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Abstract. We evaluate regularized theta lifts for Lorentzian lattices in three different ways.
In particular, we obtain formulas for their values at special points involving coefficients of
mock theta functions. By comparing the different evaluations, we derive recurrences for the
coefficients of mock theta functions, such as Hurwitz class numbers, Andrews’ spt-function,
and Ramanujan’s mock theta functions.

1. Introduction

Special values of modular forms at complex multiplication points play a prominent role
in number theory. For instance, they are crucial in explicit class field theory and in the
Chowla-Selberg formula. Moreover, the evaluation of automorphic Green functions at CM
points determines archimedean height pairings appearing in the Gross-Zagier formula and
some of its generalizations [23]. These can be computed using suitable see-saw dual pairs for
regularized theta lifts of harmonic Maass forms to orthogonal groups of signature (2, n), see
[34] or [15], for example.

In the present paper, we study similar special values of regularized theta lifts for Lorentzian
lattices, that is, for even lattices of signature (1, n). It was shown in [16] that these values ap-
pear naturally as vanishing orders of Borcherds products along boundary divisors of toroidal
compactifications of orthogonal Shimura varieties. Here we compute the special values in sev-
eral different ways. As an application, we derive general recursive formulas for the coefficients
of mock theta functions. These include the Hurwitz-Kronecker class number relations and
some generalizations as special cases. We give a more detailed outline of our results now.

1.1. Theta lifts for Lorentzian lattices. Let L be an even lattice of signature (1, n) with
n ≥ 1. Let L′ denote its dual lattice and let Gr(L) be the Grassmannian of positive lines
in L ⊗ R. The associated Siegel theta function ΘL(τ, z) is defined on H × Gr(L) and takes
values in the group ring C[L′/L]. As a function of τ ∈ H it transforms like a modular form of
weight (1− n)/2 for the Weil representation ρL associated to L. Furthermore, it is invariant
in z under the subgroup of O(L) fixing L′/L. Following Borcherds [4], for a harmonic Maass
form f of weight (1− n)/2 for ρL we define the regularized theta lift

Φ(f, z) = lim
T→∞

∫
FT
〈f(τ),ΘL(τ, z)〉v

1−n
2
dudv

v2
, (τ = u+ iv ∈ H, z ∈ Gr(L)),
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where FT denotes the standard fundamental domain for SL2(Z), cut off at height v = T , and
〈·, ·〉 is the natural inner product on C[L′/L] which is antilinear in the second variable. One
of the special features in signature (1, n) is that the theta lift Φ(f, z) converges without the
additional regularization employed by Borcherds in [4]. Another peculiarity is the fact that
Φ(f, z) defines a continuous function on Gr(L) which is real-analytic up to singularities along
certain sub-Grassmannians of signature (1, n−1), whose shape is determined by the principal
part of the input harmonic Maass form f .

In this article, we study three different evaluations of the theta lift Φ(f, z). First, by
writing f as a linear combination of Maass Poincaré series and using the unfolding argument
we obtain an invariant representation of Φ(f, z) as a convergent series. Second, using the
unfolding argument on (a Poincaré series representation of) the Siegel theta function ΘL(τ, z)
we obtain the Fourier expansion of Φ(f, z). Finally, we evaluate the theta lift at special points
w ∈ Gr(L), which means that w is defined over Q. In this case, we consider the positive
definite one-dimensional and negative definite n-dimensional sublattices

P = L ∩ w, N = L ∩ w⊥.

Then P ⊕ N has finite index in L. For simplicity, let us assume in the introduction that
L = P ⊕N . Then the Siegel theta function for L, evaluated at w, naturally splits as a tensor
product

ΘL(τ, w) = ΘP (τ)⊗ΘN (τ)

of the Siegel theta functions associated to P and N . Note that ΘP (τ) is a holomorphic unary

theta series of weight 1/2. We choose a harmonic Maass form Θ̃P (τ) of weight 3/2 which
maps to ΘP (τ) under the ξ-operator and then use Stokes’ Theorem to evaluate the regularized
integral defining Φ(f, w). To describe the resulting expression, let us assume for the moment
that f is weakly holomorphic. Then we obtain

Φ(f, w) = lim
T→∞

∫
FT
〈f(τ),ΘP (τ)⊗ΘN (τ)〉v

1−n
2
dudv

v2

= CT
(〈
f, Θ̃+

P ⊗ΘN−

〉)
,

where CT denotes the constant term of a q-series, Θ̃+
P is the holomorphic part of the harmonic

Maass form Θ̃P , and ΘN− is the holomorphic theta series associated to the positive definite
n-dimensional lattice N− = (N,−Q). A similar method for the evaluation of theta lifts at
special points has been used by several authors, see [15, 19, 34], for example.

Note that Θ̃+
P (τ) is a mock theta function of weight 3/2. Hence, by comparing the three

evaluations of the theta lift, one can obtain recurrences for the coefficients of mock theta
functions. A classical example of such recurrences are the Hurwitz-Kronecker class number
relations ∑

r∈Z
H(4m− r2) = 2σ1(m)−

∑
a,b∈N
ab=m

min(a, b),

for m ∈ N, where H(n) are the Hurwitz class numbers and σ1(m) =
∑

d|m d is the usual

divisor sum. Note that the Hurwitz class numbers are the coefficients of the holomorphic
part of Zagier’s weight 3/2 non-holomorphic Eisenstein series [37]. In other words, they are
the coefficients of a mock theta function. We will see in Section 4 that the class number
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relations can be deduced by comparing the different evaluations of the theta lift for the even
unimodular lattice of signature (1, 1).

The problem of finding recurrences for the Hurwitz class numbers has a long history, which
goes back at least to Kronecker [29] and Hurwitz [25], and has been further investigated
by Eichler [20] and Cohen [18], amongst others. By now, there is a very rich literature on
recurrences for Hurwitz class numbers and, more generally, for the coefficients of mock theta
functions. Such relations can be proved, for example, by studying Fourier coefficients of
Eisenstein series (see [18, 24, 35, 36]) or using the method of holomorphic projection (see
[1, 6, 26, 30, 31]). Our work yields a new and quite flexible method for finding recurrences
of mock theta functions, which offers a lot of freedom in the choice of the lattice L and the
special point w ∈ Gr(L).

We explain our results in an example in signature (1, 2) in more detail now.

1.2. Theta lifts in signature (1, 2). We consider the lattice L = Z3 with the quadratic
form Q(a, b, c) = −b2 + ac. It is an even lattice of signature (1, 2). The Grassmannian of L
can be identified with the complex upper half-plane H, and the action of the modular group
Γ = SL2(Z) by fractional linear transformations on H corresponds to its natural action on L
by isometries, so we can view the theta lift Φ(f, z) as a Γ-invariant function on H. Moreover,
vector-valued modular forms for the Weil representation associated to L can be identified
with scalar-valued modular forms f for Γ0(4) satisfying the Kohnen plus space condition,
so we can use scalar-valued modular forms f as inputs for the theta lift. Finally, the set
of vectors in the dual lattice L′ of fixed norm −D/4 may be identified with the set QD of
integral binary quadratic forms [a, b, c] of discriminant D = b2 − 4ac. These simplifications
allow us to describe our results in a more classical language in the introduction. We also refer
the reader to Section 4.4 for more details on the translation of the results from the body of
the paper to the language used in the introduction.

We let M !
−1/2 be the space of weakly holomorphic modular forms f =

∑
n�−∞ af (n)qn

of weight −1/2 for Γ0(4) satisfying the Kohnen plus space condition af (n) = 0 for n ≡ 1, 2
(mod 4). For every discriminant D > 0 there exists a unique weakly holomorphic modular
form fD ∈M !

−1/2 whose Fourier expansion starts fD = q−D+O(1), and these forms constitute

a basis of M !
−1/2. The function fD can be explicitly constructed as a Maass Poincaré series.

Using the unfolding argument, we obtain the following expression as an infinite series for the
theta lift Φ(fD, z).

Theorem 1.1. For z = x+ iy ∈ H we have

Φ(fD, z) = 4
∑

[a,b,c]∈QD

(
√
D − 1

y
|a|z|2 + bx+ c| arcsin

(
y
√
D

|az2 + bz + c|

))
.

The series on the right-hand side converges absolutely.

We refer the reader to Theorem 3.1 for the general result for lattices of signature (1, n).
We would like to remark that a direct computation shows that the image of Φ(fD, z) under
the Maass lowering operator L = −2iy2 ∂

∂z is a multiple of the weight −2 locally harmonic
Maass form F−1,D(z) investigated in [7].

To describe our second expression for Φ(fD, z) we require the L-function

LD(s) = LD0(s)
∑
d|f

µ(d)χD0(d)d−sσ1−2s

(
f

d

)
,
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where we wrote D = D0f
2 with a fundamental discriminant D0 and a suitable f ∈ N (compare

[28], p. 188). Moreover, LD0(s) denotes the usual Dirichlet L-function associated to the

quadratic character χD0 =
(
D0
·
)
, µ is the Moebius function and σs =

∑
d|n d

s is a generalized

divisor sum. The special values LD(1 − k) at negative integers 1 − k appear as Fourier
coefficients of Cohen’s Eisenstein series of weight k + 1/2, compare [18]. Using Cohen’s
Eisenstein series of weight 5/2 and the residue theorem one can show that the constant
coefficient of the weakly holomorphic modular form fD is given by afD(0) = −120LD(−1).
The following expression for Φ(fD, z) can be obtained by writing the theta function as a
Poincaré type series and using the unfolding argument.

Theorem 1.2. The theta lift Φ(fD, z) has the Fourier expansion

Φ(fD, z) = −40π

y
LD(−1)− 8π

y

∑
[a,b,c]∈QD

a|z|2+bx+c>0>a

(a|z|2 + bx+ c)

+ δD=�

(
4πyD +

2π

y

(
B2

(√
Dx
)

+ B2

(
−
√
Dx
)))

,

where B2(x) is the one-periodic function which agrees with the Bernoulli polynomial B2(x) =
x2 − x+ 1

6 for 0 ≤ x < 1, and δD=� equals 1 or 0 according to whether D is a square or not.

The general version of this result can be found in Theorem 3.3.

Remark 1.3. (1) The condition a|z|2 + bx + c > 0 > a means that the geodesic CQ =
{z ∈ H : a|z|2 + bx+ c = 0} is a semi-circle centered at the real line and that z lies in
the interior of the bounded component of H \ CQ. This implies that the sum on the

right-hand side in the theorem is finite for fixed z, and vanishes for all y >
√
D. In

particular, the above theorem gives a finite expression for Φ(fD, z).
(2) It is easy to see from the above evaluation of Φ(fD, z) that the special value of the

lift at a CM point z of discriminant d < 0 is a rational multiple of π
√
|d|.

We next describe another evaluation of Φ(fD, z) at CM points z ∈ H. Note that the
special points in Gr(L) precisely correspond to the CM points in H. The crucial observation
here is that the Siegel theta function ΘL(τ, z), evaluated at a CM point z ∈ H, splits as
a tensor product of two Siegel theta functions ΘP (τ) and ΘN (τ) associated to a positive
definite one-dimensional sublattice P and a negative definite two-dimensional sublattice N .
We can then use Stokes’ Theorem to evaluate the theta integral Φ(fD, z) in terms of the
Fourier coefficients of fD(τ) and the coefficients of the holomorphic part of a harmonic Maass

form Θ̃P (τ) of weight 3/2 which maps to the unary theta function ΘP (τ) under the antilinear
differential operator

ξ 3
2

= 2iv
3
2
∂

∂τ
,

where we wrote τ = u+ iv ∈ H.
To simplify the exposition in the introduction, we consider the CM point z = i. In this

case, the unary theta function ΘP (τ) is essentially equal to the usual Jacobi theta function

θ(τ) =
∑

n∈Z q
n2

. We let θ̃(τ) be a harmonic Maass form of weight 3/2 for Γ0(4) which maps
to θ(τ) under ξ3/2. We have the following result.
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Theorem 1.4. The special value of Φ(fD, z) at z = i is given by

Φ(fD, i) =
1

2

∑
d∈Z

afD(−d)
∑
x,y∈Z
x≡d(2)

a+

θ̃
(d− x2 − y2),

where afD(−d) and a+

θ̃
(d) denote the coefficients of fD(τ) and the holomorphic part of θ̃(τ),

respectively.

The general formula for lattices of signature (1, n) is given in Theorem 3.5. Note that the

holomorphic part of θ̃(τ) is a mock theta function of weight 3/2. For other CM points z ∈ H
the right-hand side will involve the coefficients of a mock theta function of weight 3/2 of
higher level (depending on the discriminant of z).

In the current situation, there is a canonical preimage θ̃(τ) of θ(τ). Namely, Zagier [37]
showed that the generating series

∞∑
n=0

H(n)qn

of Hurwitz class numbers H(n), with H(0) = −1/12, is the holomorphic part of a harmonic
Maass form of weight 3/2 for Γ0(4) which maps to −(1/16π)θ(τ) under ξ3/2. In particular,
Theorem 1.4 yields the formula

Φ(fD, i) = −80πLD(−1)− 8π
∑
x,y∈Z
x≡D(2)

H(D − x2 − y2).

Here we used that afD(0) = −120LD(−1). Comparing this evaluation of Φ(fD, i) and the one
from Theorem 1.2, we obtain the following recurrence for the Hurwitz class numbers.

Corollary 1.5. For every discriminant D > 0 we have∑
x,y∈Z
x≡D(2)

H(D − x2 − y2) = −5LD(−1) +
∑

[a,b,c]∈QD
a+c>0>a

(a+ c)− 1

12
δD=�(6D + 1).

To further illustrate the formulas that we can obtain using theta lifts for lattices of signature
(1, n), we give another example in signature (1, 1). We consider Andrews’ smallest parts
function spt(n), which counts the total number of smallest parts in the partitions of n. For
n ∈ N0 we let

s(n) = spt(n) +
1

12
(24n− 1)p(n),

with the partition function p(n). Bringmann [5] showed that the generating series

q−1/24
∞∑
n=0

s(n)qn

is the holomorphic part of a harmonic Maass form of weight 3/2 which maps to a linear
combination of unary theta functions of weight 1/2 under ξ3/2, i.e., it is a mock modular form
of weight 3/2. By comparing our different evaluations of the theta lift for a certain lattice of
signature (1, 1), we obtain the following recurrences for s(n).
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Proposition 1.6. We have∑
r∈Z

(
12

r

)
s

(
m− r2

24
+

1

24

)
= 4σ1(m)− 2

∑
d|m

(min(6d,m/d)−min(3d, 2m/d))

for all m ∈ N.

We refer the reader to Example 4.4 for more details on the proof of the above proposition.
Similar recursions for the spt-function were derived by Ahlgren and Andersen in [1].

Finally, we would like to remark that our different evaluations of the theta lift only yield
recurrences for mock theta functions of weight 3/2. However, one can use the methods of
this paper to study a similar theta lift obtained by replacing ΘL(τ, z) with a modified theta
function Θ∗L(τ, z), in order to find recurrences for mock theta functions of weight 1/2. We will
sketch this method, which yields recurrences for some of Ramanujan’s classical mock theta
functions, in Section 4.3.

This work is organized as follows. In Section 2 we collect the necessary preliminaries
about vector-valued harmonic Maass forms for the Weil representation, Siegel theta functions
and their splittings at special points, and different models of the Grassmannian Gr(L). In
Section 3, which is the technical heart of this work, we compute the theta lift for lattices of
signature (1, n) in three different ways. Finally, in Section 4 we discuss several applications
of these different evaluations and obtain recurrences for the coefficients of some mock theta
functions.

2. Preliminaries

Throughout this section, we let L be an even lattice of signature (p, q) with quadratic form
Q and associated bilinear form (·, ·). The dual lattice of L will be denoted by L′.

2.1. The Weil representation. Let C[L′/L] be the group ring of L, which is generated
by the standard basis vectors eγ for γ ∈ L′/L. We let 〈·, ·〉 be the natural inner product
on C[L′/L] which is antilinear in the second variable. Let Mp2(Z) be the metaplectic double
cover of SL2(Z), realized as the set of pairs (M,φ) with M =

(
a b
c d

)
∈ SL2(Z) and φ : H→ C a

holomorphic function with φ2(τ) = cτ + d. The Weil representation ρL of Mp2(Z) associated
to L is defined on the generators T = (( 1 1

0 1 ) , 1) and S =
((

0 −1
1 0

)
,
√
τ
)

by

ρL(T ) eγ = e(Q(γ)) eγ , ρL(S) eγ =

√
i
q−p√
|L′/L|

∑
β∈L′/L

e(−(β, γ)) eβ,

where we put e(x) = e2πix for x ∈ C. The Weil representation ρL− associated to the lattice
L− = (L,−Q) will be called the dual Weil representation associated to L.

2.2. Operators on vector-valued modular forms. For k ∈ 1
2Z we let Ak,L be the set of

all functions f : H → C that transform like modular forms of weight k for ρL, which means
that f is invariant under the slash operator

f |k,L(M,φ) = φ(τ)−2kρL(M,φ)−1f(Mτ)

for (M,φ) ∈ Mp2(Z). Let K ⊂ L be a sublattice of finite index. Then we have the inclusions
K ⊂ L ⊂ L′ ⊂ K ′ and thus L/K ⊂ L′/K ⊂ K ′/K. We have the natural map L′/K →
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L′/L, γ 7→ γ. There are maps

resL/K : Ak,L → Ak,K , f 7→ fK ,

trL/K : Ak,K → Ak,L, g 7→ gL,

which are defined for f ∈ Ak,L and γ ∈ K ′/K by

(fK)γ =

{
fγ , if γ ∈ L′/K,
0, if γ /∈ L′/K,

and for g ∈ Ak,K and γ ∈ L′/L by

(gL)γ =
∑

β∈L/K

gβ+γ .

They are adjoint with respect to the inner products on C[L′/L] and C[K ′/K]. We refer the
reader to [10], Section 3, or [33], Section 4, for more details.

2.3. Harmonic Maass forms. Recall from [12] that a harmonic Maass form of weight
k ∈ 1

2Z for ρL is a smooth function f : H → C which is annihilated by the weight k Laplace
operator

∆k = −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
, (τ = u+ iv ∈ H),

which transforms like a modular form of weight k for ρL, and which is at most of linear
exponential growth at the cusp ∞. The space of harmonic Maass forms of weight k for ρL
is denoted by Hk,L. We let M !

k,L be subspace of weakly holomorphic modular forms, which
consists of the forms that are holomorphic on H. The antilinear differential operator

ξk = 2ivk
∂

∂τ

maps Hk,L onto M !
2−k,L− . We let Hhol

k,L and Hcusp
k,L be the subspaces of Hk,L which are mapped

to the space M2−k,L− of holomorphic modular forms or the space S2−k,L− of cusp forms under

ξk, respectively. For k ≤ 0 every f ∈ Hhol
k,L decomposes as a sum f = f+ +f− of a holomorphic

and a non-holomorphic part, having Fourier expansions of the form

f+(τ) =
∑

γ∈L′/L

∑
n∈Q

n�−∞

a+
f (γ, n)qn eγ ,

f−(τ) =
∑

γ∈L′/L

(
a−f (γ, 0)v1−k +

∑
n∈Q
n<0

a−f (γ, n)Γ(1− k, 4π|n|v)qn
)
eγ ,

(2.1)

where a±f (γ, n) ∈ C, q = e2πiτ , and Γ(s, x) =
∫∞
x e−tts−1dt is the incomplete Gamma function.

Note that f ∈ Hcusp
k,L is equivalent to a−f (γ, 0) = 0 for all γ ∈ L′/L.
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2.4. Maass Poincaré series. Examples of harmonic Maass forms of weight k ≤ 0 can be
constructed using Maass Poincaré series, compare [9], Section 1.3. For s ∈ C and v > 0 we
let

Ms(v) = v−k/2M−k/2,s−1/2(v),

with the usual M -Whittaker function. For β ∈ L′/L and m ∈ Z − Q(β) with m > 0, and
s ∈ C with <(s) > 1 we define the Maass Poincaré series

Fβ,m(τ, s) =
1

2Γ(2s)

∑
(M,φ)∈Γ̃∞\Mp2(Z)

Ms(4πmv)e(−mu) eβ |k,L(M,φ),

where Γ̃∞ is the subgroup of Mp2(Z) generated by T = (( 1 1
0 1 ) , 1). It converges absolutely for

<(s) > 1, it transforms like a modular form of weight k for ρL, and it is an eigenform of the
Laplace operator ∆k with eigenvalue s(1 − s) + (k2 − 2k)/4. For k = 0 the Maass Poincaré
series is also called a Niebur Poincaré series [32]. It has a meromorphic continuation in s to
C which is obtained from its Fourier expansion and which is holomorphic at s = 1. For all
k ≤ 0 the special value

Fβ,m(τ) = Fβ,m

(
τ, 1− k

2

)
defines a harmonic Maass form in Hcusp

k,L whose Fourier expansion starts with

Fβ,m(τ) = q−m(eβ + e−β) +O(1).

In particular, for k ≤ 0 every harmonic Maass form f ∈ Hcusp
k,L with Fourier expansion as in

(2.1) can be written as a linear combination

f(τ) =
1

2

∑
β∈L′/L

∑
m>0

a+
f (β,−m)Fβ,m(τ) + c(2.2)

of Maass Poincaré series and a constant c ∈ C[L′/L], which may be non-zero only if k = 0.

2.5. Siegel theta functions and special points. As before, we let L be an even lattice of
signature (p, q). Let Gr(L) be the Grassmannian of positive definite p-dimensional subspaces
of V = L⊗ R. The Siegel theta function associated to L is defined by

ΘL(τ, z) = vq/2
∑
λ∈L′

e(Q(λz)τ +Q(λz⊥)τ) eλ+L,

where τ = u + iv ∈ H and z ∈ Gr(L), and λz denotes the orthogonal projection of λ to z.
The Siegel theta function transforms like a modular form of weight p−q

2 for ρL in τ (see [4],
Theorem 4.1) and is invariant in z under the subgroup of O(L) fixing L′/L.

Definition 2.1. We call w ∈ Gr(L) a special point if it is defined over Q, that is, w ∈ L⊗Q.

For a special point w ∈ Gr(L) its orthogonal complement w⊥ in V is also defined over Q
and we obtain the rational splitting L⊗Q = w ⊕ w⊥ which yields the positive and negative
definite lattices

P = L ∩ w, N = L ∩ w⊥.
Note that P ⊕N is a sublattice of L of finite index. The Siegel theta functions associated to
L and P ⊕N are related by

ΘL = (ΘP⊕N )L ,(2.3)
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with the trace operator defined in Section 2.2. Moreover, at the special point w the Siegel
theta function associated to P ⊕N splits as a tensor product

ΘP⊕N (τ, w) = ΘP (τ)⊗ΘN (τ),(2.4)

where we identified C[(P ⊕N)′/(P ⊕N)] with C[P ′/P ]⊗ C[N ′/N ]. These two observations
can be proved by direct calculations using the definition of the Siegel theta function.

2.6. Unary theta series and Atkin-Lehner operators. For d ∈ N the one-dimensional
positive definite lattice Z(d) = (Z, dx2) has level 4d and its discriminant group is isomorphic
to Z/2dZ with the Q/Z-valued quadratic form x 7→ x2/4d. The unary theta series

θ1/2,d(τ) =
∑
r(2d)

∑
n∈Z

n≡r(2d)

qn
2/4d er, θ3/2,d(τ) =

∑
r(2d)

∑
n∈Z

n≡r(2d)

nqn
2/4d er,

are holomorphic modular forms for the Weil representation associated to Z(d) of weight 1/2
and 3/2, respectively.

For an exact divisor c || d the Atkin-Lehner involution σc on Z/2dZ is the map defined
by the equations σc(x) ≡ −x(2c) and σc(x) ≡ x(2d/c). The Atkin-Lehner involutions act on
vector-valued modular forms for the Weil representation associated to Z(d) by(∑

r(2d)

fr(τ) er

)σc
=
∑
r(2d)

fσc(r)(τ) er .

2.7. The upper half-space model of Gr(L). Let L be a lattice of signature (1, n) with
n ≥ 1. In this case, the Grassmannian Gr(L) can be identified with hyperbolic n-space, as
we now explain. For simplicity, we assume that L contains two primitive isotropic vectors `
and `′ with (`, `′) = 1, that is, L splits a hyperbolic plane over Z. We consider the negative
definite lattice

K = L ∩ `⊥ ∩ `′⊥.
Note that L′/L ∼= K ′/K. We can identify Gr(L) with one of the two connected components
of the set of norm 1 vectors in V = L⊗ R. We choose the component

V1 = {v1 ∈ V : |v1| = 1, (v1, `) > 0}

and identify V1 with the Grassmannian by mapping z ∈ Gr(L) to

v1 =
`z
|`z|
∈ V1.

This is called the hyperboloid model of hyperbolic space. Furthermore, we can identify V1

with the upper half-space model

Hn = (K ⊗ R)× R>0 = {(x, y) : x ∈ K ⊗ R, y > 0}

by mapping (x, y) ∈ Hn to the norm 1 vector

v1 =
1√
2y
x+

1√
2y
`′ +

(
y√
2
− Q(x)√

2y

)
` ∈ V1.

Note that we can write λ ∈ V as λ = b + a`′ + c` with b ∈ K ⊗ R and a, c ∈ R. Then
Q(λ) = Q(b) + ac. In the hyperboloid model and the upper half-space model the quantity
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Q(λz) is given by

Q(λz) =
1

2
(λ, v1)2 =

1

4y2
(a(y2 −Q(x))) + (b, x) + c)2.(2.5)

This can be used to translate the formulas from Theorem 3.1 and Theorem 3.3 into the
corresponding statements in the introduction.

3. The regularized theta lift

Let L be a Lorentzian lattice, that is, an even lattice of signature (1, n) with n ≥ 1.
Throughout, we let k = (1 − n)/2 and we let f ∈ Hcusp

k,L be a harmonic Maass form with

Fourier expansion as in (2.1). Following Borcherds [4], for z ∈ Gr(L) we define the regularized
theta lift

Φ(f, z) = lim
T→∞

∫
FT
〈f(τ),ΘL(τ, z)〉vk dudv

v2
,(3.1)

where FT denotes the standard fundamental domain for SL2(Z), cut off at height v = T .
By the results of [4], Section 10, and [9], Chapter 3, the theta lift is real-analytic up to
singularities along the union of the sets

H(β,m) =
⋃

λ∈L+β
Q(λ)=−m

λ⊥

for those β ∈ L′/L and m > 0 with a+
f (β,−m) 6= 0. Here λ⊥ denotes the set of all z ∈ Gr(L)

perpendicular to λ. However, Φ(f, z) is continuous on all of Gr(L).
In this section we evaluate the regularized theta lift of f ∈ Hcusp

k,L in three ways. For

simplicity, we assume throughout that the constant c in (2.2) vanishes also in the case n = 1.

(1) We write f as a linear combination of Maass Poincaré series Fβ,m as in (2.2) and use
the unfolding argument to compute Φ(Fβ,m, z). This yields an invariant representation
of Φ(f, z) as an infinite series.

(2) By unfolding against the theta function and using the shape of the singularities of the
theta lift, one can compute the Fourier expansion of Φ(f, z) on all of Gr(L).

(3) At special points w ∈ Gr(L) we can compute Φ(f, w) by using the splitting (2.4) of the
Siegel theta function and applying Stokes’ theorem. We obtain a formula for Φ(f, w)
involving the coefficients of a mock theta function of weight 3/2.

3.1. An invariant representation of the theta lift. Let k = (1 − n)/2 as before. We
have the following representation of Φ(f, z) as an infinite series.

Theorem 3.1. For f ∈ Hcusp
k,L and z ∈ Gr(L) we have

Φ(f, z) =
2
√
πΓ
(
n
2

)
Γ
(
n+3

2

) ∑
λ∈L′
Q(λ)<0

a+
f (λ,Q(λ))

|Q(λ)|
n+1
2

|Q(λz⊥)|
n
2

2F1

(
n

2
, 1,

n+ 3

2
;
Q(λ)

Q(λz⊥)

)
,

where 2F1(a, b, c;x) denotes Gauss’ hypergeometric function. The series on the right-hand
side converges absolutely.
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Remark 3.2. The hypergeometric function appearing in Theorem 3.1 can be evaluated in
terms of more elementary functions for small values of n. For example, for n = 1 and
f ∈ Hcusp

0,L we find

Φ(f, z) = 4π
∑
λ∈L′
Q(λ)<0

a+
f (λ,Q(λ))

(√
|Q(λz⊥)| −

√
|Q(λz)|

)
,(3.2)

and for n = 2 and f ∈ Hcusp
−1/2,L we obtain

Φ(f, z) = 8
∑
λ∈L′
Q(λ)<0

a+
f (λ,Q(λ))

(√
|Q(λ)| −

√
Q(λz) arcsin

(√
Q(λ)

Q(λz⊥)

))
.(3.3)

Using Q(λz⊥) = Q(λ) − Q(λz) together with (2.5) one can translate the above series repre-
sentation of Φ(f, z) into the upper half-space model, which yields Theorem 1.1.

Proof of Theorem 3.1. Write f as a linear combination of Maass Poincaré series Fβ,m as in
(2.2). Recall that we assume c = 0 also in the case n = 1. We have

Φ(Fβ,m, z) =
[
Φ(Fβ,m(·, s), z)

]
s=1− k

2
.

As in [9], Theorem 2.13, we can compute Φ(Fβ,m(·, s), z) by unfolding against Fβ,m(τ, s) and
get

Φ(Fβ,m(·, s), z) = 2(4πm)s−
k
2

Γ
(
s+ n−3

4

)
Γ(2s)

×
∑

λ∈L+β
Q(λ)=−m

(4π|Q(λz⊥)|)
3−n
4
−s

2F1

(
s+

n− 3

4
, s− n− 1

4
, 2s;

m

|Q(λz⊥)|

)
.

We plug in s = 1− k/2 = (3 + n)/4 to obtain the stated formula.
For k < 0 the absolute convergence of the series on the right-hand side of the theorem is

contained in [9], Theorem 2.13, and for k = 0, that is, signature (1, 1), it follows from the
more explicit formulas for the series given in Theorem 4.1 and Theorem 4.5 (together with
Remark 4.6) below. �

3.2. The Fourier expansion of the theta lift. In order to state the Fourier expansion of
the theta lift we need to assume that L contains a primitive isotropic vector `. Moreover, to
simplify the exposition, we further assume in this section that L contains another primitive
isotropic vector `′ with (`, `′) = 1 and a negative definite sublattice K of rank n−1 such that

L = (Z`⊕ Z`′)⊕⊥ K

as an orthogonal direct sum. In other words, we assume that L splits a hyperbolic plane over
Z. Note that in this case we have L′/L ∼= K ′/K.

It is convenient now to use the upper half-space model of Gr(L), compare Section 2.7.
The theta lift Φ(f, (x, y)), viewed as a function on the upper half-space Hn, has the following
Fourier expansion.
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Theorem 3.3. For f ∈ Hcusp
k,L and (x, y) ∈ Hn we have

Φ(f, (x, y)) =
8πy

(n− 1)

∑
b∈K′

a+
f (b,Q(b))|Q(b)|+ 2π

y

∑
b∈K′

a+
f (b,Q(b))B2 ((b, x))

+ 2
√

2
(√

2πy
)−k ∑

b∈K′\{0}

a−f (b,Q(b))|b|1−k
∞∑
n=1

e(n(b, x))

nk+1
K1−k

(
2
√

2πy|b|
)

− 8π

y

∑
a,c∈Z,b∈K′
Q(b)+ac<0

a(y2−Q(x))+(b,x)+c>0>a

a+
f (b,Q(b) + ac)

(
a(y2 −Q(x)) + (b, x) + c

)
,

where B2(x) is the one-periodic function which agrees with the Bernoulli polynomial B2(x) =
x2 − x+ 1/6 for 0 ≤ x < 1 and K1−k(x) denotes the K-Bessel function.

Remark 3.4. (1) If f ∈M !
k,L is weakly holomorphic, then the second line in the theorem

vanishes. All remaining sums are finite, so the above expansion gives a finite expression
for Φ(f, (x, y)) for weakly holomorphic f .

(2) If we write λ ∈ V with Q(λ) < 0 as λ = b+a`′+ c` with b ∈ K⊗R and a, c ∈ R, then
the set λ⊥ (consisting of all z ∈ Gr(L) orthogonal to λ) is in the upper half-space
model given by

λ⊥ = {(x, y) ∈ Hn : a(y2 −Q(x)) + (b, x) + c = 0}.

The third line in the above Fourier expansion reproduces the singularities of Φ(f, (x, y))
along those λ⊥ with a 6= 0, while the sum involving the function B2(x) in the first line
gives the singularities along those λ⊥ with a = 0.

Proof of Theorem 3.3. We first show that the sum in the last line of the theorem is finite for
fixed (x, y) ∈ Hn, and vanishes for all y big enough, independently of x. We can split the
sum into a finite sum over those m < 0 with a+

f (b,m) 6= 0 for some b ∈ K ′, and a sum over

a, c ∈ Z, b ∈ K ′ with Q(b) + ac = m and a(y2 −Q(x)) + (b, x) + c > 0 > a. For a, c ∈ Z and
b ∈ K ′ with a < 0 and Q(b) + ac = m, we have

−aQ(x) + (b, x) + c ≤ −aQ(x) + 2
√
|Q(b)|

√
|Q(x)|+ c ≤ m

a

for all x ∈ K⊗R, where we used the Cauchy-Schwarz inequality in the first step. In particular,
for fixed (x, y) ∈ Hn we have

a(y2 −Q(x)) + (b, x) + c ≤ ay2 +
m

a
,

which is positive only for finitely many a ∈ Z, a < 0. Furthermore, this shows that a(y2 −
Q(x))+(b, x)+c > 0 > a implies y ≤

√
|m|, so each summand in the third line of the theorem

vanishes for y >
√
|m|. Fix one of the finitely many a < 0 for which ay2 + m

a is positive.
Then we can write

a(y2 −Q(x)) + (b, x) + c = a(y2 −Q(x)) + (b, x) +
m−Q(b)

a
.

Since (b, x)− Q(b)
a is positive only for finitely many b ∈ K ′, we see that the sum in the third

line of the theorem is finite for fixed (x, y) ∈ Hn.
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We now write f as a linear combination of Maass Poincaré series Fβ,m in order to apply
results from [9]. First, equation (3.11) in [9] gives an expression for the Fourier expansion
of Φ(Fβ,m, v1) for v1 ∈ V1 (the hyperboloid model of Gr(L), see Section 2.7) with (`, v1)

small enough. The constant ΦK
β,m appearing in this formula can be evaluated using [9],

Theorem 2.13. We obtain for (`, v1) small enough the expansion

Φ(f, v1) =
8π√

2(n− 1)(`, v1)

∑
λ∈K′

a+
f (λ,Q(λ))|Q(λ)|

+ 2
√

2π(`, v1)
∑
λ∈K′

a+
f (λ,Q(λ))B2

(
(λ, v1)

(`, v1)

)

+ 2
√

2

(
π

(`, v1)

)−k ∑
λ∈K′\{0}

a−f (λ,Q(λ))|λ|1−k
∞∑
n=1

e
(
n (λ,v1)

(`,v1)

)
nk+1

K1−k

(
2πn|λ|
(`, v1)

)
.

Recall that we can write λ ∈ V as λ = b+ a`′+ c` with b ∈ K ⊗R and a, c ∈ R. In the upper
half-space model we have

(`, v1) =
1√
2y
, (λ, v1) =

1√
2y

(
a(y2 −Q(x)) + (b, x) + c

)
.

Hence, in the coordinates of Hn, we find for y big enough the expansion

Φ(f, (x, y)) =
8πy

(n− 1)

∑
b∈K′

a+
f (b,Q(b))|Q(b)|+ 2π

y

∑
b∈K′

a+
f (b,Q(b))B2 ((b, x))

+ 2
√

2
(√

2πy
)−k ∑

b∈K′\{0}

a−f (b,Q(b))|b|1−k
∞∑
n=1

e (n(b, x))

nk+1
K1−k

(
2
√

2πny|b|
)
.

On the other hand, by [9], Theorem 2.11, the theta lift Φ(f, (x, y)) has a singularity of type

−2π

y

∑
a,c∈Z,b∈K′
Q(b)+ac<0

a(y20−Q(x0))+(b,x0)+c=0

a+
f (b,Q(b) + ac)

(
a(y2 −Q(x)) + (b, x) + c

)
(3.4)

at a point (x0, y0) ∈ Hn. Recall that this means that there exists a neighbourhood U of
(x0, y0) such that Φ(f, (x, y)) and the expression in (3.4) are defined on a dense subset of U
and such that their difference extends to a real-analytic function on all of U . It is not hard
to see that the expression on the right-hand side in the theorem has the same singularities as
Φ(f, (x, y)) on Hn and agrees with Φ(f, (x, y)) for y big enough. In other words, the difference
between Φ(f, (x, y)) and the expression on the right-hand side of the theorem extends to a
real-analytic function on all of Hn and vanishes for y big enough, and hence has to vanish
identically on all of Hn. This finishes the proof. �

3.3. Evaluation of the theta lift at special points. Let w ∈ Gr(L) be a special point and
let P = L∩w and N = L∩w⊥ be the positive and negative definite sublattices corresponding
to w as in Section 2.5. Recall that k = (1− n)/2.
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Theorem 3.5. For f ∈ Hcusp
k,L and a special point w ∈ Gr(L) we have the evaluation

Φ(f, w) = CT
(〈
f+
P⊕N , Θ̃

+
P ⊗ΘN−

〉)
− lim
T→∞

∫
FT

〈
Θ̃P (τ)⊗ΘN (τ), ξ2−kfP⊕N (τ)

〉
v2−k dudv

v2
,

where CT denotes the constant coefficient of a Fourier series, fP⊕N denotes the image of f

under the restriction map defined in Section 2.2, and Θ̃P ∈ Hhol
3/2,P− is a ξ3/2-preimage of ΘP .

Remark 3.6. By plugging in the Fourier expansions of f and Θ̃+
P , the constant term on the

right-hand side of Theorem 3.5 can be evaluated more explicitly as

CT
(〈
f+
P⊕N , Θ̃

+
P ⊗ΘN−

〉)
=

∑
α∈P ′/P
β∈N ′/N
α+β∈L′

∑
n∈Z−Q(α+β)

a+
f (α+ β,−n)

∑
λ∈N+β

a+

Θ̃P
(α, n+Q(λ)).

Note that all sums on the right-hand side are finite. Theorem 1.4 in the introduction can
easily be derived from this expression.

Proof of Theorem 3.5. The proof is similar to the proof of [19], Theorem 3.5, so we omit some
details for brevity. We first compute for arbitrary z ∈ Gr(L)

Φ(f, z) = lim
T→∞

∫
FT
〈f(τ),ΘL(τ, z)〉vk dudv

v2

= lim
T→∞

∫
FT
〈f(τ), (ΘP⊕N )L(τ, z)〉vk dudv

v2

= lim
T→∞

∫
FT
〈fP⊕N (τ),ΘP⊕N (τ, z)〉vk dudv

v2
,

where we used the relation (2.3) and the fact that the trace and restriction operators from
Section 2.2 are adjoint to each other. Now we plug in z = w and use the splitting (2.4) to
obtain

Φ(f, w) = lim
T→∞

∫
FT
〈fP⊕N (τ),ΘP (τ)⊗ΘN (τ)〉vk dudv

v2
.

Let Θ̃P ∈ Hhol
3/2,P− be a harmonic Maass form of weight 3/2 for ρP− such that ξ3/2Θ̃P = ΘP .

Then we can write

Φ(f, w) = lim
T→∞

∫
FT

〈
fP⊕N (τ), (ξ3/2Θ̃P (τ))⊗ΘN−(τ)

〉
v1/2dudv

v2
.

Now applying Stokes’ theorem we obtain

Φ(f, w) = lim
T→∞

∫ 1+iT

iT

〈
fP⊕N (τ), Θ̃P (τ)⊗ΘN−(τ)

〉
dτ

− lim
T→∞

∫
FT

〈
Θ̃P (τ)⊗ΘN (τ), ξ2−kfP⊕N (τ)

〉
v2−k dudv

v2
.

Here we used that ΘN− is holomorphic. Note that the integral in the first line picks out the

Fourier coefficient of index 0 of the integrand. If we split fP⊕N and Θ̃P into their holomorphic
and non-holomorphic parts, and use that the non-holomorphic parts vanish as v → ∞, we
obtain the stated formula. �
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4. Recurrences for the coefficients of mock theta functions

As an application of the different evaluations of the regularized theta lift we derive recur-
rences for the coefficients of some mock theta functions. We obtain relations for Hurwitz class
numbers, Andrews’ spt-function and some of Ramanujan’s mock theta functions. We only
consider lattices of signature (1, 1) such that every harmonic Maass form in Hcusp

0,L is actually

weakly holomorphic, that is, we have Hcusp
0,L = M !

0,L.

4.1. Isotropic lattices in signature (1, 1). We consider the rational quadratic space Q2

with the quadratic form Q(a, b) = ab. Let L be an even lattice in Q2. Then L has signature
(1, 1) and is isotropic.

Let w ∈ Gr(L) be a special point and let y = (y1, y2) ∈ L be its primitive generator with
y1, y2 > 0. Furthermore, let y⊥ ∈ L be the primitive generator of w⊥ whose second coordinate
is positive. Then y⊥ is a positive multiple of (−y1, y2). We let dP = y1y2 and dN = y⊥1 y

⊥
2 .

Then P ∼= (Z, dPx2) and N ∼= (Z,−dNx2). In particular, we may identify

ΘP = θ1/2,dP , ΘN− = θ1/2,dN ,

with the unary theta function θ1/2,d defined in Section 2.6. Combining Theorem 3.1 and
Theorem 3.5 we obtain the following evaluations of the theta lift for isotropic lattices at
special points.

Theorem 4.1. Suppose that L is as above. Then the evaluation of the regularized theta lift
Φ(f, w) of f ∈M !

0,L at a special point w = R(y1, y2) ∈ Gr(L) is given by

Φ(f, w) =
4π
√
y1y2

∑
λ=(λ1,λ2)∈L′

λ1λ2<0

af (λ, λ1λ2) min (|λ1y2|, |λ2y1|)

=
∑

αP (2dP )
αN (2dN )
γP+γN∈L′

∑
n∈Z− α2P

4dP
+
α2N
4dN

af (γP + γN ,−n)
∑
r∈Z

r≡αN (2dN )

a+

θ̃1/2,dP
(αP , n− r2/4dN ),

where we wrote γP = αP
2dP

y ∈ P ′ and γN = αN
2dN

y⊥ ∈ N ′, and θ̃1/2,dP is a ξ3/2-preimage of the

unary theta function θ1/2,dP . The sum in the first line is finite.

Proof. We simplify the formula from Theorem 3.1 (or rather its specialization to n = 1 given
in equation (3.2) in Remark 3.2). For λ = (λ1, λ2) ∈ Q2 with Q(λ) = λ1λ2 we have

Q(λw) =
1

2

(λ, y)2

|y|2
, |Q(λw⊥)| = −Q(λ) +Q(λw) = −λ1λ2 +

1

2

(λ, y)2

|y|2
.

Further, we have the explicit formulas

(λ, y) = λ1y2 + λ2y1, −2λ1λ2|y|2 + (λ, y)2 = (λ1y2 − λ2y1)2,

so we obtain√
|Q(λw⊥)| −

√
|Q(λw)| = 1

2
√
y1y2

(|λ1y2 − λ2y1| − |λ1y2 + λ2y1|) .

Also note that
|λ1y2 − λ2y1| − |λ1y2 + λ2y1| = 2 min (|λ1y2|, |λ2y1|)

since λ1λ2 < 0 and y1, y2 > 0. When combined with (3.2), this yields the formula in the first
line in the theorem.
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The right-hand side of the formula in the theorem can be obtained from Theorem 3.5 and
Remark 3.6. �

By comparing the two finite formulas on the right-hand side of Theorem 4.1 we obtain

non-trivial recurrence relations for the coefficients of the mock theta function θ̃+
1/2,dP

. We

illustrate this in some examples.

Example 4.2. Let L be the lattice spanned by the vectors (1, 0) and (0, 1), that is, a hy-
perbolic plane. Note that L is unimodular, so vector-valued modular forms for ρL are just
scalar-valued modular forms for SL2(Z). By [32], Theorem 1, for m ∈ N the Maass (or Niebur)
Poincaré series Fβ,m ∈M !

0,L is given by the weakly holomorphic modular form 2jm+48σ1(m),

where jm denotes the unique modular function for SL2(Z) whose Fourier expansion starts
q−m +O(q).

Let y = (y1, y2) ∈ Z2 with y1, y2 > 0 coprime. Then y⊥ = (−y1, y2) and d := dP = dN =
y1y2. After some simplification, Theorem 4.1 applied to f = 2jm+ 48σ1(m) gives the formula

16π
√
y1y2

∑
λ1,λ2∈N
λ1λ2=m

min(λ1y2, λ2y1) =
∑
n∈Z

am(−n)
∑
r∈Z

a
θ̃+
1/2,d

(σy1(r), n− r2/4d),(4.1)

where σc for c || d is the Atkin-Lehner involution on Z/2dZ defined in Section 2.6 and am(−n)
denotes the (−n)-th coefficient of 2jm + 48σ1(m).

Zagier [37] showed that the C[Z/2Z]-valued generating series

∞∑
n=0

H(n)qn/4 en, H(0) = − 1

12
,

of Hurwitz class numbersH(n) is the holomorphic part of a harmonic Maass form of weight 3/2
for the dual Weil representation associated to the lattice (Z, x2) which maps to (−1/8π)θ1/2,1

under ξ3/2. Applying formula (4.1) with the special point y = (1, 1) with d = 1, we recover
the classical Hurwitz-Kronecker class number relation∑

r∈Z
H(4m− r2) = 2σ1(m)−

∑
a,b∈N
ab=m

min(a, b)(4.2)

for m ∈ N.
More generally, for a square-free positive integer N we consider the C[Z/2NZ]-valued

generating series ∑
r(2N)

∑
n≥0

r2≡−n(4N)

Hr(n)qn/4N er

with the level N Hurwitz class numbers

H0(0) = − 1

12
σ1(N), Hr(n) =

1

2

∑
Q∈QN,−n,r/Γ0(N)

1

|Γ0(N)Q|
(n > 0),

where

QN,−n,r = {[a, b, c] : a, b, c ∈ Z, b2 − 4ac = −n, N | a, b ≡ r(2N)}.
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It was shown in [22] that it is a mock modular form of weight 3/2 for the dual Weil represen-
tation associated to the lattice (Z, Nx2) whose shadow is given by

−
√
N

8π

∑
d|N

θσd1/2,N .

We sum up formula (4.1) for all special points of discriminant 2N , which are precisely the
points y = (d,N/d) for d | N , to obtain the relation∑

r∈Z
Hr(4Nm− r2) = 2σ1(N)σ1(m)−

∑
d|N

∑
a,b∈N
ab=m

min
(
ad, Nd b

)
.(4.3)

We remark that there is a vast literature on recurrences for Hurwitz class numbers, see for
example [6, 8, 18, 20, 29, 30, 31, 35, 36].

Example 4.3. We consider the lattice L = Zy + Zy⊥ with y = (1, 1) and y⊥ = (−1, 1). In
this case we have L′ = Zy/2+Zy⊥/2. In particular, L′/L is isomorphic to (Z/2Z)2, so we can
write the elements of L′/L in the form β = (β1, β2) with β1, β2 ∈ Z/2Z. We apply Theorem 4.1
to f = Fβ,m with β = (0, 0) and β = (1, 1), respectively. As a ξ-preimage of the unary theta
function θ1/2,1 we again choose the generating series of Hurwitz class numbers from the last
example. The formula in Theorem 4.1 involves the constant coefficients aFβ,m(γ, 0) of Fβ,m,

for isotropic γ ∈ L′/L. It follows from the residue theorem that this coefficient is given by
the negative of the (β,m)-th coefficient of the vector-valued Eisenstein series Eγ studied in
[13], and hence can be computed in terms of divisor sums using the explicit formulas given
there. Alltogether, we obtain the formulas∑

r≡0(2)

H(4m− r2) =
4

3
σ1(m)− 2σ1(m/2) +

8

3
σ1(m/4)− 1

2

∑
a,b∈Z

b2−a2=m

min(|a+ b|, |a− b|)(4.4)

and

∑
r≡1(2)

H(4m− r2) =
2

3
σ1(m) + 2σ1(m/2)− 8

3
σ1(m/4)− 1

2

∑
a,b∈Z

b2+b−a2−a=m

min(|a+ b+ 1|, |a− b|)

(4.5)

for m ∈ N, where σ1(x) = 0 if x is not integral. We leave the details of the simplification
to the reader. This generalizes some of the formulas found by Brown et al. [8], where the
authors studied restricted class number sums for m = p being an odd prime. We also refer
to [6, 35, 36] for similar formulas involving restricted class number sums.

Example 4.4. The smallest parts function spt(n), introduced by Andrews in [3], counts the
total number of smallest parts in the partitions of n (with spt(0) = 0). For n ∈ N0 we let

s(n) = spt(n) +
1

12
(24n− 1)p(n),

with the partition function p(n). In particular, s(0) = −1/12. Bringmann [5] showed that
the generating series

q−
1
24

∞∑
n=0

s(n)qn
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is the holomorphic part of a harmonic Maass form F (τ) of weight 3
2 for Γ0(576) with character(

12
·
)

which satisfies ξ3/2F = (−
√

6/4π)η. From this one can infer that the function∑
r(12)

(
12

r

)
F (τ) er = F (τ)(e1− e5− e7 + e11)

is a harmonic Maass form of weight 3/2 for the Weil representation associated to (Z, 6x2)
which maps to

−
√

6

4π

(
θ1/2,6 − θσ21/2,6

)
under ξ3/2 (compare [2], Section 3).

We choose the special points y = (1, 6) and y = (2, 3) in (4.1) and subtract the resulting
equations. We obtain after some simplification the formula∑

r∈Z

(
12

r

)
s

(
m− r2

24
+

1

24

)
= 4σ1(m)− 2

∑
d|m

(min(6d,m/d)−min(3d, 2m/d))(4.6)

for all m ∈ N.

4.2. Anisotropic lattices in signature (1, 1). Let F = Q(
√
D) with a non-square dis-

criminant D > 0. It is a rational quadratic space with the quadratic form given by the
norm

Q(ν) = NF/Q(ν) = νν ′.

The associated bilinear form is given by the trace

(ν, µ) = trF/Q(νµ′) = νµ′ + ν ′µ.

Let L ⊂ F be an even lattice. Then L has signature (1, 1) and is anisotropic.
We let w ∈ Gr(L) be a special point and we let y ∈ L be the primitive generator of w with

y, y′ > 0. Furthermore, we let y⊥ be the primitive generator of w⊥ with y⊥ < 0 and y⊥
′
> 0.

Let dP = yy′ and dN = y⊥y⊥
′
. Then P ∼= (Z, dPx

2) and N ∼= (Z,−dNx2).
Using similar arguments as in the proof of Theorem 4.1 we obtain the following formula.

Theorem 4.5. Suppose that L is as above. Then the evaluation of the regularized theta lift
Φ(f, w) of f ∈M !

0,L at a special point w = Ry ∈ Gr(L) is given by

Φ(f, w) =
4π√
yy′

∑
λ∈L′
λλ′<0

af (λ, λλ′) min(|λy′|, |λ′y|)

=
∑

αP (2dP )
αN (2dN )
γP+γN∈L′

∑
n∈Z− α2P

4dP
+
α2N
4dN

af (γP + γN ,−n)
∑
r∈Z

r≡αN (2dN )

a+

θ̃1/2,dP
(αP , n− r2/4dN ),

where we wrote γP = αP
2dP

y ∈ P ′ and γN = αN
2dN

y⊥ ∈ N ′, and θ̃1/2,dP is a ξ3/2-preimage of the

unary theta function θ1/2,dP .

Remark 4.6. Note that the sum in the first line of the theorem is not finite due to the
existence of units. However, according to the discussion after Theorem 9 in Section 4 of [11],
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it can be rewritten as a finite sum as follows. First, we can split the sum as∑
λ∈L′
λλ′<0

af (λ, λλ′) min(|λy′|, |λ′y|) =
∑

β∈L′/L

∑
m<0

af (β,m)
∑

λ∈L+β
λλ′=m

min(|λy′|, |λ′y|),

where the first two sums are finite. The set of units of norm one acting on L± β = (L+ β)∪
(L− β) is of the form {±1} × {εnβ : n ∈ Z} for some unit εβ > 1. Further, the set

R(m) = {λ ∈ L± β : λ > 0, λλ′ = m, (λ, y) < 0, (λεβ, y) ≥ 0}
is finite, and by Dirichlet’s unit theorem the set of all λ ∈ L± β with λ > 0 and λλ′ = m is
given by

{±λεnβ : λ ∈ R(m), n ∈ Z}.
For λ ∈ R(m) and n ∈ Z we have

min(|λεnβy′|, |λ′ε′nβ y|) =

{
λεnβy

′, if n ≤ 0,

−λ′ε′nβ y, if n > 0.

Thus we obtain∑
λ∈L±β
λ>0
λλ′=m

min(|λy′|, |λ′y|) = 2
∑

λ∈R(m)

λy′∑
n≤0

εnβ − λ′y
∑
n>0

ε′nβ



= 2
∑

λ∈R(m)

(
λy′

1− ε′β
+

λ′y

1− εβ

)
= 2

∑
λ∈R(m)

trF/Q

(
λy′

1− ε′β

)
.

Example 4.7. Let L = OF be the ring of integers of F = Q(
√
D). The dual lattice of L is

given by the inverse different d−1 = (1/
√
D)OF and the discriminant group of L has level D.

Let β = 0 for simplicity. Then ε0 is the smallest unit > 1 of norm 1 (which is either the
fundamental unit of F or its square). The coefficient of index (0, 0) of the Niebur Poincaré
series F0,m is given by the negative of the coefficient of index (0,m) of the weight 2 Eisenstein
series E = 2 e0 +O(q) for the dual Weil representation, compare [9], Proposition 1.14. By
results of Zhang [38], holomorphic vector-valued modular forms of weight k for the Weil
representation associated with OF can be identified with a certain space M ε

k(D,χD) of scalar-

valued modular forms for Γ0(D) with character χD =
(
D
·
)
. In particular, by [38], Section 4,

the coefficient of index (0,m) of the vector-valued Eisenstein series E is equal to the Dm-th
coefficient of the scalar-valued weight 2 Eisenstein series

E
(D)
2 (τ) = 2 +

4

L(−1, χD)

∞∑
n=1

σ
(D)
1 (n)qn ∈M ε

2(D,χD),

with the usual Dirichlet L-function L(s, χD) and the twisted divisor sum

σ
(D)
1 (n) =

∑
d|n

∑
m||D

χm(n/d)χ′m(d)d,

where χm denotes the m-part of χD and we write χD = χmχ
′
m.

We choose the special point y = ε0, such that dP = yy′ = 1. Its orthogonal complement
is spanned by y⊥ =

√
Dε0. Thus dN = y⊥y⊥

′
= D. The space of cusp forms of weight 2

for ρL− is trivial for a fundamental discriminant D if and only if D ≤ 21 (see Lemma 2 in
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[36]). This implies that the Maass-Poincaré series F0,m is weakly holomorphic for every m.
We apply Theorem 4.5 for f = F0,m with the generating series of Hurwitz class numbers and
obtain after some simplification the formula

∑
r∈Z

H(4m−Dr2) = − 1

6L(−1, χD)
σ

(D)
1 (Dm)−

∑
λ∈R(m)

trF/Q

(
λ

ε0 − 1

)
(4.7)

for D = 5, 8, 12, 13, 17, 21. Note that L(−1, χD) is a rational number. These relations
were first discovered by Williams [36] by comparing the Fourier coefficients of vector-valued
Hirzebruch-Zagier series and Eisenstein series for the Weil representation.

4.3. Ramanujan’s mock theta functions. By using a different theta function, the meth-
ods of this work can also be applied to obtain relations between the coefficients of ξ1/2-
preimages of unary theta series of weight 3/2, e.g., of the coefficients of the classical mock
theta functions of Ramanujan. We indicate the necessary steps but omit some details. Let L
be an even lattice of signature (1, 1). We fix an isotropic vector ` ∈ V and define the modified
theta function

Θ∗L(τ, z) = v3/2
∑
λ∈L′

(
λ,

`z
|`z|

)(
λ,

`z⊥

|`z⊥ |

)
e(Q(λz)τ +Q(λz⊥)τ) eλ+L .

It has weight 0 in τ for ρL, and at a special point w ∈ Gr(L) it splits as a tensor product
of unary theta functions of weight 3/2, similarly as in (2.4). The corresponding theta lift
Φ∗(f, z) is defined analogously to (3.1). Theorem 3.1 and Theorem 3.5 have similar looking
analogs whose proofs require only minor modifications. In particular, if L is a hyperbolic
plane, we obtain the formula

8
√
y1y2

∑
λ1,λ2∈N
λ1λ2=m

sgn(λ2y1 − λ1y2) min (λ1y2, λ2y1)

=
∑
n∈Z

am(−n)
∑
r∈Z

ra+

θ̃3/2,dP
(σy1(r), n− r2/4d),

(4.8)

with the same notation as in (4.1).
For example, let f(q) and ω(q) be Ramanujan’s mock theta functions of order 3. The

fundamental work of Zwegers [39, 40] showed that the C[Z/12Z]-valued function

F (τ) = q−1/24f(q)(e1− e5 + e7− e11)

+ 2q1/3(ω(q1/2)− ω(−q1/2))(− e2 + e10)

+ 2q1/3(ω(q1/2) + ω(−q1/2))(− e4 + e8)

can be completed to a harmonic Maass form of weight 1/2 for the Weil representation of
the lattice (Z, 6x2) which maps to a linear combination of unary theta functions of weight
3/2 under ξ1/2 (compare [14], Section 8.2). We apply formula (4.8) with the special points
y = (1, 6) and y = (2, 3) and sum up the resulting equations. After some simplification we
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obtain the formula∑
r∈Z

r2≡1(24)

(
−12

r

)
raf

(
m− r2

24
+

1

24

)
+ 4

∑
r∈Z

r2≡4(12)

e

(
r2 − 4

24

)(
−3

r

)
raω

(
2m− r2

12
− 2

3

)

= −48σ1(m) +
∑
d|m

(
sgn(d− 6md ) min(d, 6md ) + sgn(2d− 3md ) min(2d, 3md )

)(4.9)

for m ∈ N. We remark that more refined relations for the coefficients of Ramanujan’s f(q) and
w(q) were given by Imamoglu, Raum and Richter [26] and Chan, Mao and Osburn [17]. Their
methods work for other mock theta functions, too. Klein and Kupka [27] explicitly worked
out the completions to vector-valued harmonic Maass forms for the Weil representation for
many of Ramanujan’s classical mock theta functions. Hence the methods of the present work
can be used to derive recursions for their coefficients as well.

4.4. A lattice of signature (1, 2). Here we discuss the example from the introduction. The
lattice Z3 with the quadratic form Q(a, b, c) = −b2 + ac can also be realized as the set

L =

{
λ =

(
b c
−a −b

)
: a, b, c ∈ Z

}
of traceless integral 2 by 2 matrices with the quadratic form Q(λ) = det(λ) and the associated
bilinear form (λ, µ) = − tr(λµ). Its dual lattice is given by

L′ =

{
λ =

(
b/2 c
−a −b/2

)
: a, b, c ∈ Z

}
.

In particular, L has level 4 and L′/L can be identified with Z/2Z.
By the results of [21], Section 5, vector-valued modular forms of weight k for the Weil

representation ρL can be identified with scalar-valued modular forms of weight k for Γ0(4)
satisfying the Kohnen plus space condition via the map

f0(τ) e0 +f1(τ) e1 7→ f0(4τ) + f1(4τ).

In particular, we can use scalar-valued modular forms as inputs for the theta lift. Under the
above map the vector-valued Maass Poincaré series Fβ,m of weight −1/2 corresponds to the

scalar-valued weakly holomorphic modular form 2fD with D = 4m, where fD = q−D +O(1)
is the modular form described in the introduction. Note that fD is weakly holomorphic since
the Kohnen plus space of cusp forms of weight 5/2 for Γ0(4) is trivial, which in turn follows
from the fact that it is isomorphic to the space of cusp forms of weight 6 for SL2(Z) under
the Shimura correspondence.

The modular group Γ = SL2(Z) acts on L as isometries by γ.X = γXγ−1. Furthermore,
the Grassmannian Gr(L) of positive lines in V = L ⊗ R can be identified with the upper
half-plane H by mapping z ∈ H to the positive line generated by

λ(z) =
1√
2y

(
−x x2 + y2

−1 x

)
.

Note that (λ(z), λ(z)) = 1. Under this identification the action of Γ on Gr(L) corresponds
to the action by fractional linear transformations on H. A short compuation shows that for
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λ =
(
b/2 c
−a −b/2

)
∈ L′ and z = x+ iy ∈ H ∼= Gr(L) we have

Q(λz) = Q((λ, λ(z))λ(z)) =
1

2
(λ, λ(z))2 =

1

4y2
(a|z|2 + bx+ c)2,

Q(λz⊥) = Q(λ)−Q(λz) = − 1

4y2
|az2 + bz + c|2.

We can now explain how the theorems in the introduction follow from the results from the
body of the paper.

Proof of Theorem 1.1. Using the above evaluations of Q(λz) and Q(λz⊥), from Theorem 3.1
and Remark 3.2 we obtain the series representation

Φ(fD, z) = 4
∑

[a,b,c]∈QD

(
√
D − 1

y
|a|z|2 + bx+ c| arcsin

(
y
√
D

|az2 + bz + c|

))
,

which yields Theorem 1.1 in the introduction. �

Proof of Theorem 1.2. We consider the isotropic vectors

` =

(
0 1
0 0

)
, `′ =

(
0 0
−1 0

)
,

in L with (`, `′) = 1 and the one-dimensional negative definite lattice

K = L ∩ `⊥ ∩ `′⊥ =

{
λ =

(
b 0
0 −b

)
: b ∈ Z

}
∼= (Z,−b2).

Clearly, we can identify hyperbolic 2-space H2 with the complex upper half-plane H. Using
Theorem 3.3 we now easily obtain Theorem 1.2 from the introduction. �

Proof of Theorem 1.4. The CM point i ∈ H corresponds to the special point w ∈ Gr(L)
generated by the matrix

(
0 1
−1 0

)
. The corresponding positive and negative definite lattices are

given by

P = L ∩ w =

{
x

(
0 1
−1 0

)
: x ∈ Z

}
, N = L ∩ w⊥ =

{(
b −a
−a −b

)
: a, b ∈ Z

}
.

In particular, we see that P is isomorphic to (Z, x2) and N is isomorphic to (Z2,−a2− b2). If
we now apply Theorem 3.5 together with Remark 3.6 to Zagier’s C[Z/2Z]-valued generating
of Hurwitz class numbers discussed in Example 4.2, we obtain Theorem 1.4. �
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