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1. Introdu
tion

Let (V; q) be a real quadrati
 spa
e and L � V an even latti
e with dual L

0

. In the

des
ription of the theta lifting from ellipti
 modular forms on SL

2

(R) to modular forms for

the orthogonal group of L it is often 
onvenient to work with ve
tor valued modular forms

for the full group SL

2

(Z) rather than with s
alar valued modular forms for 
ongruen
e

subgroups. In parti
ular, su
h ve
tor valued modular forms o

ur naturally in the theory

of automorphi
 produ
ts due to Bor
herds [Bo1℄. Their transformation behavior under

SL

2

(Z) is di
tated by the Weil representation asso
iated with the dis
riminant group L

0

=L.

However, there is no smooth stru
ture theory for ve
tor valued modular forms. For

instan
e, they do not form a weight-graded algebra, and there is no natural a
tion of the

He
ke algebra and the Galois group over Q .

In the present note, we 
onsider the spe
ial 
ase that the dis
riminant group has odd

prime order p. This implies that the latti
e has even dimension. We show that the relevant

spa
es of ve
tor valued modular forms 
an be des
ribed using s
alar valued modular forms

for the group �

0

(p), whose Fourier expansion is supported on either the squares or the

non-squares modulo p (see Theorem 5). In the proof we use some basi
 properties of the

Weil representation and an idea due to Krieg, who 
onsidered the spe
ial 
ase that L is

given by the ring of integers in an imaginary quadrati
 �eld [Kr℄. Related results for 
ertain

latti
es of odd dimension were obtained earlier by Ei
hler, Zagier and Skoruppa (
f. [EZ℄


hapter 5, [Sk℄).

If the signature of L is (2; n) one obtains a very expli
it des
ription of the Bor
herds lift-

ing: It maps s
alar valued modular forms of weight 1�n=2 as above whi
h are holomorphi


ex
ept for a pole at the 
usp 1 to meromorphi
 modular forms for the orthogonal group

atta
hed to L. Furthermore, using the Serre-duality result of [Bo2℄ one gets an existen
e


riterion for Bor
herds produ
ts involving a similar spa
e of 
usp forms of weight 1 + n=2

for �

0

(p) (see Theorem 6). In se
tion 4 we present these ideas in the spe
ial O(2; 2)-
ase

of Hilbert modular surfa
es of prime dis
riminant (Theorem 9). Sin
e we feel that this


ase is of parti
ular interest and sin
e there are no expli
it examples in the literature so

far (to the best of our knowledge), we work out some Bor
herds produ
ts in detail. In
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2 JAN H. BRUINIER AND M. BUNDSCHUH

the 
omputation of the Weyl ve
tors we need to apply a result of [Br2℄. For instan
e,

we 
onstru
t the produ
t of theta-series for Q (

p

5) 
onsidered by Gundla
h in [Gu℄ as a

Bor
herds produ
t.

2. Ve
tor valued modular forms

We begin by �xing some notation. We denote by L an even latti
e of signature (b

+

; b

�

)

equipped with a non-degenerate quadrati
 form q(x) =

1

2

(x; x). We write L

0

for the dual

latti
e, m = b

+

+ b

�

for the dimension, and put r = b

+

� b

�

.

Throughout we assume that the dis
riminant group L

0

=L has prime order p � 3. This

implies that m and r are even. If S denotes the Gram matrix of L, then it is well known

that (�1)

m=2

det(S) = (�1)

r=2

p is a dis
riminant and therefore 
ongruent to 1 modulo 4.

Thus p determines r modulo 4.

The following argument shows that p modulo 4 together with the type of the quadrati


form on L

0

=L indu
ed by q determine r modulo 8: Let �

p

(�) = (

�

p

) denote the Diri
hlet


hara
ter given by the Legendre symbol and de�ne

"

p

=

(

1; p � 1 (mod 4);

i; p � 3 (mod 4):

On L

0

=L

�

=

F

p

the quadrati
 form is equivalent to q(x) = �x

2

=p, where � 2 F

p

n f0g is

either a square or a non-square, i.e. the type of q is determined by � = �

p

(�). We use

Milgrams formula for the general Gauss sum

X


2L

0

=L

e(q(
)) =

p

jL

0

=Lje(r=8);(1)

where e(�) = e

2�i�

as usual. The left hand side is equal to the standard Gauss sum

P

x(p)

e(�x

2

=p) = �

p

(�)"

p

p

p. Inserting this into (1) we �nd that �"

p

= e(r=8). We obtain

the following table for r modulo 8:

p (mod 4) 1 3

� = +1 0 2

� = �1 4 6

Let T = (

1 1

0 1

) and S = (

0 �1

1 0

) denote the standard generators of SL

2

(Z), and write

(e




)


2L

0

=L

for the standard basis of the group algebra C [L

0

=L℄. Re
all that there is a

unitary representation � = �

L

of SL

2

(Z) on C [L

0

=L℄ given by

�(T )e




= e(q(
))e




;

�(S)e




=

i

�r=2

p

jL

0

=Lj

X

Æ2L

0

=L

e(�(
; Æ))e

Æ

:
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This is essentially the Weil representation 
orresponding to the quadrati
 module (L

0

=L; q).

For further properties of � we refer to [Sh, Bo1, Br1, Od℄. The negative identity matrix

a
ts as �(�E)e




= (�1)

r=2

e

�


.

Let k 2 Z. Similarly as in [Bo1℄ and [Br1℄ we denote by A

k;�

the spa
e of nearly holomor-

phi
 modular forms for SL

2

(Z) of weight k with representation �. These are C [L

0

=L℄-valued

holomorphi
 fun
tions F (�) =

P


2L

0

=L

F




(�)e




on the upper 
omplex half-plane H satis-

fying the usual transformation law and having a Fourier expansion

F (�) =

X


2L

0

=L

X

n2Z+q(
)

n��1

a(
; n)e(n�)e




:

Thus F may have a pole at the 
usp 1. The subspa
e of holomorphi
 modular forms

(resp. 
usp forms) is denoted by M

k;�

(resp. S

k;�

).

The transformation behavior under �E implies that the 
omponents F




of F satisfy

F




=

(

F

�


; k � r=2 (mod 2);

�F

�


; k 6� r=2 (mod 2):

For the purposes of this paper we have to assume that k � r=2 (mod 2).

3. S
alar valued modular forms

We normalize the usual weight k Petersson slash operator on fun
tions f : H ! C by

(f j

k

M)(�) = (detM)

k=2

(
� + d)

�k

f(M�)

for M = (

a b


 d

) 2 GL

+

2

(R). We will often omit the subs
ript k if it is 
lear from the 
ontext.

We write A

k

(p; �

p

) for the spa
e of nearly holomorphi
 modular forms of weight k for

the group �

0

(p) with 
hara
ter �

p

. These are holomorphi
 fun
tions on H whi
h satisfy

the transformation law f j

k

M = �

p

(d)f for all (

a b


 d

) 2 �

0

(p) and are meromorphi
 at

the 
usps. The subspa
e of holomorphi
 modular forms (resp. 
usp forms) is denoted by

M

k

(p; �

p

) (resp. S

k

(p; �

p

)). Moreover, for � 2 f�1g we de�ne the subspa
es

A

�

k

(p; �

p

) =

(

f =

X

n2Z

a(n)q

n

2 A

k

(p; �

p

); a(n) = 0 if �

p

(n) = ��

)

:

Here q = e

2�i�

as usual. A 
lassi
al Lemma due to He
ke (
f. [Ogg℄ Lemma 6, p. 32) implies

that

A

k

(p; �

p

) = A

+

k

(p; �

p

)� A

�

k

(p; �

p

):

If f =

P

n2Z

a(n)q

n

2 A

�

k

(p; �

p

), then the Fourier polynomial

X

n2Z

n<0

a(n)q

n

is 
alled the prin
ipal part of f . Finally, we de�ne the spa
es M

�

k

(p; �

p

) and S

�

k

(p; �

p

)

analogously.
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Let F 2 A

k;�

and write F




=

P

n

a(
; n)q

n

for its 
omponents. It is well known that the

restri
tion of � to �

0

(p) a
ts on e

0

by multipli
ation with the 
hara
ter �(M) = �

p

(d) for

M = (

a b


 d

) (see [Sh℄, [Od℄). Therefore the 
omponent F

0

belongs to A

k

(p; �

p

). Sin
e the

Fri
ke involution

W

p

=

�

0 �1

p 0

�

a
ts on A

k

(p; �

p

), the fun
tion F

0

j W

p

is also 
ontained in A

k

(p; �

p

). By means of the

operator V

p

=

�

p 0

0 1

�

it 
an be rewritten as follows:

F

0

jW

p

= F

0

j S j V

p

=

i

�r=2

p

p

X


2L

0

=L

F




j V

p

= i

�r=2

p

(k�1)=2

X


2L

0

=L

F




(p�):(2)

We get the following Lemma.

Lemma 1. The assignment F 7! f , where

f =

i

r=2

2

p

(1�k)=2

F

0

jW

p

=

1

2

X


2L

0

=L

F




(p�);

de�nes an inje
tive homomorphism A

k;�

! A

�

k

(p; �

p

). Here � = �

p

(�) is given by the

quadrati
 form on L

0

=L. The fun
tion f has the Fourier expansion

f =

1

2

X

n2Z

X


2L

0

=L

pq(
)�n (p)

a(
; n)q

n

:

Conversely, for given f =

P

n2Z

a(n)q

n

2 A

k

(p; �

p

) we de�ne a fun
tion H 2 A

k;�

as

follows. The C [L

0

=L℄-valued fun
tion e

0

(f j W

p

) 
an be viewed as a nearly holomorphi


modular form with representation � for the group �

0

(p). Thus the indu
ed fun
tion

H =

X

M2�

0

(p)n SL

2

(Z)

�

�(M)

�1

e

0

�

f j W

p

jM

belongs to A

k;�

. We now 
ompute its Fourier expansion. A system of representatives for

�

0

(p)n SL

2

(Z) is given by

�

1 0

0 1

�

; ST

j

=

�

0 �1

1 j

�

for j = 0; : : : ; p� 1.
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Therefore

H = e

0

f jW

p

+

X

j (p)

�

�(ST

j

)

�1

e

0

�

f j

�

�1 �j

0 �p

�

= e

0

f jW

p

+ (�1)

k

p

�k=2

X

j (p)

�

�(T

j

) �(S)e

0

�

f(�=p+ j=p)

= e

0

f jW

p

+ (�1)

k

p

�k=2

i

r=2

p

p

X


2L

0

=L

e




X

j (p)

e(�q(
)j)f(�=p + j=p):

Using the assumption k � r=2 (mod 2) and inserting the Fourier expansion of f , we �nd

H = e

0

f j W

p

+ i

�r=2

p

�1=2�k=2

X


2L

0

=L

e




X

n2Z

a(n)e(n�=p)

X

j (p)

e

�

(n� pq(
))j=p

�

= e

0

f j W

p

+ i

�r=2

p

1=2�k=2

X


2L

0

=L

e




X

n2Z

n�pq(
) (p)

a(n)e(n�=p):

We obtain the following Proposition.

Proposition 2. Let f =

P

n

a(n)q

n

2 A

k

(p; �

p

). Then the fun
tion

F =

X


2L

0

=L

e




F




= i

r=2

p

k=2�1=2

X

M2�

0

(p)n SL

2

(Z)

�

�(M)

�1

e

0

�

f j W

p

jM:(3)

belongs to A

k;�

. The 
omponents F




have the Fourier expansion

F

0

=

X

n2Z

n�0 (p)

a(n)e(n�=p) + i

r=2

p

k=2�1=2

f jW

p

;(4)

F




=

X

n2Z

n�pq(
) (p)

a(n)e(n�=p) (
 6= 0):(5)

If f 2 A

�

k

(p; �

p

), then the Fourier expansion of F

0


an be simpli�ed, avoiding the term

f j W

p

(i.e. the Fourier expansion of f at the 
usp 0). To this end, similarly as in [Kr℄, we

�rst 
hara
terize A

�

k

(p; �

p

) using the He
ke operator U

p

de�ned by

f j U

p

=

X

j (p)

f j

�

1 j

0 p

�

:

Observe that

f j U

p

= p

1�k=2

X

n2Z

n�0 (p)

a(n)e(n�=p)

for f as above. So our normalization of U

p

is slightly di�erent than as usual.
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Lemma 3. Let f =

P

n2Z

a(n)q

n

2 A

k

(p; �

p

) and � 2 f�1g. Then f belongs to A

�

k

(p; �

p

),

if and only if

f j U

p

= �"

p

p

p f jW

p

:(6)

Proof. The fun
tion h = f j U

p

j W

p

is 
ontained in A

k

(p; �

p

) and (6) is equivalent to

h = �"

p

p

p f:

We have

h =

X

j (p)

f j

�

1 j

0 p

�

j

�

0 �1

p 0

�

= f jW

p

j V

p

+

X

j (p)

�

f j

�

j �1

p 0

�

j

�

p 0

0 1

�

;

where the summation in

P

j (p)

�

runs through all primitive residues modulo p. For a given

j 2 Z that is 
oprime to p let b; d 2 Z su
h that jd� pb = 1. Then

�

j b

p d

�

2 �

0

(p) and

�

j �1

p 0

�

=

�

j b

p d

��

1 �d

0 p

�

:(7)

Thus

h = f jW

p

j V

p

+

X

d (p)

�

�

p

(d)f j

�

p �d

0 p

�

= f jW

p

j V

p

+

X

n2Z

a(n)q

n

X

d (p)

�

�

p

(d)e(�nd=p):

If we insert the value of the latter Gauss sum, we obtain

h = f j W

p

j V

p

+ "

p

p

p

X

n2Z

�

p

(n)a(n)q

n

:(8)

From this identity the assertion 
an be dedu
ed. For the impli
ation \)" we additionally

have to use the fa
t that a nearly holomorphi
 modular form g 2 A

k

(p; �

p

) with Fourier


oeÆ
ients 
(n) vanishes identi
ally, if 
(n) = 0 for all n 
oprime to p ([Ogg℄ Lemma 6).

An alternative proof of this lemma 
an be obtained by 
onsidering the ve
tor valued

fun
tion F atta
hed to f via Proposition 2. One has to insert (4) and (5) into the formula

(2) for F

0

j W

p

and 
arefully 
ompare Fourier expansions on both sides.

Corollary 4. Let f be a holomorphi
 fun
tion on H that has the transformation behavior

and the Fourier expansion of an element of A

�

k

(p; �

p

). Suppose that f is meromorphi
 (or

holomorphi
 or vanishes, respe
tively) at the 
usp 1. Then it is also meromorphi
 (or

holomorphi
 or vanishes, respe
tively) at the 
usp 0 � W

p

1.
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Theorem 5. Let f =

P

n

a(n)q

n

2 A

�

k

(p; �

p

) and de�ne F by (3) as before. Then F 2 A

k;�

and the 
omponents F




have the Fourier expansion

F

0

= 2

X

n2Z

n�0 (p)

a(n)e(n�=p);(9)

F




=

X

n2Z

n�pq(
) (p)

a(n)e(n�=p) (
 6= 0):(10)

The map f 7! F and the map des
ribed in Lemma 1 are inverse isomorphisms between

A

�

k

(p; �

p

) and A

k;�

.

Proof. A

ording to Proposition 2 we only have to prove (9). It suÆ
es to show that

f j U

p

= i

r=2

p

p f j W

p

:

But this immediately follows from Lemma 3 and the fa
t that i

r=2

= �"

p

.

From now on we assume that k � 0. For an integer n we de�ne

s(n) =

(

2; if n � 0 (mod p);

1; if n 6� 0 (mod p):

(11)

Moreover, we put Æ = �

p

(�1)�. The next theorem gives a 
riterion for the existen
e of

nearly holomorphi
 modular forms in A

�

k

(p; �

p

) with pres
ribed prin
ipal part. We need to


onsider the spa
e of modular forms M

Æ

�

(p; �

p

) of dual weight � = 2� k � 2. Re
all that

there are the 2 Eisenstein series

G

�

= 1 +

2

L(1� �; �

p

)

1

X

n=1

X

djn

d

��1

�

p

(d)q

n

;(12)

H

�

=

1

X

n=1

X

djn

d

��1

�

p

(n=d)q

n

(13)

in M

�

(p; �

p

) (
f. [He℄ Werke p. 818), the former 
orresponding to the 
usp 1, the latter


orresponding to the 
usp 0. The linear 
ombination

E

Æ

�

= 1 +

X

n�1

B(n)q

n

= 1 +

2

L(1� �; �

p

)

X

n�1

X

djn

d

��1

(�

p

(d) + Æ�

p

(n=d)) q

n

(14)

belongs to M

Æ

�

(p; �

p

). The spa
e M

Æ

�

(p; �

p

) 
an be de
omposed as a dire
t sum

M

Æ

�

(p; �

p

) = CE

Æ

�

� S

Æ

�

(p; �

p

):

Theorem 6. There exists a nearly holomorphi
 modular form f 2 A

�

k

(p; �

p

) with pre-

s
ribed prin
ipal part

P

n<0

a(n)q

n

(where a(n) = 0 if �

p

(n) = ��), if and only if

X

n<0

s(n)a(n)b(�n) = 0
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for every 
usp form g =

P

m>0

b(m)q

m

in S

Æ

�

(p; �

p

). The 
onstant term a(0) of f is given

by the 
oeÆ
ients of the Eisenstein series E

Æ

�

:

a(0) = �

1

2

X

n<0

s(n)a(n)B(�n):

Proof. Beside L we 
onsider the latti
e L(�1), whi
h is given by L as a Z-module but

equipped with the quadrati
 form �q(�). The type of this quadrati
 form on L

0

=L is

obviously determined by the sign Æ = �

p

(�1)�. Observe that the representation �

L(�1)

atta
hed to L(�1) is equal to the dual representation �� = ��

L

of �

L

. Thus, by Theorem 5

we �nd that the spa
eM

�;��

of ve
tor valued modular forms of weight � with representation

�� 
an be identi�ed with M

Æ

�

(p; �

p

).

On the other hand we already know that A

k;�


an be identi�ed with A

�

k

(p; �

p

).

A

ording to Bor
herds' duality theorem (Theorem 4.1 in [Bo2℄, see also [Br1℄ 
hapter

1.3), the obstru
tions to �nding modular forms in A

k;�

with pres
ribed prin
ipal part are

given by modular forms in M

�;��

. If we work out all identi�
ations expli
itly, we obtain

the stated result.

If one wants to use Theorems 5 and 6 in the 
ontext of Bor
herds' theory of automorphi


produ
ts, then the following two propositions will also be important (see se
tion 4). Noti
e

that from the outset analogous results are not available for the 
orresponding spa
es of

ve
tor valued modular forms (see [Bo2℄ p. 227).

For f =

P

a(n)q

n

2 A

k

(p; �

p

) and a Galois automorphism � 2 Gal(C =Q ) we de�ne the

�-
onjugate of f by

f

�

=

X

n2Z

a

�

(n)q

n

:

Here a

�

(n) denotes the 
onjugate of a(n). It is well known that the spa
es M

�

(p; �),

where � denotes a quadrati
 
hara
ter, have a basis 
onsisting of modular forms with

integral rational 
oeÆ
ients (
f. [DI℄ Corollary 12.3.8, Proposition 12.3.11). This implies

that f

�

2 A

k

(p; �

p

).

Proposition 7. The spa
e M

Æ

�

(p; �

p

) has a basis of modular forms with integral rational


oeÆ
ients.

Proof. It is easily seen that M

Æ

�

(p; �

p

) has a basis of modular forms with 
oeÆ
ients in the

ring of integers of a �xed number �eld K. The assertion follows from the fa
t that the

Galois group of K=Q a
ts on M

Æ

�

(p; �

p

).

Proposition 8. Let f =

P

a(n)q

n

2 A

�

k

(p; �

p

) and suppose that a(n) 2 Q for n < 0.

Then all 
oeÆ
ients a(n) are rational and have bounded denominator (i.e. there is a positive

integer 
 su
h that 
f has 
oeÆ
ients in Z).

Proof. Let � 2 Gal(C =Q ). Then h = f � f

�

lies in A

�

k

(p; �

p

). The assumption on the


oeÆ
ients a(n) with n < 0 implies that h is holomorphi
 at the 
usp 1. By Corollary 4

it is also holomorphi
 at the 
usp 0 and therefore 
ontained in M

�

k

(p; �

p

). Sin
e k � 0, it

has to vanish identi
ally.
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Varying �, we �nd that f is invariant under Gal(C =Q ) and therefore has rational 
o-

eÆ
ients. Sin
e the produ
t f�

N

of f with a large power of the delta fun
tion � =

q

Q

n�1

(1 � q

n

)

24

is 
ontained in M

k+12N

(p; �

p

), it has 
oeÆ
ients with bounded denomi-

nator. Hen
e f itself has 
oeÆ
ients with bounded denominator.

4. Bor
herds produ
ts on Hilbert modular surfa
es

The results of the previous se
tion 
an be used to obtain a very smooth and expli
it

formulation of the Bor
herds lifting (Theorem 13.3 in [Bo1℄, and [Bo2℄) for latti
es of odd

prime determinant and signature (2; b

�

). To simplify the presentation and notation we

only illustrate this in the spe
ial O(2; 2)-
ase of Hilbert modular surfa
es.

Let p � 1 (mod 4) be an odd prime and K = Q(

p

p) the real quadrati
 �eld of dis
rim-

inant p. Let O be the ring of integers and d = (

p

p) the di�erent in K. We write x 7! x

0

for the 
onjugation, N(x) = xx

0

for the norm in K, and tr(x) = x + x

0

for the tra
e in K.

Then L = Z

2

�O, with the quadrati
 form q(a; b; �) = N(�)� ab for (a; b; �) 2 L, is an

even latti
e of signature (2; 2). The dual latti
e is L

0

= Z

2

� d

�1

and the quadrati
 form

on L

0

=L

�

=

F

p

represents the squares, i.e. � = +1.

By Theorem 5 the spa
e A

0;�

of modular forms with representation � of weight k = 0

is isomorphi
 to A

+

0

(p; �

p

), and the spa
e M

2;��

of holomorphi
 modular forms with dual

representation �� of weight � = 2 is isomorphi
 to M

+

2

(p; �

p

).

The Hilbert modular group �

K

= SL

2

(O) a
ts on the produ
t of two upper half planes

in the usual way. We use (z

1

; z

2

) as a standard variable on H � H and write (y

1

; y

2

) for its

imaginary part. Re
all that for every positive integer m the subset

[

(a;b;�)2L

0

ab�N(�)=m=p

f(z

1

; z

2

) 2 H � H ; az

1

z

2

+ �z

1

+ �

0

z

2

+ b = 0g

de�nes a �

K

-invariant algebrai
 divisor T (m) on H � H , the Hirzebru
h-Zagier divisor

of dis
riminant m. It is the inverse image of an algebrai
 divisor on the quotient X

K

=

(H � H )=�

K

, whi
h will also be denoted by T (m). Here we understand that all irredu
ible


omponents of T (m) are assigned the multipli
ity 1. This divisor is non-zero if �

p

(m) 6= �1

and is 
ompa
t if m is not the norm of an ideal in O.

The subset

S(m) =

[

�2d

�1

�N(�)=m=p

f(z

1

; z

2

) 2 H � H ; �y

1

+ �

0

y

2

= 0g

of H �H is a union of hyperplanes of real 
odimension 1. It is invariant under the stabilizer

of the 
usp 1. For a subset W � H �H and � 2 d

�1

we write (W;�) > 0, if �y

1

+�

0

y

2

> 0

for all (z

1

; z

2

) 2 W .

For basi
 fa
ts on Hilbert modular forms we refer to [Fr℄, [Ge℄. It is well known that

Hilbert modular forms on H �H for the group �

K


an be identi�ed with modular forms for

the orthogonal group of the latti
e L. (In this identi�
ation the Hirzebru
h-Zagier divisor

T (m) essentially 
orresponds to the Heegner divisor y

�m;


in the terminology of Bor
herds

[Bo2℄.)
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Using Theorem 5, Proposition 8, and the above identi�
ations, we may restate Theorem

13.3 in [Bo1℄ as follows:

Theorem 9. Let f =

P

n2Z

a(n)q

n

2 A

+

0

(p; �

p

) and assume that s(n)a(n) 2 Z for all

n < 0 (where s(n) is de�ned by (11)). Then there is a meromorphi
 fun
tion 	(z

1

; z

2

) on

H � H with the following properties:

1. 	 is a meromorphi
 modular form for �

K

with some unitary 
hara
ter of �nite order.

The weight of 	 is equal to the 
onstant 
oeÆ
ient a(0) of f . It 
an also be 
omputed using

Theorem 6.

2. The divisor of 	 is determined by the prin
ipal part of f . It equals

X

n<0

s(n)a(n)T (�n):

3. Let W � H � H be a Weyl 
hamber atta
hed to f , i.e. a 
onne
ted 
omponent of

H � H �

[

n<0

a(n)6=0

S(�n);

and put N = minfn; a(n) 6= 0g. The fun
tion 	 has the Bor
herds produ
t expansion

	(z

1

; z

2

) = e(�

W

z

1

+ �

0

W

z

2

)

Y

�2d

�1

(�;W )>0

(1� e(�z

1

+ �

0

z

2

))

s(p��

0

)a(p��

0

)

:

Here �

W

and �

0

W

are algebrai
 numbers in K that 
an be 
omputed expli
itly. The produ
t


onverges normally for all (z

1

; z

2

) with y

1

y

2

> jN j=p outside the set of poles.

4. There exists a positive integer 
 su
h that 	




has integral rational Fourier 
oeÆ
ients

with greatest 
ommon divisor 1.

Note that automorphi
 produ
ts for �

K

are 
onstru
ted in a di�erent way in [Br2℄. There

the exponents are given by the 
oeÆ
ients of nearly holomorphi
 Poin
ar�e series of weight

2. Using non-holomorphi
 Poin
ar�e series of weight 0 as in [Br1℄, these 
oeÆ
ients 
ould

be related to the 
oeÆ
ients of nearly holomorphi
 modular forms of weight 0. But this

requires a 
onsiderable amount of work. An important point of the above formulation of

Bor
herds' theorem is that we also get the last assertion on the integrality properties of

the Fourier 
oeÆ
ients of the lifting. This will be vital for some arithmeti
 appli
ations.

For the 
omputation of the Weyl ve
tor (�

W

; �

0

W

) one 
annot apply the result of [Bo1℄

(Theorem 10.4), sin
e the latti
e O is not isotropi
. However, we may use the formula

given in [Br2℄ p. 72 or [Br1℄ 
hapter 2.3. Let W be as in the theorem. It turns out that

�

W

, �

0

W

are the uniquely determined numbers in K su
h that

�

W

y

1

+ �

0

W

y

2

=

X

n<0

s(n)a(n)

X

�2d

�1

�>0

N(�)=n=p

min(j�y

1

j; j�

0

y

2

j)(15)

for all (z

1

; z

2

) 2 W . Let "

0

> 1 be the fundamental unit of K. It has norm �1, be
ause K

has prime dis
riminant. For every negative integer n with a(n) 6= 0 there are only �nitely
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many � 2 d

�1

su
h that � > 0, N(�) = n=p, and

�y

1

+ �

0

y

2

< 0; "

2

0

�y

1

+ "

0

0

2

�

0

y

2

> 0;

for all (z

1

; z

2

) 2 W . Denote the set of these � by R(W;n). By Diri
hlets unit theorem we

have

X

�2d

�1

�>0

N(�)=n=p

min(j�y

1

j; j�

0

y

2

j) =

X

�2R(W;n)

 

X

n�0

"

�2n

0

�y

1

�

X

n>0

"

�2n

0

�

0

y

2

!

=

X

�2R(W;n)

�

"

2

0

�

"

2

0

� 1

y

1

�

�

0

"

2

0

� 1

y

2

�

=

1

tr("

0

)

X

�2R(W;n)

("

0

�y

1

+ "

0

0

�

0

y

2

) :(16)

Inserting this into (15) we obtain a formula for �

W

and �

0

W

. In parti
ular we �nd that

these numbers are 
onjugate and 
ontained in (tr "

0

)

�1

d

�1

.

Finally, we remark that by Theorems 8 and 9 of [Br2℄ any meromorphi
 modular form

for �

K

, whose divisor is a linear 
ombination of Hirzebru
h-Zagier divisors, is given by a

Bor
herds produ
t as in the above theorem.

By a 
lassi
al result of He
ke [He℄, the dimension of the spa
e S

2

(p; �

p

) (where p � 1

(mod 4) is a prime) is equal to 2

�

p�5

24

�

. It is easily seen that the dimension of the obstru
tion

spa
e S

+

2

(p; �

p

) is half the dimension of S

2

(p; �

p

). Hen
e, S

+

2

(p; �

p

) = 0 if and only if p = 5,

13, or 17. Let us assume that p is one of these primes. Then by Theorem 6 any Fourier

polynomial 
an be realized as the prin
ipal part of a nearly holomorphi
 modular form in

A

+

0

(p; �

p

). If m is a positive integer with �

p

(m) 6= �1, we write

f

m

=

X

n��m

a

m

(n)q

n

for the unique element of A

+

0

(p; �

p

), whose prin
ipal part is equal to s(m)

�1

q

�m

. The

Bor
herds lift 	

m

of f

m

is a holomorphi
 modular form for �

K

of weight a

m

(0) = �B(m)=2,

where B(m) is the m-th 
oeÆ
ient of the Eisenstein series E

+

2

2 M

+

2

(p; �

p

). The divisor

of 	

m

equals T (m). The fun
tions f

m


an be easily 
onstru
ted. We now indi
ate this in

the 
ase p = 5.

The normalized Eisenstein series of weight 2 for �

0

(5) with trivial 
hara
ter is given by

E

2

= 1 + 6

X

n�1

(�(n)� 5�(n=5))q

n

;

where �(n) =

P

djn

d denotes the sum of divisors of n. The Eisenstein series G

2

and H

2

for �

0

(5) de�ned by (12) and (13) 
an be expressed in terms of the eta fun
tion � =

q

1=24

Q

n�1

(1� q

n

) as follows:

G

2

(�) = �(�)

5

=�(5�); H

2

(�) = �(5�)

5

=�(�):
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In parti
ular these Eisenstein series do not vanish on H . Thus E

2

=H

2

2 A

0

(p; �

p

) has a

�rst order pole at 1 and is holomorphi
 on H and at the 
usp 0. This implies that it

equals f

1

. Similarly it 
an be seen that

f

4

= G

2

=H

2

(f

3

1

+ 108f

1

)� 9f

3

1

+ 1128f

1

:

The fun
tion f

5


an be 
onstru
ted as the produ
t

1

2

E

+

2

(�)J(5�), where J(�) is the unique

modular form of weight �2 for SL

2

(Z) that is holomorphi
 on H and whose Fourier expan-

sion starts with q

�1

+ O(1). Now the other fun
tions f

m


an be obtained indu
tively by

multiplying the above fun
tions with powers of j(5�) and subtra
ting suitable multiples

of the f

m

0

with smaller index m

0

. Here j = q

�1

+ 744 + 196884q + : : : denotes the usual

j-fun
tion. One �nds that the �rst f

m

are:

f

1

= q

�1

+ 5 + 11 q � 54 q

4

+ 55 q

5

+ 44 q

6

� 395 q

9

+ 340 q

10

+ 296 q

11

� 1836 q

14

+ : : : ;

f

4

= q

�4

+ 15� 216 q + 4959 q

4

+ 22040 q

5

� 90984 q

6

+ 409944 q

9

+ 1388520 q

10

+ : : : ;

f

5

=

1

2

q

�5

+ 15 + 275 q + 27550 q

4

+ 43893 q

5

+ 255300 q

6

+ 4173825 q

9

+ : : : ;

f

6

= q

�6

+ 10 + 264 q � 136476 q

4

+ 306360 q

5

+ 616220 q

6

� 35408776 q

9

+ : : : ;

f

9

= q

�9

+ 35� 3555 q + 922374 q

4

+ 7512885 q

5

� 53113164 q

6

+ 953960075 q

9

+ : : : ;

f

10

=

1

2

q

�10

+ 10 + 3400 q + 3471300 q

4

+ 9614200 q

5

+ 91620925 q

6

+ 5391558200 q

9

+ : : : :

Sin
e the divisor of the fun
tion 	

1

is equal to T (1), it has to be equal to a multiple of

the 
lassi
al Hilbert modular form � 
onstru
ted by Gundla
h in [Gu℄ as a produ
t of 10

theta fun
tions. Be
ause 	

1

has integral 
oprime Fourier 
oeÆ
ients, and � has integral

Fourier 
oeÆ
ients with greatest 
ommon divisor 64, we �nd 	

1

=

1

64

�. Let W be the

Weyl 
hamber atta
hed to f

1

that 
ontains the point (�i"

0

0

; i"

0

), where "

0

=

1

2

(1 +

p

5)

denotes the fundamental unit of Q (

p

5). Sin
e the set of � 2 d

�1

with norm �1=5 is given

by f�"

2n

0

=

p

5; n 2 Zg, we obtain that

R(W;�1) = f1=

p

5g:

A

ording to (16) we have �

W

= "

0

=

p

5. Thus 	

1

has the produ
t expansion

	

1

(z

1

; z

2

) = e

�

"

0

z

1

=

p

5� "

0

0

z

2

=

p

5

�

Y

�2d

�1

"

0

�

0

�"

0

0

�>0

(1� e(�z

1

+ �

0

z

2

))

s(5��

0

)a

1

(5��

0

)

:(17)

If the divisor T (m) on X

K

is 
ompa
t, then S(m) is empty and H � H is the only Weyl


hamber for f

m

. Thus

	

m

(z

1

; z

2

) =

Y

�2d

�1

��0

(1� e(�z

1

+ �

0

z

2

))

s(5��

0

)a

m

(5��

0

)

:(18)
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