
Integrals of automorphi Green's funtions assoiated

to Heegner divisors

Jan Hendrik Bruinier

�

and Ulf K�uhn

April 10, 2002

y

Abstrat

In the present paper we �nd expliit formulas for the degrees of Heegner divisors on arith-

meti quotients of the orthogonal group O(2; p) and for the integrals of ertain automorphi

Green's funtions assoiated with Heegner divisors. The latter quantities are important in

the study of the arithmeti degrees of Heegner divisors in the ontext of Arakelov geometry.

In partiular, we obtain a di�erent proof and a generalization of results of Kudla relating

these quantities to the Fourier oeÆients of ertain non-holomorphi Eisenstein series of

weight 1 + p=2 for the metapleti group Mp

2

(Z).

1 Introdution

Integrals of automorphi Green's funtions ontribute to the alulation of arithmeti de-

grees of regular models of Shimura varieties over Dedekind rings and Faltings heights of

its subvarieties. These integrals are expeted to be related to logarithmi derivatives of

ertain L-funtions. For example, if E

4

(�) = 1 + 240

P

n>0

�

3

(n)e

2�in�

, with � = x+ iy in

the omplex upper half plane H , is the Eisenstein series of weight 4 for the modular group

SL

2

(Z), then

1

L(�

�3

; 0)

Z

SL

2

(Z)nH

log

�

jE

4

(�)j

2

(4�y)

4

�

dx dy

4�y

2

= 2

�

0

(�1)

�(�1)

+ 1�

L

0

(�

�3

; 0)

L(�

�3

; 0)

�

1

2

log(3);

(1.1)

where L(�

�3

; s) and �(s) denote the Dirihlet L-funtion for the harater �

�3

and the

Riemann zeta funtion, respetively. Notie that L(�

�3

; 0) = 1=3. The ore of suh

formulas is the Kroneker limit formula.

�
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In the present paper we generalize the above identity to modular forms on the orthog-

onal group O(2; p) that vanish on Heegner divisors. More preisely, we derive an expliit

formula expressing the integrals of ertain Green's funtion assoiated to Heegner divisors

on O(2; p) in terms of logarithmi derivatives of Dirihlet L-funtions, the Riemann zeta

funtion, and generalized divisor sums. As a orollary, we obtain a generalization of (1.1)

to Borherds produts on O(2; p) [Bo1, Bo2℄. Observe that E

4

in the above example an

be viewed as a Borherds produt. Its divisor on SL

2

(Z)nH is given by the Heegner point

e

�i=3

. Our approah relies on the onstrution of Borherds produts using automorphi

Green's funtions introdued in [Br1℄, whih an be viewed as a generalization of the Kro-

neker limit formula; ombined with an integral identity for suh Green's funtions as in

[OT℄. In [Ku2℄ S. Kudla alulated the integral of the logarithm of the Petersson norm of

Borherds produts using the Siegel-Weil formula together with a Stoke's type argument.

We disuss the relation of his results to ours below.

We now desribe the ontent of this paper in more detail. Let (V; q) be a real quadrati

spae of signature (2; p) and put � = 1 + p=2. We assume that either p > 2, or that

p = 2 and the dimension of a maximal isotropi subspae of L 


Z

Q equals 1. We write

K

0

for the irreduible Hermitean symmetri spae of dimension p assoiated with the real

orthogonal group of (V; q). Let L � V be an even lattie, and L

0

its dual. We denote

by �(L) the disriminant kernel of the orthogonal group O(L) of L, that is the kernel

of the natural homomorphism from O(L) to O(L

0

=L). By the theory of Baily-Borel the

arithmeti quotient

X

L

= �(L)nK

0

is a quasi-projetive algebrai variety. Let 
 be the K�ahler form on X

L

given by the �rst

Chern lass of the line bundle of modular forms of weight 1 on X

L

. We de�ne the volume

of X

L

by vol(X

L

) =

R

X

L




p

and the degree of a divisor D on X

L

by

deg(D) =

Z

D




p�1

:

Reall that for any � 2 L

0

=L and any negative m 2 Z+ q(�) there is a ertain speial

divisor H(�;m) on X

L

, alled the Heegner divisor of disriminant (�;m) (see setion 4

for a preise de�nition). These divisors arise from embedded quotients analogous to X

L

of dimension p � 1. They inlude Heegner points on modular urves, Hirzebruh-Zagier

divisors on Hilbert modular surfaes, and Humbert surfaes on Siegel modular threefolds

as speial ases and have been studied by many people, e.g. [Bo3℄, [KM℄, [Ku4℄, [Od℄, [Br1℄.

For any Heegner divisor H(�;m) there exists an assoiated automorphi Green's fun-

tion �

�;m

(Z; s), where Z 2 K

0

and s 2 C with <(s) > �=2. As a funtion in Z it is

an eigenfuntion of the invariant Laplaian on K

0

and has a logarithmi singularity along

H(�;m). Suh Green's funtions were introdued in [Br1, Br2℄, and independently from a

di�erent perspetive in [OT℄.

Using the approah of [Br1℄ the Fourier expansions of the funtions �

�;m

(Z; s) an be

determined. Moreover, one an show that they have a meromorphi ontinuation in s to
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a neighborhood of �=2 with a simple pole at s = �=2. It turns out that their singularities

at s = �=2 are ditated by the oeÆients of a ertain non-holomorphi Eisenstein series

of weight �=2 for Mp

2

(Z). We desribe this in somewhat more detail. To simplify the

exposition we temporarily assume that p is even (therefore � 2 Z) and p > 2. In the general

ase, treated in the body of this paper, one has to replae SL

2

(Z) by the metapleti group

Mp

2

(Z).

Let �

L

be the Weil representation of SL

2

(Z) on the group algebra C [L

0

=L℄ of the (�nite)

disriminant group of L as in [Bo2℄, [Br1℄, and denote by (e



)

2L

0

=L

the standard basis of

C [L

0

=L℄. We de�ne the Eisenstein series E

0

(�; s) by

E

0

(�; s) =

X

M2�

1

n SL

2

(Z)

=(M�)

s

j(M; �)

�

�

�

t

L

(M)e

0

�

;

where �

1

= f(

1 n

0 1

) ; n 2 Zg and j((

a b

 d

) ; �) = � + d. It is a C [L

0

=L℄-valued non-

holomorphi modular form of weight � with respet to SL

2

(Z) and the dual of �

L

. It has

a Fourier expansion of the form

E

0

(�; s) =

X

2L

0

=L

X

n2Z�q()



0

(; n; s; y)e(nx)e



;

where e(x) = e

2�ix

as usual. The Fourier oeÆients with non-zero index deompose into

the produt



0

(; n; s; y) = C(; n; s)W

s

(4�ny)

of a oeÆient C(; n; s), whih is independent of y, and a part given by a Whittaker

funtionW

s

(y) (see (3.2)). In Theorem 3.3 we derive a losed formula for these oeÆients

following the argument of [BK℄, whih relies on Shintani's formula [Sh℄ for the oeÆients

of the Weil representation, and a result of Siegel on representation numbers of quadrati

forms modulo prime powers. This theorem is vital for all expliit omputations in the

present paper.

In Propositions 4.2 and 4.3 we show that the residue of �

�;m

(Z; s) at s = �=2 is equal

to �C(�;�m; 0). It is a onsequene of this fat and the fundamental integral formula

for the Green's funtion �

�;m

(Z; s) whih follows from the work of Oda and Tsuzuki [OT℄

(see Theorem 4.7) that the speial value E

0

(�; 0) is the generating series for the degrees of

Heegner divisors. We reover the identity

E

0

(�; 0) = 2e

0

�

2

vol(X

L

)

X

2L

0

=L

X

n>0

deg(H(;�n))e(n�)e



; (1.2)

see e.g. [Ge2℄, [HZ℄, [Ku2℄, [Od℄. Variants and generalizations of this result were also

proved by Kudla-Millson in their work on speial yles (see e.g. [Ku3℄). By means of our

formula for the oeÆients C(�;m; s) we �nd expliit formulas for the degrees of Heegner

divisors in terms of speial values of Dirihlet L-funtions, the Riemann zeta funtion, and

generalized divisor sums (see Proposition 4.8).
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In [Bo1, Bo2℄ Borherds onstruted meromorphi modular forms for the group �(L)

with zeros and poles on Heegner divisors as multipliative liftings of C [L

0

=L℄-valued nearly

holomorphi modular forms of weight 1�p=2 for the group Mp

2

(Z) and the Weil represen-

tation �

L

. They have expliit in�nite produt expansions analogous to the Delta funtion.

In partiular, their Fourier expansions have integral ylotomi oeÆients.

The above Green's funtions and Borherds produts are related in the following way.

We de�ne the regularized Green's funtion G

�;m

(Z) to be �1=4 times the onstant term

in the Laurent expansion of �

�;m

(Z; s) in s at s = �=2 plus some normalizing onstant

whih essentially involves the oeÆient C(�;�m; s) and its derivative at s = �=2. We

denote by k � k the Petersson metri on the line bundle of modular forms of weight k on

X

L

normalized as in (4.11). It was proved in [Br2℄ that if F is a Borherds produt (in the

sense of [Bo2℄ Theorem 13.3) with divisor div(F ) =

1

2

P

�;m

a(�;m)H(�;m), then

log kF (Z)k

2

=

X

�;m

a(�;m)G

�;m

(Z): (1.3)

So the Green's funtions G

�;m

(Z) an be viewed as the building bloks of Borherds prod-

uts. Observe that the individual funtions G

�;m

(Z) are in general far from being the

Petersson norm of a modular form.

Theorem. (See Theorem 4.11.) The integral of G

�;m

(Z) is related to the logarithmi

derivative of the oeÆient C(�;�m; s) of the Eisenstein series E

0

(�; s) at s = 0 as follows:

2

degH(�;m)

Z

X

L

G

�;m

(Z)


p

=

C

0

(�;�m; 0)

C(�;�m; 0)

+ log(4�)� �

0

(1): (1.4)

Moreover, if the rank r of L is even, then the right hand side of (1.4) is equal to

2

L

0

(�

D

0

; 1� �)

L(�

D

0

; 1� �)

+ 2

�

0

�;�m

(�)

�

�;�m

(�)

+ log jmD

2

0

j+

��1

X

j=1

1

j

;

where D

0

denotes the disriminant of the quadrati �eld Q(

p

d) with d = (�1)

r=2

det(L).

If r is odd, then the right hand side of (1.4) is equal to

4

�

0

(2� 2�)

�(2� 2�)

� 2

L

0

(�

D

0

; 3=2� �)

L(�

D

0

; 3=2� �)

+ 2

�

0

�;�m

(�)

�

�;�m

(�)

+ log j4m=D

2

0

j+

��1=2

X

j=1

2

2j � 1

;

where D

0

is the disriminant of the quadrati �eld Q(

p

md) with d = 2(�1)

(r�1)=2

det(L).

In both ases we understand by det(L) the Gram determinant of L, by L(�

D

0

; s) the

Dirihlet L-funtion assoiated with the harater �

D

0

, and by �

;n

(s) the generalized divi-

sor sum de�ned in (3.12).
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The ontribution oming from the logarithmi logarithmi derivative of �

�;�m

(s) at

� is a sum of the form

P

p

�

p

log(p) over the primes dividing 2m det(L)

2

, where the �

p

are rational oeÆients depending on the representation numbers of the lattie L modulo

powers of p.

In view of (1.3), as a Corollary, one gets expliit formulas for the integrals of the Peters-

son norms of Borherds produts. So our result yields a di�erent proof and a generalization

of the main theorems in [Ku2℄, [KuYa℄. The seond assertion of the theorem is the desired

generalization of (1.1) to the group O(2; p). Formally we reover (1.1) using the exep-

tional isomorphism between O

0

(2; 1) and SL

2

(R) and the arithmeti subgroup de�ned by

the lattie L = Z(2) ? II

1;1

of rank 3 with Gram determinant �2. The logarithm of the

Petersson norm of E

4

is equal to the Green's funtion for the Heegner divisor H(�;�3=4)

with m = �3=4 and D

0

= �3. Notie that �

�;3=4

(s) � 1 and degH(�;�3=4) = 1=3.

Moreover, in Theorem 4.9 we obtain a related result for the integral of G

�;m

(Z) against

any bounded eigenfuntion of the Laplaian on X

L

. We intend to use this property for

ertain height pairings on the Heegner lass group (see [K�u3℄).

In setion 5 we onsider the speial ases of the Siegel modular threefold and Hilbert

modular surfaes as examples. We reover the expliit examples of [Ku2℄ and [BBK℄.

Let us �nally indiate how our results an be used for the study of arithmeti degrees

and Faltings heights. For simpliity (ignoring all serious tehnial diÆulties), we assume

that there exists a regular model X of a smooth ompati�ation of X

L

and a line bundle

M

k

on X extending the line bundle of modular forms of weight k. Then the Hermitian line

bundle M

k

given by M

k

equipped with the (logarithmially singular) Petersson metri

de�nes a lass in a suitable arithmeti Chow ring, see [BKK℄. Using the extension of

arithmeti intersetion theory developed in [BKK℄ and tehniques of [BBK℄, it an be

shown that the arithmeti degree of X and Faltings heights of subvarieties with respet to

M

k

are, up to a ertain rational linear ombination of logarithms of primes, given by linear

ombinations of integrals from our theorem. The support of these primes an be ontrolled

by means of funtoriality of the arithmeti intersetion numbers and density results on the

existene of \many" Borherds produts. Details will be given in a subsequent paper.

For example, if X

L

is the Siegel modular variety of genus 2, then our work strongly

supports the following formula for the arithmeti degree:

M

4

k

?

= k

4

�(�3)�(�1)

�

2

�

0

(�3)

�(�3)

+ 2

�

0

(�1)

�(�1)

+

17

6

�

:

It an be dedued that the Faltings heights of Humbert surfaes H(D) � X

L

of prime

disriminant should be given by

h

M

1

(H(D))

?

=

�

K

(�1)

2

�

�

0

K

(�1)

�

K

(�1)

+

�

0

(�1)

�(�1)

+

3

2

+

1

2

log(D)

�

:

In partiular, our results provide further evidene for the formulas expeted in [MR℄, [K�o℄,

and [Ku2℄. Taking into aount that Humbert surfaes are birational to symmetri Hilbert

modular surfaes, the latter formula essentially follows from the main theorem in [BBK℄.
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The idea to onsider Borherds produts to generalize results of [K�u2℄ to higher di-

mension was ommuniated to the seond author by S. Kudla at the arithmeti geometry

onferene at the Issa Newton Institute in 1998. In Summer 1999 S. Kudla letured at

Orsay on the method and results of [Ku2℄ and its relation to Eisenstein series. We would

like to thank him for onstantly sharing his ideas.

The approah to use the Green's funtions �

�;m

(Z; s) and results of [Br1, Br2℄ together

with the Kroneker limit formula argument arose at the annual DMV-meeting in Mainz in

1999. It an be viewed as an extension of the methods developed in [K�u2℄. The main work

in the speial ase of Hilbert modular surfaes was ompleted at the beginning of 2001

while the �rst author was visiting the University of Wisonsin at Madison, the alulations

in the general ase were done in summer 2001 and ompleted while the seond author

was visiting the University of Maryland. We would like to thank these institutions for

providing a stimulating atmosphere. Moreover, we thank E. Freitag, K. K�ohler, V. Maillot,

D. Roessler, and M. Tsuzuki for their help and useful omments.

2 The Weil representation

We denote by H = f� 2 C ; =(�) > 0g the omplex upper half plane. Throughout we will

use � as a standard variable on H and write x for its real part and y for its imaginary part,

respetively. If z 2 C , we abbreviate e(z) = e

2�iz

. We denote by

p

z = z

1=2

the prinipal

branh of the square root, so that arg(

p

z) 2 (��=2; �=2℄. Moreover, for a non-zero real

number x we write sgn(x) = x=jxj.

If D is a disriminant (i.e. a non-zero integer � 0; 1 (mod 4)), then we write �

D

for

the Dirihlet harater modulo jDj given by the Kroneker symbol, �

D

(a) =

�

D

a

�

. The

orresponding Dirihlet series is denoted by L(�

D

; s).

Let Mp

2

(R) be the metapleti over of SL

2

(R) realized as the group of pairs (M;�),

where M = (

a b

 d

) 2 SL

2

(R) and � : H ! C is a holomorphi square root of the funtion

� 7! � + d for � 2 H . The assignment

�

a b

 d

�

7!

^

�

a b

 d

�

=

��

a b

 d

�

;

p

� + d

�

de�nes a loally isomorphi embedding of SL

2

(R) into Mp

2

(R).

The inverse image Mp

2

(Z) of SL

2

(Z) under the overing map is generated by

T =

��

1 1

0 1

�

; 1

�

;

S =

��

0 �1

1 0

�

;

p

�

�

:

There are the relations S

2

= (ST )

3

= Z, where Z =

��

�1 0

0 �1

�

; i

�

is the standard generator

of the enter of Mp

2

(Z). Throughout we will frequently use the abbreviations �

1

= SL

2

(Z),

�

1

= f(

1 n

0 1

) ; n 2 Zg � �

1

, and

~

�

1

= f((

1 n

0 1

) ; 1); n 2 Zg � Mp

2

(Z).
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Let (V; q) be a non-degenerate real quadrati spae of signature (b

+

; b

�

) and rank

r = b

+

+ b

�

. We denote by (�; �) the bilinear form orresponding to the quadrati form q

suh that q(x) =

1

2

(x; x). Let L � V be an even lattie and write L

0

for its dual. Then q

indues a Q=Z-valued quadrati form on the �nite disriminant group L

0

=L.

Let (e



)

2L

0

=L

be the standard basis of the group ring C [L

0

=L℄, and write h�; �i for the

standard salar produt on C [L

0

=L℄, whih is linear in the �rst variable and anti-linear in

the seond. Reall that there exists a unitary representation �

L

of Mp

2

(Z) on C [L

0

=L℄,

given by

�

L

(T )e



= e(q())e



; (2.1)

�

L

(S)e



=

p

i

b

�

�b

+

p

jL

0

=Lj

X

Æ2L

0

=L

e(�(; Æ))e

Æ

(2.2)

(f. [Bo2℄). This representation is essentially the Weil representation assoiated with the

quadrati module (L

0

=L; q). It fators through a �nite quotient of Mp

2

(Z). Observe that

�

L

(Z)e



= i

b

�

�b

+

e

�

. For �;  2 L

0

=L and (M;�) 2 Mp

2

(Z) we de�ne the oeÆient

�

�

(M;�) of �

L

by

�

�

(M;�) = h�

L

(M;�)e



; e

�

i:

Let � 2

1

2

Z. The group Mp

2

(R) ats on funtions f : H ! C [L

0

=L℄ via the Petersson

slash operator f 7! f j

�

�

(M;�), where

�

f j

�

�

(M;�)

�

(�) = �(�)

�2�

�

�

L

(M;�)

�1

f(M�)

and �

�

L

denotes the dual representation of �

L

. If f : H ! C [L

0

=L℄ is a smooth funtion,

whih is invariant under T , then f has a Fourier expansion of the form

f(�) =

X

2L

0

=L

X

n2Z�q()

(; n; y)e



(nx):

Here we have abbreviated e



(�) = e



e(�).

3 Eisenstein series

In this setion we study real analyti vetor valued Eisenstein series for Mp

2

(Z) transform-

ing with the Weil representation. We ompute their Fourier expansion by modifying the

argument of [BK℄.

Throughout we assume that � 2

1

2

Z, � � 2, and 2� � b

�

+ b

+

� 0 (mod 4). (The

ase 2� � b

�

+ b

+

� 2 (mod 4) an be treated similarly.) If � 2 L

0

=L with q(�) 2 Z

and s 2 C , then the funtion H ! C [L

0

=L℄ given by e

�

y

s

is invariant under the ation of

T; Z

2

2 Mp

2

(Z). We de�ne the Eisenstein series E

�

(�; s) of weight � by

E

�

(�; s) =

1

2

X

(M;�)2

~

�

1

nMp

2

(Z)

(e

�

y

s

) j

�

�

(M;�): (3.1)
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It onverges normally on H for <(s) > 1 � �=2 and de�nes a Mp

2

(Z)-invariant real ana-

lyti funtion, whih is an eigenfuntion of the hyperboli Laplaian in weight �. Similar

Eisenstein series are onsidered by Kudla and Yang from the adeli point of view in [KuYa℄.

Let W

�;�

(z) be the usual W -Whittaker funtion as in [AbSt℄ Chapter 13 p. 190. For

brevity we put for s 2 C and y 2 R n f0g:

W

s

(y) = jyj

��=2

W

sgn(y)�=2;(1��)=2�s

(jyj): (3.2)

Notie that

W

0

(y) =

(

e

�y=2

; if y > 0,

e

�y=2

�(1� �; jyj); if y < 0,

(3.3)

where �(a; x) =

R

1

x

e

�t

t

a�1

dt denotes the inomplete Gamma funtion as in [AbSt℄ p. 81.

Proposition 3.1. The Eisenstein series E

�

has the Fourier expansion

E

�

(�; s) =

X

2L

0

=L

X

n2Z�q()



�

(; n; s; y)e



(nx);

where the oeÆients 

�

(; n; s; y) are equal to

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(Æ

�;

+ Æ

��;

)y

s

+ 2�y

1���s

�(�+ 2s� 1)

�(�+ s)�(s)

X

2Z�f0g

j2j

1���2s

H

�



(�; 0; ; 0); n = 0;

2

�

�

s+�

jnj

s+��1

�(s+ �)

W

s

(4�ny)

X

2Z�f0g

jj

1���2s

H

�



(�; 0; ; n); n > 0;

2

�

�

s+�

jnj

s+��1

�(s)

W

s

(4�ny)

X

2Z�f0g

jj

1���2s

H

�



(�; 0; ; n); n < 0;

and H

�



(�;m; ; n) denotes the generalized Kloosterman sum

H

�



(�;m; ; n) =

e

��i sgn()�=2

jj

X

d ()

�

(

a b

 d

)

2�

1

n�

1

=�

1

�

�

^

�

a b

 d

�

e

�

ma+ nd



�

: (3.4)

The sum in (3.4) runs over all primitive residues dmodulo  and (

a b

 d

) is a representative

for the double oset in �

1

n�

1

=�

1

with lower row ( d

0

) and d

0

� d (mod ). Observe that

the quantity �

�

℄

(

a b

 d

) e

�

ma+nd



�

does not depend on the hoie of the oset representative.

The oeÆients �

�

℄

(

a b

 d

) are universally bounded, sine �

L

fators through a �nite

group. Hene there is a onstant C > 0 suh that H

�



(�; 0; ; n) < C for all  2 L

0

=L,

n 2 Z � q(), and  2 Z � f0g. This implies that the series for the Fourier oeÆients

onverge absolutely for <(s) > 1� �=2.

8



Proof. Let  2 L

0

=L and n 2 Z� q(). We argue as in [Br2℄ Chapter 1.2.3. The oeÆient



�

(; n; s; y) is given by the Fourier integral



�

(; n; s; y) =

1

2

1

Z

0

X

(M;�)2

~

�

1

nMp

2

(Z)




(e

�

y

s

) j

�

�

(M;�); e



(nx)

�

dx:

We split the above sum into the sum over 1; Z; Z

2

; Z

3

2

~

�

1

nMp

2

(Z) and the sum over

((

a b

 d

) ; �) 2

~

�

1

nMp

2

(Z) with  6= 0. Sine e

�

y

s

is invariant under the ation of Z

2

, we get



�

(; n; s; y) = Æ

0;n

(Æ

�;

+ Æ

��;

)y

s

+

X

6=0

(

a b

 d

)

2�

1

n�

1

=�

1

�

�

^

�

a b

 d

�

1

Z

�1

y

s

e(�nx)

(� + d)

�+s

(�� + d)

s

dx:

We now ompute the integral. Beause

p

� + d = sgn()

p



p

� + d=, we have

1

Z

�1

y

s

e(�nx)

(� + d)

�+s

(�� + d)

s

dx = jj

���2s

sgn()

�

y

s

1

Z

�1

e(�nx)

(� + d=)

�+s

(�� + d=)

s

dx

= jj

���2s

sgn()

�

e(nd=)y

s

1

Z

�1

e(�nx)

�

�+s

��

s

dx:

Consequently



�

(; n; s; y) = Æ

0;n

(Æ

�;

+Æ

��;

)y

s

+i

�

y

s

1

Z

�1

e(�nx)

�

�+s

��

s

dx

X

2Z�f0g

jj

1���2s

H

�



(�; 0; ; n): (3.5)

Using [E2℄ 3.2 (12) on p. 119 (and orreting the sign of the �rst formula there), we �nd

for the latter integral

1

Z

�1

e(�nx)

�

�+s

��

s

dx = i

��

1

Z

�1

e

�2�inx

(y � ix)

�+s

(y + ix)

s

dx

= 2�i

��

(

(2y)

��=2�s

�(�+ s)

�1

(2�n)

s�1+�=2

W

�=2;(1��)=2�s

(4�ny); n > 0;

(2y)

��=2�s

�(s)

�1

(2�jnj)

s�1+�=2

W

��=2;(1��)=2�s

(4�jnjy); n < 0;

= 2

�

�

s+�

i

��

jnj

s+��1

y

�s

W

s

(4�ny)

(

�(�+ s)

�1

; n > 0;

�(s)

�1

; n < 0:

For n = 0 we derive by means of [Fr℄ Chap. III Lemma 4.4 that

1

Z

�1

1

�

�+s

��

s

dx = i

��

y

1�2s��

1

Z

�1

1

(1� ix)

�

j1� ixj

2s

dx

= 2

2���2s

�i

��

�(�+ 2s� 1)

�(�+ s)�(s)

y

1���2s

:
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Inserting into (3.5), we obtain the assertion.

The Weil representation �

L

is trivial on the prinipal ongruene subgroup �(N) of

level N of Mp

2

(Z), where N is the least positive integer suh that Nq() 2 Z for all

 2 L

0

=L. So the Eisenstein series E

�

(�; s) is a �nite linear ombination of Mp

2

(Z)=�(N)-

translates of lassial salar valued Eisenstein series for �(N). This implies that E

�

(�; s)

has a meromorphi ontinuation in s to the whole omplex plane, whih is holomorphi in

s at s = 0.

Beause of Proposition 3.1 and (3.3) the speial value E

�

(�; 0) is always a holomorphi

modular form of weight �, if � > 2. For � = 2 it is holomorphi, if �

L

does not ontain the

trivial representation as an irreduible onstituent.

We are mainly interested in the Eisenstein series E

0

(�; s). Using the ideas of [BK℄, its

oeÆients an be omputed more expliitly. We briey indiate the main steps. By means

of Shintani's formula [Sh℄ for the oeÆients of the Weil representation it an be shown

that

H

�



(0; 0; ; n) =

(�1)

(2��b

�

+b

+

)=4

p

jL

0

=Lj

jj

�1+r=2

X

aj

a

1�r

�(jj=a)N

;n

(a);

where � denotes the Moebius funtion and N

;n

(a) the representation number

N

;n

(a) = #fx 2 L=aL; q(x� ) + n � 0 (mod a)g (3.6)

modulo a (see [BK℄ Proposition 3). As a onsequene we may infer that

X

2Z�f0g

jj

1���2s

H

�



(0; 0; ; n) =

2(�1)

(2��b

�

+b

+

)=4

p

jL

0

=Lj�(2s+ �� r=2)

1

X

a=1

N

;n

(a)a

1�r=2���2s

(see [BK℄ Proposition 4). Here �(s) is the Riemann zeta funtion.

We now ompute the L-series

L

;n

(s) =

1

X

a=1

N

;n

(a)a

�s

: (3.7)

Sine the representation number funtion N

;n

(a) is multipliative in a, this L-series has

an Euler produt expansion. We let

d



= minfb 2 Z

>0

; b 2 Lg

be the level of . Then d



learly divides jL

0

=Lj, and d

2



n and 2d



n are integers. If we put

w

p

= 1 + 2v

p

(2nd



); (3.8)

where v

p

denotes the (additive) p-adi valuation on Q , then N

;n

(p

�+1

) = p

r�1

N

;n

(p

�

) for

all � � w

p

. We may onlude that

L

;n

(s) = �(s� r + 1)

Y

p prime

L

(p)

;n

(p

�s

);

10



where L

(p)

;n

(X) denotes the polynomial

L

(p)

;n

(X) = N

;n

(p

w

p

)X

w

p

+ (1� p

r�1

X)

w

p

�1

X

�=0

N

;n

(p

�

)X

�

2 Z[X℄: (3.9)

Observe that L

(p)

;n

(X) does not hange, if w

p

is replaed by any greater integer.

Proposition 3.2. The oeÆient 

0

(; n; s; y) of E

0

(�; s) is equal to

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

2Æ

0;

y

s

+ 2

3���2s

�y

1���s

�(�+ 2s� 1)

�(�+ s)�(s)

(�1)

(2��b

�

+b

+

)=4

p

jL

0

=Lj

Y

p

L

(p)

;n

(p

1�r=2���2s

); n = 0;

2

�+1

�

s+�

jnj

s+��1

�(s+ �)

W

s

(4�ny)

(�1)

(2��b

�

+b

+

)=4

p

jL

0

=Lj

Y

p

L

(p)

;n

(p

1�r=2���2s

); n > 0;

2

�+1

�

s+�

jnj

s+��1

�(s)

W

s

(4�ny)

(�1)

(2��b

�

+b

+

)=4

p

jL

0

=Lj

Y

p

L

(p)

;n

(p

1�r=2���2s

); n < 0:

For n 6= 0 we de�ne oeÆients C(; n; s) by



0

(; n; s; y) = C(; n; s)W

s

(4�ny); (3.10)

so that C(; n; s) is essentially the part of 

0

(; n; s; y) oming from the �nite plaes of

Q . In this ase the Euler produts in Proposition 3.2 an be omputed using a result of

Siegel on representation numbers of quadrati forms modulo prime powers ([Si℄ Hilfssatz

16). One �nds that if p is a prime oprime to the integer 2d

2



njL

0

=Lj (in partiular w

p

= 1),

then

L

(p)

;n

(X) =

8

>

<

>

:

1� �

D

(p)p

r=2�1

X; if r is even,

1� p

r�1

X

2

1� �

D

(p)p

r=2�1=2

X

; if r is odd.

Here D is the disriminant

8

<

:

(�1)

r=2

det(L); if r is even,

2(�1)

(r+1)=2

d

2



n det(L); if r is odd,

and det(L) means the Gram determinant of L. We may write D uniquely as the produt

D = D

0

f

2

of a fundamental disriminant D

0

and the square of a positive integer f . Then

D

0

is the disriminant of the quadrati number �eld Q (

p

D), and the harater �

D

0

is

primitive. We �nd that, up to a �nite produt of rational funtions in p

�s

over primes p

dividing 2d

2



njL

0

=Lj, the Euler produt

Q

p

L

(p)

;n

(p

1�r=2���2s

) is equal to

8

>

>

>

<

>

>

>

:

1

L(�

D

0

; 2s+ �)

; if r is even,

L(�

D

0

; 2s+ �� 1=2)

�(4s+ 2�� 1)

; if r is odd.

(3.11)

11



Theorem 3.3. If n > 0, then C(; n; s) is equal to

2

2�2s

�

�s

jnj

�+s�1

os

�

�(s�

Æ

2

+

b

�

�b

+

4

)

�

jD

0

j

2s+��1=2

�(2s+ �)

p

jL

0

=Lj�(s+ �)

�

�

;n

(2s+ �)

L(�

D

0

; 1� 2s� �)

;

if r is even, and to

2

2s+2��1=2

�

�s

jnj

�+s�1

�

sin

�

�(2s+ �)

�

jD

0

j

1���2s

�(2s+ �)

os

�

�(s�

Æ

2

+

b

�

�b

+

�1

4

)

�

p

jL

0

=Lj�(s+ �)

�

L(�

D

0

; 3=2� 2s� �)

�(2� 4s� 2�)

�

;n

(2s+ �);

if r is odd. Here D

0

denotes the fundamental disriminant de�ned above and Æ = 0, if

D

0

> 0, and Æ = 1, if D

0

< 0. Moreover, �

;n

(s) is the generalized divisor sum

�

;n

(s) =

8

>

>

>

>

>

<

>

>

>

>

>

:

Y

pj2d

2



ndet(L)

L

(p)

;n

(p

1�r=2�s

)

1� �

D

0

(p)p

�s

; if r is even,

Y

pj2d

2



ndet(L)

1� �

D

0

(p)p

1=2�s

1� p

1�2s

L

(p)

;n

(p

1�r=2�s

); if r is odd.

(3.12)

Analogous formulas hold for n < 0, but with �(s+ �) replaed by �(s).

Proof. From Proposition 3.2 and the above disussion we may infer that C(; n; s) is equal

to

(�1)

(2��b

�

+b

+

)=4

2

�+1

�

s+�

jnj

s+��1

p

jL

0

=Lj�(s+ �)

�

8

>

>

>

<

>

>

>

:

1

L(�

D

0

; 2s+ �)

�

;n

(2s+ �); if r is even,

L(�

D

0

; 2s+ �� 1=2)

�(4s+ 2�� 1)

�

;n

(2s+ �); if r is odd.

(3.13)

Beause the harater �

D

0

is primitive, the Dirihlet series L(�

D

0

; s) satis�es the funtional

equation

L(�

D

0

; s) =

2

s�1

�

s

jD

0

j

1=2�s

os(�(s� Æ)=2)�(s)

L(�

D

0

; 1� s):

In fat, this form of the funtional equation an be dedued from the standard form (see

e.g. [Za1℄ p. 53) by means of the identity �(s)�(1 � s) = �= sin(�s) and the Legendre

dupliation formula. In partiular, the Riemann zeta funtion has the funtional equation

�(s) =

2

s�1

�

s

os(�s=2)�(s)

�(1� s):

If we insert this into (3.13), we see that C(; n; s) is equal to

(�1)

(2��b

�

+b

+

)=4

2

2�2s

�

�s

jnj

�+s�1

jD

0

j

2s+��1=2

p

jL

0

=Lj

� os

�

�(s+ �=2� Æ=2)

�

�(2s+ �)

�(s+ �)

�

;n

(2s+ �)

L(�

D

0

; 1� 2s� �)

;

12



if r is even, and to

(�1)

(2��b

�

+b

+

)=4

2

2s+2��1=2

�

�s

jnj

�+s�1

jD

0

j

1���2s

p

jL

0

=Lj

�

os

�

�(2s+ �� 1=2)

�

os

�

�(s+ �=2� 1=4� Æ=2)

�

�(2s+ �)

�(s+ �)

L(�

D

0

; 3=2� 2s� �)

�(2� 4s� 2�)

�

;n

(2s+ �);

if r is odd. This easily implies the assertion.

The �nite Euler produts �

;n

(s) are interesting invariants of the lattie L (or better of

L

0

=L as we shall see below). Notie that in their de�nition one ould replae the produt

over primes dividing 2d

2



n det(L) by the produt over any larger set of primes inluding the

primes dividing 2d

2



n det(L). The part of �

;n

(s) given by primes dividing d

2



n but oprime

to 2 det(L) an also be evaluated just in terms of n; ; det(L), not involving representation

numbers (see [BK℄ Theorem 7).

We have the following table for sgn(D

0

) (and hene for Æ):

b

+

� b

�

(mod 4) 0 1 2 3

n > 0 + � � +

n < 0 + + � �

The following proposition is very useful for expliit omputations.

Proposition 3.4. Suppose that L and

~

L are even latties of rank r and ~r, respetively.

Write L

(p)

;n

(X) and

~

L

(p)

;n

(X) for the p-polynomials de�ned in (3.9) orresponding to L and

~

L, respetively. If L

0

=L

�

=

~

L

0

=

~

L, then

L

(p)

;n

(p

�r=2

X) =

~

L

(p)

;n

(p

�~r=2

X):

Consequently, if �

;n

(s) and ~�

;n

(s) denote the �nite Euler produts de�ned in (3.12) or-

responding to L and

~

L, then �

;n

(s) = ~�

;n

(s).

Proof. This an be dedued from the fat that the de�nition (3.1) of E

0

(�; s) only depends

on L

0

=L (via the Weil representation). The quantities apart from �

;n

(s) in the formula

for C(; n; s) in Theorem 3.3 also only depend on L

0

=L. Hene the same must be true for

�

;n

(s). We leave it to the reader to �ll in the details.

4 Green's funtions assoiated with Heegner divisors

For the rest of this paper let (V; q) be a real quadrati spae of signature (2; p) and put

� = 1 + p=2. We assume that either p > 2, or that p = 2 and the dimension of a maximal

isotropi subspae of L


Z

Q equals 1. (We will use many results of [Br1℄, where the general

assumption was p > 2 for simpliity. However, it is easily veri�ed that everything we need

here also works for the latter ase. See also [Br2℄.) In this setion, beside other things, we

13



will relate the values of integrals over ertain Green's funtions to the derivatives of the

oeÆients of the Eisenstein series E

0

(�; s) in weight �.

We start by realling some fats on the Hermitean symmetri spae assoiated with the

real orthogonal group O(V ) of (V; q). It an be realized as the Grassmannian Gr(V ) of

oriented positive de�nite subspaes v � V of dimension 2. It is a real analyti manifold of

real dimension 2p onsisting of 2 onneted omponents given by the 2 possible hoies of

the orientation. The omplex struture on Gr(V ) an be most easily realized as follows.

We onsider the omplexi�ation V

C

= V 


R

C of V and extend the bilinear form (�; �) to

a C -bilinear form on V

C

. The subset

K = f[Z℄ 2 P (V

C

); (Z;Z) = 0; (Z;

�

Z) > 0g

of the projetive spae over V

C

is invariant under the ation of O(V ). By mapping a

positively oriented orthogonal basis X; Y of v 2 Gr(V ) with X

2

= Y

2

> 0 to [X + iY ℄ 2

P (V

C

), one obtains a real analyti isomorphism Gr(V )! K. It de�nes a omplex struture

on the Grassmannian.

We �x a onneted omponent Gr

0

(V ) of Gr(V ) and write K

0

for the orresponding

omponent of K. A subgroup of O(V ) of index 2, denoted by O

0

(V ), preserves these

omponents. It is readily veri�ed that O

0

(V ) is the set of elements whose spinor norm

has the same sign as the determinant. Let O

0

(L) = O(L) \ O

0

(V ), and write �(L) for

the disriminant kernel of O

0

(L), i.e., the kernel of the natural homomorphism O

0

(L) !

O(L

0

=L). By the theory of Baily-Borel, the quotient

X

L

= �(L)nK

0

is a quasi-projetive algebrai variety over C of dimension p.

There are ertain speial divisors on X

L

arising from embedded quotients analogous to

X

L

of dimension p�1. For any vetor � 2 V of negative norm the orthogonal omplement

�

?

in Gr(V ) de�nes a omplex analyti divisor on Gr(V ). If � 2 L

0

=L, and m 2 Z+ q(�)

is negative, then

H(�;m) =

X

�2L+�

q(�)=m

�

?

is a �(L)-invariant divisor on Gr(V ) alled the Heegner divisor of disriminant (�;m). Its

restrition to Gr

0

(V ) is the inverse image under the anonial projetion of an algebrai

divisor on X

L

, also denoted by H(�;m). Notie that H(�;m) = H(��;m), and that the

multipliities of all irreduible omponents of H(�;m) are 2, if 2� = 0, and 1, if 2� 6= 0 in

L

0

=L.

We onsider automorphi Green's funtions for these Heegner divisors. They were �rst

introdued in [Br1, Br2℄, and independently from a di�erent perspetive in [OT℄. We de�ne

the Green's funtion assoiated with H(�;m) for v 2 Gr(V ) n H(�;m) and s 2 C with

14



<(s) > �=2 by

�

�;m

(v; s) = 2

�(s� 1 + �=2)

�(2s)

X

�2�+L

q(�)=m

�

m

m� q(�

v

)

�

s�1+�=2

� F

�

s� 1 + �=2; s+ 1� �=2; 2s;

m

m� q(�

v

)

�

: (4.1)

Here �

v

denotes the orthogonal projetion of � to v � V and

F (a; b; ; z) =

1

X

n=0

(a)

n

(b)

n

()

n

z

n

n!

(4.2)

(with (a)

n

= �(a + n)=�(a)) the Gauss hypergeometri funtion as in [AbSt℄ Chap. 15.

In [Br1℄ the funtion �

�;m

(v; s) was originally de�ned as a regularized theta lifting of a

ertain non-holomorphi Poinar�e series of weight k = 2�� and then shown to be equal to

the series above. (See [Br1℄ Theorem 2.14. Note that the regularization due to Borherds

and Harvey-Moore is replaed by a ertain automorphi regularization.) Here we prefer

to take (4.1) as our de�nition, sine it is a bit more diret. This is also the approah of

[Br2℄ and [OT℄. The series onverges normally for v 2 Gr(L) n H(�;m) and <(s) > �=2

and de�nes a �(L)-invariant funtion. It an be easily written in the oordinates of K

by noting that q(�

v

) = j(�; Z)j

2

=(Z;

�

Z) for [Z℄ 2 K orresponding to v. We denote the

resulting �(L)-invariant funtion on K by �

�;m

(Z; s).

Aording to [Br1℄ Prop. 2.8 the funtion �

�;m

(v; s) has a meromorphi ontinuation

in s to a neighborhood of �=2. It has a simple pole at s = �=2. As a funtion in v,

it is real analyti on Gr(V ) n H(�;m) and has a logarithmi singularity along H(�;m).

If U � Gr(V ) denotes a ompat neighborhood of v, then there is a �nite set S(U) of

� 2 � + L with q(�) = m suh that

�

�;m

(v; s) = �4

X

�2S(U)

log j�

v

j+O(1)

on U (f. [Br1℄ Theorem 2.12 and [Bo2℄ Theorem 6.2).

Let � be the O(V )-invariant Laplae operator on Gr(V ) indued by the Casimir element

of the Lie algebra of O(V ). We normalize it as in [Br1℄. The Green's funtion �

�;m

(v; s)

is an eigenfuntion of �. More preisely, aording to [Br1℄ Theorem 4.6, we have

��

�;m

(v; s) =

1

2

(s� �=2)(s� 1 + �=2)�

�;m

(v; s): (4.3)

The Fourier expansion of �

�;m

(v; s) an be omputed using the integral representation

as a regularized theta integral. Let z 2 L be a primitive isotropi vetor and N be the

unique positive integer suh that (z; L) = NZ. Let z

0

2 L

0

with (z; z

0

) = 1. Then

K = L\ z

?

\ z

0

?

is an even lattie of signature (1; p� 1) isomorphi to (L\ z

?

)=Zz. The

subset

H

z

= fZ 2 K 


Z

C ; q(=(Z)) > 0g
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of K 


Z

C

�

=

C

p

, is a tube domain realization of the Hermitean symmetri spae K, the

isomorphism being given by Z 7! [Z + z

0

� q(Z)z� q(z

0

)z℄. The invariane of a funtion F

on K under ertain Eihler transformations in �(L) implies that the orresponding funtion

F

z

on H

z

is periodi with period lattie K

0

, i.e., F

z

(Z + �) = F

z

(Z) for all � 2 K

0

. In

partiular any suÆiently smooth �(L)-invariant funtion on K has a Fourier expansion

with Fourier oeÆients indexed by the lattie K

0

. We all it the Fourier expansion at the

usp z. The oeÆient orresponding to � = 0 2 K

0

is loosely alled the onstant Fourier

oeÆient at the usp z.

Aording to [Br1℄ Theorem 2.15 and Lemma 1.15 the onstant oeÆient at the usp

z of the funtion �

�;m

(Z; s) is given by

U

�;m

(Y; s) + 2(Y

2

)

�=2�s

'

�;m

(s)�(2s+ 1� �); (4.4)

where

'

�;m

(s) =

1

p

�

�

2

�

�

s��=2

�(s+ 1=2� �=2)b(0; 0; s); (4.5)

U

�;m

(Y; s) =

jY j

p

2

�

K

�;m

(Y=jY j; s) (4.6)

+

2

p

�

�

2

�Y

2

�

s��=2

�(s+ 1=2� �=2)

N�1

X

`=1

b(`z=N; 0; s)

X

n�1

e(`n=N)n

��1�2s

;

b(; 0; s) = �

2

�

�

s+�=2

jmj

s�1+�=2

(2s� 1)�(s+ 1� �=2)�(s� 1 + �=2)

X

2Z�f0g

jj

1�2s

H

�

�

(; 0; �;�m);

(4.7)

and Z 2 H

z

with Y = =(Z). Here we have used that k = 2 � �, jz

v

j = 1=jY j, and

w = Y=jY j. The funtion U

�;m

(Y; s) is ontinuous in Y and holomorphi in s at �=2. The

seond summand in (4.4) will be of partiular interest to us. It has a simple pole with

residue '

�;m

(�=2) at s = �=2. Observe that '

�;m

(s) is independent of the hoie of z. The

di�erene of �

�;m

(Z; s) and its onstant oeÆient at z is holomorphi in s near �=2.

We will be interested in the following regularized Green's funtions.

De�nition 4.1. Let � 2 L

0

=L and m 2 Z+ q(�) with m < 0. We de�ne the regularized

Green's funtion �

�;m

(v) assoiated with the Heegner divisor H(�;m) to be the onstant

term in the Laurent expansion in s of �

�;m

(v; s) at s = �=2.

Proposition 4.2. The regularized Green's funtion �

�;m

(v) is given by

�

�;m

(v) = lim

s!�=2

�

�

�;m

(v; s)�

'

�;m

(�=2)

s� �=2

�

:

Its onstant Fourier oeÆient at the usp z is equal to

U

�;m

(Y; �=2)� '

�;m

(�=2) log(Y

2

) + '

0

�;m

(�=2)� 2'

�;m

(�=2)�

0

(1):
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Proof. To ompute �

�;m

(v) we need the Laurent expansion of the seond summand

2(Y

2

)

�=2�s

'

�;m

(s)�(2s+ 1� �)

of (4.4) at s = �=2. Using the Laurent expansion �(s) = 1=(s � 1) � �

0

(1) + O(s� 1) of

the Riemann zeta funtion at s = 1, we see that it is given by

'

�;m

(�=2)

s� �=2

� '

�;m

(�=2) log(Y

2

) + '

0

�;m

(�=2)� 2'

�;m

(�=2)�

0

(1) +O(s� �=2):

In view of the properties of the onstant Fourier oeÆient of �

�;m

(v; s) at the usp z, this

implies the assertion.

To ease the omparison we notie that the onstant C

�;m

in [Br1℄ Theorem 3.9 (whih

depends on the hoie of the usp z) is given by

C

�;m

= '

0

�;m

(�=2)� 2'

�;m

(�=2)�

0

(1)� 2

N�1

X

`=1

b(`z=N; 0; �=2) log j1� e(`=N)j: (4.8)

We now relate '

�;m

(s) to the oeÆients of the Eisenstein series E

0

(�; s) in weight

� = 1 + p=2 of the previous setion. If �

�;m

(v; s) is viewed as the regularized theta

lifting of a ertain non-holomorphi Poinar�e series F

�;m

(�; s) for Mp

2

(Z) as in [Br1℄, then

b(0; 0; s) naturally arises as the onstant Fourier oeÆient of F

�;m

(�; s). The point is that

this onstant oeÆient is up to a universal fator equal to C(�;�m; s� �=2).

Proposition 4.3. The funtion '

�;m

(s) satis�es

'

�;m

(s) = �

1

p

�

�

2

�

�

s��=2

(s� 1 + �=2)�(s+ 1=2� �=2)

(2s� 1)�(s+ 1� �=2)

C(�;�m; s� �=2): (4.9)

Proof. By Proposition 3.1 we have

C(; n; s) =

2

�

�

s+�

n

s+��1

�(s+ �)

X

2Z�f0g

jj

1���2s

H

�



(0; 0; ; n); (4.10)

if n > 0. Comparing (4.7) and (4.10) we �nd

b(0; 0; s) = �C(�;�m; s� �=2)

s� 1 + �=2

(2s� 1)�(s+ 1� �=2)

:

If we insert this into (4.5), we obtain the assertion.
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4.1 Green's funtions and meromorphi modular forms

Let C

0

� V

C

� f0g denote the one over K

0

� P (V

C

). Let � � �(L) be a subgroup of �nite

index, � a harater

1

of �, and k an integer. By a meromorphi (holomorphi) modular

form F of weight k with respet to � and � we mean a meromorphi (holomorphi) funtion

on C

0

satisfying

1. F is �-invariant, i.e., F (�Z) = �(�)F (Z) for all � 2 �,

2. F is homogeneous of degree �k, i.e., F (aZ) = a

�k

F (Z) for all a 2 C n f0g.

Our assumptions on L from the beginning of setion 4 ensure that F is automatially

meromorphi (holomorphi) at the boundary of X

L

beause of the Koeher priniple.

Observe that for Z = X + iY 2 C

0

we have

(Z;

�

Z) = X

2

+ Y

2

= 2Y

2

> 0:

If F is a modular form of weight k for the group � with some harater, then the funtion

kF (Z)k = jF (Z)j � q(4�Y )

k=2

(4.11)

on C

0

is �-invariant and homogeneous of degree 0. It is alled the Petersson norm of

F . It de�nes a Hermitean metri on the line bundle L

k

of modular forms of weight k.

The multipliative normalization of the Petersson norm is adapted to the normalization of

Faltings heights in arithmeti intersetion theory. In partiular it is hosen to be onsistent

with the normalization used in [BBK℄, [K�u1℄.

The logarithm of the Petersson norm of any modular form, whose divisor onsists of

Heegner divisors, must be a linear ombination of the Green's funtions �

�;m

(Z):

Theorem 4.4. Let F be any meromorphi modular form of weight k 2 Z for the group

�(L) with some harater, and assume that

div(F ) =

1

2

X

�2L

0

=L

X

m2Z+q(�)

m<0

a(�;m)H(�;m) (4.12)

is a linear ombination of Heegner divisors.

i) The Petersson norm of F is given by

log kF (Z)k = A�

1

8

X

�2L

0

=L

X

m2Z+q(�)

m<0

a(�;m)�

�;m

(Z);

where A denotes an additive onstant.

ii) The weight of F is given by the oeÆients of the Eisenstein series E

0

(�; 0):

k = �

1

4

X

�2L

0

=L

X

m2Z+q(�)

m<0

a(�;m)C(�;�m; 0):

1

Throughout all haraters are unitary.

18



Proof. The �rst assertion is Theorem 4.23 in [Br1℄, and the seond immediately follows

from Corollary 4.24 there.

Reall that a large lass of modular forms for the group �(L) with divisors onsisting

of Heegner divisors is given by Borherds produts (f. [Bo2℄ Theorem 13.3, [Br1℄ Theorem

3.22). These are onstruted as multipliative liftings of C [L

0

=L℄-valued nearly holomorphi

modular forms of weight 1� p=2 for the group Mp

2

(Z) and the Weil representation �

L

. In

fat, if the lattie L splits two orthogonal hyperboli planes over Z, then every modular

form with divisor as in (4.12) is a onstant multiple of a Borherds produt.

For our puroses it is important to notie that Borherds produt have nie arithmeti

properties. Their onstrution as in�nte produts, together with a result of MGraw [MG℄,

implies that some integral power 	

a

of any Borherds produt 	 is a modular form, whose

Fourier oeÆients at the usp z belong to Z[�

N

℄, where �

N

denotes a primitive N -th root

of unity. (The greatest ommon divisor of the Fourier oeÆients of 	

a

at the usp z an

be expliitly omputed in terms of the oeÆients of the Eisenstein series E

�

(�; 0) with

� 6= 0. It is equal to 1, if N = 1.) In partiular, Borherds produts should de�ne setions

of the line bundle of modular forms over Z[�

M

℄ for some positive integerM , whenever there

is a regular model of X

L

over Z[�

M

℄.

Finally, notie that there is a slight di�erene in the multipliative normalizations of

Borherds produts in [Bo2℄ and [Br1℄ (whih only ours if N > 1). For our purposes

here it is more onvenient to work with Borherds' normalization. To adapt [Br1℄ to this

normalization, one has to multiply the generalized Borherds produt 	

�;m

(Z) in De�nition

3.14 by the fator

Q

N�1

`=1

(1 � e(`=N))

b(`z=N;0)

. Then (3.40) still holds, if we replae the

onstant C

�;m

(see (4.8)) by '

0

�;m

(�=2)� 2'

�;m

(�=2)�

0

(1).

For questions regarding the arithmeti of Borherds produts, it is onvenient to renor-

malize the Green's funtion �

�;m

(Z) as follows.

De�nition 4.5. If � 2 L

0

=L, and m 2 Z+ q(�) with m < 0, then we de�ne

G

�;m

(Z) = �

1

4

�

�

�;m

(Z)� L

�;m

�

;

where

L

�;m

= '

�;m

(�=2)

�

'

0

�;m

(�=2)

'

�;m

(�=2)

� 2�

0

(1) + log(8�

2

)

�

: (4.13)

Proposition 4.2 implies the identity

G

�;m

(Z) = �

1

4

lim

s!�=2

�

�

�;m

(Z; s)� 2�(2s+ 1� �)(8�

2

)

s��=2

'

�;m

(s)

�

:

Proposition 4.6. If F is a Borherds produt in the sense of [Bo2℄ Theorem 13.3 with

divisor as in (4.12), then

log kF (Z)k

2

=

X

�2L

0

=L

X

m2Z+q(�)

m<0

a(�;m)G

�;m

(Z):
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Proof. This immediately follows from Theorem 3.22 in [Br1℄.

Proposition 4.6 an be viewed as a generalization of the well known Kroneker limit for-

mula, whih relates the speial value of an eigenfuntion of the Laplaian to the logarithm

of the Petersson metri of an arithmeti modular form. To be more preise, if

E(�; s) =

1

2

X

2�

1

n�

1

(=(�))

s

is the real analyti Eisenstein series for �

1

= SL

2

(Z), then the logarithm of the Petersson

norm of the Delta funtion is given by

log

�

j�(�)j

2

(4�y)

12

�

= �4� lim

s!1

�

E(�; s)�

�(1=2)�(s� 1=2)�(2s� 1)

�(s)�(2s)

�

+ 12 log(4�):

(4.14)

We expet that the Green's funtion G

�;m

(Z) is a Green's funtion for the divisor

1

2

H(�;m) in the sense of [BKK℄ whih has a \good" additive normalisation for questions

in arithmeti intersetion theory (ompare this with [BBK℄).

4.2 Integrals over Green's funtions

The di�erential form 
 = �dd



log(Z;

�

Z) on Gr(V ) is O(V )-invariant and positive. It is

the assoiated (1; 1)-form of an invariant K�ahler metri g on Gr(V ). The orresponding

invariant volume form is given by

1

p!




p

. We let

B =

Z

X

L




p

be the volume of X

L

and de�ne the degree of a divisor D on X

L

by

deg(D) =

Z

D




p�1

:

Aording to (4.11), the funtion jY j

�k

de�nes a Hermitean metri on the line bundle

L

k

of modular forms of weight k for �(L), alled the Petersson metri. The orresponding

�rst Chern form of L

k

is given by



1

(L

k

) = �kdd



logY

2

= k
:

By means of results of Oda and Tsuzuki (based on an unfolding argument and the

properties of spherial funtions) it is possible to ompute the integral of �

�;m

(v) over X

L

.
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Theorem 4.7. i) If <(s) > �=2, then �

�;m

(v; s) 2 L

1

(X

L

). Moreover, if f 2 L

1

(X

L

) is

a smooth bounded eigenfuntion of the Laplaian � with eigenvalue �

f

, then

Z

X

L

�

�;m

(v; s)f(v)


p

=

A(s)

�

f

� �

�

Z

H(�;m)

f(v)


p�1

: (4.15)

Here A(s) denotes the normalizing fator

A(s) = �

p

2�(s+ 1� �=2)

(4.16)

and �

�

=

1

2

(s� �=2)(s� 1 + �=2) the eigenvalue of �

�;m

(v; s).

ii) The regularized Green's funtion �

�;m

(v) belongs to L

1

(X

L

) and

Z

X

L

�

�;m

(v)


p

= lim

s!�=2

Z

X

L

�

�

�;m

(v; s)�

'

�;m

(�=2)

s� �=2

�




p

: (4.17)

Proof. The Green's funtion �

�;m

(v; s) is a Poinar�e series built out of the funtion

g

s

(v; �) = 2

�(s� 1 + �=2)

�(2s)

�

m

m� q(�

v

)

�

s�1+�=2

� F

�

s� 1 + �=2; s+ 1� �=2; 2s;

m

m� q(�

v

)

�

; (4.18)

where v 2 Gr(V ) and � 2 V . We now ompare this funtion with the seondary spherial

funtion �

(2)

s

(x) in [OT℄. As far as possible we use the notation of [OT℄. We write G

R

for

the onneted omponent of O(V ) and �x a vetor �

0

in �+L with q(�) = m. There exists

a basis e

1

; : : : ; e

p+2

of V suh that the quadrati form has the Gram matrix

2

2S, where

S =

0

B

B

B

B

B

�

1

1

�1

.

.

.

�1

1

C

C

C

C

C

A

;

and suh that �

0

=

p

jmje

p+2

. We write v

0

for the element of Gr(V ) given by the span

of e

1

; e

2

. The stabilizer K

R

in G

R

of v

0

is a maximal ompat subgroup. Let H

R

be

the onneted omponent of the stabilizer in G

R

of �

0

. Clearly H

R

�

=

O

0

(2; p � 1). We

write � for the arithmeti subgroup of G

R

given by the disriminant kernel �(L) and put

�

H

= � \H

R

. We onsider the funtion

G

s

(x; �

0

) =

X

2�

H

n�

g

s

(xv

0

; �

0

) (x 2 G

R

)

2

Unspei�ed matrix entries are assumed to be 0.
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and show that (up to a onstant fator depending only on s) G

(s+1)=2

(x; �

0

) is equal to the

funtion G

s

(x) de�ned in [OT℄ x3.1. Sine �

�;m

(v; s) is a �nite linear ombination of the

funtions G

s

(x; �

0

), we will be able to apply the results of lo. it.

We begin by realling some properties of the Lie algebra g = fg 2M

p+2

(R); g

T

S+Sg =

0g of G

R

following [OT℄ x1.3. The assignment g 7! SgS de�nes a Cartan involution � on

G

R

with �xed point subgroup K

R

. If J denotes the matrix

J =

0

B

B

B

B

B

�

1

1

.

.

.

1

�1

1

C

C

C

C

C

A

;

then g 7! JgJ de�nes another involution � on G

R

with �xed point subgroup H

R

. These

involutions ommute. They indue eigenspae deompositions g = k � p (Cartan deom-

position orresponding to �) and g = h� q (deomposition orresponding to �) of g. Here

k denotes the Lie algebra of K

R

and h the Lie algebra of H

R

. We obtain the diret sum

deomposition

g = (k \ h)� (k \ q)� (p \ h)� (p \ q):

The subspae p \ q is given by matries in M

p+2

(R) of the form

0

B

B

B

B

B

�

g

1

0 g

2

0

.

.

.

g

1

g

2

0 � � � 0

1

C

C

C

C

C

A

with g

1

; g

2

2 R. Let

Y

0

=

0

B

B

B

�

1

0 0

.

.

.

1 0 � � � 0

1

C

C

C

A

and put a

p;q

= RY

0

. Then a

p;q

is a maximal Abelian subspae of p \ q, and it is easily

heked that we may take Y

0

for the Y

0

in [OT℄.

We now evaluate our funtion g

s

(xv

0

; �

0

) (where x 2 G

R

) on the 1-parameter subgroup

fexp(tY

0

); t 2 Rg of G

R

. To this end we have to determine the norm of (exp(�tY

0

)�

0

)

v

0

.

Using the fat that

(Y

k

0

e

p+2

)

v

0

=

(

0; 2 j k;

e

1

; 2 - k;

we �nd that (exp(tY

0

)e

p+2

)

v

0

= e

1

sinh(t). Hene

q

�

(exp(�tY

0

)�

0

)

v

0

�

= m sinh

2

(t)
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and onsequently

g

s

�

exp(tY

0

)v

0

; �

0

�

= 2

�(s� 1 + �=2)

�(2s)

(osh(t))

2�2s��

� F

�

s� 1 + �=2; s+ 1� �=2; 2s;

1

osh

2

(t)

�

:

On the other hand, by (2.5.3) of [OT℄ (and noting �

0

= p=2) we have

�

(2)

2s�1

(exp(tY

0

)) = �

�(s� 1 + �=2)�(s+ 1� �=2)

2�(2s)

(osh(t))

2�2s��

� F

�

s� 1 + �=2; s+ 1� �=2; 2s;

1

osh

2

(t)

�

:

By virtue of Proposition 2.4.2. and x2.5 of [OT℄ we may infer that

g

s

(xv

0

; �

0

) = A

0

(s)�

(2)

2s�1

(x); (4.19)

A

0

(s) = �

4

�(s+ 1� �=2)

:

Thus G

s

(x; �

0

) = A

0

(s)G

2s�1

(x), where G

s

(x) denotes the Green's funtion de�ned in [OT℄

x3.1 with respet to H

R

and �.

Now Proposition 3.1.1 of [OT℄ tells us that �

�;m

(v; s) 2 L

1

(X

L

) for <(s) > �=2. To

prove that �

�;m

(v) 2 L

1

(X

L

) and (4.17) one an use the expliit Fourier expansions with

respet to the various paraboli subgroups (see [Br1℄ Theorems 2.15 and 3.9) to derive

estimates on Siegel domains following the argument of [Br1℄ Chapter 4.2. Alternatively,

one an use the fat that �

�;m

(v; s) an be written as a regularized theta lifting together

with a variant of the onvergene proof of Kudla [Ku2℄. In fat, by means of the lassial

Weil estimate for the Siegel theta funtion and identity (2.20) in [Br1℄ the laim an redued

to Propositions 3.2 and 3.4 of [Ku2℄.

We are left with proving (4.15). Up to a onstant fator the formula follows immediately

from Proposition 3.3.1 in [OT℄. We have

1

B

Z

X

L

�

�;m

(v; s)f(v)


n

= �

A

0

(s)

�

f

� �

�

Z

H(�;m)

f(v)


p�1

; (4.20)

with � 2 C oming from the di�erent normalizations of the Laplaian and the invariant

measures on G

R

and H

R

. We may use the fat that �

�;m

(v; s) is an eigenfuntion of � with

eigenvalue �

�

, the orresponding statement in [OT℄ (see Proposition 2.4.2b), and (4.19) to

infer that the Laplaian in [OT℄ equals 8 times our �. Moreover, from identity (1.3.2) in

[OT℄ it an be onluded that

�

H

R

;OT

vol

OT

(X

L

)

= p �

�

H

R

;


p�1

vol




p

(X

L

)

:
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Here �

H

R

;OT

(respetively vol

OT

(X

L

)) denotes the Haar measure on H

R

(respetively the

volume of X

L

) normalized as in [OT℄, and �

H

R

;


p�1

, B = vol




p

(X

L

) the orresponding

quantities in our normalzation. We �nd that � = p=8. If we insert � into (4.20) we obtain

the assertion with A(s) = �A

0

(s).

M. Tsuzuki kindly informs the authors that the meromorphi ontinuation of �

�;m

(v; s)

to a neighborhood of s = �=2 and integrability results as in (ii) ould also be obtained by

means of the spetral theoreti methods developed in [OT℄.

Proposition 4.8. i) The Eisenstein series E

0

(�; 0) of weight � = 1 + p=2 enodes the

degrees of the Heegner divisors. More preisely we have for � > 2:

E

0

(�; 0) = 2e

0

�

2

B

X

2L

0

=L

X

n2Z�q()

n>0

deg(H(;�n))e



(n�):

If � = 2, then the same identity holds, exept for the fat that in the onstant oeÆient on

the right hand side an additional term ay

�1

might our, where a 2 C [L

0

=L℄ is invariant

under �

L

.

ii) Using the notation of Theorem 3.3, deg(H(�;�n))=B is equal to

8

>

>

>

>

<

>

>

>

>

:

(�1)

�=2�Æ=2

2n

��1

jD

0

j

��1=2

p

jL

0

=Lj

�

�

;n

(�)

L(�

D

0

; 1� �)

; if r is even,

(�1)

�=2�1=4+Æ=2

2

2��3=2

n

��1

jD

0

j

1��

p

jL

0

=Lj

�

L(�

D

0

; 3=2� �)

�(2� 2�)

�

;n

(�); if r is odd.

Proof. If we apply (4.15) of Theorem 4.7 to the onstant funtion 1, we �nd

Z

X

L

�

�;m

(v; s)


p

= �

A(s)

�

�

Z

H(�;m)




p�1

=

p

(s� �=2)(s� 1 + �=2)

�

deg(H(�;m))

�(s+ 1� �=2)

:

At s = �=2 the right hand side has the Laurent expansion

2 deg(H(�;m))(s� �=2)

�1

+O(1):

But now it follows from (4.17) that the leading term is equal to B'

�;m

(�=2)(s � �=2)

�1

.

Thus

'

�;m

(�=2) =

2

B

deg(H(�;m)):

On the other hand, by (4.9) we know that '

�;m

(�=2) = �C(�;�m; 0). This implies the

�rst assertion.
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To prove the seond statement we use the �rst assertion and Theorem 3.3. We get

deg(H(�;�n))

B

=

8

>

>

>

>

<

>

>

>

>

:

�2n

��1

os

�

�(�

Æ

2

+

p�2

4

)

�

jD

0

j

��1=2

p

jL

0

=Lj

�

�

;n

(�)

L(�

D

0

; 1� �)

; r even,

�

2

2��3=2

n

��1

jD

0

j

1��

sin(��)

p

jL

0

=Lj os

�

�(�

Æ

2

+

p�3

4

)

�
�

L(�

D

0

; 3=2� �)

�(2� 2�)

�

;n

(�); r odd.

Reall that Æ 2 f0; 1g is uniquely determined by p modulo 4 (see table on page 13). In the

r even ase it is easily heked that

os

�

�(�

Æ

2

+

p�2

4

)

�

= �(�1)

�=2�Æ=2

:

Moreover, in the r odd ase we have

sin(��)

os

�

�(�

Æ

2

+

p�3

4

)

�

= �(�1)

�=2�1=4+Æ=2

:

Putting this into the above equation, we obtain the assertion.

To ompute the oeÆients C(; n; 0) and thereby the degrees of the H(�;m) expliitly,

it remains to determine the generalized divisor sums �

;n

(�). This an easily be arried

out on a omputer for any given lattie L. A omputer program an be downloaded from

the �rst authors home-page.

Theorem 4.9. Let G

�;m

(v) be the Green's funtion of De�nition 4.5. If h 2 L

1

(X

L

) is a

smooth bounded eigenfuntion of the Laplaian � with eigenvalue �

h

6= 0, then

Z

X

L

G

�;m

(v)h(v)


p

=

p

8�

h

Z

H(�;m)

h(v)


p�1

:

In partiular, if F is a Borherds produt in the sense of [Bo2℄ Theorem 13.3, then

Z

X

L

log kF (v)k

2

h(v)


p

=

p

8�

h

Z

div(F )

h(v)


p�1

:

Proof. The symmetry of the Laplaian and the assumption �

h

6= 0 imply that

R

X

L

h(v)


p

=

0. Therefore, inserting the de�nition of G

�;m

(v) we �nd

Z

X

L

G

�;m

(v)h(v)


p

= �

1

4

Z

X

L

(�

�;m

(v)� L

�;m

)h(v)


p

= �

1

4

Z

X

L

�

�;m

(v)h(v)


p

:
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As in (4.17) this an be written in the form

�

1

4

lim

s!�=2

Z

X

L

�

�

�;m

(v; s)�

'

�;m

(�=2)

s� �=2

�

h(v)


p

= �

1

4

lim

s!�=2

Z

X

L

�

�;m

(v; s)h(v)


p

:

Hene, by means of Theorem 4.7 we obtain

Z

X

L

G

�;m

(v)h(v)


p

=

p

8�

h

Z

H(�;m)

h(v)


p�1

:

The seond assertion follows from Proposition 4.6.

If h 2 L

1

(X

L

) is a bounded eigenfuntion of the Laplaian � with eigenvalue �

h

= 0,

then h has to be onstant.

Theorem 4.10. Let G

�;m

(v) be the Green's funtion of De�nition 4.5. Then

1

B

Z

X

L

G

�;m

(v)


p

= �

C(�;�m; 0)

4

�

C

0

(�;�m; 0)

C(�;�m; 0)

+ log(4�)� �

0

(1)

�

:

Here C(; n; s) denotes the (; n)-th oeÆient of the Eisenstein series E

0

(�; s) of weight

� = 1 + p=2. In partiular, if F is a Borherds produt of weight k in the sense of [Bo2℄

Theorem 13.3 with divisor as in (4.12), then

1

B

Z

X

L

log kF (v)k

2




p

= k (log(4�)� �

0

(1))�

1

4

X

�;m

a(�;m)C

0

(�;�m; 0):

Proof. We use Theorem 4.7 to ompute the integral:

1

B

Z

X

L

G

�;m

(v)


p

= �

1

4B

Z

X

L

(�

�;m

(v)� L

�;m

)


p

= �

1

4B

lim

s!�=2

Z

X

L

�

�

�;m

(v; s)�

'

�;m

(�=2)

s� �=2

�




p

+

L

�;m

4

= lim

s!�=2

�

A(s)

4B�

�

deg(H(�;m)) +

'

�;m

(�=2)

4(s� �=2)

�

+

L

�;m

4

:

If we insert the Laurent series expansions of �

�

=

1

2

(s� �=2)(s� 1 + �=2) and

A(s) = �

p

2

+

p

2

�

0

(1)(s� �=2) +O((s� �=2)

2

)
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at s = �=2, and use that 2 deg(H(�;m)) = B'

�;m

(�=2), we obtain

1

B

Z

X

L

G

�;m

(v)


p

=

'

�;m

(�=2)

4

�

�

0

(1) +

1

�� 1

�

+

L

�;m

4

:

Inserting the de�nition (4.13) of L

�;m

, we get

1

B

Z

X

L

G

�;m

(v)


p

=

'

�;m

(�=2)

4

�

'

0

�;m

(�=2)

'

�;m

(�=2)

+

1

�� 1

� �

0

(1) + log(8�

2

)

�

: (4.21)

It follows from (4.9) that

'

�;m

(�=2) = �C(�;�m; 0);

'

0

�;m

(�=2)

'

�;m

(�=2)

=

C

0

(�;�m; 0)

C(�;�m; 0)

� log(2�)�

1

�� 1

:

Putting this into (4.21), we obtain the �rst assertion, the seond follows from Proposition

4.6 and Theorem 4.6 (ii).

We are now ready to prove the main result of this setion. Reall that G

�;m

(Z) is an

automorphi Green's funtion for

1

2

H(�;m).

Theorem 4.11. i) If G

�;m

(v) denotes the Green's funtion of De�nition 4.5, then

2

degH(�;m)

Z

X

L

G

�;m

(v)


p

=

C

0

(�;�m; 0)

C(�;�m; 0)

+ log(4�)� �

0

(1): (4.22)

Here C(; n; s) denotes the (; n)-th oeÆient of the Eisenstein series E

0

(�; s) of weight

� = 1 + p=2.

ii) Using the notation of Theorem 3.3, this is equal to

2

L

0

(�

D

0

; 1� �)

L(�

D

0

; 1� �)

+ 2

�

0

�;�m

(�)

�

�;�m

(�)

+ log jmD

2

0

j+

��1

X

j=1

1

j

;

if r even, and to

4

�

0

(2� 2�)

�(2� 2�)

� 2

L

0

(�

D

0

; 3=2� �)

L(�

D

0

; 3=2� �)

+ 2

�

0

�;�m

(�)

�

�;�m

(�)

+ log j4m=D

2

0

j+

��1=2

X

j=1

2

2j � 1

;

if r is odd.
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Proof. The �rst statement is an immediate onsequene of Theorem 4.10 and Proposition

4.8.

If we ompute the logarithmi derivative of C(�;�m; s) at s = 0 by means of Theorem

3.3, we �nd that it is equal to

2

L

0

(�

D

0

; 1� �)

L(�

D

0

; 1� �)

+ 2

�

0

�;�m

(�)

�

�;�m

(�)

� log(4�) + log jmj+ log(D

2

0

) +

�

0

(�)

�(�)

;

if r even, and to

4

�

0

(2� 2�)

�(2� 2�)

� 2

L

0

(�

D

0

; 3=2� �)

L(�

D

0

; 3=2� �)

+ 2

�

0

�;�m

(�)

�

�;�m

(�)

� log(�=4) + log jmj � log(D

2

0

) +

�

0

(�)

�(�)

;

if r odd. Here we have used that the logarithmi derivatives of the sin- and os-terms

vanish at s = 0. The funtional equation of the �-funtion implies that

�

0

(�)

�(�)

=

(

�

0

(1) +

P

��1

j=1

1

j

; if r is even

�

0

(1)� 2 log(2) +

P

��1=2

j=1

1

j�1=2

; if r is odd.

Inserting this into the above formula and then into (4.22), we obtain the assertion.

If we resale the Petersson metri by a onstant fator a, then, by Proposition 4.8, the

right hand side of (4.22) hanges by the additive onstant log(a). In that way one ould

absorb the onstant log(4�)� �

0

(1) in (4.22). Moreover, one ould ompensate hanges in

the formulas resulting from resaling E

0

(�; s) by a fator depending on s.

5 Examples

1. We �rst onsider the ase of the Siegel modular group of genus 2 and on�rm the

result of Kudla [Ku2℄. Let V = R

5

equipped with the quadrati form

q((x

1

; : : : ; x

5

)) = x

1

x

2

+ x

3

x

4

� x

2

5

:

Then (V; q) is a quadrati spae of signature (2; 3) and � = r=2 = 5=2. Furthermore,

L = Z

5

is an even lattie in V , whose disriminant group L

0

=L is isomorphi to Z=2Z.

The spae of modular forms of weight � with respet to the Weil representation �

�

L

and

Mp

2

(Z) is isomorphi to the spae of modular forms of weight � for the group �

0

(4) having

a Fourier expansion of the form f(�) =

P

1

n=0

a(n)e(n�) with a(n) = 0 if n 6� 0; 1 (mod 4)

(Kohnen's plus spae [Ko℄). Thus the Eisenstein series E

0

(�; s) de�ned in (3.1) is essentially

the non-holomorphi Cohen Eisenstein series of weight �.

Let D be a positive fundamental disriminant. We simply write C(D; s) for the oeÆ-

ient C(�;D=4; s) of E

0

(�; s), where � 2 L

0

=L is taken to be 0+L, if D � 0 (mod 4), and
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the non-zero element of L

0

=L, if D � 1 (mod 4). We may ompute C(D; s) by means of

Theorem 3.3. Noting that D

0

= D and Æ = 0, we �nd

C(D; s) = 2�

�s

D

�s

sin(�(2s+ �))�(2s+ �)

os(�s)�(s+ �)

�

L(�

D

; 3=2� 2s� �)

�(2� 4s� 2�)

�

�;D=4

(2s+ �)

= 2�

�s

D

�s

os(2�s)�(2s+ 5=2)

os(�s)�(s+ 5=2)

�

L(�

D

;�1� 2s)

�(�3� 4s)

�

�;D=4

(2s+ 5=2);

where �

�;D=4

(s) is given by (3.12). In view of Proposition 3.4 it is easily veri�ed that

�

�;D=4

(s) = 1. Here we need the assumption that D be fundamental. For general disrim-

inants �

�;D=4

(s) an be omputed using [EZ℄ x2 p. 21 or [BK℄ Example 10. The result is

�

�;D=4

(s) =

P

djf

�(d)�

D

0

(d)d

1=2�s

�

2�2s

(f=d), where D = D

0

f

2

as in setion 3.

It is well known that in this ase the disriminant kernel �(L) is isomorphi to the

Siegel modular group Sp

2

(Z) of genus 2 (see for instane [GN℄). The quotient X

L

is

isomorphi to the Siegel modular threefold Sp

2

(Z)nH

2

, where H

2

denotes the Siegel upper

half plane of genus 2. The Heegner divisor

1

2

H(�;�D=4) (� being determined by D) an

be identi�ed with the Humbert surfae H(D) of disriminant D (f. [Ge1℄ Chapter IX).

It is an irreduible divisor on Sp

2

(Z)nH

2

, whih is birational to the symmetri Hilbert

modular surfae of disriminant D.

In the oordinates of H

2

the K�ahler form 
 is given by �dd



log(det(Y )), where Z 2 H

2

and Y = =(Z). It is well known that B =

R

Sp

2

(Z)nH

2




3

= ��(�1)�(�3). Aording to

Proposition 4.8 we have

deg(H(D)) = �

B

4

C(D; 0) = �

B

2

L(�

D

;�1)

�(�3)

=

1

2

�

K

(�1);

where �

K

(s) denotes the Dedekind zeta funtion of K = Q(

p

�1); a result whih was �rst

proved by van der Geer (see [Ge1℄ Chapter IX.2).

For any Humbert surfae H(D) there exists a Borherds produt 	

D

(Z) with divisor

H(D). It an be viewed as the Borherds lifting ([Bo2℄ Theorem 13.3) of the unique

modular form of weight �1=2 for �

0

(4), whih is holomorphi on H and whose Fourier

expansion has the form

f(�) = q

�D

+

1

X

n�0

�n�0;1 (4)

a(n)e(n�):

If we briey write G

D

(Z) for the Green's funtion G

�;�D=4

(Z) of De�nition 4.5, then by

Proposition 4.6 we have

log k	

D

(Z)k

2

= log

�

j	

D

(Z)j

2

(det(4�Y ))

k

�

= G

D

(Z);

where k = �C(D; 0)=4 is the weight of 	

D

(Z). By virtue of Theorem 4.11 we �nd that

2

�

K

(�1)

Z

Sp

2

(Z)nH

2

log k	

D

(Z)k

2




3

= 4

�

0

(�3)

�(�3)

� 2

L

0

(�

D

;�1)

L(�

D

;�1)

+

8

3

� log(D):
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2. We now onsider Hilbert modular surfaes using our results for the orthogonal

group O(2; 2). This ase was also onsidered in [BBK℄, but working entirely with the

group SL

2

(O) and the Green's funtions as de�ned in [Br2℄.

Let D > 0 be a positive fundamental disriminant and K = Q(

p

D) the real quadrati

�eld of disriminantD. For simpliity we assume thatD is a prime. We write a 7! a

0

for the

onjugation, N(a) = aa

0

for the norm, and O for the ring of integers inK. As usual we view

the orresponding Hilbert modular group �

K

= SL

2

(O) as a subgroup of SL

2

(R)�SL

2

(R).

We briey reall some fats on the identi�ation of (SL

2

(R) � SL

2

(R))=f�(1; 1)g with the

orthogonal group O

0

(2; 2) (for more details see [Ge1℄ Chapter V.4 and [Bo3℄ Example 5.5).

Let V be the vetor spae of real 2 � 2 matries equipped with the quadrati form

given by q(M) = � det(M). Then (V; q) is a real quadrati spae of signature (2; 2) and

� = r=2 = 2. We onsider the even lattie L � V of matries X = (

a �

�

0

b

) with a; b 2 Z and

� 2 O. The dual lattie L

0

is given by matries X as before, but with � 2 d

�1

, the inverse

of the di�erent. The group �

K

ats on V by X 7!MXM

0

t

forM 2 �

K

, the quadrati form

and the lattie L being preserved. In that way one gets an isomorphism �

K

=f�1g ! �(L).

The Grassmannian Gr

0

(V ) an be identi�ed with the produt H

2

of two opies of H . The

ation of SL

2

(R) � SL

2

(R) by frational linear transformations orresponds to the linear

ation of O

0

(V ) on Gr

0

(V ). Therefore modular forms for �(L) on Gr

0

(V ) an be identi�ed

with Hilbert modular forms on H

2

for the group �

K

. Moreover, the Heegner divisors on

X

L

orrespond to Hirzebruh-Zagier divisors on �

K

nH

2

. In the oordinates of H

2

we have


 = �dd



log(y

1

y

2

) =

1

4�

�

dx

1

dy

2

y

2

1

+

dx

2

dy

2

y

2

2

�

;

where Z = (z

1

; z

2

) 2 H

2

, and (y

1

; y

2

) = =(z

1

; z

2

). It is well known that B =

R

�

K

nH

2




2

=

�

K

(�1), where �

K

(s) denotes the Dedekind zeta funtion of K.

Let � 2 L

0

=L = d

�1

=O

�

=

Z=DZ and M a positive integer suh that M=D 2 Z� q(�),

that isM � �N(�) (mod D). If we ompute the oeÆient C(�;M=D; s) of the Eisenstein

series E

0

(�; s) of weight � using Theorem 3.3 (noting D

0

= D), we �nd that

C(�;M=D; s) = 2

2�2s

�

�s

D

s

M

�+s�1

os(�s)

�(2s+ �)

�(s+ �)

�

�

M

(2s+ �)

L(�

D

; 1� 2s� �)

;

where

�

M

(s) =

Y

pj2MD

L

(p)

�;M=D

(p

1�r=2�s

)

1� �

D

(p)p

�s

: (5.1)

To determine the p-polynomials in the �nite Euler produt �

M

(s) more expliitly one an

use Proposition 3.4, whih redues the omputation of representation numbers of the lattie

L modulo prime powers to the omputation of suh numbers for the smaller lattie O. We

see that

L

(p)

�;M=D

(p

�r=2

X) =

~

N

�;M=D

(p

w

p

)(p

�1

X)

w

p

+ (1�X)

w

p

�1

X

�=0

~

N

�;M=D

(p

�

)(p

�1

X)

�

;
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where

~

N

�;M=D

(p

�

) = #fx 2 O=p

�

O; N(x� �) +M=D � 0 (mod p

�

)g:

It is easily veri�ed that

~

N

�;M=D

(p

�

) =

(

#fy 2 O=p

�

O; N(y) �M (mod p

�

)g; p 6= D;

S(M)

D

�#fy 2 O=p

�+1

O; N(y) � M (mod p

�+1

)g; p = D;

where S(M) = 1, if D divides M , and S(M) = 1=2, if D does not divide M . If we de�ne

N

b

(M) = #fx 2 O=bO; N(x) �M (mod b)g

as in [Za2℄ p. 27, we �nd that L

(p)

�;M=D

(p

�r=2

X) is equal to

(

N

p

w

p

(M)(p

�1

X)

w

p

+ (1�X)

P

w

p

�1

�=0

N

p

�(M)(p

�1

X)

�

; p 6= D;

S(M)

D

�

N

p

w

p

+1

(M)(p

�1

X)

w

p

+ (1�X)

P

w

p

�1

�=0

N

p

�+1(M)(p

�1

X)

�

�

; p = D:

The representation numbers N

p

�
(M) are omputed in Lemma 3 on p. 27 of [Za2℄. This an

be used to determine L

(p)

�;M=D

(p

�r=2

X) more expliitly. Sine the omputation is somewhat

lengthy (but trivial), we omit the details. If we write M = M

0

D

�

with M

0

oprime to D,

we obtain

L

(p)

�;M=D

(p

�r=2

X) =

(

�

1� �

D

(p)p

�1

X

�

P

v

p

(M)

�=0

�

�

D

(p)X

�

�

; p 6= D;

S(M)(1 + �

D

(M

0

)X

�

); p = D:

Inserting this into (5.1) we infer

�

M

(s) = S(M)(1 + �

D

(M

0

)D

(1�s)�

)

Y

pj2MD

v

p

(M)

X

�=0

�

D

(p

�

)p

(1�s)�

= S(M)

X

djM

�

�

D

(d) + �

D

(M=d)

�

d

1�s

;

and therefore

C(�;M=D; s) = 2

2�2s

�

�s

D

s

M

s+1

os(�s)�(2s+ 2)S(M)

�(s+ 2)L(�

D

;�1� 2s)

X

djM

�

�

D

(d) + �

D

(M=d)

�

d

�1�2s

:

The Hirzebruh Zagier divisor T (M) on �

K

nH

2

(f. [Ge1℄ Chap. V) an be identi-

�ed with the divisor

1

2

H(�;�M=D), if D divides M , and with H(�;�M=D), if D does

not divide M . The multipliities of the irreduible omponents of T (M) are equal to

1. Therefore we de�ne the Green's funtion on H

2

orresponding to T (M) by G

M

(Z) =

S(M)

�1

G

�;�M=D

(Z). It has a logarithmi singularity along T (M) of type log jf j

2

, where f

denotes a loal holomorphi equation for T (M). Now Proposition 4.8 says that

deg(T (M)) = �

B

4S(M)

C(�;M=D; 0) = ��(�1)

X

djM

�

�

D

(d) + �

D

(M=d)

�

d;
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a result whih was already proved by Hirzebruh-Zagier. By means of Theorem 4.11 we

obtain

1

deg(T (M))

Z

�

K

nH

2

G

M

(Z)


2

= 2

L

0

(�

D

;�1)

L(�

D

;�1)

+ 1 + 2

�

0

M

(2)

�

M

(2)

+ log(DM): (5.2)

If 	(Z) is a Borherds produt (see Theorem 9 in [BB℄), then its divisor is a linear ombi-

nation of the T (M) and the integral over log k	(Z)k

2

is given by the orresponding linear

ombination of the quantities on the right hand side of (5.2).

For instane, if D = 5 and K = Q (

p

D), the produt � of the 10 theta onstants

onsidered by Gundlah [Gu℄ is a Hilbert modular form of weight 5 for the group �

K

with

divisor T (1). The Fourier oeÆients of � are integral and have greatest ommon divisor

64. Thus 2

�6

� is a Borherds produt and

log k2

�6

�(z

1

; z

2

)k

2

= log

�

j2

�6

�(z

1

; z

2

)j

2

(16�

2

y

1

y

2

)

5

�

= G

1

(z

1

; z

2

):

Hene, inserting �

1

(s) = 1 and deg(T (1)) = �2�(�1), we get

�1

2�(�1)

Z

�

K

nH

2

log k2

�6

�(z

1

; z

2

)k

2




2

= 2

L

0

(�

D

;�1)

L(�

D

;�1)

+ 1 + log(D):

3. We �nally onsider the lassial modular group �

1

= SL

2

(Z) inluding the example

(1.1) mentioned in the introdution. This ould be done using the exeptional isomorphism

relating SL

2

(R) to the orthogonal group O(2; 1) and by arefully extending our results

(and some of [Br1℄) to p = 1. However, beause of the diÆulties aused by possible

singularities at the usps and by onvergene questions, we hose to give a diret proof

based on Rohrlih's modular Jensen formula and the lassial Kroneker limit formula.

Let D be a negative fundamental disriminant and K = Q(

p

D). We briey reall

some properties of Heegner divisors. Every ideal lass [a℄ of K de�nes a unique point [�

a

℄

on �

1

n H by assoiating with a frational ideal a = Za+Zb with oriented (i.e. =(b�a) > 0)

Z-basis a; b the point �

a

= b=a 2 H . The Heegner divisor H(D) on �

1

n H onsists of the

sum of the [�

a

℄, where a runs through all ideal lasses of K, ounted with multipliity 2=w,

where w is the number of units in K. The ardinality of H(D) is equal to the lass number

h of K, its degree is 2h=w. We write 	

D

(�) for the unique modular form for �

1

whose

divisor equals H(D) and whose value at the usp 1 is given by 	

D

(1) = 1.

Theorem 5.1. Let D and H(D) be a as above. The degree of H(D) is equal to L(�

D

; 0)

and

1

L(�

D

; 0)

Z

�

1

nH

log

�

j	

D

(�)j

2

(4�y)

k

�

dxdy

4�y

2

= 2

�

0

(�1)

�(�1)

+ 1�

L

0

(�

D

; 0)

L(�

D

; 0)

�

1

2

log jDj: (5.3)

Here k = 24h=w denotes the weight of 	

D

.
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Proof. If f 2 M

k

(�

1

) is a modular of weight k for �

1

with f(1) = 1, then a beautiful

formula of Rohrlih [Ro℄ says:

3

�

Z

�

1

nH

log

�

jf(�)j

2

(4�y)

k

�

dxdy

y

2

= k

�

2

�

0

(�1)

�(�1)

+ 1

�

�

X

�2div(f)

m

�

log

�

j�(�)j

2

(4�=�)

12

�

:

In the sum we view div(f) =

P

�

m

�

[�℄ as a divisor on SL

2

(Z)nH suh that

P

m

�

= k=12.

Reall the Kroneker limit formula (4.14) and the identity

X

�2H(D)

E(�; s) =

w

2

�

�

�

�

D

4

�

�

�

�

s=2

�

K

(s)

�(2s)

; (5.4)

where �

K

(s) = �(s)L(�

D

; s) denotes the Dedekind zeta funtion of K (see [GZ℄ p. 210).

By means of the funtional equations we obtain the Laurent expansions

1

�(2s)

=

�1

2�

2

�(�1)

�

1 +

�

2

�

0

(�1)

�(�1)

+ 2� 2 � 2 log(�)� 2 log(2)+

�

(s� 1)

�

+ : : : ;

�

K

(s) =

�L(�

D

; 0)

p

D

�

(s� 1)

�1

�

L

0

(�

D

; 0)

L(�

D

; 0)

+ 2 + log(2)� log jDj+ log(�)

�

+ : : : :

Hene the Eisenstein series E(�; s) has the expansion

X

�2H(D)

E(�; s) =

3wL(�

D

; 0)

2�

�

(s� 1)

�1

+ 2

�

0

(�1)

�(�1)

�

L

0

(�

D

; 0)

L(�

D

; 0)

+ 2�

1

2

log jDj � log(4�)

�

+O(s� 1)

at s = 1. Finally we have

�(1=2)�(s� 1=2)�(2s� 1)

�(s)�(2s)

=

3

�

�

(s� 1)

�1

+ 2

�

0

(�1)

�(�1)

+ 2� 2 log(4�)

�

+O(s� 1):

By the Kroneker limit formula we derive the degree relation

wL(�

D

; 0)

2

= h: (5.5)

Moreover, we �nd

X

�2H(D)

log

�

j�(�)j

2

(4�=�)

12

�

= �4� lim

s!1

0

�

X

�2H(D)

E(�; s)� h

�(1=2)�(s� 1=2)�(2s� 1)

�(s)�(2s)

1

A

+ 12h log(4�)

= 12h

�

L

0

(�

D

; 0)

L(�

D

; 0)

+

1

2

log jDj

�

:
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Sine m

�

= 2=w, the modular form 	

D

has weight 24h=w and therefore

3

�

Z

�

1

nH

log

�

j	

D

(�)j(4�y)

k=2

�

dxdy

y

2

=

24h

w

�

2

�

0

(�1)

�(�1)

+ 1

�

�

24h

w

�

L

0

(�

D

; 0)

L(�

D

; 0)

+

1

2

log jDj

�

:

The laims follows by resorting the above terms.

We remark that the degree formula (5.5) is in this ase the well known analyti lass

number formula.
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