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1. Introdution

Let (V; q) be a real quadrati spae and L � V an even lattie with dual L

0

. In the

desription of the theta lifting from ellipti modular forms on SL

2

(R) to modular forms for

the orthogonal group of L it is often onvenient to work with vetor valued modular forms

for the full group SL

2

(Z) rather than with salar valued modular forms for ongruene

subgroups. In partiular, suh vetor valued modular forms our naturally in the theory

of automorphi produts due to Borherds [Bo1℄. Their transformation behavior under

SL

2

(Z) is ditated by the Weil representation assoiated with the disriminant group L

0

=L.

However, there is no smooth struture theory for vetor valued modular forms. For

instane, they do not form a weight-graded algebra, and there is no natural ation of the

Heke algebra and the Galois group over Q .

In the present note, we onsider the speial ase that the disriminant group has odd

prime order p. This implies that the lattie has even dimension. We show that the relevant

spaes of vetor valued modular forms an be desribed using salar valued modular forms

for the group �

0

(p), whose Fourier expansion is supported on either the squares or the

non-squares modulo p (see Theorem 5). In the proof we use some basi properties of the

Weil representation and an idea due to Krieg, who onsidered the speial ase that L is

given by the ring of integers in an imaginary quadrati �eld [Kr℄. Related results for ertain

latties of odd dimension were obtained earlier by Eihler, Zagier and Skoruppa (f. [EZ℄

hapter 5, [Sk℄).

If the signature of L is (2; n) one obtains a very expliit desription of the Borherds lift-

ing: It maps salar valued modular forms of weight 1�n=2 as above whih are holomorphi

exept for a pole at the usp 1 to meromorphi modular forms for the orthogonal group

attahed to L. Furthermore, using the Serre-duality result of [Bo2℄ one gets an existene

riterion for Borherds produts involving a similar spae of usp forms of weight 1 + n=2

for �

0

(p) (see Theorem 6). In setion 4 we present these ideas in the speial O(2; 2)-ase

of Hilbert modular surfaes of prime disriminant (Theorem 9). Sine we feel that this

ase is of partiular interest and sine there are no expliit examples in the literature so

far (to the best of our knowledge), we work out some Borherds produts in detail. In
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2 JAN H. BRUINIER AND M. BUNDSCHUH

the omputation of the Weyl vetors we need to apply a result of [Br2℄. For instane,

we onstrut the produt of theta-series for Q (

p

5) onsidered by Gundlah in [Gu℄ as a

Borherds produt.

2. Vetor valued modular forms

We begin by �xing some notation. We denote by L an even lattie of signature (b

+

; b

�

)

equipped with a non-degenerate quadrati form q(x) =

1

2

(x; x). We write L

0

for the dual

lattie, m = b

+

+ b

�

for the dimension, and put r = b

+

� b

�

.

Throughout we assume that the disriminant group L

0

=L has prime order p � 3. This

implies that m and r are even. If S denotes the Gram matrix of L, then it is well known

that (�1)

m=2

det(S) = (�1)

r=2

p is a disriminant and therefore ongruent to 1 modulo 4.

Thus p determines r modulo 4.

The following argument shows that p modulo 4 together with the type of the quadrati

form on L

0

=L indued by q determine r modulo 8: Let �

p

(�) = (

�

p

) denote the Dirihlet

harater given by the Legendre symbol and de�ne

"

p

=

(

1; p � 1 (mod 4);

i; p � 3 (mod 4):

On L

0

=L

�

=

F

p

the quadrati form is equivalent to q(x) = �x

2

=p, where � 2 F

p

n f0g is

either a square or a non-square, i.e. the type of q is determined by � = �

p

(�). We use

Milgrams formula for the general Gauss sum

X

2L

0

=L

e(q()) =

p

jL

0

=Lje(r=8);(1)

where e(�) = e

2�i�

as usual. The left hand side is equal to the standard Gauss sum

P

x(p)

e(�x

2

=p) = �

p

(�)"

p

p

p. Inserting this into (1) we �nd that �"

p

= e(r=8). We obtain

the following table for r modulo 8:

p (mod 4) 1 3

� = +1 0 2

� = �1 4 6

Let T = (

1 1

0 1

) and S = (

0 �1

1 0

) denote the standard generators of SL

2

(Z), and write

(e



)

2L

0

=L

for the standard basis of the group algebra C [L

0

=L℄. Reall that there is a

unitary representation � = �

L

of SL

2

(Z) on C [L

0

=L℄ given by

�(T )e



= e(q())e



;

�(S)e



=

i

�r=2

p

jL

0

=Lj

X

Æ2L

0

=L

e(�(; Æ))e

Æ

:
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This is essentially the Weil representation orresponding to the quadrati module (L

0

=L; q).

For further properties of � we refer to [Sh, Bo1, Br1, Od℄. The negative identity matrix

ats as �(�E)e



= (�1)

r=2

e

�

.

Let k 2 Z. Similarly as in [Bo1℄ and [Br1℄ we denote by A

k;�

the spae of nearly holomor-

phi modular forms for SL

2

(Z) of weight k with representation �. These are C [L

0

=L℄-valued

holomorphi funtions F (�) =

P

2L

0

=L

F



(�)e



on the upper omplex half-plane H satis-

fying the usual transformation law and having a Fourier expansion

F (�) =

X

2L

0

=L

X

n2Z+q()

n��1

a(; n)e(n�)e



:

Thus F may have a pole at the usp 1. The subspae of holomorphi modular forms

(resp. usp forms) is denoted by M

k;�

(resp. S

k;�

).

The transformation behavior under �E implies that the omponents F



of F satisfy

F



=

(

F

�

; k � r=2 (mod 2);

�F

�

; k 6� r=2 (mod 2):

For the purposes of this paper we have to assume that k � r=2 (mod 2).

3. Salar valued modular forms

We normalize the usual weight k Petersson slash operator on funtions f : H ! C by

(f j

k

M)(�) = (detM)

k=2

(� + d)

�k

f(M�)

for M = (

a b

 d

) 2 GL

+

2

(R). We will often omit the subsript k if it is lear from the ontext.

We write A

k

(p; �

p

) for the spae of nearly holomorphi modular forms of weight k for

the group �

0

(p) with harater �

p

. These are holomorphi funtions on H whih satisfy

the transformation law f j

k

M = �

p

(d)f for all (

a b

 d

) 2 �

0

(p) and are meromorphi at

the usps. The subspae of holomorphi modular forms (resp. usp forms) is denoted by

M

k

(p; �

p

) (resp. S

k

(p; �

p

)). Moreover, for � 2 f�1g we de�ne the subspaes

A

�

k

(p; �

p

) =

(

f =

X

n2Z

a(n)q

n

2 A

k

(p; �

p

); a(n) = 0 if �

p

(n) = ��

)

:

Here q = e

2�i�

as usual. A lassial Lemma due to Heke (f. [Ogg℄ Lemma 6, p. 32) implies

that

A

k

(p; �

p

) = A

+

k

(p; �

p

)� A

�

k

(p; �

p

):

If f =

P

n2Z

a(n)q

n

2 A

�

k

(p; �

p

), then the Fourier polynomial

X

n2Z

n<0

a(n)q

n

is alled the prinipal part of f . Finally, we de�ne the spaes M

�

k

(p; �

p

) and S

�

k

(p; �

p

)

analogously.
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Let F 2 A

k;�

and write F



=

P

n

a(; n)q

n

for its omponents. It is well known that the

restrition of � to �

0

(p) ats on e

0

by multipliation with the harater �(M) = �

p

(d) for

M = (

a b

 d

) (see [Sh℄, [Od℄). Therefore the omponent F

0

belongs to A

k

(p; �

p

). Sine the

Frike involution

W

p

=

�

0 �1

p 0

�

ats on A

k

(p; �

p

), the funtion F

0

j W

p

is also ontained in A

k

(p; �

p

). By means of the

operator V

p

=

�

p 0

0 1

�

it an be rewritten as follows:

F

0

jW

p

= F

0

j S j V

p

=

i

�r=2

p

p

X

2L

0

=L

F



j V

p

= i

�r=2

p

(k�1)=2

X

2L

0

=L

F



(p�):(2)

We get the following Lemma.

Lemma 1. The assignment F 7! f , where

f =

i

r=2

2

p

(1�k)=2

F

0

jW

p

=

1

2

X

2L

0

=L

F



(p�);

de�nes an injetive homomorphism A

k;�

! A

�

k

(p; �

p

). Here � = �

p

(�) is given by the

quadrati form on L

0

=L. The funtion f has the Fourier expansion

f =

1

2

X

n2Z

X

2L

0

=L

pq()�n (p)

a(; n)q

n

:

Conversely, for given f =

P

n2Z

a(n)q

n

2 A

k

(p; �

p

) we de�ne a funtion H 2 A

k;�

as

follows. The C [L

0

=L℄-valued funtion e

0

(f j W

p

) an be viewed as a nearly holomorphi

modular form with representation � for the group �

0

(p). Thus the indued funtion

H =

X

M2�

0

(p)n SL

2

(Z)

�

�(M)

�1

e

0

�

f j W

p

jM

belongs to A

k;�

. We now ompute its Fourier expansion. A system of representatives for

�

0

(p)n SL

2

(Z) is given by

�

1 0

0 1

�

; ST

j

=

�

0 �1

1 j

�

for j = 0; : : : ; p� 1.
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Therefore

H = e

0

f jW

p

+

X

j (p)

�

�(ST

j

)

�1

e

0

�

f j

�

�1 �j

0 �p

�

= e

0

f jW

p

+ (�1)

k

p

�k=2

X

j (p)

�

�(T

j

) �(S)e

0

�

f(�=p+ j=p)

= e

0

f jW

p

+ (�1)

k

p

�k=2

i

r=2

p

p

X

2L

0

=L

e



X

j (p)

e(�q()j)f(�=p + j=p):

Using the assumption k � r=2 (mod 2) and inserting the Fourier expansion of f , we �nd

H = e

0

f j W

p

+ i

�r=2

p

�1=2�k=2

X

2L

0

=L

e



X

n2Z

a(n)e(n�=p)

X

j (p)

e

�

(n� pq())j=p

�

= e

0

f j W

p

+ i

�r=2

p

1=2�k=2

X

2L

0

=L

e



X

n2Z

n�pq() (p)

a(n)e(n�=p):

We obtain the following Proposition.

Proposition 2. Let f =

P

n

a(n)q

n

2 A

k

(p; �

p

). Then the funtion

F =

X

2L

0

=L

e



F



= i

r=2

p

k=2�1=2

X

M2�

0

(p)n SL

2

(Z)

�

�(M)

�1

e

0

�

f j W

p

jM:(3)

belongs to A

k;�

. The omponents F



have the Fourier expansion

F

0

=

X

n2Z

n�0 (p)

a(n)e(n�=p) + i

r=2

p

k=2�1=2

f jW

p

;(4)

F



=

X

n2Z

n�pq() (p)

a(n)e(n�=p) ( 6= 0):(5)

If f 2 A

�

k

(p; �

p

), then the Fourier expansion of F

0

an be simpli�ed, avoiding the term

f j W

p

(i.e. the Fourier expansion of f at the usp 0). To this end, similarly as in [Kr℄, we

�rst haraterize A

�

k

(p; �

p

) using the Heke operator U

p

de�ned by

f j U

p

=

X

j (p)

f j

�

1 j

0 p

�

:

Observe that

f j U

p

= p

1�k=2

X

n2Z

n�0 (p)

a(n)e(n�=p)

for f as above. So our normalization of U

p

is slightly di�erent than as usual.
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Lemma 3. Let f =

P

n2Z

a(n)q

n

2 A

k

(p; �

p

) and � 2 f�1g. Then f belongs to A

�

k

(p; �

p

),

if and only if

f j U

p

= �"

p

p

p f jW

p

:(6)

Proof. The funtion h = f j U

p

j W

p

is ontained in A

k

(p; �

p

) and (6) is equivalent to

h = �"

p

p

p f:

We have

h =

X

j (p)

f j

�

1 j

0 p

�

j

�

0 �1

p 0

�

= f jW

p

j V

p

+

X

j (p)

�

f j

�

j �1

p 0

�

j

�

p 0

0 1

�

;

where the summation in

P

j (p)

�

runs through all primitive residues modulo p. For a given

j 2 Z that is oprime to p let b; d 2 Z suh that jd� pb = 1. Then

�

j b

p d

�

2 �

0

(p) and

�

j �1

p 0

�

=

�

j b

p d

��

1 �d

0 p

�

:(7)

Thus

h = f jW

p

j V

p

+

X

d (p)

�

�

p

(d)f j

�

p �d

0 p

�

= f jW

p

j V

p

+

X

n2Z

a(n)q

n

X

d (p)

�

�

p

(d)e(�nd=p):

If we insert the value of the latter Gauss sum, we obtain

h = f j W

p

j V

p

+ "

p

p

p

X

n2Z

�

p

(n)a(n)q

n

:(8)

From this identity the assertion an be dedued. For the impliation \)" we additionally

have to use the fat that a nearly holomorphi modular form g 2 A

k

(p; �

p

) with Fourier

oeÆients (n) vanishes identially, if (n) = 0 for all n oprime to p ([Ogg℄ Lemma 6).

An alternative proof of this lemma an be obtained by onsidering the vetor valued

funtion F attahed to f via Proposition 2. One has to insert (4) and (5) into the formula

(2) for F

0

j W

p

and arefully ompare Fourier expansions on both sides.

Corollary 4. Let f be a holomorphi funtion on H that has the transformation behavior

and the Fourier expansion of an element of A

�

k

(p; �

p

). Suppose that f is meromorphi (or

holomorphi or vanishes, respetively) at the usp 1. Then it is also meromorphi (or

holomorphi or vanishes, respetively) at the usp 0 � W

p

1.
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Theorem 5. Let f =

P

n

a(n)q

n

2 A

�

k

(p; �

p

) and de�ne F by (3) as before. Then F 2 A

k;�

and the omponents F



have the Fourier expansion

F

0

= 2

X

n2Z

n�0 (p)

a(n)e(n�=p);(9)

F



=

X

n2Z

n�pq() (p)

a(n)e(n�=p) ( 6= 0):(10)

The map f 7! F and the map desribed in Lemma 1 are inverse isomorphisms between

A

�

k

(p; �

p

) and A

k;�

.

Proof. Aording to Proposition 2 we only have to prove (9). It suÆes to show that

f j U

p

= i

r=2

p

p f j W

p

:

But this immediately follows from Lemma 3 and the fat that i

r=2

= �"

p

.

From now on we assume that k � 0. For an integer n we de�ne

s(n) =

(

2; if n � 0 (mod p);

1; if n 6� 0 (mod p):

(11)

Moreover, we put Æ = �

p

(�1)�. The next theorem gives a riterion for the existene of

nearly holomorphi modular forms in A

�

k

(p; �

p

) with presribed prinipal part. We need to

onsider the spae of modular forms M

Æ

�

(p; �

p

) of dual weight � = 2� k � 2. Reall that

there are the 2 Eisenstein series

G

�

= 1 +

2

L(1� �; �

p

)

1

X

n=1

X

djn

d

��1

�

p

(d)q

n

;(12)

H

�

=

1

X

n=1

X

djn

d

��1

�

p

(n=d)q

n

(13)

in M

�

(p; �

p

) (f. [He℄ Werke p. 818), the former orresponding to the usp 1, the latter

orresponding to the usp 0. The linear ombination

E

Æ

�

= 1 +

X

n�1

B(n)q

n

= 1 +

2

L(1� �; �

p

)

X

n�1

X

djn

d

��1

(�

p

(d) + Æ�

p

(n=d)) q

n

(14)

belongs to M

Æ

�

(p; �

p

). The spae M

Æ

�

(p; �

p

) an be deomposed as a diret sum

M

Æ

�

(p; �

p

) = CE

Æ

�

� S

Æ

�

(p; �

p

):

Theorem 6. There exists a nearly holomorphi modular form f 2 A

�

k

(p; �

p

) with pre-

sribed prinipal part

P

n<0

a(n)q

n

(where a(n) = 0 if �

p

(n) = ��), if and only if

X

n<0

s(n)a(n)b(�n) = 0
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for every usp form g =

P

m>0

b(m)q

m

in S

Æ

�

(p; �

p

). The onstant term a(0) of f is given

by the oeÆients of the Eisenstein series E

Æ

�

:

a(0) = �

1

2

X

n<0

s(n)a(n)B(�n):

Proof. Beside L we onsider the lattie L(�1), whih is given by L as a Z-module but

equipped with the quadrati form �q(�). The type of this quadrati form on L

0

=L is

obviously determined by the sign Æ = �

p

(�1)�. Observe that the representation �

L(�1)

attahed to L(�1) is equal to the dual representation �� = ��

L

of �

L

. Thus, by Theorem 5

we �nd that the spaeM

�;��

of vetor valued modular forms of weight � with representation

�� an be identi�ed with M

Æ

�

(p; �

p

).

On the other hand we already know that A

k;�

an be identi�ed with A

�

k

(p; �

p

).

Aording to Borherds' duality theorem (Theorem 4.1 in [Bo2℄, see also [Br1℄ hapter

1.3), the obstrutions to �nding modular forms in A

k;�

with presribed prinipal part are

given by modular forms in M

�;��

. If we work out all identi�ations expliitly, we obtain

the stated result.

If one wants to use Theorems 5 and 6 in the ontext of Borherds' theory of automorphi

produts, then the following two propositions will also be important (see setion 4). Notie

that from the outset analogous results are not available for the orresponding spaes of

vetor valued modular forms (see [Bo2℄ p. 227).

For f =

P

a(n)q

n

2 A

k

(p; �

p

) and a Galois automorphism � 2 Gal(C =Q ) we de�ne the

�-onjugate of f by

f

�

=

X

n2Z

a

�

(n)q

n

:

Here a

�

(n) denotes the onjugate of a(n). It is well known that the spaes M

�

(p; �),

where � denotes a quadrati harater, have a basis onsisting of modular forms with

integral rational oeÆients (f. [DI℄ Corollary 12.3.8, Proposition 12.3.11). This implies

that f

�

2 A

k

(p; �

p

).

Proposition 7. The spae M

Æ

�

(p; �

p

) has a basis of modular forms with integral rational

oeÆients.

Proof. It is easily seen that M

Æ

�

(p; �

p

) has a basis of modular forms with oeÆients in the

ring of integers of a �xed number �eld K. The assertion follows from the fat that the

Galois group of K=Q ats on M

Æ

�

(p; �

p

).

Proposition 8. Let f =

P

a(n)q

n

2 A

�

k

(p; �

p

) and suppose that a(n) 2 Q for n < 0.

Then all oeÆients a(n) are rational and have bounded denominator (i.e. there is a positive

integer  suh that f has oeÆients in Z).

Proof. Let � 2 Gal(C =Q ). Then h = f � f

�

lies in A

�

k

(p; �

p

). The assumption on the

oeÆients a(n) with n < 0 implies that h is holomorphi at the usp 1. By Corollary 4

it is also holomorphi at the usp 0 and therefore ontained in M

�

k

(p; �

p

). Sine k � 0, it

has to vanish identially.
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Varying �, we �nd that f is invariant under Gal(C =Q ) and therefore has rational o-

eÆients. Sine the produt f�

N

of f with a large power of the delta funtion � =

q

Q

n�1

(1 � q

n

)

24

is ontained in M

k+12N

(p; �

p

), it has oeÆients with bounded denomi-

nator. Hene f itself has oeÆients with bounded denominator.

4. Borherds produts on Hilbert modular surfaes

The results of the previous setion an be used to obtain a very smooth and expliit

formulation of the Borherds lifting (Theorem 13.3 in [Bo1℄, and [Bo2℄) for latties of odd

prime determinant and signature (2; b

�

). To simplify the presentation and notation we

only illustrate this in the speial O(2; 2)-ase of Hilbert modular surfaes.

Let p � 1 (mod 4) be an odd prime and K = Q(

p

p) the real quadrati �eld of disrim-

inant p. Let O be the ring of integers and d = (

p

p) the di�erent in K. We write x 7! x

0

for the onjugation, N(x) = xx

0

for the norm in K, and tr(x) = x + x

0

for the trae in K.

Then L = Z

2

�O, with the quadrati form q(a; b; �) = N(�)� ab for (a; b; �) 2 L, is an

even lattie of signature (2; 2). The dual lattie is L

0

= Z

2

� d

�1

and the quadrati form

on L

0

=L

�

=

F

p

represents the squares, i.e. � = +1.

By Theorem 5 the spae A

0;�

of modular forms with representation � of weight k = 0

is isomorphi to A

+

0

(p; �

p

), and the spae M

2;��

of holomorphi modular forms with dual

representation �� of weight � = 2 is isomorphi to M

+

2

(p; �

p

).

The Hilbert modular group �

K

= SL

2

(O) ats on the produt of two upper half planes

in the usual way. We use (z

1

; z

2

) as a standard variable on H � H and write (y

1

; y

2

) for its

imaginary part. Reall that for every positive integer m the subset

[

(a;b;�)2L

0

ab�N(�)=m=p

f(z

1

; z

2

) 2 H � H ; az

1

z

2

+ �z

1

+ �

0

z

2

+ b = 0g

de�nes a �

K

-invariant algebrai divisor T (m) on H � H , the Hirzebruh-Zagier divisor

of disriminant m. It is the inverse image of an algebrai divisor on the quotient X

K

=

(H � H )=�

K

, whih will also be denoted by T (m). Here we understand that all irreduible

omponents of T (m) are assigned the multipliity 1. This divisor is non-zero if �

p

(m) 6= �1

and is ompat if m is not the norm of an ideal in O.

The subset

S(m) =

[

�2d

�1

�N(�)=m=p

f(z

1

; z

2

) 2 H � H ; �y

1

+ �

0

y

2

= 0g

of H �H is a union of hyperplanes of real odimension 1. It is invariant under the stabilizer

of the usp 1. For a subset W � H �H and � 2 d

�1

we write (W;�) > 0, if �y

1

+�

0

y

2

> 0

for all (z

1

; z

2

) 2 W .

For basi fats on Hilbert modular forms we refer to [Fr℄, [Ge℄. It is well known that

Hilbert modular forms on H �H for the group �

K

an be identi�ed with modular forms for

the orthogonal group of the lattie L. (In this identi�ation the Hirzebruh-Zagier divisor

T (m) essentially orresponds to the Heegner divisor y

�m;

in the terminology of Borherds

[Bo2℄.)
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Using Theorem 5, Proposition 8, and the above identi�ations, we may restate Theorem

13.3 in [Bo1℄ as follows:

Theorem 9. Let f =

P

n2Z

a(n)q

n

2 A

+

0

(p; �

p

) and assume that s(n)a(n) 2 Z for all

n < 0 (where s(n) is de�ned by (11)). Then there is a meromorphi funtion 	(z

1

; z

2

) on

H � H with the following properties:

1. 	 is a meromorphi modular form for �

K

with some unitary harater of �nite order.

The weight of 	 is equal to the onstant oeÆient a(0) of f . It an also be omputed using

Theorem 6.

2. The divisor of 	 is determined by the prinipal part of f . It equals

X

n<0

s(n)a(n)T (�n):

3. Let W � H � H be a Weyl hamber attahed to f , i.e. a onneted omponent of

H � H �

[

n<0

a(n)6=0

S(�n);

and put N = minfn; a(n) 6= 0g. The funtion 	 has the Borherds produt expansion

	(z

1

; z

2

) = e(�

W

z

1

+ �

0

W

z

2

)

Y

�2d

�1

(�;W )>0

(1� e(�z

1

+ �

0

z

2

))

s(p��

0

)a(p��

0

)

:

Here �

W

and �

0

W

are algebrai numbers in K that an be omputed expliitly. The produt

onverges normally for all (z

1

; z

2

) with y

1

y

2

> jN j=p outside the set of poles.

4. There exists a positive integer  suh that 	



has integral rational Fourier oeÆients

with greatest ommon divisor 1.

Note that automorphi produts for �

K

are onstruted in a di�erent way in [Br2℄. There

the exponents are given by the oeÆients of nearly holomorphi Poinar�e series of weight

2. Using non-holomorphi Poinar�e series of weight 0 as in [Br1℄, these oeÆients ould

be related to the oeÆients of nearly holomorphi modular forms of weight 0. But this

requires a onsiderable amount of work. An important point of the above formulation of

Borherds' theorem is that we also get the last assertion on the integrality properties of

the Fourier oeÆients of the lifting. This will be vital for some arithmeti appliations.

For the omputation of the Weyl vetor (�

W

; �

0

W

) one annot apply the result of [Bo1℄

(Theorem 10.4), sine the lattie O is not isotropi. However, we may use the formula

given in [Br2℄ p. 72 or [Br1℄ hapter 2.3. Let W be as in the theorem. It turns out that

�

W

, �

0

W

are the uniquely determined numbers in K suh that

�

W

y

1

+ �

0

W

y

2

=

X

n<0

s(n)a(n)

X

�2d

�1

�>0

N(�)=n=p

min(j�y

1

j; j�

0

y

2

j)(15)

for all (z

1

; z

2

) 2 W . Let "

0

> 1 be the fundamental unit of K. It has norm �1, beause K

has prime disriminant. For every negative integer n with a(n) 6= 0 there are only �nitely
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many � 2 d

�1

suh that � > 0, N(�) = n=p, and

�y

1

+ �

0

y

2

< 0; "

2

0

�y

1

+ "

0

0

2

�

0

y

2

> 0;

for all (z

1

; z

2

) 2 W . Denote the set of these � by R(W;n). By Dirihlets unit theorem we

have

X

�2d

�1

�>0

N(�)=n=p

min(j�y

1

j; j�

0

y

2

j) =

X

�2R(W;n)

 

X

n�0

"

�2n

0

�y

1

�

X

n>0

"

�2n

0

�

0

y

2

!

=

X

�2R(W;n)

�

"

2

0

�

"

2

0

� 1

y

1

�

�

0

"

2

0

� 1

y

2

�

=

1

tr("

0

)

X

�2R(W;n)

("

0

�y

1

+ "

0

0

�

0

y

2

) :(16)

Inserting this into (15) we obtain a formula for �

W

and �

0

W

. In partiular we �nd that

these numbers are onjugate and ontained in (tr "

0

)

�1

d

�1

.

Finally, we remark that by Theorems 8 and 9 of [Br2℄ any meromorphi modular form

for �

K

, whose divisor is a linear ombination of Hirzebruh-Zagier divisors, is given by a

Borherds produt as in the above theorem.

By a lassial result of Heke [He℄, the dimension of the spae S

2

(p; �

p

) (where p � 1

(mod 4) is a prime) is equal to 2

�

p�5

24

�

. It is easily seen that the dimension of the obstrution

spae S

+

2

(p; �

p

) is half the dimension of S

2

(p; �

p

). Hene, S

+

2

(p; �

p

) = 0 if and only if p = 5,

13, or 17. Let us assume that p is one of these primes. Then by Theorem 6 any Fourier

polynomial an be realized as the prinipal part of a nearly holomorphi modular form in

A

+

0

(p; �

p

). If m is a positive integer with �

p

(m) 6= �1, we write

f

m

=

X

n��m

a

m

(n)q

n

for the unique element of A

+

0

(p; �

p

), whose prinipal part is equal to s(m)

�1

q

�m

. The

Borherds lift 	

m

of f

m

is a holomorphi modular form for �

K

of weight a

m

(0) = �B(m)=2,

where B(m) is the m-th oeÆient of the Eisenstein series E

+

2

2 M

+

2

(p; �

p

). The divisor

of 	

m

equals T (m). The funtions f

m

an be easily onstruted. We now indiate this in

the ase p = 5.

The normalized Eisenstein series of weight 2 for �

0

(5) with trivial harater is given by

E

2

= 1 + 6

X

n�1

(�(n)� 5�(n=5))q

n

;

where �(n) =

P

djn

d denotes the sum of divisors of n. The Eisenstein series G

2

and H

2

for �

0

(5) de�ned by (12) and (13) an be expressed in terms of the eta funtion � =

q

1=24

Q

n�1

(1� q

n

) as follows:

G

2

(�) = �(�)

5

=�(5�); H

2

(�) = �(5�)

5

=�(�):
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In partiular these Eisenstein series do not vanish on H . Thus E

2

=H

2

2 A

0

(p; �

p

) has a

�rst order pole at 1 and is holomorphi on H and at the usp 0. This implies that it

equals f

1

. Similarly it an be seen that

f

4

= G

2

=H

2

(f

3

1

+ 108f

1

)� 9f

3

1

+ 1128f

1

:

The funtion f

5

an be onstruted as the produt

1

2

E

+

2

(�)J(5�), where J(�) is the unique

modular form of weight �2 for SL

2

(Z) that is holomorphi on H and whose Fourier expan-

sion starts with q

�1

+ O(1). Now the other funtions f

m

an be obtained indutively by

multiplying the above funtions with powers of j(5�) and subtrating suitable multiples

of the f

m

0

with smaller index m

0

. Here j = q

�1

+ 744 + 196884q + : : : denotes the usual

j-funtion. One �nds that the �rst f

m

are:

f

1

= q

�1

+ 5 + 11 q � 54 q

4

+ 55 q

5

+ 44 q

6

� 395 q

9

+ 340 q

10

+ 296 q

11

� 1836 q

14

+ : : : ;

f

4

= q

�4

+ 15� 216 q + 4959 q

4

+ 22040 q

5

� 90984 q

6

+ 409944 q

9

+ 1388520 q

10

+ : : : ;

f

5

=

1

2

q

�5

+ 15 + 275 q + 27550 q

4

+ 43893 q

5

+ 255300 q

6

+ 4173825 q

9

+ : : : ;

f

6

= q

�6

+ 10 + 264 q � 136476 q

4

+ 306360 q

5

+ 616220 q

6

� 35408776 q

9

+ : : : ;

f

9

= q

�9

+ 35� 3555 q + 922374 q

4

+ 7512885 q

5

� 53113164 q

6

+ 953960075 q

9

+ : : : ;

f

10

=

1

2

q

�10

+ 10 + 3400 q + 3471300 q

4

+ 9614200 q

5

+ 91620925 q

6

+ 5391558200 q

9

+ : : : :

Sine the divisor of the funtion 	

1

is equal to T (1), it has to be equal to a multiple of

the lassial Hilbert modular form � onstruted by Gundlah in [Gu℄ as a produt of 10

theta funtions. Beause 	

1

has integral oprime Fourier oeÆients, and � has integral

Fourier oeÆients with greatest ommon divisor 64, we �nd 	

1

=

1

64

�. Let W be the

Weyl hamber attahed to f

1

that ontains the point (�i"

0

0

; i"

0

), where "

0

=

1

2

(1 +

p

5)

denotes the fundamental unit of Q (

p

5). Sine the set of � 2 d

�1

with norm �1=5 is given

by f�"

2n

0

=

p

5; n 2 Zg, we obtain that

R(W;�1) = f1=

p

5g:

Aording to (16) we have �

W

= "

0

=

p

5. Thus 	

1

has the produt expansion

	

1

(z

1

; z

2

) = e

�

"

0

z

1

=

p

5� "

0

0

z

2

=

p

5

�

Y

�2d

�1

"

0

�

0

�"

0

0

�>0

(1� e(�z

1

+ �

0

z

2

))

s(5��

0

)a

1

(5��

0

)

:(17)

If the divisor T (m) on X

K

is ompat, then S(m) is empty and H � H is the only Weyl

hamber for f

m

. Thus

	

m

(z

1

; z

2

) =

Y

�2d

�1

��0

(1� e(�z

1

+ �

0

z

2

))

s(5��

0

)a

m

(5��

0

)

:(18)
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