic p-module from a symbol
of the form p±n. Applying rule (To) several times reduces this symbol either to the
trivial module or to the anisotropic finite quadratic module p−εp·2.

For p = 2 we have to distinguish a few more cases. Suppose we are given a
symbol of the form q±r

t . We can obtain q±r
t from a symbol that is a direct sum of

symbols of the form 2±r′

s or 4±r′

s by applying rule (E3). Using rules (E4-E7), any
even number of odd summands of level 8 can be reduced to level 4, leaving possibly
a rank one odd component of level 8.

Now let 2+1
t1 . . . 2+1

tr be any odd discriminant form of level 4 with t1, . . . , tr ∈
{1, 7}. If {1, 7} ⊂ {t1, . . . , tr}, then 2+2

0 = 2+1
1 2+1

7 is a summand. Now suppose
that the rank is at least equal to 4 and the symbol does not contain both 2+1

1 and
2−1
3 . Then 2+4

4 is a direct summand of A. However, 2+4
4

∼= 2−22−2
4

∼= 2−22+2
0 .

Then, we can apply (Te2) to reduce the rank of the level 4 part to at most 3.
Finally, if we are given an even 2-adic symbol (2n)±r which is not anisotropic (i.e.

is not 2−2), it always contains (2n)+2 or (2n)−2 as a direct summand. Therefore,
using rules (E1), (E2) and (E5), we can reduce to the case of level 2 or 1. Combining
this with the strategy for the odd symbols gives the result. �

We now describe the algorithm used to compute all simple lattices.

Algorithm 5.5. Given integers r, s and a half-integer k, the following algorithm
determines the isomorphism classes of all k-simple finite quadratic modules of sig-
nature s with a minimal number of generators less than or equal to r.

(A) Compute all anisotropic k-simple finite quadratic modules satisfying the
conditions (see Table 5).

(B) For each previously computed k-simple finite quadratic module A compute
the set C(A, p) for all primes p ≤ pk with pk given in Table 6.

(C) Repeat step (B) until no further k-simple finite quadratic modules have been
found.

The correctness of the algorithm follows from Theorem 5.4 and Proposition 4.18
together with the results from the last sections. Moreover, that the algorithm
terminates follows from Corollary 4.7.

Remark 5.6. In each iteration, the bound on the primes can be reduced to the
maximal prime such that there is a newly discovered finite quadratic module A′ in
C(A, p) for some k-simple finite quadratic module obtained one iteration earlier.

The algorithm can be nicely illustrated in a graph. Figure 1 shows the output of
the algorithm with the parameters corresponding to signature (2, 4). In the graph,
the 3-simple finite quadratic modules have a red frame, the remaining ones a dotted
green frame. An edge from A to some B above A indicates that B is contained
in C(A, p) for a prime p. The color of the edge is the same as that of A. If an
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edge is green (and dotted), then the two modules connected by the edge are both
non-simple (and therefore colored green in the graph). Note that the graph does
not contain all green edges for simplicity. It contains at most one green “incoming”
edge per vertex.

In Tables 7-8, we list all 2−n
2 -simple finite quadratic modules of signature 2− n

with minimal number of generators r ≤ 2 + n for n ≥ 2.
For n = 1, a large family of 3

2 -simple finite quadratic modules is given by the

cyclic finite quadratic modules A0(N) = (Z/2NZ, x2/4N) for N ∈ Z>0. The cor-
responding orthogonal modular varieties are the modular curves Γ0(N)\H∗, where
H∗ = H ∪ P1(Q). Moreover, each of these finite quadratic modules has a global
realization given by LN = Z3 with quadratic form Nx2

1 + x2x3. We have that LN

is simple if and only if 1 ≤ N ≤ 36 or if N is in the following list:

38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 59, 60, 62, 63,

64, 66, 68, 69, 70, 71, 72, 75, 76, 78, 80, 81, 84, 87, 90, 94, 95, 96, 98,

100, 104, 105, 108, 110, 119, 120, 126, 132, 140, 144, 150, 168, 180.

The remaining finite quadratic modules for n = 1 are included in [Ehl].
It is interesting to observe that for N squarefree, LN is simple if and only if

X∗
0 (N) = Γ∗

0(N)\H∗ has genus zero. Here, Γ∗
0(N) is the extension of Γ0(N) by all

Atkin-Lehner involutions. The situation for non-squarefree N is more complicated.
It would be interesting to find a similar geometric interpretation in the general case.

Table 7. The 70 finite quadratic modules A of signature 0 with
minimal number of generators r ≤ 4 and S2,A = {0}.

level genus symbols level genus symbols

1 1+1 18 2+29+1, 2+29−1,

2+49+1

2 2+2, 2+4 20 2+2
0 5−1

3 3−2, 3+4 21 3−17−1

4 2+2
0 , 4−2, 4+2, 2+4

0 , 2+24+2, [2+24−2], 2+2
0 4+2, [4−4],

4+4
24 2+1

1 4+1
1 3+1, 4−2

2 3+1

5 5−1, 5+2, 5−3, 5+4 25 25+1, 25−1

6 2+23−2, 2+43−2, 2+23+4 27 3+127−1

7 7−2 28 2+2
6 7+1

8 2+1
1 4+1

7 , 4+2
0 , 2+3

1 4+1
7 , 2+24+2

0 , 8+2, 2+28+2 32 4+1
7 16+1

1

9 9+1, 9−1, 3−29−1, 9−2 33 3+111−1

10 2−25+1, 2+25−1, [2+45−1], 2−45+1, 2+25+2 36 2+2
0 9−1

12 2+2
2 3+1, 2+2

6 3−1, 2+2
0 3−2, 2+4

6 3−1, 2+2
6 3+3, 4+23−2 45 9+15−1

13 13−1 48 2−1
3 8−1

3 3−1

16 2+1
7 8+1

1 , 2−1
5 8−1

3 , 4+1
7 8+1

1 , 2+3
7 8+1

1 , 8+2
0 , 2+1

7 4+28+1
1 49 49+1

17 17+1 60 2+2
6 3+15+1

64 2+1
7 32+1

1
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Figure 1. The graph illustrates Algorithm 5.5 for k = 3, r = 6
and s = 6.
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Table 8. The table shows all finite quadratic modules of signature
2− n modulo 8 with minimal number of generators r≤2 + n such
that S 2+n

2
={0}.

n level: genus symbols

3 4 : 2+1
7 , 2+3

7 , 2+1
7 4+2, 2+5

7 , 2+3
7 4+2, 2+1

7 4+4

8 : 4+1
7 , 2+24+1

7 , 2+44+1
7 , 12 : 2+1

1 3+1, 2+1
7 3−2, 2+1

7 3+4,

16 : 8−1
3 , 8+1

7 , 2+28−1
3 , [2+48−1

3 ]

4 3 : 3+1, 3−3, 3+5, 6 : 2+43+1, [2+63+1], 2+23+1

5 8 : 4−1
5 , 2+24−1

5 , 2+44−1
5 , [2+64−1

5 ]

6 2 : 2−2, 2−4, 2−6, [2−8], 5 : 5+1

7 8 : 4−1
3 , 12 : 2+1

1 3−1

8 3 : 3−1, 4 : 2+2
2 , 7 : 7+1

9 4 : 2+1
1 , 8 : 4+1

1 , 16 : 8+1
1

10 1 : 1+1, 2 : 2+2

18, 26 1 : 1+1

6. Simple lattices

Let L be an even lattice of signature (2, n). We will say that L is simple if
Sk,L′/L = {0} for k = 2+n

2 . In this section we determine all isomorphism classes of
simple lattices of signature (2, n). If L is simple, then the finite quadratic module
L′/L is k-simple for k = 2+n

2 . Thus, we are interested in all k-simple finite quadratic
modules with minimal number of generators r ≤ 2 + n that actually correspond to
a lattice of signature (2, n).

Proposition 6.1. Let A be a finite quadratic module and write εq for the sign of
the Jordan component of A of order q. Let rp be the minimal number of generators
of Ap. There is an even lattice L of signature (r, s) with L′/L = A if and only if
all of the following conditions hold.

(1) We have sig(A) ≡ r − s (mod 8).
(2) For all primes p, we have r + s ≥ rp.
(3) For all odd primes p with r+s = rp, write (−1)s|A| = pαap with (ap, p) = 1.

Then we have

(22)
∏
q

εq =

(
a

p

)
,

where the product runs over all powers q of p.
(4) If r + s = r2 and A2 does not contain an odd direct summand of the form

2±m
t with m ≥ 1, then (22) holds for p = 2 and (−1)s|A| = 2αa with
(a, 2) = 1 as well.

Proof. See [Ni], Theorem 1.10.1. �
Using Proposition 6.1, we determined all genus symbols that do not correspond

to lattices of signature (2, n). We enclosed them in parentheses [·] in Tables 7–8.
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For instance, the module M = 2+24−2 in Table 7 does not correspond to any lattice
of signature (2, 2) because the product of the signs is equal to −1, but a = 1 and
M does not contain an odd component of level 4. It does, however, correspond to
a (non-simple) lattice of signature (2, 2 + 8m) for all m ≥ 1.

Recall that the genus symbol only determines a lattice up to rational equivalence.
A genus consists of finitely many integral isometry classes of lattices. However, the
following proposition gives a full classification of all isomorphism classes of lattices
of signature (2, n) for n ≥ 1.

Proposition 6.2. If L is a simple lattice of signature (2, n) and L is not contained
in the genus 2+1

1 5−125−1, then its genus contains a unique isomorphism class. The
genus 2+1

1 5−125−1 contains two isomorphism classes.

Proof. For n ≥ 2, Corollary 22 in Chapter 15 of [CS] states that if there is more
than one class in the genus of an indefinite lattice L, then |det(L)| ≥ 56. There is
no finite quadratic module of this size in our list in Tables 7-8.

The lattices in signature (2, 1) are slightly more complicated to treat. Using
Theorem 21 in Chapter 15 of [CS], we find that only the lattices of discriminant
d with 4d divisible by 53 or 83 might contain more than one class in their genus.
Theorem 19 in [CS] finally leaves us with the following list of genera that might
contain more than one class:

2+1
7 4+1

1 32+1
1 , 2+1

1 4+1
7 16+1

1 , 2+1
7 8+1

1 16+1
1 , 2+1

1 5−125−1.

For the first 3 genera, we can use [EH, Theorem 2.2], to see that these also only
contain one class. The last one is treated in [Wa] in Chapter 7, Section 5. This genus
contains two isomorphism classes represented by the integral ternary quadratic
forms

φ1(x1, x2, x3) = x2
1 + x1x2 − x2

2 + 25x2
3,

φ2(x1, x2, x3) = 5(x2
1 + x1x2 − x2

2) + x2
3.

�

6.1. Applications to Borcherds products. Let (L,Q) be an even lattice of
signature (2, n) and let A = L′/L be its discriminant module. We write O(L) for
the orthogonal group of L and O(L)+ for the subgroup of index 2 consisting of those
elements whose determinant has the same sign as the spinor norm. We consider
the kernel ΓL of the natural homomorphism O(L)+ → Aut(A), sometimes referred
to as the stable orthogonal group of L.

Let D be the hermitian symmetric space associated to the group O(L⊗Z R). It
can be realized as a tube domain in Cn. The group ΓL acts on D and the quotient

XL = ΓL\D

has the structure of a quasi-projective algebraic variety. For suitable choices of
L, important families of classical modular varieties can be obtained in this way,
including Shimura curves, Hilbert modular surfaces and Siegel modular threefolds.

For every μ ∈ A and every negative m ∈ 1
NZ, there is a Heegner divisor Z(m,μ)

on XL (sometimes also referred to as special divisor or rational quadratic divisor);
see e.g. [Bo2], [Br1]. We denote by PicHeeg(XL) the subgroup of the Picard group
Pic(XL) of XL generated by all such Heegner divisors.
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If L is simple, then for every pair (m,μ) as above there is a weakly holomorphic
modular form fm,μ ∈ M !

1−n/2,A(−1) of weight 1−n/2 whose Borcherds lift Ψ(fm,μ)

(in the sense of Theorem 13.3 in [Bo1]) is a meromorphic modular form for ΓL

whose divisor is Z(m,μ). In particular, the vector space PicHeeg(XL)⊗Z Q is one-
dimensional and generated by the Hodge bundle; hence it is as small as it can
be.

The weight of the Borcherds product Ψ(fm,μ) is given by half of the constant
term of the component of fm,μ corresponding to the characteristic function φ0 of
the zero element of A. Equivalently, it can be expressed in terms of the coefficient
of index (−m,μ) of the unique normalized Eisenstein series E1+n/2,A ∈ M1+n/2,A

whose constant term is φ0; see e.g. Theorem 12 of [BK]. The coefficients of such
Eisenstein series can be explicitly computed; see Theorem 7 of [BK] or [KY]. It
would be interesting to use the list of simple lattices to search systematically for
holomorphic Borcherds products of singular weight n/2−1 for ΓL. Such Borcherds
products are often denominator identities of generalized Kac-Moody algebras; see
[Sch1].
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