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1 Introdu
tion

Let L be an even latti
e of signature (2; l). Throughout we assume l � 3 and furthermore

that L 


Z

Q 
ontains two orthogonal hyperboli
 planes (some results require l � 4). Let

� be a subgroup of �nite index of the orthogonal group of L and let X

�

be the Baily-

Borel 
ompa
ti�
ation of H

l

=�, where H

l

denotes the 
orresponding Hermitean symmetri


domain. The boundary of this 
ompa
ti�
ation is a 
urve, whi
h usually has many 
om-

ponents. We 
onsider in ea
h 
omponent of this 
urve a generi
 point s. We want to

investigate the lo
al divisor 
lass group of X

�

in s. This is roughly the group of analyti


line bundles Pi
(U

reg

) on the regular lo
us of a small open neighbourhood U of s. Up to

some ex
eptional 
ases the boundary of X

�


onsists of singular points. In any 
ase, here

we de�ne

U

reg

= U \ (H

l

=�):

As a pre
ise de�nition of the lo
al Pi
ard group we take

Pi
(X

�

; s) = lim

�!

Pi
(U

reg

); (1.1)

where U runs through all open neighbourhoods of s. Our �rst goal is to 
ompute this lo
al

Pi
ard group. To this end one has to determine the lo
al analyti
 
ohomology

lim

�!

H

1

(U

reg

;O

X

�

):

This has been done in a more general 
ontext by Ballweg in his Heidelberg thesis [Ba℄.

Using the result of Ballweg we obtain a satisfa
tory des
ription of the lo
al Pi
ard group.

The 
usp s 
orresponds to a �-
onjuga
y 
lass of paraboli
 subgroups P � O(2; l). We


hoose one su
h P and denote by �

1

the interse
tion of P with �.
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For suÆ
iently neat � this is a two-step nilpotent group, whi
h splits into a semi-dire
t

produ
t

0 �! t �! �

1

�! � �! 0:

The main result of the lo
al 
omputation 
an be expressed by the exa
t sequen
e

Hom(�; R

�

) �! Pi
(X

�

; s) �! H

2

(�

1

;Z) �! lim

�!

H

2

(U

reg

;O

X

�

):

Here R denotes the ring of 
onvergent power series in one 
omplex variable and R

�

its group

of units. (This ring o

urs as the lo
al ring of s in its boundary 
omponent). The kernel of

H

2

(�

1

;Z)! lim

�!

H

2

(U

reg

;O

X

�

) turns out to be non-trivial. Let D be a divisor in a small

neighbourhood of s. From the above exa
t sequen
e we see that there are two obstru
tions

for D to be the divisor of a meromorphi
 fun
tion (in a possibly smaller neighbourhood of

s). The �rst obstru
tion is a Chern 
lass in H

2

(�

1

;Z). We will �nd many examples where

this Chern 
lass is not trivial. If it is trivial there is a se
ond obstru
tion, a (usually non-

unitary) 
hara
ter of �. So our 
omputation shows that it is a rather restri
tive property

of a divisor to be prin
ipal, i.e. the divisor of a meromorphi
 fun
tion.

In se
tion 4 we investigate these obstru
tions for Heegner divisors. Re
all that for

any � in the dis
riminant group of L and any negative rational integer m (satisfying a


ongruen
e 
ondition modulo 1) the Heegner divisor H(�;m) of dis
riminant (�;m) is

an algebrai
 divisor on X

�

(see (4.1) for a pre
ise de�nition). It de�nes an element of

Pi
(X

�

; s) whi
h 
an be realized as an automorphy fa
tor for �

1

on the inverse image

U of a small neighbourhood of s under the 
anoni
al map H

l

! X

�

. To 
onstru
t this

automorphy fa
tor expli
itly we introdu
e a 
ertain lo
al Bor
herds produ
t 	. This is a

holomorphi
 fun
tion on H

l

de�ned as an in�nite produ
t, whose divisor (	) is invariant

under �

1

. The restri
tion of (	) to U equals the pullba
k of H(�;m). The fun
tion 	


an be viewed as a lo
al analogue of the automorphi
 produ
ts dis
overed by Bor
herds

[Bo1℄ or more pre
isely of the generalized Bor
herds produ
ts atta
hed to Heegner divisors


onsidered in [Br1℄. Needless to mention that our 
onstru
tion is quite trivial 
ompared to

the deep theory of Bor
herds. However, it seems remarkable that the lo
al produ
ts have

similar properties and 
arry non-trivial information on the geometry of X

�

.

The automorphy fa
tor

J(g; Z) = 	(gZ)=	(Z) (g 2 �

1

; Z 2 H

l

)

is a 
o
y
le, whi
h represents the image of H(�;m) in Pi
(X

�

; s). It 
an be 
omputed

expli
itly, and as an immediate 
onsequen
e we may determine its Chern 
lass inH

2

(�

1

;Z)

(Proposition 4.3).

It turns out that these Chern 
lasses 
an be des
ribed by means of 
ertain ve
tor

valued theta series of weight 1 + l=2 for the metaple
ti
 group Mp

2

(Z) (Theorem 4.5 and

Proposition 5.1). One may infer that they are related to the global obstru
tions for the

existen
e of automorphi
 produ
ts, that o

ur in the theory of Bor
herds [Bo1, Bo2℄.

In the spe
ial 
ase that L is unimodular we use a result due to Waldspurger [Wal℄

to show that the lo
al obstru
tions generate the spa
e of global obstru
tions. Let H

be a linear 
ombinations of Heegner divisors. Assume that for every one-dimensional

2



irredu
ible 
omponent B of the boundary of X

�

and a generi
 point s 2 B the divisor H

is a torsion element of Pi
(X

�

; s). Then our Proposition 5.1 
ombined with Waldspurger's

result implies that there exists a Bor
herds produ
t for the orthogonal group of L whose

divisor equals H (see Theorem 5.4).

As a 
orollary we �nd that any meromorphi
 modular form for the orthogonal group of

L, whose divisor is a linear 
ombination of Heegner divisors, is a Bor
herds produ
t. This

was also proved in greater generality in [Br1, Br2℄. However, in these papers a 
ompletely

di�erent argument is used, whi
h does not say anything about the lo
al Pi
ard groups of

X

�

.

2 Boundary 
omponents

As in the introdu
tion we 
onsider an even latti
e L of rank l+2, whose symmetri
 bilinear

form (�; �) has signature (2; l). Then the quadrati
 form

q(x) =

1

2

(x; x)

has integral values. Throughout we assume l � 3 and that L 


Z

Q splits two hyperboli


planes. (This is always true if l � 5.) The dual latti
e of L is denoted by L

0

.

We extend the bilinear form to a C -bilinear form on the 
omplexi�
ation L


Z

C . We


onsider the following 
hain of subsets of the asso
iated proje
tive spa
e P (L


Z

C ):

H

l

� K � N � P (L


Z

C ):

Here N denotes the zero quadri
, i.e. the subset of P (L


Z

C ) represented by ve
tors z of

norm zero (z; z) = 0. The open subset K is de�ned by the 
ondition (z; �z) > 0. It has two


onne
ted 
omponents. We 
hoose one of them and denote it by H

l

. The real orthogonal

group O(2; l) = O(L


Z

R) a
ts on L


Z

C , P (L


Z

C ), N , and K. A subgroup of index 2

(the spinor kernel) O

0

(2; l) a
ts on H

l

.

We now des
ribe the boundary of H

l

in the zero quadri
 N : Let F � L 


Z

R be an

isotropi
 line. It is easy to see that the asso
iated point in N lies in the boundary of H

l

.

Remark and De�nition 2.1.

i) Let F � L 


Z

R be an isotropi
 line. Then F represents a boundary point of H

l

. A

boundary point of this type is 
alled spe
ial, otherwise generi
. A set 
onsisting of

one spe
ial boundary point is 
alled a zero-dimensional boundary 
omponent.

ii) Let F � L 


Z

R be a two-dimensional isotropi
 subspa
e. The set of all generi


boundary points, whi
h 
an be represented by an element of F 


R

C is 
alled the

one-dimensional boundary 
omponent atta
hed to F .

This gives a one-to-one 
orresponden
e between boundary 
omponents and isotropi
 spa
es

F of the 
orresponding dimension. The boundary of H

l

is the disjoint union of the boundary


omponents.
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The proof of the last statement follows from the following des
ription: Let F � L


Z

R

be a two dimensional isotropi
 subspa
e. Then there exists a 
omplementary isotropi


spa
e

~

F � L


Z

R su
h that F +

~

F is the sum of two orthogonal hyperboli
 planes. There

exists a basis e

1

; e

3

of F and a basis e

2

; e

4

of

~

F su
h that

(e

1

; e

2

) = 1; (2.1)

(e

3

; e

4

) = 1;

(e

i

; e

i

) = 0 (j = 1; : : : ; 4);

(e

i

; e

j

) = 0 (i = 1; 2; j = 3; 4):

We brie
y write (z

1

; z

2

; z

3

; z

4

) instead of z

1

e

1

+ � � �+ z

4

e

4

. Hen
e the elements of F are of

the form (z

1

; 0; z

3

; 0). We assume that this is not a multiple of a real point. Then z

1

; z

3

both must be di�erent from 0, and we may normalize su
h that z

1

= 1, i.e. the point is of

the form (1; 0; �; 0). We have to 
larify whether it is in the boundary of H

l

. This depends

on the 
hoi
e of the 
omponent H

l

� K. The point (i; i; 1; 1) is 
ontained in K. We may

repla
e e

1

by �e

1

and e

2

by �e

2

and therefore assume that it is 
ontained in H

l

. Then

H�H �! H

l

; (z

1

; z

2

) 7! (z

1

; z

2

;�z

1

z

2

; 1)

de�nes an embedding of the produ
t of two usual 
omplex upper half planes H into H

l

.

We have (in the proje
tive spa
e)

lim

t!1

[it; �;�� it; 1℄ = lim

t!1

�

1;

�

it

;��;

1

it

�

= [1; 0;��; 0℄:

This means that the point (1; 0;��; 0) belongs to the boundary of H

l

if and only if the

imaginary part of � is positive. Thus the one dimensional boundary 
omponents 
an be


onsidered as usual 
omplex upper half planes. It should be mentioned that the set of all

boundary points, whi
h 
an be represented by a point of F 


Z

C (in
luding the spe
ial

ones), 
an be identi�ed in the same manner with H [ R [1.

Rational boundary 
omponents

A boundary 
omponent is 
alled rational if the 
orresponding isotropi
 spa
e F is de�ned

over Q . The union of H

l

with all rational boundary 
omponents is denoted by H

�

l

. The

rational orthogonal group

O

0

(L


Z

Q ) = O(L


Z

Q ) \ O

0

(2; l)

a
ts on H

�

l

.

Denote by O(L) the integral orthogonal group of L and put O

0

(L) = O(L)\O

0

(2; l). Let

� = �(L) be the dis
riminant kernel of O

0

(L). This is the subgroup of �nite index 
onsisting

of all elements, whi
h a
t as the identity on the dis
riminant group L

0

=L. Observe that

�(L) is fun
torial in the following sense: If

~

L � L is a sublatti
e, then �(

~

L) � �(L).
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By the theory of Baily-Borel, the quotient

X

�

= H

�

l

=�


arries the stru
ture of a (
ompa
t) proje
tive variety, whi
h 
ontains H

l

=� as a Zariski

open subvariety. The topology of X

�

is the quotient topology of a 
ertain topology on H

�

l

.

We will des
ribe part of it a little later. If s 2 H

�

l

is any point and �

s

its stabilizer in �,

the 
anoni
al map

H

�

l

=�

s

�! H

�

l

=�

de�nes an open embedding of a small neighbourhood of the image of s.

We re
all another fa
t. If s,t are points in the same boundary 
omponent and if

g 2 O

0

(2; l) is an element with g(s) = t, then g normalizes the boundary 
omponent. In

parti
ular �

s

is 
ontained this normalizer. Therefore the lo
al stru
ture of a 
usp depends

on the normalizer of the boundary 
omponent 
ontaining the 
usp.

The normalizer of a one-dimensional boundary 
omponent

In the following we abbreviate V = L 


Z

R and G = O

0

(2; l). Let F � V be a two

dimensional isotropi
 subspa
e. We write

P = fg 2 G; g(F ) = Fg

for the normalizer of F and

P

0

= fg 2 G; g a
ts on F as identityg

for its 
entralizer. As in (2.1) we 
hoose four isotropi
 elements e

1

; e

2

; e

3

; e

4

su
h that

F = Re

1

+ Re

3

and su
h that H

1

= Re

1

+ Re

2

and H

2

= Re

3

+ Re

4

are two orthogonal

hyperboli
 planes. We obtain an orthogonal de
omposition

V = H

1

�H

2

�W;

where W is a negative de�nite subspa
e (of dimension l � 2). If x

1

; : : : ; x

4

2 R and

x 2 W , we brie
y write (x

1

; x

2

; x

3

; x

4

; x) instead of x

1

e

1

+ � � � + x

4

e

4

+ x. All elements of

P

0

have to �x the 
omponents x

2

; x

4

. We give four examples by des
ribing the image of

X = (x

1

; x

2

; x

3

; x

4

; x) 2 V . The �rst three are given by Ei
hler transformations. (Re
all

that if u 2 V is an isotropi
 ve
tor and v 2 V is orthogonal on u, then the Ei
hler

transformation

a 7! E(u; v)(a) = a + (a; u)v � (a; v)u� q(v)(a; u)u (a 2 V )

de�nes an element of G.)

1. X 7! E(e

3

; te

1

)(X) = (x

1

+ tx

4

; x

2

; x

3

� tx

2

; x

4

; x) (t 2 R),
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2. X 7! E(e

3

; b)(X) = (x

1

; x

2

; x

3

� (b; x)� q(b)x

4

; x

4

; x+ x

4

b) (b 2 W ),

3. X 7! E(e

1

; a)(X) = (x

1

� (a; x)� q(a)x

2

; x

2

; x

3

; x

4

; x+ x

2

a) (a 2 W ).

4. The orthogonal group O(W ) is embedded into G (a
ting trivially on the two hyper-

boli
 planes).

It is useful to introdu
e adapted 
oordinates ofH

l

. If [Z℄ = [z

1

; z

2

; z

3

; z

4

; z℄ is an element

of H

l

, then z

4

is di�erent from zero and we 
an normalize z

4

= 1. Sin
e the norm of Z is

zero, the 
oordinate z

3

is determined by the other ones. We simply identify

(z

1

; z

2

; z) ! [z

1

; z

2

; �; 1; z℄:

(This is a tube domain realization of H

l

in C

l

.) An easy 
al
ulation shows that the image

of (z

1

; z

2

; z) under the transformations 1{4 (in the same order) is given by:

1. (z

1

+ t; z

2

; z),

2. (z

1

; z

2

; z+ b),

3. (z

1

� (a; z)� q(a)z

2

; z

2

; z+ z

2

a),

4. (z

1

; z

2

; k(z)); (k 2 O(W )).

The transformations of type 1 and 2 
ommute, they generate a group, whi
h is iso-

morphi
 to the additive group of the ve
tor spa
e R � W . We denote the orthogonal

transformation, whi
h 
orresponds to the element (t; b) 2 R �W by T

t;b

. The transfor-

mations of type 3 form a group isomorphi
 to the additive group of W . The orthogonal

transformation of type 3, whi
h 
orresponds to a 2 W , is denoted by R

a

. A simple 
al
u-

lation yields the 
ommutation rule

R

a

T

t;b

R

�1

a

= T

t�(a;b);b

:

This means that the set of all produ
ts R

a

T

t;b

is a group, whi
h we denote by U . Obviously

U is a semi-dire
t produ
t, and we have an exa
t sequen
e

0 �! R �W �! U �!W �! 0:

If we use the abbreviation

[a; t; b℄ = R

a

� T

t;b

;

the group law is given by

[a; t; b℄ � [a

0

; t

0

; b

0

℄ = [a + a

0

; t+ t

0

+ (a

0

; b); b + b

0

℄:

Under the a
tion of [a; t; b℄ on H

l

the point (z

1

; z

2

; z) is mapped to

(z

1

+ t� (a; z)� (a; b)� q(a)z

2

; z

2

; z+ z

2

a+ b):
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We also mention that the subgroup of all elements [0; t; 0℄ is a normal subgroup of U with

trivial a
tion of U . The natural proje
tion [a; t; b℄ 7! (a; b) gives rise to the exa
t sequen
e

0 �! R �! U �! W �W �! 0:

Here R and W �W are understood as additive groups. We will see that this sequen
e does

not split.

One immediately 
he
ks that a transformation of type 4 is 
ontained in U only if it is

the identity. Moreover, it is easily seen that O(W ) a
ts by 
onjugation on U . Hen
e we

may form the semi-dire
t produ
t U n O(W ). It is a subgroup of the 
entralizer P

0

.

Lemma 2.2. The 
entralizer P

0

of the two-dimensional isotropi
 subspa
e F � V is gen-

erated by the transformations of type 1-4. Furthermore, one has the exa
t sequen
es

1 �! U �! P

0

�! O(W ) �! 1;

0 �! R �W �! U �! W �! 0;

0 �! R �! U �!W �W �! 0:

The �rst two of these sequen
es split (as semi-dire
t produ
ts).

The full normalizer P is easy to des
ribe. We have a natural homomorphism P !

GL(F )

�

=

GL(2;R). By de�nition P is a subgroup of the spinor kernel. Thus the image is

only GL

+

(F ). We obtain the exa
t sequen
e

1 �! P

0

�! P �! GL

+

(F ) �! 1:

The group GL

+

(F ) a
ts on the boundary 
omponent and this a
tion 
an be identi�ed with

the standard a
tion of GL

+

(2;R) on the upper half plane.

3 Lo
al 
ohomology

Let us �x some notation for the rest of this paper. We suppose that the two dimensional

isotropi
 subspa
e F is de�ned over Q . Then F 
orresponds to a rational one-dimensional

boundary 
omponent B

F

of H

�

l

.

Sin
e L


Z

Q splits two hyperboli
 planes, we may further assume that the ve
tors e

1

,

e

3

(see (2.1)) are primitive elements of the latti
e L and that e

2

, e

4

are 
ontained in L


Z

Q .

Let N

j

(j = 1; 3) be the uniquely determined positive integers su
h that (e

j

; L) = N

j

Z.

Then e

j

=N

j

are 
ontained in L

0

. We denote by L the subgroup

L = f� 2 L

0

=L; (�; e

j

) � 0 (mod N

j

) for j = 1; 3g (3.1)

of the dis
riminant group L

0

=L.

Let D be the latti
e L \ F

?

\

~

F

?

. Then D is negative de�nite of dimension l � 2 and

W = D 


Z

R. If � 2 V , then we write �

D

for the orthogonal proje
tion of � to W . If

7



� is even 
ontained in L

0

then �

D

belongs to D

0

. (But note that D

0

is in general not a

sublatti
e of L

0

.)

Re
all that � = �(L) is the dis
riminant kernel of the integral orthogonal group O

0

(L).

It 
an be easily veri�ed that for t 2 Z and a; b 2 D the transformations T

t;b

and R

a

are


ontained in �.

Notation 3.1. We write �

1

for the subgroup of �, whi
h is generated by the transforma-

tions T

t;b

and R

a

with t 2 Z and a; b 2 D. The subgroup of �

1

generated by the T

t;b

is

denoted by t. The subgroup generated by the R

a

is denoted by �.

The group �

1

is a subgroup of �nite index in the stabilizer �

s

of any generi
 boundary

point s 2 B

F

. Moreover, �

1

is the semi-dire
t produ
t of the normal subgroup t and �.

We have a natural exa
t sequen
e

0 �! t �! �

1

�! � �! 0;

whi
h splits, i.e. there is a se
tion

� �! �

1

; a 7! [a; 0; 0℄:

The groups t = Z� D and � = D are obviously Abelian. We now 
onsider the disjoint

union H

l

[H. We identify a point � 2 H with the boundary point (1; 0;��; 0) 2 B

F

. This

means that H

l

[H is 
onsidered as a part of H

�

l

. We de�ne a topology on H

l

[H (whi
h

is indu
ed from the topology on H

�

l

, whi
h leads to the Baily-Borel 
ompa
ti�
ation, and

whi
h we don't introdu
e here).

We 
onsider a point � 2 H. Let " > 0 and denote by V

"

(�) the "-ball

V

"

(�) = fz

2

2 H; jz

2

� � j < "g :

We de�ne

U

"

(�) =

�

(z

1

; z

2

; z); z

2

2 V

"

(�); y

1

y

2

+ q(y) > "

�1

	

:

We will often simply write V

"

resp. U

"

instead of V

"

(�) resp. U

"

(�), if the point � is 
lear

from the 
ontext. The group �

1

a
ts on the set U

"

(�) [ V

"

(�).

De�nition 3.2. A set U � H

l

[H is 
alled open, if its interse
tion with H

l

is open in the

usual sense, and if for every � 2 H \ U there exists an " > 0 su
h that

U

"

(�) [ V

"

(�) � U:

Baily's 
riterion for the extension of a 
omplex spa
e (see [Ca℄, [Fr1℄ 
hapter II for a

simpli�ed version) applies to show that

(H

l

[H)=�

1

= H

l

=�

1

[H

is a normal 
omplex spa
e. It is holomorphi
ally 
onvex in the following sense:

An arbitrary point a 2 H

l

=�

1

[H is an isolated point of the set of 
ommon zeros of �nitely

many analyti
 fun
tions on H

l

=�

1

[H.

This 
an be proved by standard 
onstru
tions using Poin
ar�e series (
ompare [Fr2℄


hapter 2 x4).
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Proposition 3.3. The sets

U

"

=�

1

[ V

"

(" > 0)

de�ne a fundamental system of Stein neighbourhoods of � 2 H

l

=�

1

[H. The spa
eH

l

=�

1

[

H is also a Stein spa
e.

The proof follows from the fa
t that the fun
tion

jz

2

� � j

2

+ (y

1

y

2

+ q(y))

�1

is plurisubharmoni
 on H

l

=�

1

and 
an be extended to a 
ontinuous fun
tion on H

l

=�

1

[

H

1

.

The singular lo
us of H

l

=�

1

[H is exa
tly the boundary 
omponent H. If we remove

the singularities from our Stein neighbourhoods U

"

=�

1

[ V

"

, we simply get U

"

=�

1

. We

want to determine the group of analyti
 line bundles

Pi
(U

"

=�

1

) = H

1

(U

"

=�

1

;O

�

):

Every analyti
 line bundle on U

"

is trivial be
ause this is a 
ontra
tible Stein spa
e. Hen
e

Pi
(U

"

=�

1

) = H

1

(�

1

;O(U

"

)

�

):

We use the abbreviation

R(") = O(U

"

):

The exa
t sequen
e

0 �! Z �! R(") �! R(")

�

�! 0

indu
es the exa
t sequen
e of 
ohomology groups

H

1

(�

1

;Z) �! H

1

(�

1

; R(")) �! H

1

(�

1

; R(")

�

)

�! H

2

(�

1

;Z) �! H

2

(�

1

; R(")): (3.2)

The group �

1


ontains t as a normal subgroup, and the fa
tor group is �. Sin
e U

"

=t is a

Stein spa
e we have

H

p

(�

1

; R(")) = H

p

(�;P("));

1

Grauert and Remmert [GrRe℄ introdu
ed the notion of a plurisubharmoni
 fun
tion p : X ! R on an

arbitrary 
omplex spa
e X . If X is smooth and p is a C

1

-fun
tion su
h that the matrix �

2

p=�z

i

��z

j

is

positive de�nite in any point for some lo
al 
oordinates z

i

then p is plurisubharmoni
. If p is a 
ontinuous

fun
tion on a 
omplex spa
e and plurisubharmoni
 outside some thin analyti
 set, then it is plurisubhar-

moni
 everywhere. If X is a holomorphi
ally 
onvex 
omplex spa
e and p a plurisubharmoni
 fun
tion on

X su
h that all X

"

= fx; p(x) < "g are relatively 
ompa
t then X

"

and X are Stein spa
es.

9



where P(") denotes the spa
e of holomorphi
 fun
tions on U

"

, whi
h are periodi
 with

respe
t to t. The elements of this spa
e admit Fourier expansions and the \
onstant"


oeÆ
ients are fun
tions whi
h only depend on z

2

. If we denote by P

0

(") all elements

whose 
onstant Fourier 
oeÆ
ient vanishes we get a splitting

H

p

(�;P(")) = H

p

(�;O(V

"

))�H

p

(�;P

0

(")):

A spe
ial 
ase of a more general result due to Ballweg [Ba℄ states:

Proposition 3.4 (Ballweg). Assume that p < l � 2. For suÆ
iently small " the group

H

p

(�;P

0

(")) vanishes.

For the rest of this se
tion we assume that l � 4 and that " > 0 is suÆ
iently small in

the sense of Proposition 3.4.

By Ballweg's result we know that

H

1

(�

1

; R(")) = H

1

(�;O(V

"

)) = Hom(�;O(V

"

)): (3.3)

Using (3.3) and the isomorphism Hom(�

1

;Z)

�

=

H

1

(�

1

;Z), we may rewrite the exa
t

sequen
e (3.2) in the following way:

Hom(�

1

;Z) �! Hom(�;O(V

"

)) �! H

1

(�

1

; R(")

�

)

�! H

2

(�

1

;Z) �! H

2

(�

1

; R(")): (3.4)

The natural proje
tion �

1

! � indu
es a homomorphism Hom(�;Z)! Hom(�

1

;Z). It


an be used to obtain from (3.4) the exa
t sequen
e

Hom(�;O(V

"

))

Æ

Hom(�;Z) �! H

1

(�

1

; R(")

�

)

�! H

2

(�

1

;Z) �! H

2

(�

1

; R(")): (3.5)

We also have the exa
t sequen
e

0 �! Hom(�;Z) �! Hom(�;O(V

"

)) �! Hom(�;O(V

"

)

�

) �! 0; (3.6)

be
ause � is a free group. If we 
ombine (3.5) and (3.6) we �nally �nd that

Hom(�;O(V

"

)

�

) �! Pi
(U

"

=�

1

) �! H

2

(�

1

;Z) �! H

2

(�

1

; R(")) (3.7)

is exa
t.

We now derive some information about H

2

(�

1

;Z). Every bilinear form

B : D �D �! Z

de�nes a 2-
o
y
le

2

of �

1

a
ting trivially on Z. We denote this 
o
y
le by B, too. It is

given by

B([a; t; b℄; [a

0

; t

0

; b

0

℄) = B(a; b

0

):

2

Throughout we use the inhomogeneous standard 
omplex of group 
ohomology as in [Sh℄ 
hapter 8.
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In fa
t, it is easily 
he
ked that this is a 2-
o
y
le. Hen
e we get a map

Bil(D) �! H

2

(�

1

;Z)

from the group Bil(D) of bilinear forms on D to H

2

(�

1

;Z). Only the image is important

for our appli
ations. It is a basi
 fa
t that this map is not inje
tive:

Proposition 3.5. The kernel of the map Bil(D)! H

2

(�

1

;Z) equals the 
y
li
 subgroup

generated by the bilinear form (�; �). The image of this map is 
ontained in the kernel of

H

2

(�

1

;Z) �! H

2

(�

1

; R(")).

Proof. The �rst statement follows from the so-
alled \Five Term Exa
t Sequen
e" of group


ohomology. If G is a group whi
h a
ts on an Abelian group A and if H is a normal

subgroup then there is a 
ertain homomorphism

tg : H

1

(H;A)

G=H

! H

2

(G=H;A

H

);


alled \transgression", whi
h has the property that the sequen
e

H

1

(H;A)

G=H

�! H

2

(G=H;A

H

) �! H

2

(G;A)

is exa
t. We apply this to the situation G = �

1

, A = Z (trivial operation), H = Z, and

the exa
t sequen
e

0 �! Z �! �

1

�! D �D �! 0:

In this 
ase H

1

(H;Z)

�

=

Z. A straightforward 
omputation shows that tg(1) 2 H

2

(D �

D;Z) is the bilinear form whi
h maps the pair ([a; 0; b℄; [a

0

; 0; b

0

℄) to �(a

0

; b). But this

bilinear form di�ers from (�; �) only by a 
oboundary. Sin
e Bil(D) ! H

2

(�

1

;Z) fa
tors

through H

2

(D �D;Z) we obtain the assertion.

It remains to show that the image of a bilinear form B vanishes in H

2

(�

1

; R(")). A


o
hain that trivializes B is given by

f([a; t; b℄; Z) = B(a; z)�

z

2

2

B(a; a)

for [a; t; b℄ 2 �

1

and Z = (z

1

; z

2

; z) 2 R("). Here B is extended C -bilinearly.

One 
an de�ne the tra
e tr(B) of an Element B 2 Bil(D) as the tra
e of a Gram matrix

of B with respe
t to an orthonormal basis of the quadrati
 spa
e (D


Z

R;�q). The tra
e

of (�; �) equals 2� l. Proposition 3.5 implies

Remark 3.6. An element B 2 Bil(D) de�nes a torsion element in H

2

(�

1

;Z) if and only

if

B(h; h) +

tr(B)

l � 2

(h; h) = 0

for any h 2 D.

The groups Pi
(U

"

=�

1

) and H

2

(�

1

;Z) are usually not torsion free. However, in the

present paper we ignore these torsion problems.
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4 Lo
al Heegner divisors

Re
all the notation introdu
ed at the beginning of se
tion 3. Let X be a normal irredu
ible


omplex spa
e. By a divisor D on X we mean a formal linear 
ombination D =

P

n

Y

Y

(n

Y

2 Z) of irredu
ible 
losed analyti
 subsets Y of 
odimension 1 su
h that the support

S

n

Y

6=0

Y is a 
losed analyti
 subset of everywhere pure 
odimension 1. We write Div(X)

for the divisor group of X.

For any ve
tor � 2 L

0

of negative norm the orthogonal 
omplement of � in H

l

de�nes

a divisor �

?

on H

l

. Let � 2 L

0

=L and m 2 Z+ q(�) with m < 0. Then

H(�;m) =

X

�2L

0

q(�)=m

�+L=�

�

?

(4.1)

is a �-invariant divisor on H

l

. It is the inverse image under the 
anoni
al proje
tion of

an algebrai
 divisor on the quotient X

�

(whi
h will also be denoted by H(�;m)). The

multipli
ities of all irredu
ible 
omponents equal 2, if 2� = 0, and 1, if 2� 6= 0 in L

0

=L.

Following Bor
herds we 
all this divisor Heegner divisor of dis
riminant (�;m). Note that

H(�;m) = H(��;m).

In the present paper we are interested in the 
ontribution of H(�;m) to the lo
al Pi
ard

groups at generi
 boundary points of X

�

. Let s be a generi
 point in B

F

and denote its

image in X

�

by s, too. Sin
e �

1

has �nite index in the stabilizer �

s

of s, the lo
al Pi
ard

group Pi
(X

�

; s) as de�ned in the introdu
tion 
an be des
ribed by means of the groups

Pi
(U

"

(s)=�

1

) up to torsion. The group �

s

=�

1

a
ts on lim

�!

(Pi
(U

"

=�

1

)) and the invariant

part satis�es

lim

�!

�

Pi
(U

"

=�

1

)


Z

Q

�

�

s

=�

1

= Pi
(X

�

; s)


Z

Q : (4.2)

The natural in
lusion and proje
tion maps indu
e the 
ommutative diagram

Div(H

l

=�) ���! Div(U

"

=�

1

)

?

?

y

?

?

y

Div(H

l

) ���! Div(U

"

)

of divisor groups. The image of H(�;m) in Div(U

"

=�

1

) is denoted by H

F

(�;m) and will

be 
alled a lo
al Heegner divisor. Its image in Div(U

"

) is a �

1

-invariant divisor, whi
h will

also be denoted by H

F

(�;m). (Note that our de�nitions of lo
al divisor groups and lo
al

Heegner divisors also depend on the 
hoi
e of the 
omplementary isotropi
 subspa
e

~

F .)

The proof of the next lemma will be left to the reader.

Lemma 4.1. Let � 2 L

0

be a ve
tor of negative norm. Then �

?

has non-zero interse
tion

with U

"

for every " > 0, if and only if � is orthogonal to F .
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Thus, if " is suÆ
iently small, the lo
al Heegner divisor H

F

(�;m) 2 Div(U

"

) is given

by

H

F

(�;m) =

X

�2L

0

\F

?

q(�)=m

�+L=�

�

?

: (4.3)

In parti
ular if H

F

(�;m) 6= 0 in Div(U

"

), then � belongs to the subgroup L of L

0

=L.

Observe that for any � 2 L there exists a representative

_

� 2 L

0

\ F

?

. For the rest of this

paper we �x su
h a representative

_

� for every � 2 L. The assignment � 7!

_

�

D

indu
es a

surje
tive homomorphism

� : L �! D

0

=D:

Throughout we will assume that " is small enough su
h that (4.3) holds.

Let � 2 L

0

\ F

?

. Then the group �

1

a
ts on the set � + Ze

1

+ Ze

3

� L

0

\ F

?

with

�nitely many orbits. Thus the divisor

H

1

(�) =

X

�

1

;�

3

2Z

(�+ �

1

e

1

+ �

3

e

3

)

?

is invariant under �

1

. It de�nes an element of Div(U

"

=�

1

). For � 2 L the lo
al Heegner

divisor H

F

(�;m) 
an be written as a �nite sum

H

F

(�;m) =

X

�2D

q(�+

_

�)=m

H

1

(�+

_

�): (4.4)

Re
all that Pi
(U

"

=�

1

) 
an be des
ribed by automorphy fa
tors in the following way.

An automorphy fa
tor of �

1

on U

"

is a 1-
o
y
le of �

1

with values in R(")

�

, i.e. a holo-

morphi
 fun
tion

J : �

1

� U

"

�! R(")

�

(4.5)

with the property J(gg

0

; Z) = J(g; g

0

Z)J(g

0

; Z) for g; g

0

2 �

1

. An automorphy fa
tor of

the form J(g; Z) = h(gZ)=h(Z) with h 2 R(")

�

is 
alled trivial. The group Pi
(U

"

=�

1

) =

H

1

(�

1

; R(")

�

) is the fa
tor group of the group of all automorphy fa
tors modulo the

subgroup of trivial automorphy fa
tors. Spe
ial automorphy fa
tors are given by invertible

holomorphi
 fun
tions, whi
h do not depend on z

1

and z. These are simply homomorphisms

�

1

! O(V ("))

�

.

If H is a divisor in Div(U

"

=�

1

) then its image in Pi
(U

"

=�

1

) 
an be determined as

follows: Let f be a holomorphi
 fun
tion on U

"

whose divisor equals the inverse image of

H in Div(U

"

). Then

J(g; Z) = f(gZ)=f(Z)

is an automorphy fa
tor of �

1

on U

"

. Its 
lass in Pi
(U

"

=�

1

) is the image of H.

We shall now determine the position of H

1

(�) in the Pi
ard group Pi
(U

"

=�

1

). It will

turn out that up to torsion it is 
ompletely determined by the Chern 
lass in H

2

(�

1

;Z)

of H

1

(�).
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De�nition 4.2. Let � 2 L

0

\ F

?

be a ve
tor of negative norm. Then we de�ne the lo
al

Bor
herds produ
t atta
hed to H

1

(�) by

	

�

(Z) =

Y

n2Z

[1� e (�

n

(nz

2

+ (�; Z)))℄

for Z = (z

1

; z

2

; z) 2 H

l

. Here

�

n

=

(

+1; if n � 0,

�1; if n < 0,

and e(z) := e

2�iz

for z 2 C .

The sign �

n

ensures that the in�nite produ
t 
onverges normally on the whole gener-

alized upper half plane H

l

. It is invariant under the subgroup t of �

1

. However, it is not

invariant under the subgroup �.

It is easily 
he
ked that the divisor of 	

�

is exa
tly H

1

(�). There is a strong anal-

ogy between fun
tions of the above type and Bor
herds' automorphi
 produ
ts [Bo1℄ or

more pre
isely the generalized Bor
herds produ
ts atta
hed to Heegner divisors whi
h were

introdu
ed in [Br1, Br2℄.

The properties of 	

�

imply that the image of H

1

(�) in Pi
(U

"

=�

1

) is given by the

automorphy fa
tor

J

�

([a; t; b℄; Z) = 	

�

(R

a

Z)

Æ

	

�

(Z) ([a; t; b℄ 2 �

1

): (4.6)

Let us 
ompute J

�

([a; t; b℄; Z) more expli
itly. Using the formula for the a
tion of R

a

we

�nd

J

�

([a; t; b℄; Z) =

Q

n2Z

[1� e (�

n

((n+ (�

D

; a))z

2

+ (�; Z)))℄

Q

n2Z

[1� e (�

n

(nz

2

+ (�; Z)))℄

=

Y

n2Z

1� e

�

�

n�(�

D

;a)

(nz

2

+ (�; Z))

�

1� e (�

n

(nz

2

+ (�; Z)))

:

In the latter produ
t only those n give a 
ontribution di�erent from 1, whi
h satisfy

i) 0 � n < (�

D

; a); or

ii) 0 > n � (�

D

; a):

Hen
e the produ
t is a
tually �nite.

The �rst 
ase 
an only o

ur if (�

D

; a) > 0. We may use the elementary identity

1� e(z)

1� e(�z)

= �e(z)
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to obtain

J

�

([a; t; b℄; Z) =

Y

0�n<(�

D

;a)

[�e(�nz

2

� (�; Z))℄

= e

�

1

2

(�

D

; a)�

z

2

2

(�

D

; a)((�

D

; a)� 1)� (�

D

; a)(�; Z)

�

: (4.7)

One immediately 
he
ks that the same formula holds in the se
ond 
ase, too.

We brie
y re
all the 
onstru
tion of the Chern 
lass of a 
lass [J ℄ of automorphy fa
tors

in H

1

(�

1

; R(")

�

). Let J be an automorphy fa
tor as in (4.5) representing [J ℄. For any

g 2 �

1

let A(g; Z) be a holomorphi
 fun
tion on U

"

su
h that

J(g; Z) = e(A(g; Z)):

Then


(g; g

0

) = A(gg

0

; Z)� A(g; g

0

Z)� A(g

0

; Z)

is an integral 
onstant for all g; g

0

2 �

1

. The fun
tion (g; g

0

) 7! 
(g; g

0

) de�nes a 2-


o
y
le of �

1

a
ting trivially on Z. Obviously ea
h A(g; Z) is only determined up to an

integral additive 
onstant. It is easily seen that a di�erent 
hoi
e of the fun
tions A(g; Z)

only 
hanges 
(g; g

0

) by a 
oboundary. Moreover, any 2-
o
y
le 
orresponding to a trivial

automorphy fa
tor is a 
oboundary. Thus, if we map [J ℄ to the image of 
(�; �) inH

2

(�

1

;Z),

we get a well de�ned homomorphism. This is an expli
it 
onstru
tion of the Chern 
lass

map Æ, the 
onne
ting homomorphism in the exa
t sequen
e (3.2).

Proposition 4.3. The Chern 
lass Æ(H

1

(�)) 2 H

2

(�

1

;Z) of the lo
al Heegner divisor

H

1

(�) 2 Pi
(U

"

=�

1

) is given by the 2-
o
y
le


([a; t; b℄; [a

0

; t

0

; b

0

℄) = (�

D

; a)(�

D

; b

0

)

of �

1

. In parti
ular, Æ(H

1

(�)) belongs to the image of Bil(D)! H

2

(�

1

;Z).

Proof. The divisor H

1

(�) is represented by the automorphy fa
tor (4.7) as an element of

Pi
(U

"

=�

1

). If we 
arry out the 
onstru
tion outlined above, we get the assertion.

Proposition 4.4. The Chern 
lass Æ(H) of a �nite linear 
ombination

H =

X

�2L

0

\F

?

q(�)<0




�

H

1

(�)

(


�

2 Z) of lo
al Heegner divisors is a torsion element of H

2

(�

1

;Z), if and only if

X

�2L

0

\F

?

q(�)<0




�

�

(�

D

; h)

2

�

(�

D

; �

D

)

l � 2

(h; h)

�

= 0

for any h 2 D.
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Proof. The tra
e of the bilinear form B(a; b

0

) = (�

D

; a)(�

D

; b

0

) is �(�

D

; �

D

). Hen
e the

assertion follows from Remark 3.6 and Proposition 4.3.

The bilinear form (�; �) is non-degenerated, whereas (�; �

D

)(�

D

; �) is obviously degener-

ated. Thus every individual lo
al Heegner divisor H

1

(�) is non-zero in Pi
(U

"

=�

1

)


Z

Q .

The Chern 
lass of H

1

(�) only depends on the proje
tion �

D

2 D

0

. In fa
t, using the

above results, it is easily seen that H

1

(�) = H

1

(�

0

) in Pi
(U

"

=�

1

)


Z

Q , if �

D

= �

0

D

.

Our main interest lies in the divisors H

F

(�;m). In the following theorem we des
ribe

their position in Pi
(U

"

=�

1

) up to torsion. Let 
 2 D

0

=D and m 2 Z+ q(
) with m < 0.

We write P


;m

for the bilinear form

P


;m

(a; b) =

X

�2D

0

�+D=


q(�)=m

�

(a; �)(�; b)�

(�; �)

l � 2

(a; b)

�

(a; b 2 D): (4.8)

Theorem 4.5. A �nite linear 
ombination

H =

1

2

X

�2L

X

m2Z+q(�)

m<0


(�;m)H

F

(�;m) (4.9)

(with integral 
oeÆ
ients 
(�;m) satisfying 
(�;m) = 
(��;m)) is a torsion element of

Pi
(U

"

=�

1

), if and only if

X

�2L

X

m2Z+q(�)

m<0


(�;m)P

�(�);m

(a; a) = 0 (4.10)

for all a 2 D.

Proof. If the linear 
ombination H is a torsion element of Pi
(U

"

=�

1

), then (4.10) follows

by Proposition 4.4.

Conversely, assume that (4.10) holds for all a 2 D. Then we also have

X

�2L

X

m2Z+q(�)

m<0


(�;m)P

�(�);m

(a; b) = 0 (4.11)

for all a; b 2 D 


Z

C . A

ording to (4.7), an automorphy fa
tor J representing H in

Pi
(U

"

=�

1

) is given by

J(g; Z) =

Y

�2L

m2Z+q(�)

m<0

Y

�2D

q(�+

_

�)=m

J

�+

_

�

(g; Z)


(�;m)

2

=

Y

�2L

m2Z+q(�)

m<0

Y

�2D

q(�+

_

�)=m

e

�

�

z

2

2

(�+

_

�

D

; a)(�+

_

�

D

; a)� (�+

_

�

D

; a)(�+

_

�; Z)

�


(�;m)

2
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for g = [a; t; b℄ 2 �

1

. The linear terms in �+

_

�

D


an
el out, be
ause 
(�;m) = 
(��;m).

In the latter equation we write (� +

_

�; Z) = (� +

_

�

D

; z) + (

_

� �

_

�

D

; Z). Here the se
ond

s
alar produ
t is just a rational linear 
ombination of 1 and z

2

. We now use (4.11) to

rewrite J(g; Z) as follows:

J(g; Z) = e((�

1

; a) + (�

2

; a)z

2

)

Y

�2L

m2Z+q(�)

m<0

Y

�2D

0

�+D=�(�)

q(�)=m

e

�

�

(�; �)

l � 2

(q(a)z

2

+ (a; z))

�


(�;m)

2

;

where �

1

; �

2

are suitable ve
tors in D 


Z

Q . The invertible fun
tions u

1

(Z) = e((�

2

; z))

and u

2

(Z) = e(z

1

) give rise to the trivial automorphy fa
tors

j

1

(g; Z) = u

1

(gZ)=u

1

(Z) = e ((�

2

; a)z

2

+ (�

2

; b)) ;

j

2

(g; Z) = u

2

(gZ)=u

2

(Z) = e (t� (a; b)� q(a)z

2

� (a; z)) :

If we multiply J by appropriate rational powers of j

1

and j

2

, we �nd that J is equivalent

to

J

0

(g; Z) = e((a; �

1

)� (b; �

2

) + r((a; b)� t))

with a suitable 
onstant r 2 Q . Thus J is a torsion element of Pi
(U

"

=�

1

).

Note that by (4.2) a linear 
ombination of lo
al Heegner divisors as in (4.9) is a torsion

element in Pi
(U

"

=�

1

) for some ", if and only if it is a torsion element of Pi
(X

�

; s).

5 Modular forms

In this se
tion we investigate the relation between the obstru
tions o

urring in Theorem

4.5 and the 
oeÆ
ients of 
ertain ve
tor valued theta series of weight 1 + l=2. We �nd

interesting 
onne
tions to Bor
herds' global \theory of obstru
tions" for the 
onstru
tion

of automorphi
 produ
ts [Bo2℄.

We write Mp

2

(R) for the metaple
ti
 
over of SL

2

(R). The elements of Mp

2

(R) are

pairs (M;�(�)); where M = (

a b


 d

) 2 SL

2

(R), and � denotes a holomorphi
 fun
tion on H

with �(�)

2

= 
� + d. The produ
t of (M

1

; �

1

(�)); (M

2

; �

2

(�)) 2 Mp

2

(R) is given by

�

M

1

; �

1

(�)

��

M

2

; �

2

(�)

�

=

�

M

1

M

2

; �

1

(M

2

�)�

2

(�)

�

;

where M� =

a�+b


�+d

denotes the usual a
tion of SL

2

(R) on H.

Let Mp

2

(Z) be the inverse image of SL

2

(Z) under the 
overing map Mp

2

(R) ! SL

2

(R).

It is well known that Mp

2

(Z) is generated by

T =

��

1 1

0 1

�

; 1

�

;

S =

��

0 �1

1 0

�

;

p

�

�

:

17



One has the relations S

2

= (ST )

3

= Z, where Z =

��

�1 0

0 �1

�

; i

�

is the standard generator

of the 
enter of Mp

2

(Z).

Let N be an even latti
e of signature (b

+

; b

�

) equipped with a bilinear form (�; �). We

write q for the 
orresponding quadrati
 form q(x) =

1

2

(x; x) and denote the dual latti
e by

N

0

. (In our latter appli
ations N will be L or D.)

Re
all that there is a unitary representation �

N

of Mp

2

(Z) on the group algebra

C [N

0

=N ℄. If we denote the standard basis of C [N

0

=N ℄ by (e




)


2N

0

=N

then �

N


an be

de�ned by the a
tion of the generators S; T 2 Mp

2

(Z) as follows (see also [Bo1℄, where the

dual of �

N

is used):

�

N

(T )e




= e(�q(
))e




(5.1)

�

N

(S)e




=

p

i

b

+

�b

�

p

jN

0

=N j

X

Æ2N

0

=N

e((
; Æ))e

Æ

: (5.2)

This representation is essentially the Weil representation atta
hed to the quadrati
 module

(N

0

=N; q) (
f. [No℄). It fa
tors through a �nite quotient of Mp

2

(Z). Note that �

N

(Z)e




=

i

b

�

�b

+

e

�


.

Let k 2

1

2

Z and f : H ! C [N

0

=N ℄ be a holomorphi
 fun
tion. Then f is 
alled modular

form of weight k with respe
t to �

N

and Mp

2

(Z) if

i) f(M�) = �(�)

2k

�

N

(M;�)f(�) for all (M;�) 2 Mp

2

(Z),

ii) f is holomorphi
 at 1.

Here the se
ond 
ondition has the following meaning: Condition (i) implies that f has a

Fourier expansion of the form

f(�) =

X


2N

0

=N

X

n2Z�q(
)

a(
; n)e




(n�);

where we have abbreviated e




(�) := e(�)e




. As usual, f is 
alled holomorphi
 at 1, if all


oeÆ
ients a(
; n) with n < 0 vanish. Moreover, if all a(
; n) with n � 0 vanish, then f

is 
alled 
usp form. The C -ve
tor spa
e of modular forms of weight k with respe
t to �

N

and Mp

2

(Z) is denoted by M

k;N

, the subspa
e of 
usp forms by S

k;N

.

For the rest of this paper let k = 1 + l=2. Re
all that D = L \ F

?

\

~

F

?

is a negative

de�nitive latti
e of rank l� 2. Spe
ial modular forms in the spa
e S

k;D


an be 
onstru
ted

by means of theta series with harmoni
 polynomials. The homogeneous polynomial

Q(u; v) = (u; v)

2

�

(u; u)(v; v)

l � 2

(u; v 2 W )

is harmoni
 in u and v. For any �xed v 2 W we have the C [D

0

=D℄-valued theta series

�

D

(�; v) =

X

�2D

0

Q(�; v)e

�

(�q(�)�): (5.3)
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By the usual Poisson summation argument it 
an be shown that �

D

(�; v) is a 
usp form in

S

k;D

(see for instan
e [Bo1℄ Theorem 4.1). We denote by S

�

k;D

the subspa
e of S

k;D

, whi
h

is generated by the �

D

(�; v) when v varies through W .

The point is that the polynomials P


;m

de�ned in (4.8) are pre
isely the Fourier 
oeÆ-


ients of �

D

(�; v):

�

D

(�; v) =

X


2D

0

=D

X

m2Z�q(
)

m<0

P


;m

(v; v)e




(�m�):

Therefore Theorem 4.5 
an also be stated as follows.

Proposition 5.1. A �nite linear 
ombination

H =

1

2

X

�2L

X

m2Z+q(�)

m<0


(�;m)H

F

(�;m) (5.4)

(with integral 
oeÆ
ients 
(�;m) satisfying 
(�;m) = 
(��;m)) is a torsion element of

Pi
(U

"

=�

1

), if and only if

X

�2L

X

m2Z+q(�)

m<0


(�;m)a(�(�);�m) = 0 (5.5)

for any 
usp form f 2 S

�

k;D

with Fourier 
oeÆ
ients a(
; n) (
 2 D

0

=D and n 2 Z� q(
)).

Bor
herds 
onstru
ted a lifting from 
ertain ve
tor valued modular forms of weight

1� l=2 for Mp

2

(Z) to meromorphi
 modular forms for the group �(L) (
f. [Bo1℄ Theorem

13.3). Sin
e these lifts have 
ertain interesting in�nite produ
t expansions they are 
alled

automorphi
 produ
ts or Bor
herds produ
ts. Their divisors are linear 
ombinations of

Heegner divisors. We now 
ompare Proposition 5.1 with the following 
ondition for the ex-

isten
e of Bor
herds produ
ts for the group �(L) with pres
ribed divisor (
f. [Bo2℄ Theorem

3.1).

Theorem 5.2 (Bor
herds). A �nite linear 
ombination of Heegner divisors

1

2

X

�2L

0

=L

X

m2Z+q(�)

m<0


(�;m)H(�;m) (5.6)

(with 
(�;m) 2 Z and 
(�;m) = 
(��;m)) is the divisor of a Bor
herds produ
t for the

group �(L) (as in [Bo1℄ Theorem 13.3), if and only if for any 
usp form f 2 S

k;L

with

Fourier 
oeÆ
ients a(
; n) the equality

X

�2L

0

=L

X

m2Z+q(�)

m<0


(�;m)a(�;�m) = 0 (5.7)

holds.
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By means of the "-operator, de�ned in [Br1℄ Lemma 15.2, it is possible to embed

S

k;D

into S

k;L

. A

ording to Theorem 5.2 the spa
e S

k;L


arries some information on the

subgroup of Pi
(X

�

) generated by the Heegner divisors H(�;m). A subspa
e of S

k;L

, the

image of S

�

k;D

, en
odes the subgroup of the lo
al Pi
ard group Pi
(X

�

; s) 


Z

Q , whi
h is

generated by the pullba
ks of the H(�;m)'s.

De�nition 5.3. A divisorH on X

�

is 
alled trivial at generi
 boundary points, if for every

one-dimensional irredu
ible 
omponent B of the boundary of X

�

there exists a generi
 point

s 2 B su
h that H is a torsion element of Pi
(X

�

; s).

If F is a meromorphi
 modular form for the group �(L), then the divisor (F ) atta
hed

to F is trivial at generi
 boundary points. This is an immediate 
onsequen
e of the

transformation behaviour of modular forms.

Unimodular latti
es

For the rest of this paper we assume that L is unimodular. Then D is a negative de�nite

even unimodular latti
e of rank l � 2. Thus l � 2 (mod 8). Any negative de�nite even

unimodular latti
e 
an be realized as a sublatti
e of L. This follows from the fa
t that there

exists just one isomorphism 
lass of even unimodular latti
es of signature (2; l) (
f. [Wat℄


hapter 7, x3). The spa
e S

k;L

= S

k;D

is the usual spa
e of ellipti
 
usp forms of weight

k = 1 + l=2 for SL

2

(Z).

Theorem 5.4. Let

H =

1

2

X

m2Z

m<0


(0; m)H(0; m)

be a �nite linear 
ombination of Heegner divisors H(0; m) (with 
oeÆ
ients 
(0; m) 2 Z).

Then the following statements are equivalent:

i) H is the divisor of a Bor
herds produ
t for the group �(L) as in [Bo1℄ Theorem 13.3.

ii) H is the divisor of a meromorphi
 automorphi
 form for �(L).

iii) H is trivial at generi
 boundary points.

Proof. We only have to prove that (iii) implies (i). Assume that H is trivial at generi


boundary points. Then by Proposition 5.1 we have

X

m2Z

m<0


(0; m)a(0;�m) = 0 (5.8)

for any 
usp form f 2 S

�

k;D

with Fourier 
oeÆ
ients a(0; n) and any negative de�nite even

unimodular latti
e D of rank l � 2. In view of Theorem 5.2 it suÆ
es to show that (5.8)

holds for any 
usp form f 2 S

k;L

with Fourier 
oeÆ
ients a(0; n). Hen
e it suÆ
es to prove

that the set of all theta series �

D

(�; v) (where D is any negative de�nite even unimodular

latti
e and v 2 D 


Z

R) generates the spa
e S

k;L

. In fa
t, this is a 
onsequen
e of a

Theorem due to Waldspurger [Wal℄ (see also [EZ℄ Theorem 7.4).
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As a 
orollary we �nd that any meromorphi
 modular form for the group �(L), whose

divisor is a linear 
ombination of Heegner divisors, has to be a Bor
herds produ
t. This

result was already obtained in greater generality (under the weaker 
ondition that L splits

two hyperboli
 planes over Z) in [Br1℄. (See also [Br2℄ for the O(2; 2)-
ase of Hilbert

modular surfa
es.) However, in [Br1℄ a 
ompletely di�erent argument is used, whi
h does

not say anything about the lo
al Pi
ard groups of X

�

.

Moreover, as a 
onsequen
e of Theorem 5.4 and Theorem 5.2 we may infer that the

rank of the subgroup of Pi
(X

�

) generated by the Heegner divisors equals 1 + dim(S

k;L

).
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