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1 Introduction

Let L be an even lattice of signature (2,[) with [ > 3. Write ¢(-) for the quadratic form
on L and L for the (finite) discriminant group of L.

Let O'(L ®z R) be the spinor kernel of the real orthogonal group of L and denote the
corresponding Hermitean symmetric domain by H;. We write O'(L) for the intersection of
the integral orthogonal group of L with O'(L ®z R). We consider the discriminant kernel
A(L) of the group O'(L), that is the subgroup of those elements that act trivially on L.

There is a natural notion of principal congruence groups for the group A(L): For any
non-zero integer N we have the rescaled lattice L(IN), given by L as a Z-module, but
equipped with the quadratic form Ng¢(-). The discriminant kernel of L(N) is a subgroup
of A(L), defined by congruence conditions modulo N. We call it principal congruence
subgroup of level N and denote it by ['(V).

We consider the arithmetic quotient X (N) = H;/T'(N). By the theory of Baily-Borel,
it carries the structure of a quasiprojective algebraic variety. A fundamental geometric
invariant is its algebraic Picard group Pic(X(N)). Our assumption on [ implies that this
group is finitely generated. In the present paper we shall derive a nontrivial lower bound
for the rank of Pic(X(N)). In particular we are interested in the asymptotic behavior of
the numbers

rank (Pic(X(NV)))

as N — oo. Although this problem seems very natural, to the best of our knowledge,
just partial results can be found in the literature. (See for instance [LW1, LW2] or [GN].)
Certainly one would expect that the rank of Pic(X(NV)) tends to infinity as N — oo,
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reflecting the fact that the geometry of X (V) gets more complicated as the level rises.
However, even a result of this type seems not to be known in general.

Put X = X(1). It is a consequence of the work of Borcherds [Bol, Bo2| and the
refinement given in [Brl] that there exists a homomorphism

SR,L — PIC(X) X7 (C/ C[EHodge] (1)

from a certain space Sy j, of C[L]-valued cusp forms of weight x =14 [/2 to the quotient
of Pic(X) ®z C modulo the span of the class of the Hodge line bundle Epqqge.

If L splits two orthogonal hyperbolic planes over Z, then the main result of [Brl] says
that this map is injective (see also [Br2] or [BF] for related results). Hence in this case
we can obtain a lower bound for rank(Pic(X)) by estimating the dimension of S, 1. By
means of the Riemann-Roch theorem or the Selberg trace formula, the dimension of Sy 1,
can be computed. Thereby the original problem is reduced to estimating the different
contributions in the dimension formula. Some of these are “strange” invariants of the
discriminant group £ and the Q/Z-valued quadratic form on it induced by ¢. They are
studied in section 2, the technical heart of this paper.

Let us now assume that L splits two orthogonal hyperbolic planes over Z, i.e. has the
special shape L = Ly | H | H, where Lg is an even negative definite lattice. Then the
above argument can be used to find a bound for the rank of Pic(X). Unfortunately, it
cannot be applied directly to get a bound for Pic(X (NNV)), since L(N) does not split two
hyperbolic planes over Z.

Therefore we first consider the lattice

LIN]=Lo(N) LH L H

and its discriminant kernel I'[N] = A(L[N]). We write X[N] for the quotient H;/T'[N].
The group I'[N] can be viewed as a subgroup of the rational orthogonal group of L with the
property that I'(NV) C I'[N]. In the O(2, 3)-case of the Siegel modular group of genus 2 it is
isomorphic to the paramodular group of level N. Using the injectivity of the map (1) and
the estimate of section 2 for the dimension of S, 1, we obtain a bound for rank(Pic(X[NV]))
(see Theorem 8). In particular we find that for any ¢ > 0 there exists a constant C. > 0
(which can be easily determined) such that

rank (Pic(X[N])) (2)

- I|L|N'—2 C.N'V?te  if | =3,
= 48 C.N'=3+e if [ > 3,

for all N € N (Corollary 9).
The projection X (N) — X[N] induces an injective homomorphism

Pic (X[N]) —> Pic (X(N)).
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Hence all bounds for the rank of Pic(X[N]) give us also bounds for the rank of Pic(X (NV)).
There are some reasons to believe that our estimate (2) actually describes the true asymp-
totic growth of rank(Pic(X[N])), whereas the resulting bound for Pic(X (N)) seems rather
poor (see questions 1 and 2). Better results for X (NN) could be obtained by studying the
injectivity properties of the map (1) more carefully for lattices which do not split two
hyperbolic planes over Z.

As an important example we consider the special case of the Siegel modular group of
genus 2 in somewhat more detail. We take L = Z(—2) L H L H and use the exceptional
isomorphism from Sp(4, R) to O(2,3). Due to the work of Weissauer [Wel, We2] we know
a lot about the Picard groups Pic(X (N)) in this case. For instance the Tate conjecture for
algebraic divisors is proved in [Wel]. However, lower bounds for the rank of Pic(X|[N]) or
Pic(X(N)) seem not to be known in general.

The group I'[N] is isomorphic to the paramodular group of level N (cf. [GrNi]). The
quotient X[N] is the moduli space of Abelian surfaces with a (1, N)-polarization. Our
result implies that for any € > 0 there is a constant C. > 0 such that

rank (Pic(X[N])) > N/8 — CLNY/2+

for all N € N (Corollary 10). The same estimate holds for the Siegel principal congruence
subgroup of level N.

In the Appendix we apply some ideas of section 2 to derive certain class number identi-
ties. Together with the lemmas in section 2 they can be used to evaluate the formula for the
dimension of Sy j, explicitly when L has the special shape L = Z(—2t;) L --- L Z(—2t,)
with nonzero integers tq,...,t,.. Moreover, these identities might be of independent inter-
est.

Acknowledgments. T would like to thank M. Bundschuh, E. Freitag, and R. Weissauer for
several helpful conversations.

2 The dimension formula

Let L be an even lattice of signature (b%,b7). We denote the bilinear form on L by (-, ")
and the associated quadratic form by ¢(z) = 3(z,z). We write L' for the dual lattice of L
and £ = L'/L for the (finite) discriminant group. Moreover, let d = |[L/{£1}|,r = bT + b~

be the rank of L, and denote by
D =min{n €N, ng(y) € Zforallye L'} (3)

the level of L.

We write Mp,(R) for the metaplectic 2-fold cover of SLy(R) and denote by Mp,(Z) the
inverse image of SLy(Z) under the covering map. Recall that the elements of Mp,(R) are
pairs (M, ¢(7)), where M = (%) € SLy(R), and ¢ denotes a holomorphic function on the
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upper complex half plane H with ¢(7)? = e +d. It is well known that Mp,(Z) is generated

by
11 0 —1
=G e o= (00))
One has the relations S? = (ST)® = Z, where Z = ((3' %), %) is the standard generator
of the center of Mp,(Z).
There is a unitary representation p;, of Mp,(Z) on the group algebra C[L] of L. If we

denote the standard basis of C[L] by (e),ec then pz can be defined by the action of the
generators S, T € Mp,(Z) as follows (see also [Bol], [Bo2], where the dual of p, is used):

pr(T)ey = e(—q(7))ey, (4)

f%ﬂ.gyﬂmam. 6

Here and throughout we abbreviate e(2) = €™ for z € C. This representation is essentially
the Weil representation attached to the quadratic module (£, q) (see [No]).

Let k € 1Z. We denote by My, the vector space of C[£]-valued modular forms of
weight k& with representation py for the group Mp,(Z). The subspace of cusp forms is
denoted by Sk . (See also [BF] or [Bol].) It is easily seen that M =0, if 2k £ b~ — b
(mod 2).

Since py, factors through a finite quotient of Mp,(Z), it is clear that the dimension
of My, is finite. It can be computed using the Riemann-Roch theorem or the Selberg
trace formula in a standard way. This is carried out in [Fi] in a more general situation.
In our special case the following formula holds (see [Bo3], [Bo2| p. 228): Assume that
2k = b~ — b* (mod 4) (we will only be interested in this case). Then the d-dimensional
subspace W = span{e, +e_,; v € L} of C[£] is invariant under p;. More precisely py,
acts by multiplication with e(—k/2) on W. We denote by p the restriction of p;, to W. If
M is a unitary matrix of size d with eigenvalues e(v;) and 0 < v; < 1 (for j =1,...,d),
then we define

pr(S)e, =

The dimension of M}, ;, is given by
dime(Myz) = d + dk/12 = o (2 p(S)) = o ((™(ST)) ") = alp(T)).  (6)

Furthermore, using Eisenstein series, it can be easily shown that the codimension of S 1,
in My, 1, is equal to the number of elements of the set

{yeL/{£1}; a(v) €Z} (7)



(see also [Brl] chapter 1.2.3).

As already pointed out in the introduction, we need to find a lower bound for the
dimension of S . In view of (6) and (7) we have to estimate the quantities

) =« (e“k/Zp(S)) :
ay =« ((e“k/?’p(ST))_l) ,

az == a(p(T)),
as:=|{ye L/{£1}; q(y) € Z}].

This can easily be done for «q, s, and ay4. However, for a3 this problems turns out to be
more difficult. In the appendix we will see that a3 sometimes is related to class numbers
of imaginary quadratic fields.

For the estimates we first need some facts on Gauss sums attached to L. Let n € Z.
We define the Gauss sum G(n, L) by

G(n,L) = Y e(ng(7)). (®)

YEL

Two basic but important properties of G(n, L) are

G(—n,L) =G(n, L), 9)
G(n+D,L) =G(n,L). (10)

If n is an integer, we define
L' ={yeL; ny=0}.

Observe that [£?| = 2d — |£|. In general it follows from the theorem of elementary divisors
that

£ < (D,n)", (11)
where (D, n) denotes the greatest common divisor of D and n.

Lemma 1. Let n be a positive integer. i) If Din, then G(n,L) = |L|. ii) The absolute
value of G(n, L) is given by

G(n,L)| = VILIVIL].
In particular |G(n, L)| = \/|L|, if (n, D) = 1.

The proof is left to the reader.



Lemma 2. The quantities a; and cs can be expressed in terms of Gauss sums as follows:

d 1 P

a =G - e (k6 D)8 REGE, L), (12)
d 1 o

op =+ 3|£|§R(e((4k+3() —3h —10)/24)((;(1,L)+G(—3,L))). (13)

Proof. The idea of the proof was communicated to us by R. E. Borcherds. Let us first
consider (12). In Mpy(Z) we have the relation S? = Z. Since Z acts on W C C[L] by
multiplication with e(—k/2), the identity

(e(k/4)p(9))* = e(k/2)p(2) = id

holds. Hence all eigenvalues of e(k/4)p(S) equal 1. If b denotes the number of eigenvalues
equal to —1, then

trw (e(k/4)p(S)) = —b+ (d —b) =d — 2b.
Thus

O[lzb/2:

A~

trw (e(k/4)p(S))-

Note that try (p(S)) = 3 treg (p(S) + p(S)X), where X denotes the map C[L] — C[L]
given by e, — e_,. Hence it follows from (5) that

= e

try (e(k/4)p(S)) = ——e ((2k + b* — b7)/8) R (G(2, L)) .

1
VIL]
This implies the assertion.

Equality (13) can be proved in the same way. Using the relation (ST)* = Z we find
d

g =

n 3—\2/5%(6(—5/12 +k/6) trw (p(ST))).-

3
Furthermore, by (5) and (4) we have

1

5 |£|e((b+ —57)/8) (G(1,L) + G(=3,L)).

trw (p(ST)) =

From Lemma 2 we obtain the following corollary.

Corollary 3. The quantities oy and oo satisfy the estimates
1
jon — d/4] < /271, (14)
1
0 — df3) < — (1+ VIZ7]). 15
o2 = /3] < = (1+ VI (15



We now derive an estimate for ay4. If n is a positive integer, we define the divisor sum
— t
or(n) = Za\n a.

Lemma 4. We have

L? L
oul < 1 V).

Proof. We write oy as

1 1
=52 1+5 > L
yeL? yeL

q(v)€Z q(v)€Z
The second term on the right hand side is equal to
1

35 5 o) = 5 Tt
YEL v ( v (D)

Thus, using Lemma 1, we obtain

|a4| —+—Z\/|f\/|,CT
<|£2 \/EZ Dy

/a
|£2 \/|£ > DZ
B a|D
(uD/a)
22| \/|£ Z
< — —a
2 a\D
L L
< % Vo)

O

Before we consider a3 we introduce some more notation. If z € R, then we write [z]
for the greatest-integer function max{n € Z; n < z}. Moreover, we define

B(z) =z — 3([] — [-2]). (16)

Thus B(z) is the 1-periodic function on R with B(z) =0 for + = 0,1 and B(z) =z — 1/2
for 0 < z < 1. By definition

=Y. (=g(v) =[=a()).

veEL/{£1}



Using B(z) and a4 we may rewrite this in the form
d (7]
MB=57 5 7 Z B(q(7))-

veL/{+1}

Hence, to obtain information on «zg, it suffices to consider the invariants

as= 3 Ba), (17)

veL/{£1}
a5 =Y Bla(7)) (18)
yeL
of L. Obviously the relation
05 =2 3 Bla(y) + 2
575 a\y 9
yEL?

holds. For v € £?, we have ¢(7) € 1Z and thereby |B(¢q(v))| < 1/4. Hence

los| < |£2]/8 + |al|/2  and
s — d/2 + /2| < |£7]/8 + |ab| /2. (19)

The main result of this section is the following estimate for ag.

Lemma 5. The invariant o satisfies

o] < V] (3/2 +1n(D)) (0,5 1(D) — D"/*71) .

™

Proof. The 1-periodic function B(z) has the pointwise convergent Fourier expansion

B(m):—% 3 6(2‘”). (20)

4
neZ—{0}

Inserting this into the definition of af we find

o=y 3 Y elnaf)

n€Z—{0} €L

1 1
2m1 nG(n’ )

neZ—{0}

_ —% 3 %%(G(n, ).



We use (9) and (10) a

~—

d the fact S(G(Dv, L)) = 0 to rewrite this as follows:

o — 1 iDX:I G(Dn + v, L)) %(G(D(nﬁLl)—y,L))
T 2m n=0 v=1 Dn +v D(n+1)—
1 oo D-1 1
= o
Com nz: = (Dn +v D(m+1)— y) S(G(v, L))
D-1 o~ D-1
1 1 1 D —2v
T £ V\S(G(V; )) o TIZ::I gt DZn(n—F 1) +Dl/ — VZ\S(G(V’ ))
By means of Lemma 1 we obtain
D-1 s D-1
Iy 1 D-2
sl <~ SIGWL)| + o~ —— = _|(G(y, L
o) < 2 X JIC0 D+ 5230 3 gy (G D)
|£ |£| D—-1 oo 1
< VIH L] i
< Z 21+ 5op 2 VI

The latter sum over n equals 1. We apply (11) and rewrite the sum over v. We get

D/a D/a
|5|<Wz > np VES S

a|D p=1
a#D (u,D/a) a#D (1,D/a)=1
| r/2— 1 |[’
< —VW %(1 +1In(D/a))a QVWD Z
a#D a;éD

\/F (3/2 +1n(D)) (0,21 (D) — D"/*71) .

1 <14 1n(n). O

Here we have also used the estimate ) | 1

If we put the above lemmas together we finally obtain the desired estimate for the
dimension of Sk r.

Theorem 6. Assume that 2k = b~ — b (mod 4). Then

(k—1)d| _ VI 1+ \/|c3

r?
T | |+

dim(Sk,L) —

_|_
ThE
=)

+

(3/2 +1n(D)) (0,5 1(D) — D"/*71Y

This estimate could be further improved by using the theorem of elementary divisors
more carefully in the proof of Lemma 4 and 5. However, since we are mainly interested in
asymptotic questions, the above result suffices for our purposes. Recall that the quantities
|£”| are bounded by (11).



3 Picard groups

For any lattice (L, q) and any non-zero integer N, we may consider the rescaled lattice
L(N). It is given by L as a Z-module, but equipped with the rescaled quadratic form
Ngq(-). The dual is given by L(N)' = L.

From now on we suppose that L has signature (2,1) with [ > 3. The orthogonal group
O(L) of L is a discrete subgroup of the real orthogonal group O(L ®z R) = O(2,1). Let
O'(L ®zR) be the spinor kernel of O(L ®zR) and O'(L) = O'(L ®2 R)NO(L). We denote
by A(L) the discriminant kernel of the group O'(L). By definition, this is the subgroup of
those elements of O'(L), which act trivially on the discriminant group L.

Let us briefly recall the construction of the Hermitean symmetric domain #; associated
to O'(L ®z R). We extend the bilinear form (-,+) on L to a C-bilinear form on the com-
plexification L ®z C and consider the following chain of subsets of the associated projective

space P(L ®z C):
H, CKCN C P(L®;C).

Here A denotes the zero quadric, i.e. the subset of P(L ®y C) represented by vectors z of
norm zero (z,z) = 0. The open subset K is defined by the condition (z, Z) > 0. It has two
connected components. We choose one of them and denote it by ;. The real orthogonal
group of L acts on L ®; C, P(L ®7 C), N, and K. The spinor kernel acts on H,.

Let I' = A(L) and X be the quotient #;/I". By the theory of Baily-Borel, X is a
quasi-projective algebraic variety.

If T acts freely on #H,;, then X is smooth. In this case we denote by Pic(X) the usual
algebraic Picard group, i.e. the group of isomorphism classes of algebraic holomorphic line
bundles on X. If I does not act freely, then we choose a normal subgroup I" of finite index
which acts freely. We define the Picard group of X by

Pic(X) = Pic(H,/T")"",

i.e. as the subgroup of Pic(H,;/I"”), which is invariant under the action of the finite group
['/T’. Our assumption on [ implies that these Picard groups are finitely generated.

In the same way we define the divisor class group CI(X) of X. (See also [Bo2| and
[Br1].) Moreover, we write C1(X) for the quotient of C1(X) modulo the subgroup A(X) of
divisor classes coming from meromorphic automorphic forms (of generally non-zero weight
with a character of finite order) for the group I'. There is the usual injective map

CI(X) — Pic(X),

which assigns to a divisor class its associated class of line bundles. (By our definition
of Cl and Pic this map also makes sense if I' does not act freely. Since X is quasi-
projective, this map is in fact an isomorphism.) Thus the rank of Pic(X) is bounded by
dimc(CL(X) ®z C). It follows from the Koecher boundedness principle (which holds since
[ > 3) that dim(A(X) ®z C) =1 and thereby

rank(Pic(X)) > 1 4 dimg(Cl(X) ®7 C). (21)
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Put k = 141/2. It is a consequence of the existence of Borcherds’ lifting from modular
forms of negative weight 1 — [/2 to automorphic products for the group I' and Serre
duality that there exists a homomorphism from the space of Gal(Q/Q)-conjugates of S,

to C1(X) ®; C (cf. [Bol, Bo2]). By the refinement given in [Brl] chapter 5.1, we more
precisely know that there is a homomorphism

n:Se, — CI(X) &y C. (22)
We may infer the following fundamental proposition.

Proposition 7. Suppose that the map n is injective. Then
rank(Pic(X)) > 1 4 dim¢(S,.1)-

Recall that a hyperbolic plane is a lattice H which is isomorphic to the lattice Z?2
equipped with the quadratic form ¢((a,b)) = ab. For the rest of this section we assume
that L splits two orthogonal hyperbolic planes over Z, i.e. has the special shape L = Ly L
H 1 H, where Lg is an even negative definite lattice of rank [ — 2.

Let N be a positive integer. We consider the lattice

L[N] = Lo(N) L H L H,

its discriminant kernel I'|[N] = A(L[N]), and the associated modular variety X[N]| =
H,;/T[N]. We may view I'[N] as a subgroup of O(L ®; Q) which is commensurable with
I'=A(L).

Theorem 8. Let L be a lattice as above and L its discriminant group. Let D be the level
of L as defined in (3). Then
[|L|N2
48
Y L
| |Nl/2 1 /_Q(DN)

rank (Pic(X[N])) > +1/48 41— 2/2=3 3. 91=5 _3=3/2 _ 3l/2-5/2

\/mj\ﬂ/? '(3/2 +In(DN)) (01/2-2(DN) — (DN)"*72) .

Proof. By construction the lattice L[N] splits two hyperbolic planes over Z. The main
result of [Brl] chapter 5.2 says that the map (22) is injective in this case. By Proposition
7 we find

rank (Pic(X[N])) > 1+ dim(S, rin)) = 1 + dim (S, £o(n)-

We apply Theorem 6 to estimate the dimension of Sy r,(ny. The rank of Ly(N) is [ — 2,
the level of Ly(N) is DN, and

[Lo(N)'/Lo(N)| = N2 L],
[(Lo(N)'/Lo(N)){£1} > 5(1 + N"2IL)).

If we also take into account (11) we obtain the assertion. O
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Corollary 9. Lete > 0. Then there ezist positive constants Cy = C1(L,e) and Cy = Cy(L)
(which can be easily determined explicitly) such that

, I|L|N'—2 C\NY?*e  ifl =3,
k (Pic(X[N])) > 2=° ¢, —
rank (Pic(XIND) = =55 2T CONIB if 1> 3,

for all N € N.

In the above situation the map (22) induces in fact an isomorphism from Sk,r[n) to the

subspace of C1(X[N]) ®z C, which is generated by algebraic divisors AL, where A € L[N’
is a negative norm vector and the orthogonal complement is taken is #;. According to the
Tate conjecture one should expect that the codimension of this subspace in CI(X[N]) ®,C
is small. This leads us to the following

Question 1. Is it true that
rank (Pic(X[N])) ~ [|[L|N'72/48, N — co?

Let N be a positive integer. It is natural to define the principal congruence subgroup
of level N of I' = A(L) by

D(N) = A(L(N)).

We now consider the Picard groups of the modular varieties X (N) = H,;/T'(N). In the
same way as in [Fr] (chapter 2.6 Hilfssatz 6.5) it can be proved that for N > 3 the group
['(N) acts freely on H;. Thus X (V) is smooth in this case.

To obtain an estimate for the rank of Pic(X (/V)) we cannot argue as above. Since L(N)
does not split two hyperbolic planes over Z, we do not have the result of [Brl] saying that
the map 7 (22) is injective.

However, we can still get an estimate for the rank of Pic(X (IV)) in the following way.
There exists a lattice L, which is isomorphic to L[N] and contains

L(N)=Ly(N) L H(N) L H(N)
as a sub-lattice. It is easily seen that
I'(N) = A(L(N)) € A(L).

(In fact, taking the discriminant kernel of a lattice is functorial.) Therefore we may view
['(N) as a subgroup of I'[N]. The natural projection X (/N) — X[N] induces an injective
map of Picard groups

Pic(X[N]) —» Pic(X ().

Thus Theorem 8 gives us a lower bound for rank(Pic(X (N))), too. The asymptotic bound
of corollary 9 also holds.

It is clear that these bounds for the rank of Pic(X (NV)) are probably not optimal. Here
it is natural to ask

Question 2. What is the asymptotic behavior of the numbers rank(Pic(X (N))) for N —
oo ?
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3.1 The Siegel modular group of genus 2
If R is a subring of C, then we denote by

Sp(2,R) = {M € GL(4,R); M'IM =1}

the symplectic group of genus 2 with coefficients in R. Here I denotes the matrix (_OE E )
and E the 2 x 2 identity matrix. The group Sp(2,R) acts on the Siegel half plane Hy.
Let N be a positive integer. The paramodular group I's[N] of level N is the subgroup of
Sp(2,Q) given by matrices of the form

*  Nx % *
* * x N lx
*+ Nx % * ’

Nx Nx Nx *

where the x are all integral. The quotient H, /T"s[N] is the moduli space of Abelian surfaces
with a (1, N)-polarization.

Let L be the lattice H L H L1 Z(—2) of signature (2,3). It is well known that
there exists an isomorphism Sp(2,R)/{£1} — O'(L[N]® R)/{£1}, which commutes with
the action of Sp(2,R) on H, and the action of O'(L ® R) on M3, and which induces an
isomorphism

Ps[N]/{#+1} — TIN]/{£1} = A(L[N])/{+1}
(see [GN]). Hence Corollary 9 implies

Corollary 10. Let £ > 0. Then there exist positive constants Cy = Ci(¢) and Cy < 0.6
(which can be easily determined) such that

rank (Pic(H, /T's[N])) > N/8 — Cy — C,N/?*¢
for all N € N.

Note that dim(S,, z;n) can be computed explicitly in this case. By Lemma 2 the quanti-
ties a; and a, can be expressed in terms of standard Gauss sums G(n,a) = 3, e(nv?/a).
Moreover, a4 is equal to [1 4 b/2], where b is the largest integer whose square divides N.
Finally, using Theorem 11 of the appendix, as can be written as a sum of class num-
bers. Therefore we could obtain a sharper estimate than in Theorem 8. However, in the
asymptotic estimate Corollary 10 this would only improve the constants C; and Cs.

Let I's(IN) C Sp(2,Z) be the principal congruence subgroup of level N, i.e. the kernel of
the reduction homomorphism Sp(2,7Z) — Sp(2,Z/NZ). Since I's(N) C I's[N], the above
estimate also holds for the group I's(/N). (To see this we could have also used the fact
that the orthogonal principal congruence subgroup I'(/V) is isomorphic to a group G' with
Fs(2N) CcGC Fs(N))
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Appendix

In section 2 we saw that the quantities oy, ag, ay can all be expressed in terms of Gauss
sums. We now indicate, how the idea of the proof of Lemma 5 can sometimes be used to
obtain a closed formula for o (and thereby for as) in terms of class numbers.

Let L be the negative definite lattice of rank r given by

L=17(-2N) L --- L Z(—2N).

Define
v v?
A (N) = 3
WEEY ( Nt N) ,
VlyeenyVp (N)
where vy, ...,v,. run through a set of representatives of Z/NZ. Then for our particular

lattice L we have af = —1A,(4N).

We denote by H(a) for a # —3, —4 the class number of positive definite binary quadratic
forms of discriminant ¢ and put H(—3) = 1/3, H(—4) = 1/2. Then H(a) =0, ifa > 0
or a # 0,1 (mod 4). Moreover, we write y, for the Dirichlet character defined by the
Kronecker symbol z (%)

Theorem 11. Suppose that r is odd. Then
1—r r—1 1—r
A(N) = =xa NN a T H(=a) = () (VRN) YD o' H(—a).

a|N a|N
a=—1(4) a=0(4)

Here the sums run through the positive divisors of N satisfying the indicated conditions.

Proof. If n € Z and a € N, then we denote by G(n,a) = Zy(a)e(m/?/a) the standard
Gauss sum. By means of the Fourier expansion (20) of the function B, we can rewrite
A,(N) as a Dirichlet series:

1 1 1

A (N) = —— - N) = —— -3 N)).

(N) === > —GN) =-—3> ~3(G(n,N)")

neZ—{0} n>1
Using the fact G(n, N) = aG(n/a, N/a) for a|(n, N), we find
A, =Y 5 Lorrgam, ay)
T m Y *

™
a|N m>1
(m,a)=1

If we insert the explicit formula for G(m,a) (cf. [La] chapter 4.3), we obtain by a lengthy
but straightforward calculation

N 0, ifa=1,2 (mod 4),
Ay (N) = —— > ' TP L(xe, 1) - § xoalr), ifa=—1 (mod 4),
alN 212y ¢(r), ifa=0 (mod 4).

14



Here L(x,,s) denotes the Dirichlet series associated to the Dirichlet character x,. Since
L(X—a,1) =7H(—a)/+/a (cf. [Za] §8), this implies the assertion. O

By virtue of the above argument, A, can also be evaluated for even r. In this case class
numbers do not show up. For instance for r =0 (mod 4) one finds that A,(N) = 0. More
generally af can be computed for any lattice of the form Z(—2N;) L --- L Z(—2N,) with
Ni,..., N, € N. Note that for r = 1 the above formula is already contained in the book
[EZ] in §10 (but with a different proof).
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