On the rank of Picard groups of modular varieties attached to orthogonal groups

Jan Hendrik Bruinier

January 20, 2001

University of Wisconsin-Madison, Department of Mathematics, Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706-1388, USA
E-mail: bruinier@math.wisc.edu

1 Introduction

Let L be an even lattice of signature $(2, l)$ with $l \geq 3$. Write $q(\cdot)$ for the quadratic form on L and \mathcal{L} for the (finite) discriminant group of L.

Let $\mathrm{O}^{\prime}\left(L \otimes_{\mathbb{Z}} \mathbb{R}\right)$ be the spinor kernel of the real orthogonal group of L and denote the corresponding Hermitean symmetric domain by \mathcal{H}_{l}. We write $\mathrm{O}^{\prime}(L)$ for the intersection of the integral orthogonal group of L with $\mathrm{O}^{\prime}\left(L \otimes_{\mathbb{Z}} \mathbb{R}\right)$. We consider the discriminant kernel $\Delta(L)$ of the group $\mathrm{O}^{\prime}(L)$, that is the subgroup of those elements that act trivially on \mathcal{L}.

There is a natural notion of principal congruence groups for the group $\Delta(L)$: For any non-zero integer N we have the rescaled lattice $L(N)$, given by L as a \mathbb{Z}-module, but equipped with the quadratic form $N q(\cdot)$. The discriminant kernel of $L(N)$ is a subgroup of $\Delta(L)$, defined by congruence conditions modulo N. We call it principal congruence subgroup of level N and denote it by $\Gamma(N)$.

We consider the arithmetic quotient $X(N)=\mathcal{H}_{l} / \Gamma(N)$. By the theory of Baily-Borel, it carries the structure of a quasiprojective algebraic variety. A fundamental geometric invariant is its algebraic Picard group $\operatorname{Pic}(X(N))$. Our assumption on l implies that this group is finitely generated. In the present paper we shall derive a nontrivial lower bound for the rank of $\operatorname{Pic}(X(N))$. In particular we are interested in the asymptotic behavior of the numbers

$$
\operatorname{rank}(\operatorname{Pic}(X(N)))
$$

as $N \rightarrow \infty$. Although this problem seems very natural, to the best of our knowledge, just partial results can be found in the literature. (See for instance [LW1, LW2] or [GN].) Certainly one would expect that the rank of $\operatorname{Pic}(X(N))$ tends to infinity as $N \rightarrow \infty$,
reflecting the fact that the geometry of $X(N)$ gets more complicated as the level rises. However, even a result of this type seems not to be known in general.

Put $X=X(1)$. It is a consequence of the work of Borcherds [Bo1, Bo2] and the refinement given in $[\mathrm{Br} 1]$ that there exists a homomorphism

$$
\begin{equation*}
S_{\kappa, L} \longrightarrow \operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{C} / \mathbb{C}\left[E_{\text {Hodge }}\right] \tag{1}
\end{equation*}
$$

from a certain space $S_{\kappa, L}$ of $\mathbb{C}[\mathcal{L}]$-valued cusp forms of weight $\kappa=1+l / 2$ to the quotient of $\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{C}$ modulo the span of the class of the Hodge line bundle $E_{\text {Hodge }}$.

If L splits two orthogonal hyperbolic planes over \mathbb{Z}, then the main result of [Br 1$]$ says that this map is injective (see also [Br2] or [BF] for related results). Hence in this case we can obtain a lower bound for $\operatorname{rank}(\operatorname{Pic}(X))$ by estimating the dimension of $S_{\kappa, L}$. By means of the Riemann-Roch theorem or the Selberg trace formula, the dimension of $S_{\kappa, L}$ can be computed. Thereby the original problem is reduced to estimating the different contributions in the dimension formula. Some of these are "strange" invariants of the discriminant group \mathcal{L} and the \mathbb{Q} / \mathbb{Z}-valued quadratic form on it induced by q. They are studied in section 2, the technical heart of this paper.

Let us now assume that L splits two orthogonal hyperbolic planes over \mathbb{Z}, i.e. has the special shape $L=L_{0} \perp H \perp H$, where L_{0} is an even negative definite lattice. Then the above argument can be used to find a bound for the rank of $\operatorname{Pic}(X)$. Unfortunately, it cannot be applied directly to get a bound for $\operatorname{Pic}(X(N))$, since $L(N)$ does not split two hyperbolic planes over \mathbb{Z}.

Therefore we first consider the lattice

$$
L[N]=L_{0}(N) \perp H \perp H
$$

and its discriminant kernel $\Gamma[N]=\Delta(L[N])$. We write $X[N]$ for the quotient $\mathcal{H}_{l} / \Gamma[N]$. The group $\Gamma[N]$ can be viewed as a subgroup of the rational orthogonal group of L with the property that $\Gamma(N) \subset \Gamma[N]$. In the $\mathrm{O}(2,3)$-case of the Siegel modular group of genus 2 it is isomorphic to the paramodular group of level N. Using the injectivity of the map (1) and the estimate of section 2 for the dimension of $S_{\kappa, L}$, we obtain a bound for $\operatorname{rank}(\operatorname{Pic}(X[N]))$ (see Theorem 8). In particular we find that for any $\varepsilon>0$ there exists a constant $C_{\varepsilon}>0$ (which can be easily determined) such that

$$
\operatorname{rank}(\operatorname{Pic}(X[N])) \geq \frac{l|\mathcal{L}| N^{l-2}}{48}- \begin{cases}C_{\varepsilon} N^{1 / 2+\varepsilon}, & \text { if } l=3 \tag{2}\\ C_{\varepsilon} N^{l-3+\varepsilon}, & \text { if } l>3\end{cases}
$$

for all $N \in \mathbb{N}$ (Corollary 9).
The projection $X(N) \rightarrow X[N]$ induces an injective homomorphism

$$
\operatorname{Pic}(X[N]) \longrightarrow \operatorname{Pic}(X(N)) .
$$

Hence all bounds for the rank of $\operatorname{Pic}(X[N])$ give us also bounds for the rank of $\operatorname{Pic}(X(N))$. There are some reasons to believe that our estimate (2) actually describes the true asymptotic growth of $\operatorname{rank}(\operatorname{Pic}(X[N]))$, whereas the resulting bound for $\operatorname{Pic}(X(N))$ seems rather poor (see questions 1 and 2). Better results for $X(N)$ could be obtained by studying the injectivity properties of the map (1) more carefully for lattices which do not split two hyperbolic planes over \mathbb{Z}.

As an important example we consider the special case of the Siegel modular group of genus 2 in somewhat more detail. We take $L=\mathbb{Z}(-2) \perp H \perp H$ and use the exceptional isomorphism from $\operatorname{Sp}(4, \mathbb{R})$ to $\mathrm{O}(2,3)$. Due to the work of Weissauer [We1, We2] we know a lot about the Picard groups $\operatorname{Pic}(X(N))$ in this case. For instance the Tate conjecture for algebraic divisors is proved in [We1]. However, lower bounds for the rank of $\operatorname{Pic}(X[N])$ or $\operatorname{Pic}(X(N))$ seem not to be known in general.

The group $\Gamma[N]$ is isomorphic to the paramodular group of level N (cf. [GrNi]). The quotient $X[N]$ is the moduli space of Abelian surfaces with a $(1, N)$-polarization. Our result implies that for any $\varepsilon>0$ there is a constant $C_{\varepsilon}>0$ such that

$$
\operatorname{rank}(\operatorname{Pic}(X[N])) \geq N / 8-C_{\varepsilon} N^{1 / 2+\varepsilon}
$$

for all $N \in \mathbb{N}$ (Corollary 10). The same estimate holds for the Siegel principal congruence subgroup of level N.

In the Appendix we apply some ideas of section 2 to derive certain class number identities. Together with the lemmas in section 2 they can be used to evaluate the formula for the dimension of $S_{\kappa, L}$ explicitly when L has the special shape $L=\mathbb{Z}\left(-2 t_{1}\right) \perp \cdots \perp \mathbb{Z}\left(-2 t_{r}\right)$ with nonzero integers t_{1}, \ldots, t_{r}. Moreover, these identities might be of independent interest.

Acknowledgments. I would like to thank M. Bundschuh, E. Freitag, and R. Weissauer for several helpful conversations.

2 The dimension formula

Let L be an even lattice of signature $\left(b^{+}, b^{-}\right)$. We denote the bilinear form on L by (\cdot, \cdot) and the associated quadratic form by $q(x)=\frac{1}{2}(x, x)$. We write L^{\prime} for the dual lattice of L and $\mathcal{L}=L^{\prime} / L$ for the (finite) discriminant group. Moreover, let $d=|\mathcal{L} /\{ \pm 1\}|, r=b^{+}+b^{-}$ be the rank of L, and denote by

$$
\begin{equation*}
D=\min \left\{n \in \mathbb{N} ; \quad n q(\gamma) \in \mathbb{Z} \text { for all } \gamma \in L^{\prime}\right\} \tag{3}
\end{equation*}
$$

the level of L.
We write $\mathrm{Mp}_{2}(\mathbb{R})$ for the metaplectic 2 -fold cover of $\mathrm{SL}_{2}(\mathbb{R})$ and denote by $\mathrm{Mp}_{2}(\mathbb{Z})$ the inverse image of $\mathrm{SL}_{2}(\mathbb{Z})$ under the covering map. Recall that the elements of $\mathrm{Mp}_{2}(\mathbb{R})$ are pairs $(M, \phi(\tau))$, where $M=\left(\begin{array}{lll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$, and ϕ denotes a holomorphic function on the
upper complex half plane \mathcal{H} with $\phi(\tau)^{2}=c \tau+d$. It is well known that $\operatorname{Mp}_{2}(\mathbb{Z})$ is generated by

$$
T=\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), 1\right) \quad \text { and } \quad S=\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \sqrt{\tau}\right)
$$

One has the relations $S^{2}=(S T)^{3}=Z$, where $Z=\left(\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right), i\right)$ is the standard generator of the center of $\mathrm{Mp}_{2}(\mathbb{Z})$.

There is a unitary representation ρ_{L} of $\mathrm{Mp}_{2}(\mathbb{Z})$ on the group algebra $\mathbb{C}[\mathcal{L}]$ of \mathcal{L}. If we denote the standard basis of $\mathbb{C}[\mathcal{L}]$ by $\left(\mathfrak{e}_{\gamma}\right)_{\gamma \in \mathcal{L}}$ then ρ_{L} can be defined by the action of the generators $S, T \in \mathrm{Mp}_{2}(\mathbb{Z})$ as follows (see also [Bo1], [Bo2], where the dual of ρ_{L} is used):

$$
\begin{align*}
\rho_{L}(T) \mathfrak{e}_{\gamma} & =e(-q(\gamma)) \mathfrak{e}_{\gamma}, \tag{4}\\
\rho_{L}(S) \mathfrak{e}_{\gamma} & =\frac{\sqrt{i}^{-b^{+}-b^{-}}}{\sqrt{|\mathcal{L}|}} \sum_{\delta \in \mathcal{L}} e((\gamma, \delta)) \mathfrak{e}_{\delta} . \tag{5}
\end{align*}
$$

Here and throughout we abbreviate $e(z)=e^{2 \pi i z}$ for $z \in \mathbb{C}$. This representation is essentially the Weil representation attached to the quadratic module (\mathcal{L}, q) (see [No]).

Let $k \in \frac{1}{2} \mathbb{Z}$. We denote by $M_{k, L}$ the vector space of $\mathbb{C}[\mathcal{L}]$-valued modular forms of weight k with representation ρ_{L} for the group $\mathrm{Mp}_{2}(\mathbb{Z})$. The subspace of cusp forms is denoted by $S_{k, L}$. (See also [BF] or [Bo1].) It is easily seen that $M_{k, L}=0$, if $2 k \not \equiv b^{-}-b^{+}$ $(\bmod 2)$.

Since ρ_{L} factors through a finite quotient of $\mathrm{Mp}_{2}(\mathbb{Z})$, it is clear that the dimension of $M_{k, L}$ is finite. It can be computed using the Riemann-Roch theorem or the Selberg trace formula in a standard way. This is carried out in [Fi] in a more general situation. In our special case the following formula holds (see [Bo3], [Bo2] p. 228): Assume that $2 k \equiv b^{-}-b^{+}(\bmod 4)$ (we will only be interested in this case). Then the d-dimensional subspace $W=\operatorname{span}\left\{\mathfrak{e}_{\gamma}+\mathfrak{e}_{-\gamma} ; \quad \gamma \in \mathcal{L}\right\}$ of $\mathbb{C}[\mathcal{L}]$ is invariant under ρ_{L}. More precisely ρ_{L} acts by multiplication with $e(-k / 2)$ on W. We denote by ρ the restriction of ρ_{L} to W. If M is a unitary matrix of size d with eigenvalues $e\left(\nu_{j}\right)$ and $0 \leq \nu_{j}<1$ (for $\left.j=1, \ldots, d\right)$, then we define

$$
\alpha(M)=\sum_{j=1}^{d} \nu_{j} .
$$

The dimension of $M_{k, L}$ is given by

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}}\left(M_{k, L}\right)=d+d k / 12-\alpha\left(e^{\pi i k / 2} \rho(S)\right)-\alpha\left(\left(e^{\pi i k / 3} \rho(S T)\right)^{-1}\right)-\alpha(\rho(T)) \tag{6}
\end{equation*}
$$

Furthermore, using Eisenstein series, it can be easily shown that the codimension of $S_{k, L}$ in $M_{k, L}$ is equal to the number of elements of the set

$$
\begin{equation*}
\{\gamma \in \mathcal{L} /\{ \pm 1\} ; \quad q(\gamma) \in \mathbb{Z}\} \tag{7}
\end{equation*}
$$

(see also [Br1] chapter 1.2.3).
As already pointed out in the introduction, we need to find a lower bound for the dimension of $S_{k, L}$. In view of (6) and (7) we have to estimate the quantities

$$
\begin{aligned}
& \alpha_{1}:=\alpha\left(e^{\pi i k / 2} \rho(S)\right), \\
& \alpha_{2}:=\alpha\left(\left(e^{\pi i k / 3} \rho(S T)\right)^{-1}\right), \\
& \alpha_{3}:=\alpha(\rho(T)), \\
& \alpha_{4}:=|\{\gamma \in \mathcal{L} /\{ \pm 1\} ; \quad q(\gamma) \in \mathbb{Z}\}| .
\end{aligned}
$$

This can easily be done for α_{1}, α_{2}, and α_{4}. However, for α_{3} this problems turns out to be more difficult. In the appendix we will see that α_{3} sometimes is related to class numbers of imaginary quadratic fields.

For the estimates we first need some facts on Gauss sums attached to L. Let $n \in \mathbb{Z}$. We define the Gauss sum $G(n, L)$ by

$$
\begin{equation*}
G(n, L)=\sum_{\gamma \in \mathcal{L}} e(n q(\gamma)) \tag{8}
\end{equation*}
$$

Two basic but important properties of $G(n, L)$ are

$$
\begin{align*}
G(-n, L) & =\overline{G(n, L)}, \tag{9}\\
G(n+D, L) & =G(n, L) . \tag{10}
\end{align*}
$$

If n is an integer, we define

$$
\mathcal{L}^{n}=\{\gamma \in \mathcal{L} ; \quad n \gamma=0\} .
$$

Observe that $\left|\mathcal{L}^{2}\right|=2 d-|\mathcal{L}|$. In general it follows from the theorem of elementary divisors that

$$
\begin{equation*}
\left|\mathcal{L}^{n}\right| \leq(D, n)^{r} \tag{11}
\end{equation*}
$$

where (D, n) denotes the greatest common divisor of D and n.
Lemma 1. Let n be a positive integer. i) If $D \mid n$, then $G(n, L)=|\mathcal{L}|$. ii) The absolute value of $G(n, L)$ is given by

$$
|G(n, L)|=\sqrt{|\mathcal{L}|} \sqrt{\left|\mathcal{L}^{n}\right|} .
$$

In particular $|G(n, L)|=\sqrt{|\mathcal{L}|}$, if $(n, D)=1$.
The proof is left to the reader.

Lemma 2. The quantities α_{1} and α_{2} can be expressed in terms of Gauss sums as follows:

$$
\begin{align*}
& \alpha_{1}=\frac{d}{4}-\frac{1}{4 \sqrt{|\mathcal{L}|}} e\left(\left(2 k+b^{+}-b^{-}\right) / 8\right) \Re(G(2, L)), \tag{12}\\
& \alpha_{2}=\frac{d}{3}+\frac{1}{3 \sqrt{3|\mathcal{L}|}} \Re\left(e\left(\left(4 k+3 b^{+}-3 b^{-}-10\right) / 24\right)(G(1, L)+G(-3, L))\right) . \tag{13}
\end{align*}
$$

Proof. The idea of the proof was communicated to us by R. E. Borcherds. Let us first consider (12). In $\mathrm{Mp}_{2}(\mathbb{Z})$ we have the relation $S^{2}=Z$. Since Z acts on $W \subset \mathbb{C}[\mathcal{L}]$ by multiplication with $e(-k / 2)$, the identity

$$
(e(k / 4) \rho(S))^{2}=e(k / 2) \rho(Z)=\mathrm{id}
$$

holds. Hence all eigenvalues of $e(k / 4) \rho(S)$ equal ± 1. If b denotes the number of eigenvalues equal to -1 , then

$$
\operatorname{tr}_{W}(e(k / 4) \rho(S))=-b+(d-b)=d-2 b .
$$

Thus

$$
\alpha_{1}=b / 2=\frac{d}{4}-\frac{1}{4} \operatorname{tr}_{W}(e(k / 4) \rho(S)) .
$$

Note that $\operatorname{tr}_{W}(\rho(S))=\frac{1}{2} \operatorname{tr}_{\mathbb{C}[\mathcal{L}]}(\rho(S)+\rho(S) X)$, where X denotes the map $\mathbb{C}[\mathcal{L}] \rightarrow \mathbb{C}[\mathcal{L}]$ given by $\mathfrak{e}_{\gamma} \mapsto \mathfrak{e}_{-\gamma}$. Hence it follows from (5) that

$$
\operatorname{tr}_{W}(e(k / 4) \rho(S))=\frac{1}{\sqrt{|\mathcal{L}|}} e\left(\left(2 k+b^{+}-b^{-}\right) / 8\right) \Re(G(2, L))
$$

This implies the assertion.
Equality (13) can be proved in the same way. Using the relation $(S T)^{3}=Z$ we find

$$
\alpha_{2}=\frac{d}{3}+\frac{2}{3 \sqrt{3}} \Re\left(e(-5 / 12+k / 6) \operatorname{tr}_{W}(\rho(S T))\right) .
$$

Furthermore, by (5) and (4) we have

$$
\operatorname{tr}_{W}(\rho(S T))=\frac{1}{2 \sqrt{|\mathcal{L}|}} e\left(\left(b^{+}-b^{-}\right) / 8\right)(G(1, L)+G(-3, L)) .
$$

From Lemma 2 we obtain the following corollary.
Corollary 3. The quantities α_{1} and α_{2} satisfy the estimates

$$
\begin{align*}
& \left|\alpha_{1}-d / 4\right| \leq \frac{1}{4} \sqrt{\left|\mathcal{L}^{2}\right|} \tag{14}\\
& \left|\alpha_{2}-d / 3\right| \leq \frac{1}{3 \sqrt{3}}\left(1+\sqrt{\left|\mathcal{L}^{3}\right|}\right) \tag{15}
\end{align*}
$$

We now derive an estimate for α_{4}. If n is a positive integer, we define the divisor sum $\sigma_{t}(n)=\sum_{a \mid n} a^{t}$.

Lemma 4. We have

$$
\left|\alpha_{4}\right| \leq \frac{\left|\mathcal{L}^{2}\right|}{2}+\frac{\sqrt{|\mathcal{L}|}}{2} \sigma_{r / 2-1}(D) .
$$

Proof. We write α_{4} as

$$
\alpha_{4}=\frac{1}{2} \sum_{\substack{\gamma \in \mathcal{L}^{2} \\ q(\gamma) \in \mathbb{Z}}} 1+\frac{1}{2} \sum_{\substack{\gamma \in \mathcal{L} \\ q(\gamma) \in \mathbb{Z}}} 1
$$

The second term on the right hand side is equal to

$$
\frac{1}{2 D} \sum_{\gamma \in \mathcal{L}} \sum_{\nu(D)} e(q(\gamma) \nu)=\frac{1}{2 D} \sum_{\nu(D)} G(\nu, L)
$$

Thus, using Lemma 1, we obtain

$$
\begin{aligned}
\left|\alpha_{4}\right| & \leq \frac{\left|\mathcal{L}^{2}\right|}{2}+\frac{1}{2 D} \sum_{\nu(D)} \sqrt{|\mathcal{L}|} \sqrt{\left|\mathcal{L}^{\nu}\right|} \\
& \leq \frac{\left|\mathcal{L}^{2}\right|}{2}+\frac{\sqrt{|\mathcal{L}|}}{2 D} \sum_{\nu(D)}(\nu, D)^{r / 2} \\
& \leq \frac{\left|\mathcal{L}^{2}\right|}{2}+\frac{\sqrt{|\mathcal{L}|}}{2 D} \sum_{a \mid D} \sum_{\substack{\mu=1 \\
(\mu, D / a)=1}}^{D / a} a^{r / 2} \\
& \leq \frac{\left|\mathcal{L}^{2}\right|}{2}+\frac{\sqrt{|\mathcal{L}|}}{2 D} \sum_{a \mid D} \frac{D}{a} a^{r / 2} \\
& \leq \frac{\left|\mathcal{L}^{2}\right|}{2}+\frac{\sqrt{|\mathcal{L}|}}{2} \sigma_{r / 2-1}(D) .
\end{aligned}
$$

Before we consider α_{3} we introduce some more notation. If $x \in \mathbb{R}$, then we write $[x]$ for the greatest-integer function $\max \{n \in \mathbb{Z} ; n \leq x\}$. Moreover, we define

$$
\begin{equation*}
\mathbb{B}(x)=x-\frac{1}{2}([x]-[-x]) \tag{16}
\end{equation*}
$$

Thus $\mathbb{B}(x)$ is the 1-periodic function on \mathbb{R} with $\mathbb{B}(x)=0$ for $x=0,1$ and $\mathbb{B}(x)=x-1 / 2$ for $0<x<1$. By definition

$$
\alpha_{3}=\sum_{\gamma \in \mathcal{L} /\{ \pm 1\}}(-q(\gamma)-[-q(\gamma)])
$$

Using $\mathbb{B}(x)$ and α_{4} we may rewrite this in the form

$$
\alpha_{3}=\frac{d}{2}-\frac{\alpha_{4}}{2}-\sum_{\gamma \in \mathcal{L} /\{ \pm 1\}} \mathbb{B}(q(\gamma))
$$

Hence, to obtain information on α_{3}, it suffices to consider the invariants

$$
\begin{align*}
& \alpha_{5}=\sum_{\gamma \in \mathcal{L} /\{ \pm 1\}} \mathbb{B}(q(\gamma)), \tag{17}\\
& \alpha_{5}^{\prime}=\sum_{\gamma \in \mathcal{L}} \mathbb{B}(q(\gamma)) \tag{18}
\end{align*}
$$

of L. Obviously the relation

$$
\alpha_{5}=\frac{1}{2} \sum_{\gamma \in \mathcal{L}^{2}} \mathbb{B}(q(\gamma))+\frac{\alpha_{5}^{\prime}}{2}
$$

holds. For $\gamma \in \mathcal{L}^{2}$, we have $q(\gamma) \in \frac{1}{4} \mathbb{Z}$ and thereby $|\mathbb{B}(q(\gamma))| \leq 1 / 4$. Hence

$$
\begin{gather*}
\left|\alpha_{5}\right| \leq\left|\mathcal{L}^{2}\right| / 8+\left|\alpha_{5}^{\prime}\right| / 2 \quad \text { and } \\
\left|\alpha_{3}-d / 2+\alpha_{4} / 2\right| \leq\left|\mathcal{L}^{2}\right| / 8+\left|\alpha_{5}^{\prime}\right| / 2 \tag{19}
\end{gather*}
$$

The main result of this section is the following estimate for α_{5}^{\prime}.
Lemma 5. The invariant α_{5}^{\prime} satisfies

$$
\left|\alpha_{5}^{\prime}\right| \leq \frac{\sqrt{|\mathcal{L}|}}{\pi}(3 / 2+\ln (D))\left(\sigma_{r / 2-1}(D)-D^{r / 2-1}\right)
$$

Proof. The 1-periodic function $\mathbb{B}(x)$ has the pointwise convergent Fourier expansion

$$
\begin{equation*}
\mathbb{B}(x)=-\frac{1}{2 \pi i} \sum_{n \in \mathbb{Z}-\{0\}} \frac{e(n x)}{n} . \tag{20}
\end{equation*}
$$

Inserting this into the definition of α_{5}^{\prime} we find

$$
\begin{aligned}
\alpha_{5}^{\prime} & =-\frac{1}{2 \pi i} \sum_{n \in \mathbb{Z}-\{0\}} \frac{1}{n} \sum_{\gamma \in \mathcal{L}} e(n q(\gamma)) \\
& =-\frac{1}{2 \pi i} \sum_{n \in \mathbb{Z}-\{0\}} \frac{1}{n} G(n, L) \\
& =-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \Im(G(n, L)) .
\end{aligned}
$$

We use (9) and (10) and the fact $\Im(G(D \nu, L))=0$ to rewrite this as follows:

$$
\begin{aligned}
\alpha_{5}^{\prime} & =-\frac{1}{2 \pi} \sum_{n=0}^{\infty} \sum_{\nu=1}^{D-1}\left(\frac{\Im(G(D n+\nu, L))}{D n+\nu}+\frac{\Im(G(D(n+1)-\nu, L))}{D(n+1)-\nu}\right) \\
& =-\frac{1}{2 \pi} \sum_{n=0}^{\infty} \sum_{\nu=1}^{D-1}\left(\frac{1}{D n+\nu}-\frac{1}{D(n+1)-\nu}\right) \Im(G(\nu, L)) \\
& =-\frac{1}{\pi} \sum_{\nu=1}^{D-1} \frac{1}{\nu} \Im(G(\nu, L))-\frac{1}{2 \pi} \sum_{n=1}^{\infty} \sum_{\nu=1}^{D-1} \frac{D-2 \nu}{D^{2} n(n+1)+D \nu-\nu^{2}} \Im(G(\nu, L)) .
\end{aligned}
$$

By means of Lemma 1 we obtain

$$
\begin{aligned}
\left|\alpha_{5}^{\prime}\right| & \leq \frac{1}{\pi} \sum_{\nu=1}^{D-1} \frac{1}{\nu}|G(\nu, L)|+\frac{1}{2 \pi} \sum_{n=1}^{\infty} \sum_{\nu=1}^{D-1} \frac{D-2}{D^{2} n(n+1)}|(G(\nu, L))| \\
& \leq \frac{\sqrt{|\mathcal{L}|}}{\pi} \sum_{\nu=1}^{D-1} \frac{1}{\nu} \sqrt{\left|\mathcal{L}^{\nu}\right|}+\frac{\sqrt{|\mathcal{L}|}}{2 \pi D} \sum_{\nu=1}^{D-1} \sum_{n=1}^{\infty} \sqrt{\left|\mathcal{L}^{\nu}\right|} \frac{1}{n(n+1)}
\end{aligned}
$$

The latter sum over n equals 1 . We apply (11) and rewrite the sum over ν. We get

$$
\begin{aligned}
\left|\alpha_{5}^{\prime}\right| & \leq \frac{\sqrt{|\mathcal{L}|}}{\pi} \sum_{\substack{a \mid D \\
a \neq D}} \sum_{\substack{\mu=1 \\
(\mu, D / a)=1}}^{D / a} \frac{1}{a \mu} a^{r / 2}+\frac{\sqrt{|\mathcal{L}|}}{2 \pi D} \sum_{\substack{a \mid D \\
a \neq D}} \sum_{\substack{\mu=1 \\
a, D / a)=1}}^{D / a} a^{r / 2} \\
& \leq \frac{\sqrt{|\mathcal{L}|}}{\pi} \sum_{\substack{a \mid D \\
a \neq D}}(1+\ln (D / a)) a^{r / 2-1}+\frac{\sqrt{|\mathcal{L}|}}{2 \pi D} \sum_{\substack{a \mid D \\
a \neq D}} \frac{D}{a} a^{r / 2} \\
& \leq \frac{\sqrt{|\mathcal{L}|}}{\pi}(3 / 2+\ln (D))\left(\sigma_{r / 2-1}(D)-D^{r / 2-1}\right) .
\end{aligned}
$$

Here we have also used the estimate $\sum_{\nu=1}^{n} \frac{1}{\nu} \leq 1+\ln (n)$.
If we put the above lemmas together we finally obtain the desired estimate for the dimension of $S_{k, L}$.
Theorem 6. Assume that $2 k \equiv b^{-}-b^{+}(\bmod 4)$. Then

$$
\begin{aligned}
\left|\operatorname{dim}\left(S_{k, L}\right)-\frac{(k-1) d}{12}\right| \leq & \frac{\sqrt{\left|\mathcal{L}^{2}\right|}}{4}+\frac{1+\sqrt{\left|\mathcal{L}^{3}\right|}}{3 \sqrt{3}}+\frac{3}{8}\left|\mathcal{L}^{2}\right|+\frac{\sqrt{|\mathcal{L}|}}{4} \sigma_{r / 2-1}(D) \\
& +\frac{\sqrt{|\mathcal{L}|}}{2 \pi}(3 / 2+\ln (D))\left(\sigma_{r / 2-1}(D)-D^{r / 2-1}\right)
\end{aligned}
$$

This estimate could be further improved by using the theorem of elementary divisors more carefully in the proof of Lemma 4 and 5 . However, since we are mainly interested in asymptotic questions, the above result suffices for our purposes. Recall that the quantities $\left|\mathcal{L}^{\nu}\right|$ are bounded by (11).

3 Picard groups

For any lattice (L, q) and any non-zero integer N, we may consider the rescaled lattice $L(N)$. It is given by L as a \mathbb{Z}-module, but equipped with the rescaled quadratic form $N q(\cdot)$. The dual is given by $L(N)^{\prime}=\frac{1}{N} L^{\prime}$.

From now on we suppose that L has signature $(2, l)$ with $l \geq 3$. The orthogonal group $\mathrm{O}(L)$ of L is a discrete subgroup of the real orthogonal group $\mathrm{O}\left(L \otimes_{\mathbb{Z}} \mathbb{R}\right) \cong \mathrm{O}(2, l)$. Let $\mathrm{O}^{\prime}\left(L \otimes_{\mathbb{Z}} \mathbb{R}\right)$ be the spinor kernel of $\mathrm{O}\left(L \otimes_{\mathbb{Z}} \mathbb{R}\right)$ and $\mathrm{O}^{\prime}(L)=\mathrm{O}^{\prime}\left(L \otimes_{\mathbb{Z}} \mathbb{R}\right) \cap \mathrm{O}(L)$. We denote by $\Delta(L)$ the discriminant kernel of the group $\mathrm{O}^{\prime}(L)$. By definition, this is the subgroup of those elements of $\mathrm{O}^{\prime}(L)$, which act trivially on the discriminant group \mathcal{L}.

Let us briefly recall the construction of the Hermitean symmetric domain \mathcal{H}_{l} associated to $\mathrm{O}^{\prime}\left(L \otimes_{\mathbb{Z}} \mathbb{R}\right)$. We extend the bilinear form (\cdot, \cdot) on L to a \mathbb{C}-bilinear form on the complexification $L \otimes_{\mathbb{Z}} \mathbb{C}$ and consider the following chain of subsets of the associated projective space $P\left(L \otimes_{\mathbb{Z}} \mathbb{C}\right)$:

$$
\mathcal{H}_{l} \subset \mathcal{K} \subset \mathcal{N} \subset P\left(L \otimes_{\mathbb{Z}} \mathbb{C}\right)
$$

Here \mathcal{N} denotes the zero quadric, i.e. the subset of $P\left(L \otimes_{\mathbb{Z}} \mathbb{C}\right)$ represented by vectors z of norm zero $(z, z)=0$. The open subset \mathcal{K} is defined by the condition $(z, \bar{z})>0$. It has two connected components. We choose one of them and denote it by \mathcal{H}_{l}. The real orthogonal group of L acts on $L \otimes_{\mathbb{Z}} \mathbb{C}, P\left(L \otimes_{\mathbb{Z}} \mathbb{C}\right), \mathcal{N}$, and \mathcal{K}. The spinor kernel acts on \mathcal{H}_{l}.

Let $\Gamma=\Delta(L)$ and X be the quotient \mathcal{H}_{l} / Γ. By the theory of Baily-Borel, X is a quasi-projective algebraic variety.

If Γ acts freely on \mathcal{H}_{l}, then X is smooth. In this case we denote by $\operatorname{Pic}(X)$ the usual algebraic Picard group, i.e. the group of isomorphism classes of algebraic holomorphic line bundles on X. If Γ does not act freely, then we choose a normal subgroup Γ^{\prime} of finite index which acts freely. We define the Picard group of X by

$$
\operatorname{Pic}(X)=\operatorname{Pic}\left(\mathcal{H}_{l} / \Gamma^{\prime}\right)^{\Gamma / \Gamma^{\prime}}
$$

i.e. as the subgroup of $\operatorname{Pic}\left(\mathcal{H}_{l} / \Gamma^{\prime}\right)$, which is invariant under the action of the finite group Γ / Γ^{\prime}. Our assumption on l implies that these Picard groups are finitely generated.

In the same way we define the divisor class group $\mathrm{Cl}(X)$ of X. (See also [Bo2] and [Br 1$].$.) Moreover, we write $\widetilde{\mathrm{Cl}}(X)$ for the quotient of $\mathrm{Cl}(X)$ modulo the subgroup $A(X)$ of divisor classes coming from meromorphic automorphic forms (of generally non-zero weight with a character of finite order) for the group Γ. There is the usual injective map

$$
\mathrm{Cl}(X) \longrightarrow \operatorname{Pic}(X)
$$

which assigns to a divisor class its associated class of line bundles. (By our definition of Cl and Pic this map also makes sense if Γ does not act freely. Since X is quasiprojective, this map is in fact an isomorphism.) Thus the rank of $\operatorname{Pic}(X)$ is bounded by $\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Cl}(X) \otimes_{\mathbb{Z}} \mathbb{C}\right)$. It follows from the Koecher boundedness principle (which holds since $l \geq 3)$ that $\operatorname{dim}\left(A(X) \otimes_{\mathbb{Z}} \mathbb{C}\right)=1$ and thereby

$$
\begin{equation*}
\operatorname{rank}(\operatorname{Pic}(X)) \geq 1+\operatorname{dim}_{\mathbb{C}}\left(\widetilde{\mathrm{Cl}}(X) \otimes_{\mathbb{Z}} \mathbb{C}\right) \tag{21}
\end{equation*}
$$

Put $\kappa=1+l / 2$. It is a consequence of the existence of Borcherds' lifting from modular forms of negative weight $1-l / 2$ to automorphic products for the group Γ and Serre duality that there exists a homomorphism from the space of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-conjugates of $S_{\kappa, L}$ to $\widetilde{\mathrm{Cl}}(X) \otimes_{\mathbb{Z}} \mathbb{C}$ (cf. [Bo1, Bo2]). By the refinement given in $[\mathrm{Br} 1]$ chapter 5.1, we more precisely know that there is a homomorphism

$$
\begin{equation*}
\eta: S_{\kappa, L} \longrightarrow \widetilde{\mathrm{Cl}}(X) \otimes_{\mathbb{Z}} \mathbb{C} \tag{22}
\end{equation*}
$$

We may infer the following fundamental proposition.
Proposition 7. Suppose that the map η is injective. Then

$$
\operatorname{rank}(\operatorname{Pic}(X)) \geq 1+\operatorname{dim}_{\mathbb{C}}\left(S_{\kappa, L}\right)
$$

Recall that a hyperbolic plane is a lattice H which is isomorphic to the lattice \mathbb{Z}^{2} equipped with the quadratic form $q((a, b))=a b$. For the rest of this section we assume that L splits two orthogonal hyperbolic planes over \mathbb{Z}, i.e. has the special shape $L=L_{0} \perp$ $H \perp H$, where L_{0} is an even negative definite lattice of rank $l-2$.

Let N be a positive integer. We consider the lattice

$$
L[N]=L_{0}(N) \perp H \perp H,
$$

its discriminant kernel $\Gamma[N]=\Delta(L[N])$, and the associated modular variety $X[N]=$ $\mathcal{H}_{l} / \Gamma[N]$. We may view $\Gamma[N]$ as a subgroup of $\mathrm{O}\left(L \otimes_{\mathbb{Z}} \mathbb{Q}\right)$ which is commensurable with $\Gamma=\Delta(L)$.

Theorem 8. Let L be a lattice as above and \mathcal{L} its discriminant group. Let D be the level of L as defined in (3). Then

$$
\begin{aligned}
\operatorname{rank}(\operatorname{Pic}(X[N])) \geq & \frac{l|\mathcal{L}| N^{l-2}}{48}+l / 48+1-2^{l / 2-3}-3 \cdot 2^{l-5}-3^{-3 / 2}-3^{l / 2-5 / 2} \\
& -\frac{\sqrt{|\mathcal{L}|}}{4} N^{l / 2-1} \sigma_{l / 2-2}(D N) \\
& -\frac{\sqrt{|\mathcal{L}|}}{2 \pi} N^{l / 2-1}(3 / 2+\ln (D N))\left(\sigma_{l / 2-2}(D N)-(D N)^{l / 2-2}\right)
\end{aligned}
$$

Proof. By construction the lattice $L[N]$ splits two hyperbolic planes over \mathbb{Z}. The main result of [Br1] chapter 5.2 says that the map (22) is injective in this case. By Proposition 7 we find

$$
\operatorname{rank}(\operatorname{Pic}(X[N])) \geq 1+\operatorname{dim}\left(S_{\kappa, L[N]}\right)=1+\operatorname{dim}\left(S_{\kappa, L_{0}(N)}\right)
$$

We apply Theorem 6 to estimate the dimension of $S_{\kappa, L_{0}(N)}$. The rank of $L_{0}(N)$ is $l-2$, the level of $L_{0}(N)$ is $D N$, and

$$
\begin{aligned}
\left|L_{0}(N)^{\prime} / L_{0}(N)\right| & =N^{l-2}|\mathcal{L}|, \\
\left|\left(L_{0}(N)^{\prime} / L_{0}(N)\right) /\{ \pm 1\}\right| & \geq \frac{1}{2}\left(1+N^{l-2}|\mathcal{L}|\right) .
\end{aligned}
$$

If we also take into account (11) we obtain the assertion.

Corollary 9. Let $\varepsilon>0$. Then there exist positive constants $C_{1}=C_{1}(L, \varepsilon)$ and $C_{2}=C_{2}(L)$ (which can be easily determined explicitly) such that

$$
\operatorname{rank}(\operatorname{Pic}(X[N])) \geq \frac{l|\mathcal{L}| N^{l-2}}{48}-C_{2}- \begin{cases}C_{1} N^{1 / 2+\varepsilon}, & \text { if } l=3 \\ C_{1} N^{l-3+\varepsilon}, & \text { if } l>3\end{cases}
$$

for all $N \in \mathbb{N}$.
In the above situation the map (22) induces in fact an isomorphism from $S_{\kappa, L[N]}$ to the subspace of $\widetilde{\mathrm{Cl}}(X[N]) \otimes_{\mathbb{Z}} \mathbb{C}$, which is generated by algebraic divisors λ^{\perp}, where $\lambda \in L[N]^{\prime}$ is a negative norm vector and the orthogonal complement is taken is \mathcal{H}_{l}. According to the Tate conjecture one should expect that the codimension of this subspace in $\widetilde{\mathrm{C}}(X[N]) \otimes_{\mathbb{Z}} \mathbb{C}$ is small. This leads us to the following
Question 1. Is it true that

$$
\operatorname{rank}(\operatorname{Pic}(X[N])) \sim l|\mathcal{L}| N^{l-2} / 48, \quad N \rightarrow \infty ?
$$

Let N be a positive integer. It is natural to define the principal congruence subgroup of level N of $\Gamma=\Delta(L)$ by

$$
\Gamma(N)=\Delta(L(N)) .
$$

We now consider the Picard groups of the modular varieties $X(N)=\mathcal{H}_{l} / \Gamma(N)$. In the same way as in [Fr] (chapter 2.6 Hilfssatz 6.5) it can be proved that for $N \geq 3$ the group $\Gamma(N)$ acts freely on \mathcal{H}_{l}. Thus $X(N)$ is smooth in this case.

To obtain an estimate for the rank of $\operatorname{Pic}(X(N))$ we cannot argue as above. Since $L(N)$ does not split two hyperbolic planes over \mathbb{Z}, we do not have the result of [Br1] saying that the map η (22) is injective.

However, we can still get an estimate for the rank of $\operatorname{Pic}(X(N))$ in the following way. There exists a lattice \tilde{L}, which is isomorphic to $L[N]$ and contains

$$
L(N)=L_{0}(N) \perp H(N) \perp H(N)
$$

as a sub-lattice. It is easily seen that

$$
\Gamma(N)=\Delta(L(N)) \subset \Delta(\tilde{L})
$$

(In fact, taking the discriminant kernel of a lattice is functorial.) Therefore we may view $\Gamma(N)$ as a subgroup of $\Gamma[N]$. The natural projection $X(N) \rightarrow X[N]$ induces an injective map of Picard groups

$$
\operatorname{Pic}(X[N]) \longrightarrow \operatorname{Pic}(X(N))
$$

Thus Theorem 8 gives us a lower bound for $\operatorname{rank}(\operatorname{Pic}(X(N)))$, too. The asymptotic bound of corollary 9 also holds.

It is clear that these bounds for the rank of $\operatorname{Pic}(X(N))$ are probably not optimal. Here it is natural to ask
Question 2. What is the asymptotic behavior of the numbers $\operatorname{rank}(\operatorname{Pic}(X(N)))$ for $N \rightarrow$ ∞ ?

3.1 The Siegel modular group of genus 2

If R is a subring of \mathbb{C}, then we denote by

$$
\mathrm{Sp}(2, R)=\left\{M \in \mathrm{GL}(4, R) ; \quad M^{t} I M=I\right\}
$$

the symplectic group of genus 2 with coefficients in R. Here I denotes the matrix $\left(\begin{array}{cc}0 & E \\ -E & 0\end{array}\right)$ and E the 2×2 identity matrix. The group $\operatorname{Sp}(2, \mathbb{R})$ acts on the Siegel half plane \mathbb{H}_{2}. Let N be a positive integer. The paramodular group $\Gamma_{S}[N]$ of level N is the subgroup of $\mathrm{Sp}(2, \mathbb{Q})$ given by matrices of the form

$$
\left(\begin{array}{cccc}
* & N * & * & * \\
* & * & * & N^{-1} * \\
* & N * & * & * \\
N * & N * & N * & *
\end{array}\right),
$$

where the $*$ are all integral. The quotient $\mathbb{H}_{2} / \Gamma_{S}[N]$ is the moduli space of Abelian surfaces with a $(1, N)$-polarization.

Let L be the lattice $H \perp H \perp \mathbb{Z}(-2)$ of signature $(2,3)$. It is well known that there exists an isomorphism $\operatorname{Sp}(2, \mathbb{R}) /\{ \pm 1\} \rightarrow \mathrm{O}^{\prime}(L[N] \otimes \mathbb{R}) /\{ \pm 1\}$, which commutes with the action of $\operatorname{Sp}(2, \mathbb{R})$ on \mathbb{H}_{2} and the action of $\mathrm{O}^{\prime}(L \otimes \mathbb{R})$ on \mathcal{H}_{3}, and which induces an isomorphism

$$
\Gamma_{S}[N] /\{ \pm 1\} \longrightarrow \Gamma[N] /\{ \pm 1\}=\Delta(L[N]) /\{ \pm 1\}
$$

(see [GN]). Hence Corollary 9 implies
Corollary 10. Let $\varepsilon>0$. Then there exist positive constants $C_{1}=C_{1}(\varepsilon)$ and $C_{2}<0.6$ (which can be easily determined) such that

$$
\operatorname{rank}\left(\operatorname{Pic}\left(\mathbb{H}_{2} / \Gamma_{S}[N]\right)\right) \geq N / 8-C_{2}-C_{1} N^{1 / 2+\varepsilon}
$$

for all $N \in \mathbb{N}$.
Note that $\operatorname{dim}\left(S_{\kappa, L[N]}\right)$ can be computed explicitly in this case. By Lemma 2 the quantities α_{1} and α_{2} can be expressed in terms of standard Gauss sums $G(n, a)=\sum_{\nu(a)} e\left(n \nu^{2} / a\right)$. Moreover, α_{4} is equal to [$1+b / 2$], where b is the largest integer whose square divides N. Finally, using Theorem 11 of the appendix, α_{5} can be written as a sum of class numbers. Therefore we could obtain a sharper estimate than in Theorem 8. However, in the asymptotic estimate Corollary 10 this would only improve the constants C_{1} and C_{2}.

Let $\Gamma_{S}(N) \subset \operatorname{Sp}(2, \mathbb{Z})$ be the principal congruence subgroup of level N, i.e. the kernel of the reduction homomorphism $\operatorname{Sp}(2, \mathbb{Z}) \rightarrow \operatorname{Sp}(2, \mathbb{Z} / N \mathbb{Z})$. Since $\Gamma_{S}(N) \subset \Gamma_{S}[N]$, the above estimate also holds for the group $\Gamma_{S}(N)$. (To see this we could have also used the fact that the orthogonal principal congruence subgroup $\Gamma(N)$ is isomorphic to a group G with $\left.\Gamma_{S}(2 N) \subset G \subset \Gamma_{S}(N).\right)$

Appendix

In section 2 we saw that the quantities $\alpha_{1}, \alpha_{2}, \alpha_{4}$ can all be expressed in terms of Gauss sums. We now indicate, how the idea of the proof of Lemma 5 can sometimes be used to obtain a closed formula for α_{5}^{\prime} (and thereby for α_{3}) in terms of class numbers.

Let L be the negative definite lattice of rank r given by

$$
L=\mathbb{Z}(-2 N) \perp \cdots \perp \mathbb{Z}(-2 N) .
$$

Define

$$
A_{r}(N)=\sum_{\nu_{1}, \ldots, \nu_{r}(N)} \mathbb{B}\left(\frac{\nu_{1}^{2}}{N}+\cdots+\frac{\nu_{r}^{2}}{N}\right),
$$

where ν_{1}, \ldots, ν_{r} run through a set of representatives of $\mathbb{Z} / N \mathbb{Z}$. Then for our particular lattice L we have $\alpha_{5}^{\prime}=-\frac{1}{2} A_{r}(4 N)$.

We denote by $H(a)$ for $a \neq-3,-4$ the class number of positive definite binary quadratic forms of discriminant a and put $H(-3)=1 / 3, H(-4)=1 / 2$. Then $H(a)=0$, if $a>0$ or $a \not \equiv 0,1(\bmod 4)$. Moreover, we write χ_{a} for the Dirichlet character defined by the Kronecker symbol $x \mapsto\left(\frac{a}{x}\right)$.
Theorem 11. Suppose that r is odd. Then

$$
A_{r}(N)=-\chi_{-4}(r) N^{r-1} \sum_{\substack{a \mid N \\ a \equiv-1(4)}} a^{\frac{1-r}{2}} H(-a)-\chi_{-8}(r)(\sqrt{2} N)^{r-1} \sum_{\substack{a \mid N \\ a \equiv 0(4)}} a^{\frac{1-r}{2}} H(-a)
$$

Here the sums run through the positive divisors of N satisfying the indicated conditions.
Proof. If $n \in \mathbb{Z}$ and $a \in \mathbb{N}$, then we denote by $G(n, a)=\sum_{\nu(a)} e\left(n \nu^{2} / a\right)$ the standard Gauss sum. By means of the Fourier expansion (20) of the function \mathbb{B}, we can rewrite $A_{r}(N)$ as a Dirichlet series:

$$
A_{r}(N)=-\frac{1}{2 \pi i} \sum_{n \in \mathbb{Z}-\{0\}} \frac{1}{n} G(n, N)^{r}=-\frac{1}{\pi} \sum_{n \geq 1} \frac{1}{n} \Im\left(G(n, N)^{r}\right) .
$$

Using the fact $G(n, N)=a G(n / a, N / a)$ for $a \mid(n, N)$, we find

$$
A_{r}(N)=-\frac{N^{r-1}}{\pi} \sum_{a \mid N} \sum_{\substack{m>1 \\(m, a)=1}} \frac{1}{m} a^{1-r} \Im\left(G(m, a)^{r}\right) .
$$

If we insert the explicit formula for $G(m, a)$ (cf. [La] chapter 4.3), we obtain by a lengthy but straightforward calculation

$$
A_{r}(N)=-\frac{N^{r-1}}{\pi} \sum_{a \mid N} a^{1-r / 2} L\left(\chi_{-a}, 1\right) \cdot \begin{cases}0, & \text { if } a \equiv 1,2(\bmod 4) \\ \chi_{-4}(r), & \text { if } a \equiv-1(\bmod 4), \\ 2^{(r-1) / 2} \chi_{-8}(r), & \text { if } a \equiv 0(\bmod 4)\end{cases}
$$

Here $L\left(\chi_{a}, s\right)$ denotes the Dirichlet series associated to the Dirichlet character χ_{a}. Since $L\left(\chi_{-a}, 1\right)=\pi H(-a) / \sqrt{a}$ (cf. [Za] §8), this implies the assertion.

By virtue of the above argument, A_{r} can also be evaluated for even r. In this case class numbers do not show up. For instance for $r \equiv 0(\bmod 4)$ one finds that $A_{r}(N)=0$. More generally α_{5}^{\prime} can be computed for any lattice of the form $\mathbb{Z}\left(-2 N_{1}\right) \perp \cdots \perp \mathbb{Z}\left(-2 N_{r}\right)$ with $N_{1}, \ldots, N_{r} \in \mathbb{N}$. Note that for $r=1$ the above formula is already contained in the book [EZ] in $\S 10$ (but with a different proof).

References

[Bo1] R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), 491-562.
[Bo2] R. E. Borcherds, The Gross-Kohnen-Zagier theorem in higher dimensions, Duke Math. J. 97 (1999), 219-233.
[Bo3] R. E. Borcherds, Reflection groups of Lorentzian lattices, Duke Math. J. 104 (2000), 319-366.
[Br1] J. H. Bruinier, Borcherds products on $\mathrm{O}(2, l)$ and Chern classes of Heegner divisors, Habilitationsschrift, Universität Heidelberg (2000), http://www.mathi.uniheidelberg.de/~bruinier/.
[Br2] J. H. Bruinier, Borcherds products and Chern classes of Hirzebruch-Zagier divisors, Invent. math. 138 (1999), 51-83.
[BF] J. H. Bruinier and E. Freitag, Local Borcherds products, Annales de l'institut Fourier, to appear.
[EZ] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math. 55 (1985), Birkhäuser.
[Fi] J. Fischer, An approach to the Selberg trace formula via the Selberg zeta-function, Lecture Notes in Mathematics 1253, Springer-Verlag (1987).
[Fr] E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag (1983).
[GN] B. van Geemen and N. O. Nygaard, On the geometry and arithmetic of some Siegel modular threefolds, J. Number Theory 53 (1995), 45-87.
[GrNi] V. Gritsenko and V. Nikulin, Automorphic forms and Lorentzian Kac-Moody algebras. Part II, Intern. J. of Math. 9 (1998), 201-275.
[La] S. Lang, Algebraic Number Theory, Addison-Wesley (1970).
[LW1] \quad. Lee and S. H. Weintraub, Cohomology of $\operatorname{Sp}(4, \mathbb{Z})$ and related groups and spaces, Topology 24 (1985), 391-410.
[LW2] R. Lee and S. H. Weintraub, On certain Siegel modular varieties of genus two and levels above two, alg. topology and transformation groups, Lect. Notes Math. 1361 (1988), 29-52.
[No] A. Nobs, Die irreduziblen Darstellungen der Gruppen $\mathrm{SL}_{2}\left(\mathbb{Z}_{p}\right)$, insbesondere $\mathrm{SL}_{2}\left(\mathbb{Z}_{2}\right)$. I. Teil, Comment Math. Helvetici 51 (1976), 465-489.
[We1] R. Weissauer, Differentialformen zu Untergruppen der Siegelschen Modulgruppe zweiten Grades, J. reine angew. Math. 391 (1988), 100-156.
[We2] R. Weissauer, The Picard group of Siegel modular threefolds, J. reine angew. Math. 430 (1992), 179-211.
[Za] D. Zagier, Zetafunktionen und quadratische Körper, Springer-Verlag (1981).

