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1 Introdution

Let L be an even lattie of signature (2; l). Throughout we assume l � 3 and furthermore

that L 


Z

Q ontains two orthogonal hyperboli planes (some results require l � 4). Let

� be a subgroup of �nite index of the orthogonal group of L and let X

�

be the Baily-

Borel ompati�ation of H

l

=�, where H

l

denotes the orresponding Hermitean symmetri

domain. The boundary of this ompati�ation is a urve, whih usually has many om-

ponents. We onsider in eah omponent of this urve a generi point s. We want to

investigate the loal divisor lass group of X

�

in s. This is roughly the group of analyti

line bundles Pi(U

reg

) on the regular lous of a small open neighbourhood U of s. Up to

some exeptional ases the boundary of X

�

onsists of singular points. In any ase, here

we de�ne

U

reg

= U \ (H

l

=�):

As a preise de�nition of the loal Piard group we take

Pi(X

�

; s) = lim

�!

Pi(U

reg

); (1.1)

where U runs through all open neighbourhoods of s. Our �rst goal is to ompute this loal

Piard group. To this end one has to determine the loal analyti ohomology

lim

�!

H

1

(U

reg

;O

X

�

):

This has been done in a more general ontext by Ballweg in his Heidelberg thesis [Ba℄.

Using the result of Ballweg we obtain a satisfatory desription of the loal Piard group.

The usp s orresponds to a �-onjugay lass of paraboli subgroups P � O(2; l). We

hoose one suh P and denote by �

1

the intersetion of P with �.
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For suÆiently neat � this is a two-step nilpotent group, whih splits into a semi-diret

produt

0 �! t �! �

1

�! � �! 0:

The main result of the loal omputation an be expressed by the exat sequene

Hom(�; R

�

) �! Pi(X

�

; s) �! H

2

(�

1

;Z) �! lim

�!

H

2

(U

reg

;O

X

�

):

Here R denotes the ring of onvergent power series in one omplex variable and R

�

its group

of units. (This ring ours as the loal ring of s in its boundary omponent). The kernel of

H

2

(�

1

;Z)! lim

�!

H

2

(U

reg

;O

X

�

) turns out to be non-trivial. Let D be a divisor in a small

neighbourhood of s. From the above exat sequene we see that there are two obstrutions

for D to be the divisor of a meromorphi funtion (in a possibly smaller neighbourhood of

s). The �rst obstrution is a Chern lass in H

2

(�

1

;Z). We will �nd many examples where

this Chern lass is not trivial. If it is trivial there is a seond obstrution, a (usually non-

unitary) harater of �. So our omputation shows that it is a rather restritive property

of a divisor to be prinipal, i.e. the divisor of a meromorphi funtion.

In setion 4 we investigate these obstrutions for Heegner divisors. Reall that for

any � in the disriminant group of L and any negative rational integer m (satisfying a

ongruene ondition modulo 1) the Heegner divisor H(�;m) of disriminant (�;m) is

an algebrai divisor on X

�

(see (4.1) for a preise de�nition). It de�nes an element of

Pi(X

�

; s) whih an be realized as an automorphy fator for �

1

on the inverse image

U of a small neighbourhood of s under the anonial map H

l

! X

�

. To onstrut this

automorphy fator expliitly we introdue a ertain loal Borherds produt 	. This is a

holomorphi funtion on H

l

de�ned as an in�nite produt, whose divisor (	) is invariant

under �

1

. The restrition of (	) to U equals the pullbak of H(�;m). The funtion 	

an be viewed as a loal analogue of the automorphi produts disovered by Borherds

[Bo1℄ or more preisely of the generalized Borherds produts attahed to Heegner divisors

onsidered in [Br1℄. Needless to mention that our onstrution is quite trivial ompared to

the deep theory of Borherds. However, it seems remarkable that the loal produts have

similar properties and arry non-trivial information on the geometry of X

�

.

The automorphy fator

J(g; Z) = 	(gZ)=	(Z) (g 2 �

1

; Z 2 H

l

)

is a oyle, whih represents the image of H(�;m) in Pi(X

�

; s). It an be omputed

expliitly, and as an immediate onsequene we may determine its Chern lass inH

2

(�

1

;Z)

(Proposition 4.3).

It turns out that these Chern lasses an be desribed by means of ertain vetor

valued theta series of weight 1 + l=2 for the metapleti group Mp

2

(Z) (Theorem 4.5 and

Proposition 5.1). One may infer that they are related to the global obstrutions for the

existene of automorphi produts, that our in the theory of Borherds [Bo1, Bo2℄.

In the speial ase that L is unimodular we use a result due to Waldspurger [Wal℄

to show that the loal obstrutions generate the spae of global obstrutions. Let H

be a linear ombinations of Heegner divisors. Assume that for every one-dimensional
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irreduible omponent B of the boundary of X

�

and a generi point s 2 B the divisor H

is a torsion element of Pi(X

�

; s). Then our Proposition 5.1 ombined with Waldspurger's

result implies that there exists a Borherds produt for the orthogonal group of L whose

divisor equals H (see Theorem 5.4).

As a orollary we �nd that any meromorphi modular form for the orthogonal group of

L, whose divisor is a linear ombination of Heegner divisors, is a Borherds produt. This

was also proved in greater generality in [Br1, Br2℄. However, in these papers a ompletely

di�erent argument is used, whih does not say anything about the loal Piard groups of

X

�

.

2 Boundary omponents

As in the introdution we onsider an even lattie L of rank l+2, whose symmetri bilinear

form (�; �) has signature (2; l). Then the quadrati form

q(x) =

1

2

(x; x)

has integral values. Throughout we assume l � 3 and that L 


Z

Q splits two hyperboli

planes. (This is always true if l � 5.) The dual lattie of L is denoted by L

0

.

We extend the bilinear form to a C -bilinear form on the omplexi�ation L


Z

C . We

onsider the following hain of subsets of the assoiated projetive spae P (L


Z

C ):

H

l

� K � N � P (L


Z

C ):

Here N denotes the zero quadri, i.e. the subset of P (L


Z

C ) represented by vetors z of

norm zero (z; z) = 0. The open subset K is de�ned by the ondition (z; �z) > 0. It has two

onneted omponents. We hoose one of them and denote it by H

l

. The real orthogonal

group O(2; l) = O(L


Z

R) ats on L


Z

C , P (L


Z

C ), N , and K. A subgroup of index 2

(the spinor kernel) O

0

(2; l) ats on H

l

.

We now desribe the boundary of H

l

in the zero quadri N : Let F � L 


Z

R be an

isotropi line. It is easy to see that the assoiated point in N lies in the boundary of H

l

.

Remark and De�nition 2.1.

i) Let F � L 


Z

R be an isotropi line. Then F represents a boundary point of H

l

. A

boundary point of this type is alled speial, otherwise generi. A set onsisting of

one speial boundary point is alled a zero-dimensional boundary omponent.

ii) Let F � L 


Z

R be a two-dimensional isotropi subspae. The set of all generi

boundary points, whih an be represented by an element of F 


R

C is alled the

one-dimensional boundary omponent attahed to F .

This gives a one-to-one orrespondene between boundary omponents and isotropi spaes

F of the orresponding dimension. The boundary of H

l

is the disjoint union of the boundary

omponents.
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The proof of the last statement follows from the following desription: Let F � L


Z

R

be a two dimensional isotropi subspae. Then there exists a omplementary isotropi

spae

~

F � L


Z

R suh that F +

~

F is the sum of two orthogonal hyperboli planes. There

exists a basis e

1

; e

3

of F and a basis e

2

; e

4

of

~

F suh that

(e

1

; e

2

) = 1; (2.1)

(e

3

; e

4

) = 1;

(e

i

; e

i

) = 0 (j = 1; : : : ; 4);

(e

i

; e

j

) = 0 (i = 1; 2; j = 3; 4):

We briey write (z

1

; z

2

; z

3

; z

4

) instead of z

1

e

1

+ � � �+ z

4

e

4

. Hene the elements of F are of

the form (z

1

; 0; z

3

; 0). We assume that this is not a multiple of a real point. Then z

1

; z

3

both must be di�erent from 0, and we may normalize suh that z

1

= 1, i.e. the point is of

the form (1; 0; �; 0). We have to larify whether it is in the boundary of H

l

. This depends

on the hoie of the omponent H

l

� K. The point (i; i; 1; 1) is ontained in K. We may

replae e

1

by �e

1

and e

2

by �e

2

and therefore assume that it is ontained in H

l

. Then

H�H �! H

l

; (z

1

; z

2

) 7! (z

1

; z

2

;�z

1

z

2

; 1)

de�nes an embedding of the produt of two usual omplex upper half planes H into H

l

.

We have (in the projetive spae)

lim

t!1

[it; �;�� it; 1℄ = lim

t!1

�

1;

�

it

;��;

1

it

�

= [1; 0;��; 0℄:

This means that the point (1; 0;��; 0) belongs to the boundary of H

l

if and only if the

imaginary part of � is positive. Thus the one dimensional boundary omponents an be

onsidered as usual omplex upper half planes. It should be mentioned that the set of all

boundary points, whih an be represented by a point of F 


Z

C (inluding the speial

ones), an be identi�ed in the same manner with H [ R [1.

Rational boundary omponents

A boundary omponent is alled rational if the orresponding isotropi spae F is de�ned

over Q . The union of H

l

with all rational boundary omponents is denoted by H

�

l

. The

rational orthogonal group

O

0

(L


Z

Q ) = O(L


Z

Q ) \ O

0

(2; l)

ats on H

�

l

.

Denote by O(L) the integral orthogonal group of L and put O

0

(L) = O(L)\O

0

(2; l). Let

� = �(L) be the disriminant kernel of O

0

(L). This is the subgroup of �nite index onsisting

of all elements, whih at as the identity on the disriminant group L

0

=L. Observe that

�(L) is funtorial in the following sense: If

~

L � L is a sublattie, then �(

~

L) � �(L).
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By the theory of Baily-Borel, the quotient

X

�

= H

�

l

=�

arries the struture of a (ompat) projetive variety, whih ontains H

l

=� as a Zariski

open subvariety. The topology of X

�

is the quotient topology of a ertain topology on H

�

l

.

We will desribe part of it a little later. If s 2 H

�

l

is any point and �

s

its stabilizer in �,

the anonial map

H

�

l

=�

s

�! H

�

l

=�

de�nes an open embedding of a small neighbourhood of the image of s.

We reall another fat. If s,t are points in the same boundary omponent and if

g 2 O

0

(2; l) is an element with g(s) = t, then g normalizes the boundary omponent. In

partiular �

s

is ontained this normalizer. Therefore the loal struture of a usp depends

on the normalizer of the boundary omponent ontaining the usp.

The normalizer of a one-dimensional boundary omponent

In the following we abbreviate V = L 


Z

R and G = O

0

(2; l). Let F � V be a two

dimensional isotropi subspae. We write

P = fg 2 G; g(F ) = Fg

for the normalizer of F and

P

0

= fg 2 G; g ats on F as identityg

for its entralizer. As in (2.1) we hoose four isotropi elements e

1

; e

2

; e

3

; e

4

suh that

F = Re

1

+ Re

3

and suh that H

1

= Re

1

+ Re

2

and H

2

= Re

3

+ Re

4

are two orthogonal

hyperboli planes. We obtain an orthogonal deomposition

V = H

1

�H

2

�W;

where W is a negative de�nite subspae (of dimension l � 2). If x

1

; : : : ; x

4

2 R and

x 2 W , we briey write (x

1

; x

2

; x

3

; x

4

; x) instead of x

1

e

1

+ � � � + x

4

e

4

+ x. All elements of

P

0

have to �x the omponents x

2

; x

4

. We give four examples by desribing the image of

X = (x

1

; x

2

; x

3

; x

4

; x) 2 V . The �rst three are given by Eihler transformations. (Reall

that if u 2 V is an isotropi vetor and v 2 V is orthogonal on u, then the Eihler

transformation

a 7! E(u; v)(a) = a + (a; u)v � (a; v)u� q(v)(a; u)u (a 2 V )

de�nes an element of G.)

1. X 7! E(e

3

; te

1

)(X) = (x

1

+ tx

4

; x

2

; x

3

� tx

2

; x

4

; x) (t 2 R),
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2. X 7! E(e

3

; b)(X) = (x

1

; x

2

; x

3

� (b; x)� q(b)x

4

; x

4

; x+ x

4

b) (b 2 W ),

3. X 7! E(e

1

; a)(X) = (x

1

� (a; x)� q(a)x

2

; x

2

; x

3

; x

4

; x+ x

2

a) (a 2 W ).

4. The orthogonal group O(W ) is embedded into G (ating trivially on the two hyper-

boli planes).

It is useful to introdue adapted oordinates ofH

l

. If [Z℄ = [z

1

; z

2

; z

3

; z

4

; z℄ is an element

of H

l

, then z

4

is di�erent from zero and we an normalize z

4

= 1. Sine the norm of Z is

zero, the oordinate z

3

is determined by the other ones. We simply identify

(z

1

; z

2

; z) ! [z

1

; z

2

; �; 1; z℄:

(This is a tube domain realization of H

l

in C

l

.) An easy alulation shows that the image

of (z

1

; z

2

; z) under the transformations 1{4 (in the same order) is given by:

1. (z

1

+ t; z

2

; z),

2. (z

1

; z

2

; z+ b),

3. (z

1

� (a; z)� q(a)z

2

; z

2

; z+ z

2

a),

4. (z

1

; z

2

; k(z)); (k 2 O(W )).

The transformations of type 1 and 2 ommute, they generate a group, whih is iso-

morphi to the additive group of the vetor spae R � W . We denote the orthogonal

transformation, whih orresponds to the element (t; b) 2 R �W by T

t;b

. The transfor-

mations of type 3 form a group isomorphi to the additive group of W . The orthogonal

transformation of type 3, whih orresponds to a 2 W , is denoted by R

a

. A simple alu-

lation yields the ommutation rule

R

a

T

t;b

R

�1

a

= T

t�(a;b);b

:

This means that the set of all produts R

a

T

t;b

is a group, whih we denote by U . Obviously

U is a semi-diret produt, and we have an exat sequene

0 �! R �W �! U �!W �! 0:

If we use the abbreviation

[a; t; b℄ = R

a

� T

t;b

;

the group law is given by

[a; t; b℄ � [a

0

; t

0

; b

0

℄ = [a + a

0

; t+ t

0

+ (a

0

; b); b + b

0

℄:

Under the ation of [a; t; b℄ on H

l

the point (z

1

; z

2

; z) is mapped to

(z

1

+ t� (a; z)� (a; b)� q(a)z

2

; z

2

; z+ z

2

a+ b):
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We also mention that the subgroup of all elements [0; t; 0℄ is a normal subgroup of U with

trivial ation of U . The natural projetion [a; t; b℄ 7! (a; b) gives rise to the exat sequene

0 �! R �! U �! W �W �! 0:

Here R and W �W are understood as additive groups. We will see that this sequene does

not split.

One immediately heks that a transformation of type 4 is ontained in U only if it is

the identity. Moreover, it is easily seen that O(W ) ats by onjugation on U . Hene we

may form the semi-diret produt U n O(W ). It is a subgroup of the entralizer P

0

.

Lemma 2.2. The entralizer P

0

of the two-dimensional isotropi subspae F � V is gen-

erated by the transformations of type 1-4. Furthermore, one has the exat sequenes

1 �! U �! P

0

�! O(W ) �! 1;

0 �! R �W �! U �! W �! 0;

0 �! R �! U �!W �W �! 0:

The �rst two of these sequenes split (as semi-diret produts).

The full normalizer P is easy to desribe. We have a natural homomorphism P !

GL(F )

�

=

GL(2;R). By de�nition P is a subgroup of the spinor kernel. Thus the image is

only GL

+

(F ). We obtain the exat sequene

1 �! P

0

�! P �! GL

+

(F ) �! 1:

The group GL

+

(F ) ats on the boundary omponent and this ation an be identi�ed with

the standard ation of GL

+

(2;R) on the upper half plane.

3 Loal ohomology

Let us �x some notation for the rest of this paper. We suppose that the two dimensional

isotropi subspae F is de�ned over Q . Then F orresponds to a rational one-dimensional

boundary omponent B

F

of H

�

l

.

Sine L


Z

Q splits two hyperboli planes, we may further assume that the vetors e

1

,

e

3

(see (2.1)) are primitive elements of the lattie L and that e

2

, e

4

are ontained in L


Z

Q .

Let N

j

(j = 1; 3) be the uniquely determined positive integers suh that (e

j

; L) = N

j

Z.

Then e

j

=N

j

are ontained in L

0

. We denote by L the subgroup

L = f� 2 L

0

=L; (�; e

j

) � 0 (mod N

j

) for j = 1; 3g (3.1)

of the disriminant group L

0

=L.

Let D be the lattie L \ F

?

\

~

F

?

. Then D is negative de�nite of dimension l � 2 and

W = D 


Z

R. If � 2 V , then we write �

D

for the orthogonal projetion of � to W . If

7



� is even ontained in L

0

then �

D

belongs to D

0

. (But note that D

0

is in general not a

sublattie of L

0

.)

Reall that � = �(L) is the disriminant kernel of the integral orthogonal group O

0

(L).

It an be easily veri�ed that for t 2 Z and a; b 2 D the transformations T

t;b

and R

a

are

ontained in �.

Notation 3.1. We write �

1

for the subgroup of �, whih is generated by the transforma-

tions T

t;b

and R

a

with t 2 Z and a; b 2 D. The subgroup of �

1

generated by the T

t;b

is

denoted by t. The subgroup generated by the R

a

is denoted by �.

The group �

1

is a subgroup of �nite index in the stabilizer �

s

of any generi boundary

point s 2 B

F

. Moreover, �

1

is the semi-diret produt of the normal subgroup t and �.

We have a natural exat sequene

0 �! t �! �

1

�! � �! 0;

whih splits, i.e. there is a setion

� �! �

1

; a 7! [a; 0; 0℄:

The groups t = Z� D and � = D are obviously Abelian. We now onsider the disjoint

union H

l

[H. We identify a point � 2 H with the boundary point (1; 0;��; 0) 2 B

F

. This

means that H

l

[H is onsidered as a part of H

�

l

. We de�ne a topology on H

l

[H (whih

is indued from the topology on H

�

l

, whih leads to the Baily-Borel ompati�ation, and

whih we don't introdue here).

We onsider a point � 2 H. Let " > 0 and denote by V

"

(�) the "-ball

V

"

(�) = fz

2

2 H; jz

2

� � j < "g :

We de�ne

U

"

(�) =

�

(z

1

; z

2

; z); z

2

2 V

"

(�); y

1

y

2

+ q(y) > "

�1

	

:

We will often simply write V

"

resp. U

"

instead of V

"

(�) resp. U

"

(�), if the point � is lear

from the ontext. The group �

1

ats on the set U

"

(�) [ V

"

(�).

De�nition 3.2. A set U � H

l

[H is alled open, if its intersetion with H

l

is open in the

usual sense, and if for every � 2 H \ U there exists an " > 0 suh that

U

"

(�) [ V

"

(�) � U:

Baily's riterion for the extension of a omplex spae (see [Ca℄, [Fr1℄ hapter II for a

simpli�ed version) applies to show that

(H

l

[H)=�

1

= H

l

=�

1

[H

is a normal omplex spae. It is holomorphially onvex in the following sense:

An arbitrary point a 2 H

l

=�

1

[H is an isolated point of the set of ommon zeros of �nitely

many analyti funtions on H

l

=�

1

[H.

This an be proved by standard onstrutions using Poinar�e series (ompare [Fr2℄

hapter 2 x4).
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Proposition 3.3. The sets

U

"

=�

1

[ V

"

(" > 0)

de�ne a fundamental system of Stein neighbourhoods of � 2 H

l

=�

1

[H. The spaeH

l

=�

1

[

H is also a Stein spae.

The proof follows from the fat that the funtion

jz

2

� � j

2

+ (y

1

y

2

+ q(y))

�1

is plurisubharmoni on H

l

=�

1

and an be extended to a ontinuous funtion on H

l

=�

1

[

H

1

.

The singular lous of H

l

=�

1

[H is exatly the boundary omponent H. If we remove

the singularities from our Stein neighbourhoods U

"

=�

1

[ V

"

, we simply get U

"

=�

1

. We

want to determine the group of analyti line bundles

Pi(U

"

=�

1

) = H

1

(U

"

=�

1

;O

�

):

Every analyti line bundle on U

"

is trivial beause this is a ontratible Stein spae. Hene

Pi(U

"

=�

1

) = H

1

(�

1

;O(U

"

)

�

):

We use the abbreviation

R(") = O(U

"

):

The exat sequene

0 �! Z �! R(") �! R(")

�

�! 0

indues the exat sequene of ohomology groups

H

1

(�

1

;Z) �! H

1

(�

1

; R(")) �! H

1

(�

1

; R(")

�

)

�! H

2

(�

1

;Z) �! H

2

(�

1

; R(")): (3.2)

The group �

1

ontains t as a normal subgroup, and the fator group is �. Sine U

"

=t is a

Stein spae we have

H

p

(�

1

; R(")) = H

p

(�;P("));

1

Grauert and Remmert [GrRe℄ introdued the notion of a plurisubharmoni funtion p : X ! R on an

arbitrary omplex spae X . If X is smooth and p is a C

1

-funtion suh that the matrix �

2

p=�z

i

��z

j

is

positive de�nite in any point for some loal oordinates z

i

then p is plurisubharmoni. If p is a ontinuous

funtion on a omplex spae and plurisubharmoni outside some thin analyti set, then it is plurisubhar-

moni everywhere. If X is a holomorphially onvex omplex spae and p a plurisubharmoni funtion on

X suh that all X

"

= fx; p(x) < "g are relatively ompat then X

"

and X are Stein spaes.

9



where P(") denotes the spae of holomorphi funtions on U

"

, whih are periodi with

respet to t. The elements of this spae admit Fourier expansions and the \onstant"

oeÆients are funtions whih only depend on z

2

. If we denote by P

0

(") all elements

whose onstant Fourier oeÆient vanishes we get a splitting

H

p

(�;P(")) = H

p

(�;O(V

"

))�H

p

(�;P

0

(")):

A speial ase of a more general result due to Ballweg [Ba℄ states:

Proposition 3.4 (Ballweg). Assume that p < l � 2. For suÆiently small " the group

H

p

(�;P

0

(")) vanishes.

For the rest of this setion we assume that l � 4 and that " > 0 is suÆiently small in

the sense of Proposition 3.4.

By Ballweg's result we know that

H

1

(�

1

; R(")) = H

1

(�;O(V

"

)) = Hom(�;O(V

"

)): (3.3)

Using (3.3) and the isomorphism Hom(�

1

;Z)

�

=

H

1

(�

1

;Z), we may rewrite the exat

sequene (3.2) in the following way:

Hom(�

1

;Z) �! Hom(�;O(V

"

)) �! H

1

(�

1

; R(")

�

)

�! H

2

(�

1

;Z) �! H

2

(�

1

; R(")): (3.4)

The natural projetion �

1

! � indues a homomorphism Hom(�;Z)! Hom(�

1

;Z). It

an be used to obtain from (3.4) the exat sequene

Hom(�;O(V

"

))

Æ

Hom(�;Z) �! H

1

(�

1

; R(")

�

)

�! H

2

(�

1

;Z) �! H

2

(�

1

; R(")): (3.5)

We also have the exat sequene

0 �! Hom(�;Z) �! Hom(�;O(V

"

)) �! Hom(�;O(V

"

)

�

) �! 0; (3.6)

beause � is a free group. If we ombine (3.5) and (3.6) we �nally �nd that

Hom(�;O(V

"

)

�

) �! Pi(U

"

=�

1

) �! H

2

(�

1

;Z) �! H

2

(�

1

; R(")) (3.7)

is exat.

We now derive some information about H

2

(�

1

;Z). Every bilinear form

B : D �D �! Z

de�nes a 2-oyle

2

of �

1

ating trivially on Z. We denote this oyle by B, too. It is

given by

B([a; t; b℄; [a

0

; t

0

; b

0

℄) = B(a; b

0

):

2

Throughout we use the inhomogeneous standard omplex of group ohomology as in [Sh℄ hapter 8.
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In fat, it is easily heked that this is a 2-oyle. Hene we get a map

Bil(D) �! H

2

(�

1

;Z)

from the group Bil(D) of bilinear forms on D to H

2

(�

1

;Z). Only the image is important

for our appliations. It is a basi fat that this map is not injetive:

Proposition 3.5. The kernel of the map Bil(D)! H

2

(�

1

;Z) equals the yli subgroup

generated by the bilinear form (�; �). The image of this map is ontained in the kernel of

H

2

(�

1

;Z) �! H

2

(�

1

; R(")).

Proof. The �rst statement follows from the so-alled \Five Term Exat Sequene" of group

ohomology. If G is a group whih ats on an Abelian group A and if H is a normal

subgroup then there is a ertain homomorphism

tg : H

1

(H;A)

G=H

! H

2

(G=H;A

H

);

alled \transgression", whih has the property that the sequene

H

1

(H;A)

G=H

�! H

2

(G=H;A

H

) �! H

2

(G;A)

is exat. We apply this to the situation G = �

1

, A = Z (trivial operation), H = Z, and

the exat sequene

0 �! Z �! �

1

�! D �D �! 0:

In this ase H

1

(H;Z)

�

=

Z. A straightforward omputation shows that tg(1) 2 H

2

(D �

D;Z) is the bilinear form whih maps the pair ([a; 0; b℄; [a

0

; 0; b

0

℄) to �(a

0

; b). But this

bilinear form di�ers from (�; �) only by a oboundary. Sine Bil(D) ! H

2

(�

1

;Z) fators

through H

2

(D �D;Z) we obtain the assertion.

It remains to show that the image of a bilinear form B vanishes in H

2

(�

1

; R(")). A

ohain that trivializes B is given by

f([a; t; b℄; Z) = B(a; z)�

z

2

2

B(a; a)

for [a; t; b℄ 2 �

1

and Z = (z

1

; z

2

; z) 2 R("). Here B is extended C -bilinearly.

One an de�ne the trae tr(B) of an Element B 2 Bil(D) as the trae of a Gram matrix

of B with respet to an orthonormal basis of the quadrati spae (D


Z

R;�q). The trae

of (�; �) equals 2� l. Proposition 3.5 implies

Remark 3.6. An element B 2 Bil(D) de�nes a torsion element in H

2

(�

1

;Z) if and only

if

B(h; h) +

tr(B)

l � 2

(h; h) = 0

for any h 2 D.

The groups Pi(U

"

=�

1

) and H

2

(�

1

;Z) are usually not torsion free. However, in the

present paper we ignore these torsion problems.
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4 Loal Heegner divisors

Reall the notation introdued at the beginning of setion 3. Let X be a normal irreduible

omplex spae. By a divisor D on X we mean a formal linear ombination D =

P

n

Y

Y

(n

Y

2 Z) of irreduible losed analyti subsets Y of odimension 1 suh that the support

S

n

Y

6=0

Y is a losed analyti subset of everywhere pure odimension 1. We write Div(X)

for the divisor group of X.

For any vetor � 2 L

0

of negative norm the orthogonal omplement of � in H

l

de�nes

a divisor �

?

on H

l

. Let � 2 L

0

=L and m 2 Z+ q(�) with m < 0. Then

H(�;m) =

X

�2L

0

q(�)=m

�+L=�

�

?

(4.1)

is a �-invariant divisor on H

l

. It is the inverse image under the anonial projetion of

an algebrai divisor on the quotient X

�

(whih will also be denoted by H(�;m)). The

multipliities of all irreduible omponents equal 2, if 2� = 0, and 1, if 2� 6= 0 in L

0

=L.

Following Borherds we all this divisor Heegner divisor of disriminant (�;m). Note that

H(�;m) = H(��;m).

In the present paper we are interested in the ontribution of H(�;m) to the loal Piard

groups at generi boundary points of X

�

. Let s be a generi point in B

F

and denote its

image in X

�

by s, too. Sine �

1

has �nite index in the stabilizer �

s

of s, the loal Piard

group Pi(X

�

; s) as de�ned in the introdution an be desribed by means of the groups

Pi(U

"

(s)=�

1

) up to torsion. The group �

s

=�

1

ats on lim

�!

(Pi(U

"

=�

1

)) and the invariant

part satis�es

lim

�!

�

Pi(U

"

=�

1

)


Z

Q

�

�

s

=�

1

= Pi(X

�

; s)


Z

Q : (4.2)

The natural inlusion and projetion maps indue the ommutative diagram

Div(H

l

=�) ���! Div(U

"

=�

1

)

?

?

y

?

?

y

Div(H

l

) ���! Div(U

"

)

of divisor groups. The image of H(�;m) in Div(U

"

=�

1

) is denoted by H

F

(�;m) and will

be alled a loal Heegner divisor. Its image in Div(U

"

) is a �

1

-invariant divisor, whih will

also be denoted by H

F

(�;m). (Note that our de�nitions of loal divisor groups and loal

Heegner divisors also depend on the hoie of the omplementary isotropi subspae

~

F .)

The proof of the next lemma will be left to the reader.

Lemma 4.1. Let � 2 L

0

be a vetor of negative norm. Then �

?

has non-zero intersetion

with U

"

for every " > 0, if and only if � is orthogonal to F .
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Thus, if " is suÆiently small, the loal Heegner divisor H

F

(�;m) 2 Div(U

"

) is given

by

H

F

(�;m) =

X

�2L

0

\F

?

q(�)=m

�+L=�

�

?

: (4.3)

In partiular if H

F

(�;m) 6= 0 in Div(U

"

), then � belongs to the subgroup L of L

0

=L.

Observe that for any � 2 L there exists a representative

_

� 2 L

0

\ F

?

. For the rest of this

paper we �x suh a representative

_

� for every � 2 L. The assignment � 7!

_

�

D

indues a

surjetive homomorphism

� : L �! D

0

=D:

Throughout we will assume that " is small enough suh that (4.3) holds.

Let � 2 L

0

\ F

?

. Then the group �

1

ats on the set � + Ze

1

+ Ze

3

� L

0

\ F

?

with

�nitely many orbits. Thus the divisor

H

1

(�) =

X

�

1

;�

3

2Z

(�+ �

1

e

1

+ �

3

e

3

)

?

is invariant under �

1

. It de�nes an element of Div(U

"

=�

1

). For � 2 L the loal Heegner

divisor H

F

(�;m) an be written as a �nite sum

H

F

(�;m) =

X

�2D

q(�+

_

�)=m

H

1

(�+

_

�): (4.4)

Reall that Pi(U

"

=�

1

) an be desribed by automorphy fators in the following way.

An automorphy fator of �

1

on U

"

is a 1-oyle of �

1

with values in R(")

�

, i.e. a holo-

morphi funtion

J : �

1

� U

"

�! R(")

�

(4.5)

with the property J(gg

0

; Z) = J(g; g

0

Z)J(g

0

; Z) for g; g

0

2 �

1

. An automorphy fator of

the form J(g; Z) = h(gZ)=h(Z) with h 2 R(")

�

is alled trivial. The group Pi(U

"

=�

1

) =

H

1

(�

1

; R(")

�

) is the fator group of the group of all automorphy fators modulo the

subgroup of trivial automorphy fators. Speial automorphy fators are given by invertible

holomorphi funtions, whih do not depend on z

1

and z. These are simply homomorphisms

�

1

! O(V ("))

�

.

If H is a divisor in Div(U

"

=�

1

) then its image in Pi(U

"

=�

1

) an be determined as

follows: Let f be a holomorphi funtion on U

"

whose divisor equals the inverse image of

H in Div(U

"

). Then

J(g; Z) = f(gZ)=f(Z)

is an automorphy fator of �

1

on U

"

. Its lass in Pi(U

"

=�

1

) is the image of H.

We shall now determine the position of H

1

(�) in the Piard group Pi(U

"

=�

1

). It will

turn out that up to torsion it is ompletely determined by the Chern lass in H

2

(�

1

;Z)

of H

1

(�).
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De�nition 4.2. Let � 2 L

0

\ F

?

be a vetor of negative norm. Then we de�ne the loal

Borherds produt attahed to H

1

(�) by

	

�

(Z) =

Y

n2Z

[1� e (�

n

(nz

2

+ (�; Z)))℄

for Z = (z

1

; z

2

; z) 2 H

l

. Here

�

n

=

(

+1; if n � 0,

�1; if n < 0,

and e(z) := e

2�iz

for z 2 C .

The sign �

n

ensures that the in�nite produt onverges normally on the whole gener-

alized upper half plane H

l

. It is invariant under the subgroup t of �

1

. However, it is not

invariant under the subgroup �.

It is easily heked that the divisor of 	

�

is exatly H

1

(�). There is a strong anal-

ogy between funtions of the above type and Borherds' automorphi produts [Bo1℄ or

more preisely the generalized Borherds produts attahed to Heegner divisors whih were

introdued in [Br1, Br2℄.

The properties of 	

�

imply that the image of H

1

(�) in Pi(U

"

=�

1

) is given by the

automorphy fator

J

�

([a; t; b℄; Z) = 	

�

(R

a

Z)

Æ

	

�

(Z) ([a; t; b℄ 2 �

1

): (4.6)

Let us ompute J

�

([a; t; b℄; Z) more expliitly. Using the formula for the ation of R

a

we

�nd

J

�

([a; t; b℄; Z) =

Q

n2Z

[1� e (�

n

((n+ (�

D

; a))z

2

+ (�; Z)))℄

Q

n2Z

[1� e (�

n

(nz

2

+ (�; Z)))℄

=

Y

n2Z

1� e

�

�

n�(�

D

;a)

(nz

2

+ (�; Z))

�

1� e (�

n

(nz

2

+ (�; Z)))

:

In the latter produt only those n give a ontribution di�erent from 1, whih satisfy

i) 0 � n < (�

D

; a); or

ii) 0 > n � (�

D

; a):

Hene the produt is atually �nite.

The �rst ase an only our if (�

D

; a) > 0. We may use the elementary identity

1� e(z)

1� e(�z)

= �e(z)
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to obtain

J

�

([a; t; b℄; Z) =

Y

0�n<(�

D

;a)

[�e(�nz

2

� (�; Z))℄

= e

�

1

2

(�

D

; a)�

z

2

2

(�

D

; a)((�

D

; a)� 1)� (�

D

; a)(�; Z)

�

: (4.7)

One immediately heks that the same formula holds in the seond ase, too.

We briey reall the onstrution of the Chern lass of a lass [J ℄ of automorphy fators

in H

1

(�

1

; R(")

�

). Let J be an automorphy fator as in (4.5) representing [J ℄. For any

g 2 �

1

let A(g; Z) be a holomorphi funtion on U

"

suh that

J(g; Z) = e(A(g; Z)):

Then

(g; g

0

) = A(gg

0

; Z)� A(g; g

0

Z)� A(g

0

; Z)

is an integral onstant for all g; g

0

2 �

1

. The funtion (g; g

0

) 7! (g; g

0

) de�nes a 2-

oyle of �

1

ating trivially on Z. Obviously eah A(g; Z) is only determined up to an

integral additive onstant. It is easily seen that a di�erent hoie of the funtions A(g; Z)

only hanges (g; g

0

) by a oboundary. Moreover, any 2-oyle orresponding to a trivial

automorphy fator is a oboundary. Thus, if we map [J ℄ to the image of (�; �) inH

2

(�

1

;Z),

we get a well de�ned homomorphism. This is an expliit onstrution of the Chern lass

map Æ, the onneting homomorphism in the exat sequene (3.2).

Proposition 4.3. The Chern lass Æ(H

1

(�)) 2 H

2

(�

1

;Z) of the loal Heegner divisor

H

1

(�) 2 Pi(U

"

=�

1

) is given by the 2-oyle

([a; t; b℄; [a

0

; t

0

; b

0

℄) = (�

D

; a)(�

D

; b

0

)

of �

1

. In partiular, Æ(H

1

(�)) belongs to the image of Bil(D)! H

2

(�

1

;Z).

Proof. The divisor H

1

(�) is represented by the automorphy fator (4.7) as an element of

Pi(U

"

=�

1

). If we arry out the onstrution outlined above, we get the assertion.

Proposition 4.4. The Chern lass Æ(H) of a �nite linear ombination

H =

X

�2L

0

\F

?

q(�)<0



�

H

1

(�)

(

�

2 Z) of loal Heegner divisors is a torsion element of H

2

(�

1

;Z), if and only if

X

�2L

0

\F

?

q(�)<0



�

�

(�

D

; h)

2

�

(�

D

; �

D

)

l � 2

(h; h)

�

= 0

for any h 2 D.
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Proof. The trae of the bilinear form B(a; b

0

) = (�

D

; a)(�

D

; b

0

) is �(�

D

; �

D

). Hene the

assertion follows from Remark 3.6 and Proposition 4.3.

The bilinear form (�; �) is non-degenerated, whereas (�; �

D

)(�

D

; �) is obviously degener-

ated. Thus every individual loal Heegner divisor H

1

(�) is non-zero in Pi(U

"

=�

1

)


Z

Q .

The Chern lass of H

1

(�) only depends on the projetion �

D

2 D

0

. In fat, using the

above results, it is easily seen that H

1

(�) = H

1

(�

0

) in Pi(U

"

=�

1

)


Z

Q , if �

D

= �

0

D

.

Our main interest lies in the divisors H

F

(�;m). In the following theorem we desribe

their position in Pi(U

"

=�

1

) up to torsion. Let  2 D

0

=D and m 2 Z+ q() with m < 0.

We write P

;m

for the bilinear form

P

;m

(a; b) =

X

�2D

0

�+D=

q(�)=m

�

(a; �)(�; b)�

(�; �)

l � 2

(a; b)

�

(a; b 2 D): (4.8)

Theorem 4.5. A �nite linear ombination

H =

1

2

X

�2L

X

m2Z+q(�)

m<0

(�;m)H

F

(�;m) (4.9)

(with integral oeÆients (�;m) satisfying (�;m) = (��;m)) is a torsion element of

Pi(U

"

=�

1

), if and only if

X

�2L

X

m2Z+q(�)

m<0

(�;m)P

�(�);m

(a; a) = 0 (4.10)

for all a 2 D.

Proof. If the linear ombination H is a torsion element of Pi(U

"

=�

1

), then (4.10) follows

by Proposition 4.4.

Conversely, assume that (4.10) holds for all a 2 D. Then we also have

X

�2L

X

m2Z+q(�)

m<0

(�;m)P

�(�);m

(a; b) = 0 (4.11)

for all a; b 2 D 


Z

C . Aording to (4.7), an automorphy fator J representing H in

Pi(U

"

=�

1

) is given by

J(g; Z) =

Y

�2L

m2Z+q(�)

m<0

Y

�2D

q(�+

_

�)=m

J

�+

_

�

(g; Z)

(�;m)

2

=

Y

�2L

m2Z+q(�)

m<0

Y

�2D

q(�+

_

�)=m

e

�

�

z

2

2

(�+

_

�

D

; a)(�+

_

�

D

; a)� (�+

_

�

D

; a)(�+

_

�; Z)

�

(�;m)

2
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for g = [a; t; b℄ 2 �

1

. The linear terms in �+

_

�

D

anel out, beause (�;m) = (��;m).

In the latter equation we write (� +

_

�; Z) = (� +

_

�

D

; z) + (

_

� �

_

�

D

; Z). Here the seond

salar produt is just a rational linear ombination of 1 and z

2

. We now use (4.11) to

rewrite J(g; Z) as follows:

J(g; Z) = e((�

1

; a) + (�

2

; a)z

2

)

Y

�2L

m2Z+q(�)

m<0

Y

�2D

0

�+D=�(�)

q(�)=m

e

�

�

(�; �)

l � 2

(q(a)z

2

+ (a; z))

�

(�;m)

2

;

where �

1

; �

2

are suitable vetors in D 


Z

Q . The invertible funtions u

1

(Z) = e((�

2

; z))

and u

2

(Z) = e(z

1

) give rise to the trivial automorphy fators

j

1

(g; Z) = u

1

(gZ)=u

1

(Z) = e ((�

2

; a)z

2

+ (�

2

; b)) ;

j

2

(g; Z) = u

2

(gZ)=u

2

(Z) = e (t� (a; b)� q(a)z

2

� (a; z)) :

If we multiply J by appropriate rational powers of j

1

and j

2

, we �nd that J is equivalent

to

J

0

(g; Z) = e((a; �

1

)� (b; �

2

) + r((a; b)� t))

with a suitable onstant r 2 Q . Thus J is a torsion element of Pi(U

"

=�

1

).

Note that by (4.2) a linear ombination of loal Heegner divisors as in (4.9) is a torsion

element in Pi(U

"

=�

1

) for some ", if and only if it is a torsion element of Pi(X

�

; s).

5 Modular forms

In this setion we investigate the relation between the obstrutions ourring in Theorem

4.5 and the oeÆients of ertain vetor valued theta series of weight 1 + l=2. We �nd

interesting onnetions to Borherds' global \theory of obstrutions" for the onstrution

of automorphi produts [Bo2℄.

We write Mp

2

(R) for the metapleti over of SL

2

(R). The elements of Mp

2

(R) are

pairs (M;�(�)); where M = (

a b

 d

) 2 SL

2

(R), and � denotes a holomorphi funtion on H

with �(�)

2

= � + d. The produt of (M

1

; �

1

(�)); (M

2

; �

2

(�)) 2 Mp

2

(R) is given by

�

M

1

; �

1

(�)

��

M

2

; �

2

(�)

�

=

�

M

1

M

2

; �

1

(M

2

�)�

2

(�)

�

;

where M� =

a�+b

�+d

denotes the usual ation of SL

2

(R) on H.

Let Mp

2

(Z) be the inverse image of SL

2

(Z) under the overing map Mp

2

(R) ! SL

2

(R).

It is well known that Mp

2

(Z) is generated by

T =

��

1 1

0 1

�

; 1

�

;

S =

��

0 �1

1 0

�

;

p

�

�

:
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One has the relations S

2

= (ST )

3

= Z, where Z =

��

�1 0

0 �1

�

; i

�

is the standard generator

of the enter of Mp

2

(Z).

Let N be an even lattie of signature (b

+

; b

�

) equipped with a bilinear form (�; �). We

write q for the orresponding quadrati form q(x) =

1

2

(x; x) and denote the dual lattie by

N

0

. (In our latter appliations N will be L or D.)

Reall that there is a unitary representation �

N

of Mp

2

(Z) on the group algebra

C [N

0

=N ℄. If we denote the standard basis of C [N

0

=N ℄ by (e



)

2N

0

=N

then �

N

an be

de�ned by the ation of the generators S; T 2 Mp

2

(Z) as follows (see also [Bo1℄, where the

dual of �

N

is used):

�

N

(T )e



= e(�q())e



(5.1)

�

N

(S)e



=

p

i

b

+

�b

�

p

jN

0

=N j

X

Æ2N

0

=N

e((; Æ))e

Æ

: (5.2)

This representation is essentially the Weil representation attahed to the quadrati module

(N

0

=N; q) (f. [No℄). It fators through a �nite quotient of Mp

2

(Z). Note that �

N

(Z)e



=

i

b

�

�b

+

e

�

.

Let k 2

1

2

Z and f : H ! C [N

0

=N ℄ be a holomorphi funtion. Then f is alled modular

form of weight k with respet to �

N

and Mp

2

(Z) if

i) f(M�) = �(�)

2k

�

N

(M;�)f(�) for all (M;�) 2 Mp

2

(Z),

ii) f is holomorphi at 1.

Here the seond ondition has the following meaning: Condition (i) implies that f has a

Fourier expansion of the form

f(�) =

X

2N

0

=N

X

n2Z�q()

a(; n)e



(n�);

where we have abbreviated e



(�) := e(�)e



. As usual, f is alled holomorphi at 1, if all

oeÆients a(; n) with n < 0 vanish. Moreover, if all a(; n) with n � 0 vanish, then f

is alled usp form. The C -vetor spae of modular forms of weight k with respet to �

N

and Mp

2

(Z) is denoted by M

k;N

, the subspae of usp forms by S

k;N

.

For the rest of this paper let k = 1 + l=2. Reall that D = L \ F

?

\

~

F

?

is a negative

de�nitive lattie of rank l� 2. Speial modular forms in the spae S

k;D

an be onstruted

by means of theta series with harmoni polynomials. The homogeneous polynomial

Q(u; v) = (u; v)

2

�

(u; u)(v; v)

l � 2

(u; v 2 W )

is harmoni in u and v. For any �xed v 2 W we have the C [D

0

=D℄-valued theta series

�

D

(�; v) =

X

�2D

0

Q(�; v)e

�

(�q(�)�): (5.3)
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By the usual Poisson summation argument it an be shown that �

D

(�; v) is a usp form in

S

k;D

(see for instane [Bo1℄ Theorem 4.1). We denote by S

�

k;D

the subspae of S

k;D

, whih

is generated by the �

D

(�; v) when v varies through W .

The point is that the polynomials P

;m

de�ned in (4.8) are preisely the Fourier oeÆ-

ients of �

D

(�; v):

�

D

(�; v) =

X

2D

0

=D

X

m2Z�q()

m<0

P

;m

(v; v)e



(�m�):

Therefore Theorem 4.5 an also be stated as follows.

Proposition 5.1. A �nite linear ombination

H =

1

2

X

�2L

X

m2Z+q(�)

m<0

(�;m)H

F

(�;m) (5.4)

(with integral oeÆients (�;m) satisfying (�;m) = (��;m)) is a torsion element of

Pi(U

"

=�

1

), if and only if

X

�2L

X

m2Z+q(�)

m<0

(�;m)a(�(�);�m) = 0 (5.5)

for any usp form f 2 S

�

k;D

with Fourier oeÆients a(; n) ( 2 D

0

=D and n 2 Z� q()).

Borherds onstruted a lifting from ertain vetor valued modular forms of weight

1� l=2 for Mp

2

(Z) to meromorphi modular forms for the group �(L) (f. [Bo1℄ Theorem

13.3). Sine these lifts have ertain interesting in�nite produt expansions they are alled

automorphi produts or Borherds produts. Their divisors are linear ombinations of

Heegner divisors. We now ompare Proposition 5.1 with the following ondition for the ex-

istene of Borherds produts for the group �(L) with presribed divisor (f. [Bo2℄ Theorem

3.1).

Theorem 5.2 (Borherds). A �nite linear ombination of Heegner divisors

1

2

X

�2L

0

=L

X

m2Z+q(�)

m<0

(�;m)H(�;m) (5.6)

(with (�;m) 2 Z and (�;m) = (��;m)) is the divisor of a Borherds produt for the

group �(L) (as in [Bo1℄ Theorem 13.3), if and only if for any usp form f 2 S

k;L

with

Fourier oeÆients a(; n) the equality

X

�2L

0

=L

X

m2Z+q(�)

m<0

(�;m)a(�;�m) = 0 (5.7)

holds.
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By means of the "-operator, de�ned in [Br1℄ Lemma 15.2, it is possible to embed

S

k;D

into S

k;L

. Aording to Theorem 5.2 the spae S

k;L

arries some information on the

subgroup of Pi(X

�

) generated by the Heegner divisors H(�;m). A subspae of S

k;L

, the

image of S

�

k;D

, enodes the subgroup of the loal Piard group Pi(X

�

; s) 


Z

Q , whih is

generated by the pullbaks of the H(�;m)'s.

De�nition 5.3. A divisorH on X

�

is alled trivial at generi boundary points, if for every

one-dimensional irreduible omponent B of the boundary of X

�

there exists a generi point

s 2 B suh that H is a torsion element of Pi(X

�

; s).

If F is a meromorphi modular form for the group �(L), then the divisor (F ) attahed

to F is trivial at generi boundary points. This is an immediate onsequene of the

transformation behaviour of modular forms.

Unimodular latties

For the rest of this paper we assume that L is unimodular. Then D is a negative de�nite

even unimodular lattie of rank l � 2. Thus l � 2 (mod 8). Any negative de�nite even

unimodular lattie an be realized as a sublattie of L. This follows from the fat that there

exists just one isomorphism lass of even unimodular latties of signature (2; l) (f. [Wat℄

hapter 7, x3). The spae S

k;L

= S

k;D

is the usual spae of ellipti usp forms of weight

k = 1 + l=2 for SL

2

(Z).

Theorem 5.4. Let

H =

1

2

X

m2Z

m<0

(0; m)H(0; m)

be a �nite linear ombination of Heegner divisors H(0; m) (with oeÆients (0; m) 2 Z).

Then the following statements are equivalent:

i) H is the divisor of a Borherds produt for the group �(L) as in [Bo1℄ Theorem 13.3.

ii) H is the divisor of a meromorphi automorphi form for �(L).

iii) H is trivial at generi boundary points.

Proof. We only have to prove that (iii) implies (i). Assume that H is trivial at generi

boundary points. Then by Proposition 5.1 we have

X

m2Z

m<0

(0; m)a(0;�m) = 0 (5.8)

for any usp form f 2 S

�

k;D

with Fourier oeÆients a(0; n) and any negative de�nite even

unimodular lattie D of rank l � 2. In view of Theorem 5.2 it suÆes to show that (5.8)

holds for any usp form f 2 S

k;L

with Fourier oeÆients a(0; n). Hene it suÆes to prove

that the set of all theta series �

D

(�; v) (where D is any negative de�nite even unimodular

lattie and v 2 D 


Z

R) generates the spae S

k;L

. In fat, this is a onsequene of a

Theorem due to Waldspurger [Wal℄ (see also [EZ℄ Theorem 7.4).
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As a orollary we �nd that any meromorphi modular form for the group �(L), whose

divisor is a linear ombination of Heegner divisors, has to be a Borherds produt. This

result was already obtained in greater generality (under the weaker ondition that L splits

two hyperboli planes over Z) in [Br1℄. (See also [Br2℄ for the O(2; 2)-ase of Hilbert

modular surfaes.) However, in [Br1℄ a ompletely di�erent argument is used, whih does

not say anything about the loal Piard groups of X

�

.

Moreover, as a onsequene of Theorem 5.4 and Theorem 5.2 we may infer that the

rank of the subgroup of Pi(X

�

) generated by the Heegner divisors equals 1 + dim(S

k;L

).
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