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1 Introdu
tion

Let L be an even latti
e of signature (2; l) with l � 3. Write q(�) for the quadrati
 form

on L and L for the (�nite) dis
riminant group of L.

Let O

0

(L


Z

R) be the spinor kernel of the real orthogonal group of L and denote the


orresponding Hermitean symmetri
 domain by H

l

. We write O

0

(L) for the interse
tion of

the integral orthogonal group of L with O

0

(L 


Z

R). We 
onsider the dis
riminant kernel

�(L) of the group O

0

(L), that is the subgroup of those elements that a
t trivially on L.

There is a natural notion of prin
ipal 
ongruen
e groups for the group �(L): For any

non-zero integer N we have the res
aled latti
e L(N), given by L as a Z-module, but

equipped with the quadrati
 form Nq(�). The dis
riminant kernel of L(N) is a subgroup

of �(L), de�ned by 
ongruen
e 
onditions modulo N . We 
all it prin
ipal 
ongruen
e

subgroup of level N and denote it by �(N).

We 
onsider the arithmeti
 quotient X(N) = H

l

=�(N). By the theory of Baily-Borel,

it 
arries the stru
ture of a quasiproje
tive algebrai
 variety. A fundamental geometri


invariant is its algebrai
 Pi
ard group Pi
(X(N)). Our assumption on l implies that this

group is �nitely generated. In the present paper we shall derive a nontrivial lower bound

for the rank of Pi
(X(N)). In parti
ular we are interested in the asymptoti
 behavior of

the numbers

rank (Pi
(X(N)))

as N ! 1. Although this problem seems very natural, to the best of our knowledge,

just partial results 
an be found in the literature. (See for instan
e [LW1, LW2℄ or [GN℄.)

Certainly one would expe
t that the rank of Pi
(X(N)) tends to in�nity as N ! 1,
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re
e
ting the fa
t that the geometry of X(N) gets more 
ompli
ated as the level rises.

However, even a result of this type seems not to be known in general.

Put X = X(1). It is a 
onsequen
e of the work of Bor
herds [Bo1, Bo2℄ and the

re�nement given in [Br1℄ that there exists a homomorphism

S

�;L

�! Pi
(X)


Z

C

Æ

C [E

Hodge

℄ (1)

from a 
ertain spa
e S

�;L

of C [L℄-valued 
usp forms of weight � = 1 + l=2 to the quotient

of Pi
(X)


Z

C modulo the span of the 
lass of the Hodge line bundle E

Hodge

.

If L splits two orthogonal hyperboli
 planes over Z, then the main result of [Br1℄ says

that this map is inje
tive (see also [Br2℄ or [BF℄ for related results). Hen
e in this 
ase

we 
an obtain a lower bound for rank(Pi
(X)) by estimating the dimension of S

�;L

. By

means of the Riemann-Ro
h theorem or the Selberg tra
e formula, the dimension of S

�;L


an be 
omputed. Thereby the original problem is redu
ed to estimating the di�erent


ontributions in the dimension formula. Some of these are \strange" invariants of the

dis
riminant group L and the Q=Z-valued quadrati
 form on it indu
ed by q. They are

studied in se
tion 2, the te
hni
al heart of this paper.

Let us now assume that L splits two orthogonal hyperboli
 planes over Z, i.e. has the

spe
ial shape L = L

0

? H ? H, where L

0

is an even negative de�nite latti
e. Then the

above argument 
an be used to �nd a bound for the rank of Pi
(X). Unfortunately, it


annot be applied dire
tly to get a bound for Pi
(X(N)), sin
e L(N) does not split two

hyperboli
 planes over Z.

Therefore we �rst 
onsider the latti
e

L[N ℄ = L

0

(N) ? H ? H

and its dis
riminant kernel �[N ℄ = �(L[N ℄). We write X[N ℄ for the quotient H

l

=�[N ℄.

The group �[N ℄ 
an be viewed as a subgroup of the rational orthogonal group of L with the

property that �(N) � �[N ℄. In the O(2; 3)-
ase of the Siegel modular group of genus 2 it is

isomorphi
 to the paramodular group of level N . Using the inje
tivity of the map (1) and

the estimate of se
tion 2 for the dimension of S

�;L

, we obtain a bound for rank(Pi
(X[N ℄))

(see Theorem 8). In parti
ular we �nd that for any " > 0 there exists a 
onstant C

"

> 0

(whi
h 
an be easily determined) su
h that

rank (Pi
(X[N ℄)) �

ljLjN

l�2

48

�

(

C

"

N

1=2+"

; if l = 3,

C

"

N

l�3+"

; if l > 3,

(2)

for all N 2 N (Corollary 9).

The proje
tion X(N)! X[N ℄ indu
es an inje
tive homomorphism

Pi
 (X[N ℄) �! Pi
 (X(N)) :
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Hen
e all bounds for the rank of Pi
(X[N ℄) give us also bounds for the rank of Pi
(X(N)).

There are some reasons to believe that our estimate (2) a
tually des
ribes the true asymp-

toti
 growth of rank(Pi
(X[N ℄)), whereas the resulting bound for Pi
(X(N)) seems rather

poor (see questions 1 and 2). Better results for X(N) 
ould be obtained by studying the

inje
tivity properties of the map (1) more 
arefully for latti
es whi
h do not split two

hyperboli
 planes over Z.

As an important example we 
onsider the spe
ial 
ase of the Siegel modular group of

genus 2 in somewhat more detail. We take L = Z(�2) ? H ? H and use the ex
eptional

isomorphism from Sp(4;R) to O(2; 3). Due to the work of Weissauer [We1, We2℄ we know

a lot about the Pi
ard groups Pi
(X(N)) in this 
ase. For instan
e the Tate 
onje
ture for

algebrai
 divisors is proved in [We1℄. However, lower bounds for the rank of Pi
(X[N ℄) or

Pi
(X(N)) seem not to be known in general.

The group �[N ℄ is isomorphi
 to the paramodular group of level N (
f. [GrNi℄). The

quotient X[N ℄ is the moduli spa
e of Abelian surfa
es with a (1; N)-polarization. Our

result implies that for any " > 0 there is a 
onstant C

"

> 0 su
h that

rank (Pi
(X[N ℄)) � N=8� C

"

N

1=2+"

for all N 2 N (Corollary 10). The same estimate holds for the Siegel prin
ipal 
ongruen
e

subgroup of level N .

In the Appendix we apply some ideas of se
tion 2 to derive 
ertain 
lass number identi-

ties. Together with the lemmas in se
tion 2 they 
an be used to evaluate the formula for the

dimension of S

�;L

expli
itly when L has the spe
ial shape L = Z(�2t

1

) ? � � � ? Z(�2t

r

)

with nonzero integers t

1

; : : : ; t

r

. Moreover, these identities might be of independent inter-

est.

A
knowledgments. I would like to thank M. Bunds
huh, E. Freitag, and R. Weissauer for

several helpful 
onversations.

2 The dimension formula

Let L be an even latti
e of signature (b

+

; b

�

). We denote the bilinear form on L by (�; �)

and the asso
iated quadrati
 form by q(x) =

1

2

(x; x). We write L

0

for the dual latti
e of L

and L = L

0

=L for the (�nite) dis
riminant group. Moreover, let d = jL=f�1gj, r = b

+

+ b

�

be the rank of L, and denote by

D = minfn 2 N ; nq(
) 2 Z for all 
 2 L

0

g (3)

the level of L.

We write Mp

2

(R) for the metaple
ti
 2-fold 
over of SL

2

(R) and denote by Mp

2

(Z) the

inverse image of SL

2

(Z) under the 
overing map. Re
all that the elements of Mp

2

(R) are

pairs (M;�(�)), where M = (

a b


 d

) 2 SL

2

(R), and � denotes a holomorphi
 fun
tion on the
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upper 
omplex half plane H with �(�)

2

= 
�+d. It is well known that Mp

2

(Z) is generated

by

T =

��

1 1

0 1

�

; 1

�

and S =

��

0 �1

1 0

�

;

p

�

�

:

One has the relations S

2

= (ST )

3

= Z, where Z =

��

�1 0

0 �1

�

; i

�

is the standard generator

of the 
enter of Mp

2

(Z).

There is a unitary representation �

L

of Mp

2

(Z) on the group algebra C [L℄ of L. If we

denote the standard basis of C [L℄ by (e




)


2L

then �

L


an be de�ned by the a
tion of the

generators S; T 2 Mp

2

(Z) as follows (see also [Bo1℄, [Bo2℄, where the dual of �

L

is used):

�

L

(T )e




= e(�q(
))e




; (4)

�

L

(S)e




=

p

i

b

+

�b

�

p

jLj

X

Æ2L

e((
; Æ))e

Æ

: (5)

Here and throughout we abbreviate e(z) = e

2�iz

for z 2 C . This representation is essentially

the Weil representation atta
hed to the quadrati
 module (L; q) (see [No℄).

Let k 2

1

2

Z. We denote by M

k;L

the ve
tor spa
e of C [L℄-valued modular forms of

weight k with representation �

L

for the group Mp

2

(Z). The subspa
e of 
usp forms is

denoted by S

k;L

. (See also [BF℄ or [Bo1℄.) It is easily seen that M

k;L

= 0, if 2k 6� b

�

� b

+

(mod 2).

Sin
e �

L

fa
tors through a �nite quotient of Mp

2

(Z), it is 
lear that the dimension

of M

k;L

is �nite. It 
an be 
omputed using the Riemann-Ro
h theorem or the Selberg

tra
e formula in a standard way. This is 
arried out in [Fi℄ in a more general situation.

In our spe
ial 
ase the following formula holds (see [Bo3℄, [Bo2℄ p. 228): Assume that

2k � b

�

� b

+

(mod 4) (we will only be interested in this 
ase). Then the d-dimensional

subspa
e W = spanfe




+ e

�


; 
 2 Lg of C [L℄ is invariant under �

L

. More pre
isely �

L

a
ts by multipli
ation with e(�k=2) on W . We denote by � the restri
tion of �

L

to W . If

M is a unitary matrix of size d with eigenvalues e(�

j

) and 0 � �

j

< 1 (for j = 1; : : : ; d),

then we de�ne

�(M) =

d

X

j=1

�

j

:

The dimension of M

k;L

is given by

dim

C

(M

k;L

) = d+ dk=12� �

�

e

�ik=2

�(S)

�

� �

�

�

e

�ik=3

�(ST )

�

�1

�

� �(�(T )): (6)

Furthermore, using Eisenstein series, it 
an be easily shown that the 
odimension of S

k;L

in M

k;L

is equal to the number of elements of the set

f
 2 L=f�1g; q(
) 2 Zg (7)
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(see also [Br1℄ 
hapter 1.2.3).

As already pointed out in the introdu
tion, we need to �nd a lower bound for the

dimension of S

k;L

. In view of (6) and (7) we have to estimate the quantities

�

1

:= �

�

e

�ik=2

�(S)

�

;

�

2

:= �

�

�

e

�ik=3

�(ST )

�

�1

�

;

�

3

:= �(�(T ));

�

4

:=

�

�

f
 2 L=f�1g; q(
) 2 Zg

�

�

:

This 
an easily be done for �

1

, �

2

, and �

4

. However, for �

3

this problems turns out to be

more diÆ
ult. In the appendix we will see that �

3

sometimes is related to 
lass numbers

of imaginary quadrati
 �elds.

For the estimates we �rst need some fa
ts on Gauss sums atta
hed to L. Let n 2 Z.

We de�ne the Gauss sum G(n; L) by

G(n; L) =

X


2L

e(nq(
)): (8)

Two basi
 but important properties of G(n; L) are

G(�n; L) = G(n; L); (9)

G(n+D;L) = G(n; L): (10)

If n is an integer, we de�ne

L

n

= f
 2 L; n
 = 0g :

Observe that jL

2

j = 2d�jLj. In general it follows from the theorem of elementary divisors

that

jL

n

j � (D; n)

r

; (11)

where (D; n) denotes the greatest 
ommon divisor of D and n.

Lemma 1. Let n be a positive integer. i) If Djn, then G(n; L) = jLj. ii) The absolute

value of G(n; L) is given by

jG(n; L)j =

p

jLj

p

jL

n

j:

In parti
ular jG(n; L)j =

p

jLj, if (n;D) = 1.

The proof is left to the reader.
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Lemma 2. The quantities �

1

and �

2


an be expressed in terms of Gauss sums as follows:

�

1

=

d

4

�

1

4

p

jLj

e

�

(2k + b

+

� b

�

)=8

�

<

�

G(2; L)

�

; (12)

�

2

=

d

3

+

1

3

p

3jLj

<

�

e

�

(4k + 3b

+

� 3b

�

� 10)=24

��

G(1; L) +G(�3; L)

�

�

: (13)

Proof. The idea of the proof was 
ommuni
ated to us by R. E. Bor
herds. Let us �rst


onsider (12). In Mp

2

(Z) we have the relation S

2

= Z. Sin
e Z a
ts on W � C [L℄ by

multipli
ation with e(�k=2), the identity

(e(k=4)�(S))

2

= e(k=2)�(Z) = id

holds. Hen
e all eigenvalues of e(k=4)�(S) equal �1. If b denotes the number of eigenvalues

equal to �1, then

tr

W

(e(k=4)�(S)) = �b + (d� b) = d� 2b:

Thus

�

1

= b=2 =

d

4

�

1

4

tr

W

(e(k=4)�(S)) :

Note that tr

W

(�(S)) =

1

2

tr

C [L℄

(�(S) + �(S)X), where X denotes the map C [L℄ ! C [L℄

given by e




7! e

�


. Hen
e it follows from (5) that

tr

W

(e(k=4)�(S)) =

1

p

jLj

e

�

(2k + b

+

� b

�

)=8

�

< (G(2; L)) :

This implies the assertion.

Equality (13) 
an be proved in the same way. Using the relation (ST )

3

= Z we �nd

�

2

=

d

3

+

2

3

p

3

<

�

e(�5=12 + k=6) tr

W

(�(ST ))

�

:

Furthermore, by (5) and (4) we have

tr

W

(�(ST )) =

1

2

p

jLj

e((b

+

� b

�

)=8) (G(1; L) +G(�3; L)) :

From Lemma 2 we obtain the following 
orollary.

Corollary 3. The quantities �

1

and �

2

satisfy the estimates

j�

1

� d=4j �

1

4

p

jL

2

j; (14)

j�

2

� d=3j �

1

3

p

3

�

1 +

p

jL

3

j

�

: (15)
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We now derive an estimate for �

4

. If n is a positive integer, we de�ne the divisor sum

�

t

(n) =

P

ajn

a

t

.

Lemma 4. We have

j�

4

j �

jL

2

j

2

+

p

jLj

2

�

r=2�1

(D):

Proof. We write �

4

as

�

4

=

1

2

X


2L

2

q(
)2Z

1 +

1

2

X


2L

q(
)2Z

1:

The se
ond term on the right hand side is equal to

1

2D

X


2L

X

� (D)

e(q(
)�) =

1

2D

X

� (D)

G(�; L):

Thus, using Lemma 1, we obtain

j�

4

j �

jL

2

j

2

+

1

2D

X

� (D)

p

jLj

p

jL

�

j

�

jL

2

j

2

+

p

jLj

2D

X

� (D)

(�;D)

r=2

�

jL

2

j

2

+

p

jLj

2D

X

ajD

D=a

X

�=1

(�;D=a)=1

a

r=2

�

jL

2

j

2

+

p

jLj

2D

X

ajD

D

a

a

r=2

�

jL

2

j

2

+

p

jLj

2

�

r=2�1

(D):

Before we 
onsider �

3

we introdu
e some more notation. If x 2 R, then we write [x℄

for the greatest-integer fun
tion maxfn 2 Z; n � xg. Moreover, we de�ne

B (x) = x�

1

2

([x℄� [�x℄): (16)

Thus B (x) is the 1-periodi
 fun
tion on R with B (x) = 0 for x = 0; 1 and B (x) = x� 1=2

for 0 < x < 1. By de�nition

�

3

=

X


2L=f�1g

(�q(
)� [�q(
)℄) :
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Using B (x) and �

4

we may rewrite this in the form

�

3

=

d

2

�

�

4

2

�

X


2L=f�1g

B (q(
)):

Hen
e, to obtain information on �

3

, it suÆ
es to 
onsider the invariants

�

5

=

X


2L=f�1g

B (q(
)); (17)

�

0

5

=

X


2L

B (q(
)) (18)

of L. Obviously the relation

�

5

=

1

2

X


2L

2

B (q(
)) +

�

0

5

2

holds. For 
 2 L

2

, we have q(
) 2

1

4

Z and thereby jB (q(
))j � 1=4. Hen
e

j�

5

j � jL

2

j=8 + j�

0

5

j=2 and

j�

3

� d=2 + �

4

=2j � jL

2

j=8 + j�

0

5

j=2: (19)

The main result of this se
tion is the following estimate for �

0

5

.

Lemma 5. The invariant �

0

5

satis�es

j�

0

5

j �

p

jLj

�

(3=2 + ln(D))

�

�

r=2�1

(D)�D

r=2�1

�

:

Proof. The 1-periodi
 fun
tion B (x) has the pointwise 
onvergent Fourier expansion

B (x) = �

1

2�i

X

n2Z�f0g

e(nx)

n

: (20)

Inserting this into the de�nition of �

0

5

we �nd

�

0

5

= �

1

2�i

X

n2Z�f0g

1

n

X


2L

e(nq(
))

= �

1

2�i

X

n2Z�f0g

1

n

G(n; L)

= �

1

�

1

X

n=1

1

n

=(G(n; L)):

8



We use (9) and (10) and the fa
t =(G(D�; L)) = 0 to rewrite this as follows:

�

0

5

= �

1

2�

1

X

n=0

D�1

X

�=1

 

=

�

G(Dn+ �; L)

�

Dn+ �

+

=

�

G(D(n+ 1)� �; L)

�

D(n+ 1)� �

!

= �

1

2�

1

X

n=0

D�1

X

�=1

�

1

Dn+ �

�

1

D(n+ 1)� �

�

=(G(�; L))

= �

1

�

D�1

X

�=1

1

�

=(G(�; L))�

1

2�

1

X

n=1

D�1

X

�=1

D � 2�

D

2

n(n+ 1) +D� � �

2

=(G(�; L)):

By means of Lemma 1 we obtain

j�

0

5

j �

1

�

D�1

X

�=1

1

�

jG(�; L)j+

1

2�

1

X

n=1

D�1

X

�=1

D � 2

D

2

n(n + 1)

j(G(�; L))j

�

p

jLj

�

D�1

X

�=1

1

�

p

jL

�

j+

p

jLj

2�D

D�1

X

�=1

1

X

n=1

p

jL

�

j

1

n(n + 1)

:

The latter sum over n equals 1. We apply (11) and rewrite the sum over �. We get

j�

0

5

j �

p

jLj

�

X

ajD

a6=D

D=a

X

�=1

(�;D=a)=1

1

a�

a

r=2

+

p

jLj

2�D

X

ajD

a6=D

D=a

X

�=1

(�;D=a)=1

a

r=2

�

p

jLj

�

X

ajD

a6=D

(1 + ln(D=a))a

r=2�1

+

p

jLj

2�D

X

ajD

a6=D

D

a

a

r=2

�

p

jLj

�

(3=2 + ln(D))

�

�

r=2�1

(D)�D

r=2�1

�

:

Here we have also used the estimate

P

n

�=1

1

�

� 1 + ln(n).

If we put the above lemmas together we �nally obtain the desired estimate for the

dimension of S

k;L

.

Theorem 6. Assume that 2k � b

�

� b

+

(mod 4). Then

�

�

�

�

dim(S

k;L

)�

(k � 1)d

12

�

�

�

�

�

p

jL

2

j

4

+

1 +

p

jL

3

j

3

p

3

+

3

8

jL

2

j+

p

jLj

4

�

r=2�1

(D)

+

p

jLj

2�

(3=2 + ln(D))

�

�

r=2�1

(D)�D

r=2�1

�

:

This estimate 
ould be further improved by using the theorem of elementary divisors

more 
arefully in the proof of Lemma 4 and 5. However, sin
e we are mainly interested in

asymptoti
 questions, the above result suÆ
es for our purposes. Re
all that the quantities

jL

�

j are bounded by (11).

9



3 Pi
ard groups

For any latti
e (L; q) and any non-zero integer N , we may 
onsider the res
aled latti
e

L(N). It is given by L as a Z-module, but equipped with the res
aled quadrati
 form

Nq(�). The dual is given by L(N)

0

=

1

N

L

0

.

From now on we suppose that L has signature (2; l) with l � 3. The orthogonal group

O(L) of L is a dis
rete subgroup of the real orthogonal group O(L 


Z

R)

�

=

O(2; l). Let

O

0

(L


Z

R) be the spinor kernel of O(L


Z

R) and O

0

(L) = O

0

(L


Z

R)\O(L). We denote

by �(L) the dis
riminant kernel of the group O

0

(L). By de�nition, this is the subgroup of

those elements of O

0

(L), whi
h a
t trivially on the dis
riminant group L.

Let us brie
y re
all the 
onstru
tion of the Hermitean symmetri
 domain H

l

asso
iated

to O

0

(L 


Z

R). We extend the bilinear form (�; �) on L to a C -bilinear form on the 
om-

plexi�
ation L


Z

C and 
onsider the following 
hain of subsets of the asso
iated proje
tive

spa
e P (L


Z

C ):

H

l

� K � N � P (L


Z

C ):

Here N denotes the zero quadri
, i.e. the subset of P (L


Z

C ) represented by ve
tors z of

norm zero (z; z) = 0. The open subset K is de�ned by the 
ondition (z; �z) > 0. It has two


onne
ted 
omponents. We 
hoose one of them and denote it by H

l

. The real orthogonal

group of L a
ts on L


Z

C , P (L


Z

C ), N , and K. The spinor kernel a
ts on H

l

.

Let � = �(L) and X be the quotient H

l

=�. By the theory of Baily-Borel, X is a

quasi-proje
tive algebrai
 variety.

If � a
ts freely on H

l

, then X is smooth. In this 
ase we denote by Pi
(X) the usual

algebrai
 Pi
ard group, i.e. the group of isomorphism 
lasses of algebrai
 holomorphi
 line

bundles on X. If � does not a
t freely, then we 
hoose a normal subgroup �

0

of �nite index

whi
h a
ts freely. We de�ne the Pi
ard group of X by

Pi
(X) = Pi
(H

l

=�

0

)

�=�

0

;

i.e. as the subgroup of Pi
(H

l

=�

0

), whi
h is invariant under the a
tion of the �nite group

�=�

0

. Our assumption on l implies that these Pi
ard groups are �nitely generated.

In the same way we de�ne the divisor 
lass group Cl(X) of X. (See also [Bo2℄ and

[Br1℄.) Moreover, we write

e

Cl(X) for the quotient of Cl(X) modulo the subgroup A(X) of

divisor 
lasses 
oming from meromorphi
 automorphi
 forms (of generally non-zero weight

with a 
hara
ter of �nite order) for the group �. There is the usual inje
tive map

Cl(X) �! Pi
(X);

whi
h assigns to a divisor 
lass its asso
iated 
lass of line bundles. (By our de�nition

of Cl and Pi
 this map also makes sense if � does not a
t freely. Sin
e X is quasi-

proje
tive, this map is in fa
t an isomorphism.) Thus the rank of Pi
(X) is bounded by

dim

C

(Cl(X)


Z

C ). It follows from the Koe
her boundedness prin
iple (whi
h holds sin
e

l � 3) that dim(A(X)


Z

C ) = 1 and thereby

rank(Pi
(X)) � 1 + dim

C

(

e

Cl(X)


Z

C ): (21)

10



Put � = 1+ l=2. It is a 
onsequen
e of the existen
e of Bor
herds' lifting from modular

forms of negative weight 1 � l=2 to automorphi
 produ
ts for the group � and Serre

duality that there exists a homomorphism from the spa
e of Gal(

�

Q =Q )-
onjugates of S

�;L

to

e

Cl(X) 


Z

C (
f. [Bo1, Bo2℄). By the re�nement given in [Br1℄ 
hapter 5.1, we more

pre
isely know that there is a homomorphism

� : S

�;L

�!

e

Cl(X)


Z

C : (22)

We may infer the following fundamental proposition.

Proposition 7. Suppose that the map � is inje
tive. Then

rank(Pi
(X)) � 1 + dim

C

(S

�;L

):

Re
all that a hyperboli
 plane is a latti
e H whi
h is isomorphi
 to the latti
e Z

2

equipped with the quadrati
 form q((a; b)) = ab. For the rest of this se
tion we assume

that L splits two orthogonal hyperboli
 planes over Z, i.e. has the spe
ial shape L = L

0

?

H ? H, where L

0

is an even negative de�nite latti
e of rank l � 2.

Let N be a positive integer. We 
onsider the latti
e

L[N ℄ = L

0

(N) ? H ? H;

its dis
riminant kernel �[N ℄ = �(L[N ℄), and the asso
iated modular variety X[N ℄ =

H

l

=�[N ℄. We may view �[N ℄ as a subgroup of O(L 


Z

Q ) whi
h is 
ommensurable with

� = �(L).

Theorem 8. Let L be a latti
e as above and L its dis
riminant group. Let D be the level

of L as de�ned in (3). Then

rank (Pi
(X[N ℄)) �

ljLjN

l�2

48

+ l=48 + 1� 2

l=2�3

� 3 � 2

l�5

� 3

�3=2

� 3

l=2�5=2

�

p

jLj

4

N

l=2�1

�

l=2�2

(DN)

�

p

jLj

2�

N

l=2�1

(3=2 + ln(DN))

�

�

l=2�2

(DN)� (DN)

l=2�2

�

:

Proof. By 
onstru
tion the latti
e L[N ℄ splits two hyperboli
 planes over Z. The main

result of [Br1℄ 
hapter 5.2 says that the map (22) is inje
tive in this 
ase. By Proposition

7 we �nd

rank (Pi
(X[N ℄)) � 1 + dim(S

�;L[N ℄

) = 1 + dim(S

�;L

0

(N)

):

We apply Theorem 6 to estimate the dimension of S

�;L

0

(N)

. The rank of L

0

(N) is l� 2,

the level of L

0

(N) is DN , and

jL

0

(N)

0

=L

0

(N)j = N

l�2

jLj;

j(L

0

(N)

0

=L

0

(N))=f�1gj �

1

2

(1 +N

l�2

jLj):

If we also take into a

ount (11) we obtain the assertion.
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Corollary 9. Let " > 0. Then there exist positive 
onstants C

1

= C

1

(L; ") and C

2

= C

2

(L)

(whi
h 
an be easily determined expli
itly) su
h that

rank (Pi
(X[N ℄)) �

ljLjN

l�2

48

� C

2

�

(

C

1

N

1=2+"

; if l = 3,

C

1

N

l�3+"

; if l > 3,

for all N 2 N.

In the above situation the map (22) indu
es in fa
t an isomorphism from S

�;L[N ℄

to the

subspa
e of

e

Cl(X[N ℄)


Z

C , whi
h is generated by algebrai
 divisors �

?

, where � 2 L[N ℄

0

is a negative norm ve
tor and the orthogonal 
omplement is taken is H

l

. A

ording to the

Tate 
onje
ture one should expe
t that the 
odimension of this subspa
e in

e

Cl(X[N ℄)


Z

C

is small. This leads us to the following

Question 1. Is it true that

rank (Pi
(X[N ℄)) � ljLjN

l�2

=48; N !1?

Let N be a positive integer. It is natural to de�ne the prin
ipal 
ongruen
e subgroup

of level N of � = �(L) by

�(N) = �(L(N)):

We now 
onsider the Pi
ard groups of the modular varieties X(N) = H

l

=�(N). In the

same way as in [Fr℄ (
hapter 2.6 Hilfssatz 6.5) it 
an be proved that for N � 3 the group

�(N) a
ts freely on H

l

. Thus X(N) is smooth in this 
ase.

To obtain an estimate for the rank of Pi
(X(N)) we 
annot argue as above. Sin
e L(N)

does not split two hyperboli
 planes over Z, we do not have the result of [Br1℄ saying that

the map � (22) is inje
tive.

However, we 
an still get an estimate for the rank of Pi
(X(N)) in the following way.

There exists a latti
e

~

L, whi
h is isomorphi
 to L[N ℄ and 
ontains

L(N) = L

0

(N) ? H(N) ? H(N)

as a sub-latti
e. It is easily seen that

�(N) = �(L(N)) � �(

~

L):

(In fa
t, taking the dis
riminant kernel of a latti
e is fun
torial.) Therefore we may view

�(N) as a subgroup of �[N ℄. The natural proje
tion X(N) ! X[N ℄ indu
es an inje
tive

map of Pi
ard groups

Pi
(X[N ℄) �! Pi
(X(N)):

Thus Theorem 8 gives us a lower bound for rank(Pi
(X(N))), too. The asymptoti
 bound

of 
orollary 9 also holds.

It is 
lear that these bounds for the rank of Pi
(X(N)) are probably not optimal. Here

it is natural to ask

Question 2. What is the asymptoti
 behavior of the numbers rank(Pi
(X(N))) for N !

1?
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3.1 The Siegel modular group of genus 2

If R is a subring of C , then we denote by

Sp(2; R) = fM 2 GL(4; R); M

t

IM = Ig

the symple
ti
 group of genus 2 with 
oeÆ
ients in R. Here I denotes the matrix

�

0 E

�E 0

�

and E the 2 � 2 identity matrix. The group Sp(2;R) a
ts on the Siegel half plane H

2

.

Let N be a positive integer. The paramodular group �

S

[N ℄ of level N is the subgroup of

Sp(2;Q) given by matri
es of the form

0

B

B

�

� N� � �

� � � N

�1

�

� N� � �

N� N� N� �

1

C

C

A

;

where the � are all integral. The quotient H

2

=�

S

[N ℄ is the moduli spa
e of Abelian surfa
es

with a (1; N)-polarization.

Let L be the latti
e H ? H ? Z(�2) of signature (2; 3). It is well known that

there exists an isomorphism Sp(2;R)=f�1g ! O

0

(L[N ℄
 R)=f�1g, whi
h 
ommutes with

the a
tion of Sp(2;R) on H

2

and the a
tion of O

0

(L 
 R) on H

3

, and whi
h indu
es an

isomorphism

�

S

[N ℄=f�1g �! �[N ℄=f�1g = �(L[N ℄)=f�1g

(see [GN℄). Hen
e Corollary 9 implies

Corollary 10. Let " > 0. Then there exist positive 
onstants C

1

= C

1

(") and C

2

< 0:6

(whi
h 
an be easily determined) su
h that

rank (Pi
(H

2

=�

S

[N ℄)) � N=8� C

2

� C

1

N

1=2+"

for all N 2 N.

Note that dim(S

�;L[N ℄

) 
an be 
omputed expli
itly in this 
ase. By Lemma 2 the quanti-

ties �

1

and �

2


an be expressed in terms of standard Gauss sums G(n; a) =

P

�(a)

e(n�

2

=a).

Moreover, �

4

is equal to [1 + b=2℄, where b is the largest integer whose square divides N .

Finally, using Theorem 11 of the appendix, �

5


an be written as a sum of 
lass num-

bers. Therefore we 
ould obtain a sharper estimate than in Theorem 8. However, in the

asymptoti
 estimate Corollary 10 this would only improve the 
onstants C

1

and C

2

.

Let �

S

(N) � Sp(2;Z) be the prin
ipal 
ongruen
e subgroup of level N , i.e. the kernel of

the redu
tion homomorphism Sp(2;Z)! Sp(2;Z=NZ). Sin
e �

S

(N) � �

S

[N ℄, the above

estimate also holds for the group �

S

(N). (To see this we 
ould have also used the fa
t

that the orthogonal prin
ipal 
ongruen
e subgroup �(N) is isomorphi
 to a group G with

�

S

(2N) � G � �

S

(N).)
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Appendix

In se
tion 2 we saw that the quantities �

1

; �

2

; �

4


an all be expressed in terms of Gauss

sums. We now indi
ate, how the idea of the proof of Lemma 5 
an sometimes be used to

obtain a 
losed formula for �

0

5

(and thereby for �

3

) in terms of 
lass numbers.

Let L be the negative de�nite latti
e of rank r given by

L = Z(�2N) ? � � � ? Z(�2N):

De�ne

A

r

(N) =

X

�

1

;:::;�

r

(N)

B

�

�

2

1

N

+ � � �+

�

2

r

N

�

;

where �

1

; : : : ; �

r

run through a set of representatives of Z=NZ. Then for our parti
ular

latti
e L we have �

0

5

= �

1

2

A

r

(4N).

We denote byH(a) for a 6= �3;�4 the 
lass number of positive de�nite binary quadrati


forms of dis
riminant a and put H(�3) = 1=3, H(�4) = 1=2. Then H(a) = 0, if a > 0

or a 6� 0; 1 (mod 4). Moreover, we write �

a

for the Diri
hlet 
hara
ter de�ned by the

Krone
ker symbol x 7!

�

a

x

�

.

Theorem 11. Suppose that r is odd. Then

A

r

(N) = ��

�4

(r)N

r�1

X

ajN

a��1 (4)

a

1�r

2

H(�a)� �

�8

(r)

�

p

2N

�

r�1

X

ajN

a�0 (4)

a

1�r

2

H(�a):

Here the sums run through the positive divisors of N satisfying the indi
ated 
onditions.

Proof. If n 2 Z and a 2 N , then we denote by G(n; a) =

P

�(a)

e(n�

2

=a) the standard

Gauss sum. By means of the Fourier expansion (20) of the fun
tion B , we 
an rewrite

A

r

(N) as a Diri
hlet series:

A

r

(N) = �

1

2�i

X

n2Z�f0g

1

n

G(n;N)

r

= �

1

�

X

n�1

1

n

=(G(n;N)

r

):

Using the fa
t G(n;N) = aG(n=a;N=a) for aj(n;N), we �nd

A

r

(N) = �

N

r�1

�

X

ajN

X

m�1

(m;a)=1

1

m

a

1�r

=(G(m; a)

r

):

If we insert the expli
it formula for G(m; a) (
f. [La℄ 
hapter 4.3), we obtain by a lengthy

but straightforward 
al
ulation

A

r

(N) = �

N

r�1

�

X

ajN

a

1�r=2

L(�

�a

; 1) �

8

>

<

>

:

0; if a � 1; 2 (mod 4),

�

�4

(r); if a � �1 (mod 4),

2

(r�1)=2

�

�8

(r); if a � 0 (mod 4).
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Here L(�

a

; s) denotes the Diri
hlet series asso
iated to the Diri
hlet 
hara
ter �

a

. Sin
e

L(�

�a

; 1) = �H(�a)=

p

a (
f. [Za℄ x8), this implies the assertion.

By virtue of the above argument, A

r


an also be evaluated for even r. In this 
ase 
lass

numbers do not show up. For instan
e for r � 0 (mod 4) one �nds that A

r

(N) = 0. More

generally �

0

5


an be 
omputed for any latti
e of the form Z(�2N

1

) ? � � � ? Z(�2N

r

) with

N

1

; : : : ; N

r

2 N . Note that for r = 1 the above formula is already 
ontained in the book

[EZ℄ in x10 (but with a di�erent proof).

Referen
es

[Bo1℄ R. E. Bor
herds, Automorphi
 forms with singularities on Grassmannians, Invent.

Math. 132 (1998), 491{562.

[Bo2℄ R. E. Bor
herds, The Gross-Kohnen-Zagier theorem in higher dimensions, Duke Math.

J. 97 (1999), 219{233.

[Bo3℄ R. E. Bor
herds, Re
e
tion groups of Lorentzian latti
es, Duke Math. J. 104 (2000),

319{366.

[Br1℄ J. H. Bruinier, Bor
herds produ
ts on O(2; l) and Chern 
lasses of Heegner di-

visors, Habilitationss
hrift, Universit�at Heidelberg (2000), http://www.mathi.uni-

heidelberg.de/~bruinier/.

[Br2℄ J. H. Bruinier, Bor
herds produ
ts and Chern 
lasses of Hirzebru
h-Zagier divisors,

Invent. math. 138 (1999), 51{83.

[BF℄ J. H. Bruinier and E. Freitag, Lo
al Bor
herds produ
ts, Annales de l'institut Fourier,

to appear.

[EZ℄ M. Ei
hler and D. Zagier, The Theory of Ja
obi Forms, Progress in Math. 55 (1985),

Birkh�auser.

[Fi℄ J. Fis
her, An approa
h to the Selberg tra
e formula via the Selberg zeta-fun
tion,

Le
ture Notes in Mathemati
s 1253, Springer-Verlag (1987).

[Fr℄ E. Freitag, Siegels
he Modulfunktionen, Springer-Verlag (1983).

[GN℄ B. van Geemen and N. O. Nygaard, On the geometry and arithmeti
 of some Siegel

modular threefolds, J. Number Theory 53 (1995), 45{87.

[GrNi℄ V. Gritsenko and V. Nikulin, Automorphi
 forms and Lorentzian Ka
-Moody algebras.

Part II, Intern. J. of Math. 9 (1998), 201{275.

[La℄ S. Lang, Algebrai
 Number Theory, Addison-Wesley (1970).

[LW1℄ R. Lee and S. H. Weintraub, Cohomology of Sp(4;Z) and related groups and spa
es,

Topology 24 (1985), 391{410.

[LW2℄ R. Lee and S. H. Weintraub, On 
ertain Siegel modular varieties of genus two and levels

above two, alg. topology and transformation groups, Le
t. Notes Math. 1361 (1988),

29{52.

[No℄ A. Nobs, Die irreduziblen Darstellungen der Gruppen SL

2

(Z

p

), insbesondere SL

2

(Z

2

).

I. Teil, Comment Math. Helveti
i 51 (1976), 465{489.

[We1℄ R. Weissauer, Di�erentialformen zu Untergruppen der Siegels
hen Modulgruppe

zweiten Grades, J. reine angew. Math. 391 (1988), 100{156.

[We2℄ R. Weissauer, The Pi
ard group of Siegel modular threefolds, J. reine angew. Math.

430 (1992), 179{211.

[Za℄ D. Zagier, Zetafunktionen und quadratis
he K�orper, Springer-Verlag (1981).

15


