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1 Introdution

Let L be an even lattie of signature (2; l) with l � 3. Write q(�) for the quadrati form

on L and L for the (�nite) disriminant group of L.

Let O

0

(L


Z

R) be the spinor kernel of the real orthogonal group of L and denote the

orresponding Hermitean symmetri domain by H

l

. We write O

0

(L) for the intersetion of

the integral orthogonal group of L with O

0

(L 


Z

R). We onsider the disriminant kernel

�(L) of the group O

0

(L), that is the subgroup of those elements that at trivially on L.

There is a natural notion of prinipal ongruene groups for the group �(L): For any

non-zero integer N we have the resaled lattie L(N), given by L as a Z-module, but

equipped with the quadrati form Nq(�). The disriminant kernel of L(N) is a subgroup

of �(L), de�ned by ongruene onditions modulo N . We all it prinipal ongruene

subgroup of level N and denote it by �(N).

We onsider the arithmeti quotient X(N) = H

l

=�(N). By the theory of Baily-Borel,

it arries the struture of a quasiprojetive algebrai variety. A fundamental geometri

invariant is its algebrai Piard group Pi(X(N)). Our assumption on l implies that this

group is �nitely generated. In the present paper we shall derive a nontrivial lower bound

for the rank of Pi(X(N)). In partiular we are interested in the asymptoti behavior of

the numbers

rank (Pi(X(N)))

as N ! 1. Although this problem seems very natural, to the best of our knowledge,

just partial results an be found in the literature. (See for instane [LW1, LW2℄ or [GN℄.)

Certainly one would expet that the rank of Pi(X(N)) tends to in�nity as N ! 1,
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reeting the fat that the geometry of X(N) gets more ompliated as the level rises.

However, even a result of this type seems not to be known in general.

Put X = X(1). It is a onsequene of the work of Borherds [Bo1, Bo2℄ and the

re�nement given in [Br1℄ that there exists a homomorphism

S

�;L

�! Pi(X)


Z

C

Æ

C [E

Hodge

℄ (1)

from a ertain spae S

�;L

of C [L℄-valued usp forms of weight � = 1 + l=2 to the quotient

of Pi(X)


Z

C modulo the span of the lass of the Hodge line bundle E

Hodge

.

If L splits two orthogonal hyperboli planes over Z, then the main result of [Br1℄ says

that this map is injetive (see also [Br2℄ or [BF℄ for related results). Hene in this ase

we an obtain a lower bound for rank(Pi(X)) by estimating the dimension of S

�;L

. By

means of the Riemann-Roh theorem or the Selberg trae formula, the dimension of S

�;L

an be omputed. Thereby the original problem is redued to estimating the di�erent

ontributions in the dimension formula. Some of these are \strange" invariants of the

disriminant group L and the Q=Z-valued quadrati form on it indued by q. They are

studied in setion 2, the tehnial heart of this paper.

Let us now assume that L splits two orthogonal hyperboli planes over Z, i.e. has the

speial shape L = L

0

? H ? H, where L

0

is an even negative de�nite lattie. Then the

above argument an be used to �nd a bound for the rank of Pi(X). Unfortunately, it

annot be applied diretly to get a bound for Pi(X(N)), sine L(N) does not split two

hyperboli planes over Z.

Therefore we �rst onsider the lattie

L[N ℄ = L

0

(N) ? H ? H

and its disriminant kernel �[N ℄ = �(L[N ℄). We write X[N ℄ for the quotient H

l

=�[N ℄.

The group �[N ℄ an be viewed as a subgroup of the rational orthogonal group of L with the

property that �(N) � �[N ℄. In the O(2; 3)-ase of the Siegel modular group of genus 2 it is

isomorphi to the paramodular group of level N . Using the injetivity of the map (1) and

the estimate of setion 2 for the dimension of S

�;L

, we obtain a bound for rank(Pi(X[N ℄))

(see Theorem 8). In partiular we �nd that for any " > 0 there exists a onstant C

"

> 0

(whih an be easily determined) suh that

rank (Pi(X[N ℄)) �

ljLjN

l�2

48

�

(

C

"

N

1=2+"

; if l = 3,

C

"

N

l�3+"

; if l > 3,

(2)

for all N 2 N (Corollary 9).

The projetion X(N)! X[N ℄ indues an injetive homomorphism

Pi (X[N ℄) �! Pi (X(N)) :
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Hene all bounds for the rank of Pi(X[N ℄) give us also bounds for the rank of Pi(X(N)).

There are some reasons to believe that our estimate (2) atually desribes the true asymp-

toti growth of rank(Pi(X[N ℄)), whereas the resulting bound for Pi(X(N)) seems rather

poor (see questions 1 and 2). Better results for X(N) ould be obtained by studying the

injetivity properties of the map (1) more arefully for latties whih do not split two

hyperboli planes over Z.

As an important example we onsider the speial ase of the Siegel modular group of

genus 2 in somewhat more detail. We take L = Z(�2) ? H ? H and use the exeptional

isomorphism from Sp(4;R) to O(2; 3). Due to the work of Weissauer [We1, We2℄ we know

a lot about the Piard groups Pi(X(N)) in this ase. For instane the Tate onjeture for

algebrai divisors is proved in [We1℄. However, lower bounds for the rank of Pi(X[N ℄) or

Pi(X(N)) seem not to be known in general.

The group �[N ℄ is isomorphi to the paramodular group of level N (f. [GrNi℄). The

quotient X[N ℄ is the moduli spae of Abelian surfaes with a (1; N)-polarization. Our

result implies that for any " > 0 there is a onstant C

"

> 0 suh that

rank (Pi(X[N ℄)) � N=8� C

"

N

1=2+"

for all N 2 N (Corollary 10). The same estimate holds for the Siegel prinipal ongruene

subgroup of level N .

In the Appendix we apply some ideas of setion 2 to derive ertain lass number identi-

ties. Together with the lemmas in setion 2 they an be used to evaluate the formula for the

dimension of S

�;L

expliitly when L has the speial shape L = Z(�2t

1

) ? � � � ? Z(�2t

r

)

with nonzero integers t

1

; : : : ; t

r

. Moreover, these identities might be of independent inter-

est.

Aknowledgments. I would like to thank M. Bundshuh, E. Freitag, and R. Weissauer for

several helpful onversations.

2 The dimension formula

Let L be an even lattie of signature (b

+

; b

�

). We denote the bilinear form on L by (�; �)

and the assoiated quadrati form by q(x) =

1

2

(x; x). We write L

0

for the dual lattie of L

and L = L

0

=L for the (�nite) disriminant group. Moreover, let d = jL=f�1gj, r = b

+

+ b

�

be the rank of L, and denote by

D = minfn 2 N ; nq() 2 Z for all  2 L

0

g (3)

the level of L.

We write Mp

2

(R) for the metapleti 2-fold over of SL

2

(R) and denote by Mp

2

(Z) the

inverse image of SL

2

(Z) under the overing map. Reall that the elements of Mp

2

(R) are

pairs (M;�(�)), where M = (

a b

 d

) 2 SL

2

(R), and � denotes a holomorphi funtion on the
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upper omplex half plane H with �(�)

2

= �+d. It is well known that Mp

2

(Z) is generated

by

T =

��

1 1

0 1

�

; 1

�

and S =

��

0 �1

1 0

�

;

p

�

�

:

One has the relations S

2

= (ST )

3

= Z, where Z =

��

�1 0

0 �1

�

; i

�

is the standard generator

of the enter of Mp

2

(Z).

There is a unitary representation �

L

of Mp

2

(Z) on the group algebra C [L℄ of L. If we

denote the standard basis of C [L℄ by (e



)

2L

then �

L

an be de�ned by the ation of the

generators S; T 2 Mp

2

(Z) as follows (see also [Bo1℄, [Bo2℄, where the dual of �

L

is used):

�

L

(T )e



= e(�q())e



; (4)

�

L

(S)e



=

p

i

b

+

�b

�

p

jLj

X

Æ2L

e((; Æ))e

Æ

: (5)

Here and throughout we abbreviate e(z) = e

2�iz

for z 2 C . This representation is essentially

the Weil representation attahed to the quadrati module (L; q) (see [No℄).

Let k 2

1

2

Z. We denote by M

k;L

the vetor spae of C [L℄-valued modular forms of

weight k with representation �

L

for the group Mp

2

(Z). The subspae of usp forms is

denoted by S

k;L

. (See also [BF℄ or [Bo1℄.) It is easily seen that M

k;L

= 0, if 2k 6� b

�

� b

+

(mod 2).

Sine �

L

fators through a �nite quotient of Mp

2

(Z), it is lear that the dimension

of M

k;L

is �nite. It an be omputed using the Riemann-Roh theorem or the Selberg

trae formula in a standard way. This is arried out in [Fi℄ in a more general situation.

In our speial ase the following formula holds (see [Bo3℄, [Bo2℄ p. 228): Assume that

2k � b

�

� b

+

(mod 4) (we will only be interested in this ase). Then the d-dimensional

subspae W = spanfe



+ e

�

;  2 Lg of C [L℄ is invariant under �

L

. More preisely �

L

ats by multipliation with e(�k=2) on W . We denote by � the restrition of �

L

to W . If

M is a unitary matrix of size d with eigenvalues e(�

j

) and 0 � �

j

< 1 (for j = 1; : : : ; d),

then we de�ne

�(M) =

d

X

j=1

�

j

:

The dimension of M

k;L

is given by

dim

C

(M

k;L

) = d+ dk=12� �

�

e

�ik=2

�(S)

�

� �

�

�

e

�ik=3

�(ST )

�

�1

�

� �(�(T )): (6)

Furthermore, using Eisenstein series, it an be easily shown that the odimension of S

k;L

in M

k;L

is equal to the number of elements of the set

f 2 L=f�1g; q() 2 Zg (7)
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(see also [Br1℄ hapter 1.2.3).

As already pointed out in the introdution, we need to �nd a lower bound for the

dimension of S

k;L

. In view of (6) and (7) we have to estimate the quantities

�

1

:= �

�

e

�ik=2

�(S)

�

;

�

2

:= �

�

�

e

�ik=3

�(ST )

�

�1

�

;

�

3

:= �(�(T ));

�

4

:=

�

�

f 2 L=f�1g; q() 2 Zg

�

�

:

This an easily be done for �

1

, �

2

, and �

4

. However, for �

3

this problems turns out to be

more diÆult. In the appendix we will see that �

3

sometimes is related to lass numbers

of imaginary quadrati �elds.

For the estimates we �rst need some fats on Gauss sums attahed to L. Let n 2 Z.

We de�ne the Gauss sum G(n; L) by

G(n; L) =

X

2L

e(nq()): (8)

Two basi but important properties of G(n; L) are

G(�n; L) = G(n; L); (9)

G(n+D;L) = G(n; L): (10)

If n is an integer, we de�ne

L

n

= f 2 L; n = 0g :

Observe that jL

2

j = 2d�jLj. In general it follows from the theorem of elementary divisors

that

jL

n

j � (D; n)

r

; (11)

where (D; n) denotes the greatest ommon divisor of D and n.

Lemma 1. Let n be a positive integer. i) If Djn, then G(n; L) = jLj. ii) The absolute

value of G(n; L) is given by

jG(n; L)j =

p

jLj

p

jL

n

j:

In partiular jG(n; L)j =

p

jLj, if (n;D) = 1.

The proof is left to the reader.
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Lemma 2. The quantities �

1

and �

2

an be expressed in terms of Gauss sums as follows:

�

1

=

d

4

�

1

4

p

jLj

e

�

(2k + b

+

� b

�

)=8

�

<

�

G(2; L)

�

; (12)

�

2

=

d

3

+

1

3

p

3jLj

<

�

e

�

(4k + 3b

+

� 3b

�

� 10)=24

��

G(1; L) +G(�3; L)

�

�

: (13)

Proof. The idea of the proof was ommuniated to us by R. E. Borherds. Let us �rst

onsider (12). In Mp

2

(Z) we have the relation S

2

= Z. Sine Z ats on W � C [L℄ by

multipliation with e(�k=2), the identity

(e(k=4)�(S))

2

= e(k=2)�(Z) = id

holds. Hene all eigenvalues of e(k=4)�(S) equal �1. If b denotes the number of eigenvalues

equal to �1, then

tr

W

(e(k=4)�(S)) = �b + (d� b) = d� 2b:

Thus

�

1

= b=2 =

d

4

�

1

4

tr

W

(e(k=4)�(S)) :

Note that tr

W

(�(S)) =

1

2

tr

C [L℄

(�(S) + �(S)X), where X denotes the map C [L℄ ! C [L℄

given by e



7! e

�

. Hene it follows from (5) that

tr

W

(e(k=4)�(S)) =

1

p

jLj

e

�

(2k + b

+

� b

�

)=8

�

< (G(2; L)) :

This implies the assertion.

Equality (13) an be proved in the same way. Using the relation (ST )

3

= Z we �nd

�

2

=

d

3

+

2

3

p

3

<

�

e(�5=12 + k=6) tr

W

(�(ST ))

�

:

Furthermore, by (5) and (4) we have

tr

W

(�(ST )) =

1

2

p

jLj

e((b

+

� b

�

)=8) (G(1; L) +G(�3; L)) :

From Lemma 2 we obtain the following orollary.

Corollary 3. The quantities �

1

and �

2

satisfy the estimates

j�

1

� d=4j �

1

4

p

jL

2

j; (14)

j�

2

� d=3j �

1

3

p

3

�

1 +

p

jL

3

j

�

: (15)
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We now derive an estimate for �

4

. If n is a positive integer, we de�ne the divisor sum

�

t

(n) =

P

ajn

a

t

.

Lemma 4. We have

j�

4

j �

jL

2

j

2

+

p

jLj

2

�

r=2�1

(D):

Proof. We write �

4

as

�

4

=

1

2

X

2L

2

q()2Z

1 +

1

2

X

2L

q()2Z

1:

The seond term on the right hand side is equal to

1

2D

X

2L

X

� (D)

e(q()�) =

1

2D

X

� (D)

G(�; L):

Thus, using Lemma 1, we obtain

j�

4

j �

jL

2

j

2

+

1

2D

X

� (D)

p

jLj

p

jL

�

j

�

jL

2

j

2

+

p

jLj

2D

X

� (D)

(�;D)

r=2

�

jL

2

j

2

+

p

jLj

2D

X

ajD

D=a

X

�=1

(�;D=a)=1

a

r=2

�

jL

2

j

2

+

p

jLj

2D

X

ajD

D

a

a

r=2

�

jL

2

j

2

+

p

jLj

2

�

r=2�1

(D):

Before we onsider �

3

we introdue some more notation. If x 2 R, then we write [x℄

for the greatest-integer funtion maxfn 2 Z; n � xg. Moreover, we de�ne

B (x) = x�

1

2

([x℄� [�x℄): (16)

Thus B (x) is the 1-periodi funtion on R with B (x) = 0 for x = 0; 1 and B (x) = x� 1=2

for 0 < x < 1. By de�nition

�

3

=

X

2L=f�1g

(�q()� [�q()℄) :
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Using B (x) and �

4

we may rewrite this in the form

�

3

=

d

2

�

�

4

2

�

X

2L=f�1g

B (q()):

Hene, to obtain information on �

3

, it suÆes to onsider the invariants

�

5

=

X

2L=f�1g

B (q()); (17)

�

0

5

=

X

2L

B (q()) (18)

of L. Obviously the relation

�

5

=

1

2

X

2L

2

B (q()) +

�

0

5

2

holds. For  2 L

2

, we have q() 2

1

4

Z and thereby jB (q())j � 1=4. Hene

j�

5

j � jL

2

j=8 + j�

0

5

j=2 and

j�

3

� d=2 + �

4

=2j � jL

2

j=8 + j�

0

5

j=2: (19)

The main result of this setion is the following estimate for �

0

5

.

Lemma 5. The invariant �

0

5

satis�es

j�

0

5

j �

p

jLj

�

(3=2 + ln(D))

�

�

r=2�1

(D)�D

r=2�1

�

:

Proof. The 1-periodi funtion B (x) has the pointwise onvergent Fourier expansion

B (x) = �

1

2�i

X

n2Z�f0g

e(nx)

n

: (20)

Inserting this into the de�nition of �

0

5

we �nd

�

0

5

= �

1

2�i

X

n2Z�f0g

1

n

X

2L

e(nq())

= �

1

2�i

X

n2Z�f0g

1

n

G(n; L)

= �

1

�

1

X

n=1

1

n

=(G(n; L)):
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We use (9) and (10) and the fat =(G(D�; L)) = 0 to rewrite this as follows:

�

0

5

= �

1

2�

1

X

n=0

D�1

X

�=1

 

=

�

G(Dn+ �; L)

�

Dn+ �

+

=

�

G(D(n+ 1)� �; L)

�

D(n+ 1)� �

!

= �

1

2�

1

X

n=0

D�1

X

�=1

�

1

Dn+ �

�

1

D(n+ 1)� �

�

=(G(�; L))

= �

1

�

D�1

X

�=1

1

�

=(G(�; L))�

1

2�

1

X

n=1

D�1

X

�=1

D � 2�

D

2

n(n+ 1) +D� � �

2

=(G(�; L)):

By means of Lemma 1 we obtain

j�

0

5

j �

1

�

D�1

X

�=1

1

�

jG(�; L)j+

1

2�

1

X

n=1

D�1

X

�=1

D � 2

D

2

n(n + 1)

j(G(�; L))j

�

p

jLj

�

D�1

X

�=1

1

�

p

jL

�

j+

p

jLj

2�D

D�1

X

�=1

1

X

n=1

p

jL

�

j

1

n(n + 1)

:

The latter sum over n equals 1. We apply (11) and rewrite the sum over �. We get

j�

0

5

j �

p

jLj

�

X

ajD

a6=D

D=a

X

�=1

(�;D=a)=1

1

a�

a

r=2

+

p

jLj

2�D

X

ajD

a6=D

D=a

X

�=1

(�;D=a)=1

a

r=2

�

p

jLj

�

X

ajD

a6=D

(1 + ln(D=a))a

r=2�1

+

p

jLj

2�D

X

ajD

a6=D

D

a

a

r=2

�

p

jLj

�

(3=2 + ln(D))

�

�

r=2�1

(D)�D

r=2�1

�

:

Here we have also used the estimate

P

n

�=1

1

�

� 1 + ln(n).

If we put the above lemmas together we �nally obtain the desired estimate for the

dimension of S

k;L

.

Theorem 6. Assume that 2k � b

�

� b

+

(mod 4). Then

�

�

�

�

dim(S

k;L

)�

(k � 1)d

12

�

�

�

�

�

p

jL

2

j

4

+

1 +

p

jL

3

j

3

p

3

+

3

8

jL

2

j+

p

jLj

4

�

r=2�1

(D)

+

p

jLj

2�

(3=2 + ln(D))

�

�

r=2�1

(D)�D

r=2�1

�

:

This estimate ould be further improved by using the theorem of elementary divisors

more arefully in the proof of Lemma 4 and 5. However, sine we are mainly interested in

asymptoti questions, the above result suÆes for our purposes. Reall that the quantities

jL

�

j are bounded by (11).
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3 Piard groups

For any lattie (L; q) and any non-zero integer N , we may onsider the resaled lattie

L(N). It is given by L as a Z-module, but equipped with the resaled quadrati form

Nq(�). The dual is given by L(N)

0

=

1

N

L

0

.

From now on we suppose that L has signature (2; l) with l � 3. The orthogonal group

O(L) of L is a disrete subgroup of the real orthogonal group O(L 


Z

R)

�

=

O(2; l). Let

O

0

(L


Z

R) be the spinor kernel of O(L


Z

R) and O

0

(L) = O

0

(L


Z

R)\O(L). We denote

by �(L) the disriminant kernel of the group O

0

(L). By de�nition, this is the subgroup of

those elements of O

0

(L), whih at trivially on the disriminant group L.

Let us briey reall the onstrution of the Hermitean symmetri domain H

l

assoiated

to O

0

(L 


Z

R). We extend the bilinear form (�; �) on L to a C -bilinear form on the om-

plexi�ation L


Z

C and onsider the following hain of subsets of the assoiated projetive

spae P (L


Z

C ):

H

l

� K � N � P (L


Z

C ):

Here N denotes the zero quadri, i.e. the subset of P (L


Z

C ) represented by vetors z of

norm zero (z; z) = 0. The open subset K is de�ned by the ondition (z; �z) > 0. It has two

onneted omponents. We hoose one of them and denote it by H

l

. The real orthogonal

group of L ats on L


Z

C , P (L


Z

C ), N , and K. The spinor kernel ats on H

l

.

Let � = �(L) and X be the quotient H

l

=�. By the theory of Baily-Borel, X is a

quasi-projetive algebrai variety.

If � ats freely on H

l

, then X is smooth. In this ase we denote by Pi(X) the usual

algebrai Piard group, i.e. the group of isomorphism lasses of algebrai holomorphi line

bundles on X. If � does not at freely, then we hoose a normal subgroup �

0

of �nite index

whih ats freely. We de�ne the Piard group of X by

Pi(X) = Pi(H

l

=�

0

)

�=�

0

;

i.e. as the subgroup of Pi(H

l

=�

0

), whih is invariant under the ation of the �nite group

�=�

0

. Our assumption on l implies that these Piard groups are �nitely generated.

In the same way we de�ne the divisor lass group Cl(X) of X. (See also [Bo2℄ and

[Br1℄.) Moreover, we write

e

Cl(X) for the quotient of Cl(X) modulo the subgroup A(X) of

divisor lasses oming from meromorphi automorphi forms (of generally non-zero weight

with a harater of �nite order) for the group �. There is the usual injetive map

Cl(X) �! Pi(X);

whih assigns to a divisor lass its assoiated lass of line bundles. (By our de�nition

of Cl and Pi this map also makes sense if � does not at freely. Sine X is quasi-

projetive, this map is in fat an isomorphism.) Thus the rank of Pi(X) is bounded by

dim

C

(Cl(X)


Z

C ). It follows from the Koeher boundedness priniple (whih holds sine

l � 3) that dim(A(X)


Z

C ) = 1 and thereby

rank(Pi(X)) � 1 + dim

C

(

e

Cl(X)


Z

C ): (21)
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Put � = 1+ l=2. It is a onsequene of the existene of Borherds' lifting from modular

forms of negative weight 1 � l=2 to automorphi produts for the group � and Serre

duality that there exists a homomorphism from the spae of Gal(

�

Q =Q )-onjugates of S

�;L

to

e

Cl(X) 


Z

C (f. [Bo1, Bo2℄). By the re�nement given in [Br1℄ hapter 5.1, we more

preisely know that there is a homomorphism

� : S

�;L

�!

e

Cl(X)


Z

C : (22)

We may infer the following fundamental proposition.

Proposition 7. Suppose that the map � is injetive. Then

rank(Pi(X)) � 1 + dim

C

(S

�;L

):

Reall that a hyperboli plane is a lattie H whih is isomorphi to the lattie Z

2

equipped with the quadrati form q((a; b)) = ab. For the rest of this setion we assume

that L splits two orthogonal hyperboli planes over Z, i.e. has the speial shape L = L

0

?

H ? H, where L

0

is an even negative de�nite lattie of rank l � 2.

Let N be a positive integer. We onsider the lattie

L[N ℄ = L

0

(N) ? H ? H;

its disriminant kernel �[N ℄ = �(L[N ℄), and the assoiated modular variety X[N ℄ =

H

l

=�[N ℄. We may view �[N ℄ as a subgroup of O(L 


Z

Q ) whih is ommensurable with

� = �(L).

Theorem 8. Let L be a lattie as above and L its disriminant group. Let D be the level

of L as de�ned in (3). Then

rank (Pi(X[N ℄)) �

ljLjN

l�2

48

+ l=48 + 1� 2

l=2�3

� 3 � 2

l�5

� 3

�3=2

� 3

l=2�5=2

�

p

jLj

4

N

l=2�1

�

l=2�2

(DN)

�

p

jLj

2�

N

l=2�1

(3=2 + ln(DN))

�

�

l=2�2

(DN)� (DN)

l=2�2

�

:

Proof. By onstrution the lattie L[N ℄ splits two hyperboli planes over Z. The main

result of [Br1℄ hapter 5.2 says that the map (22) is injetive in this ase. By Proposition

7 we �nd

rank (Pi(X[N ℄)) � 1 + dim(S

�;L[N ℄

) = 1 + dim(S

�;L

0

(N)

):

We apply Theorem 6 to estimate the dimension of S

�;L

0

(N)

. The rank of L

0

(N) is l� 2,

the level of L

0

(N) is DN , and

jL

0

(N)

0

=L

0

(N)j = N

l�2

jLj;

j(L

0

(N)

0

=L

0

(N))=f�1gj �

1

2

(1 +N

l�2

jLj):

If we also take into aount (11) we obtain the assertion.
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Corollary 9. Let " > 0. Then there exist positive onstants C

1

= C

1

(L; ") and C

2

= C

2

(L)

(whih an be easily determined expliitly) suh that

rank (Pi(X[N ℄)) �

ljLjN

l�2

48

� C

2

�

(

C

1

N

1=2+"

; if l = 3,

C

1

N

l�3+"

; if l > 3,

for all N 2 N.

In the above situation the map (22) indues in fat an isomorphism from S

�;L[N ℄

to the

subspae of

e

Cl(X[N ℄)


Z

C , whih is generated by algebrai divisors �

?

, where � 2 L[N ℄

0

is a negative norm vetor and the orthogonal omplement is taken is H

l

. Aording to the

Tate onjeture one should expet that the odimension of this subspae in

e

Cl(X[N ℄)


Z

C

is small. This leads us to the following

Question 1. Is it true that

rank (Pi(X[N ℄)) � ljLjN

l�2

=48; N !1?

Let N be a positive integer. It is natural to de�ne the prinipal ongruene subgroup

of level N of � = �(L) by

�(N) = �(L(N)):

We now onsider the Piard groups of the modular varieties X(N) = H

l

=�(N). In the

same way as in [Fr℄ (hapter 2.6 Hilfssatz 6.5) it an be proved that for N � 3 the group

�(N) ats freely on H

l

. Thus X(N) is smooth in this ase.

To obtain an estimate for the rank of Pi(X(N)) we annot argue as above. Sine L(N)

does not split two hyperboli planes over Z, we do not have the result of [Br1℄ saying that

the map � (22) is injetive.

However, we an still get an estimate for the rank of Pi(X(N)) in the following way.

There exists a lattie

~

L, whih is isomorphi to L[N ℄ and ontains

L(N) = L

0

(N) ? H(N) ? H(N)

as a sub-lattie. It is easily seen that

�(N) = �(L(N)) � �(

~

L):

(In fat, taking the disriminant kernel of a lattie is funtorial.) Therefore we may view

�(N) as a subgroup of �[N ℄. The natural projetion X(N) ! X[N ℄ indues an injetive

map of Piard groups

Pi(X[N ℄) �! Pi(X(N)):

Thus Theorem 8 gives us a lower bound for rank(Pi(X(N))), too. The asymptoti bound

of orollary 9 also holds.

It is lear that these bounds for the rank of Pi(X(N)) are probably not optimal. Here

it is natural to ask

Question 2. What is the asymptoti behavior of the numbers rank(Pi(X(N))) for N !

1?
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3.1 The Siegel modular group of genus 2

If R is a subring of C , then we denote by

Sp(2; R) = fM 2 GL(4; R); M

t

IM = Ig

the sympleti group of genus 2 with oeÆients in R. Here I denotes the matrix

�

0 E

�E 0

�

and E the 2 � 2 identity matrix. The group Sp(2;R) ats on the Siegel half plane H

2

.

Let N be a positive integer. The paramodular group �

S

[N ℄ of level N is the subgroup of

Sp(2;Q) given by matries of the form

0

B

B

�

� N� � �

� � � N

�1

�

� N� � �

N� N� N� �

1

C

C

A

;

where the � are all integral. The quotient H

2

=�

S

[N ℄ is the moduli spae of Abelian surfaes

with a (1; N)-polarization.

Let L be the lattie H ? H ? Z(�2) of signature (2; 3). It is well known that

there exists an isomorphism Sp(2;R)=f�1g ! O

0

(L[N ℄
 R)=f�1g, whih ommutes with

the ation of Sp(2;R) on H

2

and the ation of O

0

(L 
 R) on H

3

, and whih indues an

isomorphism

�

S

[N ℄=f�1g �! �[N ℄=f�1g = �(L[N ℄)=f�1g

(see [GN℄). Hene Corollary 9 implies

Corollary 10. Let " > 0. Then there exist positive onstants C

1

= C

1

(") and C

2

< 0:6

(whih an be easily determined) suh that

rank (Pi(H

2

=�

S

[N ℄)) � N=8� C

2

� C

1

N

1=2+"

for all N 2 N.

Note that dim(S

�;L[N ℄

) an be omputed expliitly in this ase. By Lemma 2 the quanti-

ties �

1

and �

2

an be expressed in terms of standard Gauss sums G(n; a) =

P

�(a)

e(n�

2

=a).

Moreover, �

4

is equal to [1 + b=2℄, where b is the largest integer whose square divides N .

Finally, using Theorem 11 of the appendix, �

5

an be written as a sum of lass num-

bers. Therefore we ould obtain a sharper estimate than in Theorem 8. However, in the

asymptoti estimate Corollary 10 this would only improve the onstants C

1

and C

2

.

Let �

S

(N) � Sp(2;Z) be the prinipal ongruene subgroup of level N , i.e. the kernel of

the redution homomorphism Sp(2;Z)! Sp(2;Z=NZ). Sine �

S

(N) � �

S

[N ℄, the above

estimate also holds for the group �

S

(N). (To see this we ould have also used the fat

that the orthogonal prinipal ongruene subgroup �(N) is isomorphi to a group G with

�

S

(2N) � G � �

S

(N).)
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Appendix

In setion 2 we saw that the quantities �

1

; �

2

; �

4

an all be expressed in terms of Gauss

sums. We now indiate, how the idea of the proof of Lemma 5 an sometimes be used to

obtain a losed formula for �

0

5

(and thereby for �

3

) in terms of lass numbers.

Let L be the negative de�nite lattie of rank r given by

L = Z(�2N) ? � � � ? Z(�2N):

De�ne

A

r

(N) =

X

�

1

;:::;�

r

(N)

B

�

�

2

1

N

+ � � �+

�

2

r

N

�

;

where �

1

; : : : ; �

r

run through a set of representatives of Z=NZ. Then for our partiular

lattie L we have �

0

5

= �

1

2

A

r

(4N).

We denote byH(a) for a 6= �3;�4 the lass number of positive de�nite binary quadrati

forms of disriminant a and put H(�3) = 1=3, H(�4) = 1=2. Then H(a) = 0, if a > 0

or a 6� 0; 1 (mod 4). Moreover, we write �

a

for the Dirihlet harater de�ned by the

Kroneker symbol x 7!

�

a

x

�

.

Theorem 11. Suppose that r is odd. Then

A

r

(N) = ��

�4

(r)N

r�1

X

ajN

a��1 (4)

a

1�r

2

H(�a)� �

�8

(r)

�

p

2N

�

r�1

X

ajN

a�0 (4)

a

1�r

2

H(�a):

Here the sums run through the positive divisors of N satisfying the indiated onditions.

Proof. If n 2 Z and a 2 N , then we denote by G(n; a) =

P

�(a)

e(n�

2

=a) the standard

Gauss sum. By means of the Fourier expansion (20) of the funtion B , we an rewrite

A

r

(N) as a Dirihlet series:

A

r

(N) = �

1

2�i

X

n2Z�f0g

1

n

G(n;N)

r

= �

1

�

X

n�1

1

n

=(G(n;N)

r

):

Using the fat G(n;N) = aG(n=a;N=a) for aj(n;N), we �nd

A

r

(N) = �

N

r�1

�

X

ajN

X

m�1

(m;a)=1

1

m

a

1�r

=(G(m; a)

r

):

If we insert the expliit formula for G(m; a) (f. [La℄ hapter 4.3), we obtain by a lengthy

but straightforward alulation

A

r

(N) = �

N

r�1

�

X

ajN

a

1�r=2

L(�

�a

; 1) �

8

>

<

>

:

0; if a � 1; 2 (mod 4),

�

�4

(r); if a � �1 (mod 4),

2

(r�1)=2

�

�8

(r); if a � 0 (mod 4).
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Here L(�

a

; s) denotes the Dirihlet series assoiated to the Dirihlet harater �

a

. Sine

L(�

�a

; 1) = �H(�a)=

p

a (f. [Za℄ x8), this implies the assertion.

By virtue of the above argument, A

r

an also be evaluated for even r. In this ase lass

numbers do not show up. For instane for r � 0 (mod 4) one �nds that A

r

(N) = 0. More

generally �

0

5

an be omputed for any lattie of the form Z(�2N

1

) ? � � � ? Z(�2N

r

) with

N

1

; : : : ; N

r

2 N . Note that for r = 1 the above formula is already ontained in the book

[EZ℄ in x10 (but with a di�erent proof).
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