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Abstra
t

In the present paper we �nd expli
it formulas for the degrees of Heegner divisors on arith-

meti
 quotients of the orthogonal group O(2; p) and for the integrals of 
ertain automorphi


Green's fun
tions asso
iated with Heegner divisors. The latter quantities are important in

the study of the arithmeti
 degrees of Heegner divisors in the 
ontext of Arakelov geometry.

In parti
ular, we obtain a di�erent proof and a generalization of results of Kudla relating

these quantities to the Fourier 
oeÆ
ients of 
ertain non-holomorphi
 Eisenstein series of

weight 1 + p=2 for the metaple
ti
 group Mp

2

(Z).

1 Introdu
tion

Integrals of automorphi
 Green's fun
tions 
ontribute to the 
al
ulation of arithmeti
 de-

grees of regular models of Shimura varieties over Dedekind rings and Faltings heights of

its subvarieties. These integrals are expe
ted to be related to logarithmi
 derivatives of


ertain L-fun
tions. For example, if E

4

(�) = 1 + 240

P

n>0

�

3

(n)e

2�in�

, with � = x+ iy in

the 
omplex upper half plane H , is the Eisenstein series of weight 4 for the modular group

SL

2

(Z), then

1

L(�

�3

; 0)

Z

SL

2

(Z)nH

log

�

jE

4

(�)j

2

(4�y)

4

�

dx dy

4�y

2

= 2

�

0

(�1)

�(�1)

+ 1�

L

0

(�

�3

; 0)

L(�

�3

; 0)

�

1

2

log(3);

(1.1)

where L(�

�3

; s) and �(s) denote the Diri
hlet L-fun
tion for the 
hara
ter �

�3

and the

Riemann zeta fun
tion, respe
tively. Noti
e that L(�

�3

; 0) = 1=3. The 
ore of su
h

formulas is the Krone
ker limit formula.

�
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In the present paper we generalize the above identity to modular forms on the orthog-

onal group O(2; p) that vanish on Heegner divisors. More pre
isely, we derive an expli
it

formula expressing the integrals of 
ertain Green's fun
tion asso
iated to Heegner divisors

on O(2; p) in terms of logarithmi
 derivatives of Diri
hlet L-fun
tions, the Riemann zeta

fun
tion, and generalized divisor sums. As a 
orollary, we obtain a generalization of (1.1)

to Bor
herds produ
ts on O(2; p) [Bo1, Bo2℄. Observe that E

4

in the above example 
an

be viewed as a Bor
herds produ
t. Its divisor on SL

2

(Z)nH is given by the Heegner point

e

�i=3

. Our approa
h relies on the 
onstru
tion of Bor
herds produ
ts using automorphi


Green's fun
tions introdu
ed in [Br1℄, whi
h 
an be viewed as a generalization of the Kro-

ne
ker limit formula; 
ombined with an integral identity for su
h Green's fun
tions as in

[OT℄. In [Ku2℄ S. Kudla 
al
ulated the integral of the logarithm of the Petersson norm of

Bor
herds produ
ts using the Siegel-Weil formula together with a Stoke's type argument.

We dis
uss the relation of his results to ours below.

We now des
ribe the 
ontent of this paper in more detail. Let (V; q) be a real quadrati


spa
e of signature (2; p) and put � = 1 + p=2. We assume that either p > 2, or that

p = 2 and the dimension of a maximal isotropi
 subspa
e of L 


Z

Q equals 1. We write

K

0

for the irredu
ible Hermitean symmetri
 spa
e of dimension p asso
iated with the real

orthogonal group of (V; q). Let L � V be an even latti
e, and L

0

its dual. We denote

by �(L) the dis
riminant kernel of the orthogonal group O(L) of L, that is the kernel

of the natural homomorphism from O(L) to O(L

0

=L). By the theory of Baily-Borel the

arithmeti
 quotient

X

L

= �(L)nK

0

is a quasi-proje
tive algebrai
 variety. Let 
 be the K�ahler form on X

L

given by the �rst

Chern 
lass of the line bundle of modular forms of weight 1 on X

L

. We de�ne the volume

of X

L

by vol(X

L

) =

R

X

L




p

and the degree of a divisor D on X

L

by

deg(D) =

Z

D




p�1

:

Re
all that for any � 2 L

0

=L and any negative m 2 Z+ q(�) there is a 
ertain spe
ial

divisor H(�;m) on X

L

, 
alled the Heegner divisor of dis
riminant (�;m) (see se
tion 4

for a pre
ise de�nition). These divisors arise from embedded quotients analogous to X

L

of dimension p � 1. They in
lude Heegner points on modular 
urves, Hirzebru
h-Zagier

divisors on Hilbert modular surfa
es, and Humbert surfa
es on Siegel modular threefolds

as spe
ial 
ases and have been studied by many people, e.g. [Bo3℄, [KM℄, [Ku4℄, [Od℄, [Br1℄.

For any Heegner divisor H(�;m) there exists an asso
iated automorphi
 Green's fun
-

tion �

�;m

(Z; s), where Z 2 K

0

and s 2 C with <(s) > �=2. As a fun
tion in Z it is

an eigenfun
tion of the invariant Lapla
ian on K

0

and has a logarithmi
 singularity along

H(�;m). Su
h Green's fun
tions were introdu
ed in [Br1, Br2℄, and independently from a

di�erent perspe
tive in [OT℄.

Using the approa
h of [Br1℄ the Fourier expansions of the fun
tions �

�;m

(Z; s) 
an be

determined. Moreover, one 
an show that they have a meromorphi
 
ontinuation in s to
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a neighborhood of �=2 with a simple pole at s = �=2. It turns out that their singularities

at s = �=2 are di
tated by the 
oeÆ
ients of a 
ertain non-holomorphi
 Eisenstein series

of weight �=2 for Mp

2

(Z). We des
ribe this in somewhat more detail. To simplify the

exposition we temporarily assume that p is even (therefore � 2 Z) and p > 2. In the general


ase, treated in the body of this paper, one has to repla
e SL

2

(Z) by the metaple
ti
 group

Mp

2

(Z).

Let �

L

be the Weil representation of SL

2

(Z) on the group algebra C [L

0

=L℄ of the (�nite)

dis
riminant group of L as in [Bo2℄, [Br1℄, and denote by (e




)


2L

0

=L

the standard basis of

C [L

0

=L℄. We de�ne the Eisenstein series E

0

(�; s) by

E

0

(�; s) =

X

M2�

1

n SL

2

(Z)

=(M�)

s

j(M; �)

�

�

�

t

L

(M)e

0

�

;

where �

1

= f(

1 n

0 1

) ; n 2 Zg and j((

a b


 d

) ; �) = 
� + d. It is a C [L

0

=L℄-valued non-

holomorphi
 modular form of weight � with respe
t to SL

2

(Z) and the dual of �

L

. It has

a Fourier expansion of the form

E

0

(�; s) =

X


2L

0

=L

X

n2Z�q(
)




0

(
; n; s; y)e(nx)e




;

where e(x) = e

2�ix

as usual. The Fourier 
oeÆ
ients with non-zero index de
ompose into

the produ
t




0

(
; n; s; y) = C(
; n; s)W

s

(4�ny)

of a 
oeÆ
ient C(
; n; s), whi
h is independent of y, and a part given by a Whittaker

fun
tionW

s

(y) (see (3.2)). In Theorem 3.3 we derive a 
losed formula for these 
oeÆ
ients

following the argument of [BK℄, whi
h relies on Shintani's formula [Sh℄ for the 
oeÆ
ients

of the Weil representation, and a result of Siegel on representation numbers of quadrati


forms modulo prime powers. This theorem is vital for all expli
it 
omputations in the

present paper.

In Propositions 4.2 and 4.3 we show that the residue of �

�;m

(Z; s) at s = �=2 is equal

to �C(�;�m; 0). It is a 
onsequen
e of this fa
t and the fundamental integral formula

for the Green's fun
tion �

�;m

(Z; s) whi
h follows from the work of Oda and Tsuzuki [OT℄

(see Theorem 4.7) that the spe
ial value E

0

(�; 0) is the generating series for the degrees of

Heegner divisors. We re
over the identity

E

0

(�; 0) = 2e

0

�

2

vol(X

L

)

X


2L

0

=L

X

n>0

deg(H(
;�n))e(n�)e




; (1.2)

see e.g. [Ge2℄, [HZ℄, [Ku2℄, [Od℄. Variants and generalizations of this result were also

proved by Kudla-Millson in their work on spe
ial 
y
les (see e.g. [Ku3℄). By means of our

formula for the 
oeÆ
ients C(�;m; s) we �nd expli
it formulas for the degrees of Heegner

divisors in terms of spe
ial values of Diri
hlet L-fun
tions, the Riemann zeta fun
tion, and

generalized divisor sums (see Proposition 4.8).
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In [Bo1, Bo2℄ Bor
herds 
onstru
ted meromorphi
 modular forms for the group �(L)

with zeros and poles on Heegner divisors as multipli
ative liftings of C [L

0

=L℄-valued nearly

holomorphi
 modular forms of weight 1�p=2 for the group Mp

2

(Z) and the Weil represen-

tation �

L

. They have expli
it in�nite produ
t expansions analogous to the Delta fun
tion.

In parti
ular, their Fourier expansions have integral 
y
lotomi
 
oeÆ
ients.

The above Green's fun
tions and Bor
herds produ
ts are related in the following way.

We de�ne the regularized Green's fun
tion G

�;m

(Z) to be �1=4 times the 
onstant term

in the Laurent expansion of �

�;m

(Z; s) in s at s = �=2 plus some normalizing 
onstant

whi
h essentially involves the 
oeÆ
ient C(�;�m; s) and its derivative at s = �=2. We

denote by k � k the Petersson metri
 on the line bundle of modular forms of weight k on

X

L

normalized as in (4.11). It was proved in [Br2℄ that if F is a Bor
herds produ
t (in the

sense of [Bo2℄ Theorem 13.3) with divisor div(F ) =

1

2

P

�;m

a(�;m)H(�;m), then

log kF (Z)k

2

=

X

�;m

a(�;m)G

�;m

(Z): (1.3)

So the Green's fun
tions G

�;m

(Z) 
an be viewed as the building blo
ks of Bor
herds prod-

u
ts. Observe that the individual fun
tions G

�;m

(Z) are in general far from being the

Petersson norm of a modular form.

Theorem. (See Theorem 4.11.) The integral of G

�;m

(Z) is related to the logarithmi


derivative of the 
oeÆ
ient C(�;�m; s) of the Eisenstein series E

0

(�; s) at s = 0 as follows:

2

degH(�;m)

Z

X

L

G

�;m

(Z)


p

=

C

0

(�;�m; 0)

C(�;�m; 0)

+ log(4�)� �

0

(1): (1.4)

Moreover, if the rank r of L is even, then the right hand side of (1.4) is equal to

2

L

0

(�

D

0

; 1� �)

L(�

D

0

; 1� �)

+ 2

�

0

�;�m

(�)

�

�;�m

(�)

+ log jmD

2

0

j+

��1

X

j=1

1

j

;

where D

0

denotes the dis
riminant of the quadrati
 �eld Q(

p

d) with d = (�1)

r=2

det(L).

If r is odd, then the right hand side of (1.4) is equal to

4

�

0

(2� 2�)

�(2� 2�)

� 2

L

0

(�

D

0

; 3=2� �)

L(�

D

0

; 3=2� �)

+ 2

�

0

�;�m

(�)

�

�;�m

(�)

+ log j4m=D

2

0

j+

��1=2

X

j=1

2

2j � 1

;

where D

0

is the dis
riminant of the quadrati
 �eld Q(

p

md) with d = 2(�1)

(r�1)=2

det(L).

In both 
ases we understand by det(L) the Gram determinant of L, by L(�

D

0

; s) the

Diri
hlet L-fun
tion asso
iated with the 
hara
ter �

D

0

, and by �


;n

(s) the generalized divi-

sor sum de�ned in (3.12).
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The 
ontribution 
oming from the logarithmi
 logarithmi
 derivative of �

�;�m

(s) at

� is a sum of the form

P

p

�

p

log(p) over the primes dividing 2m det(L)

2

, where the �

p

are rational 
oeÆ
ients depending on the representation numbers of the latti
e L modulo

powers of p.

In view of (1.3), as a Corollary, one gets expli
it formulas for the integrals of the Peters-

son norms of Bor
herds produ
ts. So our result yields a di�erent proof and a generalization

of the main theorems in [Ku2℄, [KuYa℄. The se
ond assertion of the theorem is the desired

generalization of (1.1) to the group O(2; p). Formally we re
over (1.1) using the ex
ep-

tional isomorphism between O

0

(2; 1) and SL

2

(R) and the arithmeti
 subgroup de�ned by

the latti
e L = Z(2) ? II

1;1

of rank 3 with Gram determinant �2. The logarithm of the

Petersson norm of E

4

is equal to the Green's fun
tion for the Heegner divisor H(�;�3=4)

with m = �3=4 and D

0

= �3. Noti
e that �

�;3=4

(s) � 1 and degH(�;�3=4) = 1=3.

Moreover, in Theorem 4.9 we obtain a related result for the integral of G

�;m

(Z) against

any bounded eigenfun
tion of the Lapla
ian on X

L

. We intend to use this property for


ertain height pairings on the Heegner 
lass group (see [K�u3℄).

In se
tion 5 we 
onsider the spe
ial 
ases of the Siegel modular threefold and Hilbert

modular surfa
es as examples. We re
over the expli
it examples of [Ku2℄ and [BBK℄.

Let us �nally indi
ate how our results 
an be used for the study of arithmeti
 degrees

and Faltings heights. For simpli
ity (ignoring all serious te
hni
al diÆ
ulties), we assume

that there exists a regular model X of a smooth 
ompa
ti�
ation of X

L

and a line bundle

M

k

on X extending the line bundle of modular forms of weight k. Then the Hermitian line

bundle M

k

given by M

k

equipped with the (logarithmi
ally singular) Petersson metri


de�nes a 
lass in a suitable arithmeti
 Chow ring, see [BKK℄. Using the extension of

arithmeti
 interse
tion theory developed in [BKK℄ and te
hniques of [BBK℄, it 
an be

shown that the arithmeti
 degree of X and Faltings heights of subvarieties with respe
t to

M

k

are, up to a 
ertain rational linear 
ombination of logarithms of primes, given by linear


ombinations of integrals from our theorem. The support of these primes 
an be 
ontrolled

by means of fun
toriality of the arithmeti
 interse
tion numbers and density results on the

existen
e of \many" Bor
herds produ
ts. Details will be given in a subsequent paper.

For example, if X

L

is the Siegel modular variety of genus 2, then our work strongly

supports the following formula for the arithmeti
 degree:

M

4

k

?

= k

4

�(�3)�(�1)

�

2

�

0

(�3)

�(�3)

+ 2

�

0

(�1)

�(�1)

+

17

6

�

:

It 
an be dedu
ed that the Faltings heights of Humbert surfa
es H(D) � X

L

of prime

dis
riminant should be given by

h

M

1

(H(D))

?

=

�

K

(�1)

2

�

�

0

K

(�1)

�

K

(�1)

+

�

0

(�1)

�(�1)

+

3

2

+

1

2

log(D)

�

:

In parti
ular, our results provide further eviden
e for the formulas expe
ted in [MR℄, [K�o℄,

and [Ku2℄. Taking into a

ount that Humbert surfa
es are birational to symmetri
 Hilbert

modular surfa
es, the latter formula essentially follows from the main theorem in [BBK℄.
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The idea to 
onsider Bor
herds produ
ts to generalize results of [K�u2℄ to higher di-

mension was 
ommuni
ated to the se
ond author by S. Kudla at the arithmeti
 geometry


onferen
e at the Issa
 Newton Institute in 1998. In Summer 1999 S. Kudla le
tured at

Orsay on the method and results of [Ku2℄ and its relation to Eisenstein series. We would

like to thank him for 
onstantly sharing his ideas.

The approa
h to use the Green's fun
tions �

�;m

(Z; s) and results of [Br1, Br2℄ together

with the Krone
ker limit formula argument arose at the annual DMV-meeting in Mainz in

1999. It 
an be viewed as an extension of the methods developed in [K�u2℄. The main work

in the spe
ial 
ase of Hilbert modular surfa
es was 
ompleted at the beginning of 2001

while the �rst author was visiting the University of Wis
onsin at Madison, the 
al
ulations

in the general 
ase were done in summer 2001 and 
ompleted while the se
ond author

was visiting the University of Maryland. We would like to thank these institutions for

providing a stimulating atmosphere. Moreover, we thank E. Freitag, K. K�ohler, V. Maillot,

D. Roessler, and M. Tsuzuki for their help and useful 
omments.

2 The Weil representation

We denote by H = f� 2 C ; =(�) > 0g the 
omplex upper half plane. Throughout we will

use � as a standard variable on H and write x for its real part and y for its imaginary part,

respe
tively. If z 2 C , we abbreviate e(z) = e

2�iz

. We denote by

p

z = z

1=2

the prin
ipal

bran
h of the square root, so that arg(

p

z) 2 (��=2; �=2℄. Moreover, for a non-zero real

number x we write sgn(x) = x=jxj.

If D is a dis
riminant (i.e. a non-zero integer � 0; 1 (mod 4)), then we write �

D

for

the Diri
hlet 
hara
ter modulo jDj given by the Krone
ker symbol, �

D

(a) =

�

D

a

�

. The


orresponding Diri
hlet series is denoted by L(�

D

; s).

Let Mp

2

(R) be the metaple
ti
 
over of SL

2

(R) realized as the group of pairs (M;�),

where M = (

a b


 d

) 2 SL

2

(R) and � : H ! C is a holomorphi
 square root of the fun
tion

� 7! 
� + d for � 2 H . The assignment

�

a b


 d

�

7!

^

�

a b


 d

�

=

��

a b


 d

�

;

p


� + d

�

de�nes a lo
ally isomorphi
 embedding of SL

2

(R) into Mp

2

(R).

The inverse image Mp

2

(Z) of SL

2

(Z) under the 
overing map is generated by

T =

��

1 1

0 1

�

; 1

�

;

S =

��

0 �1

1 0

�

;

p

�

�

:

There are the relations S

2

= (ST )

3

= Z, where Z =

��

�1 0

0 �1

�

; i

�

is the standard generator

of the 
enter of Mp

2

(Z). Throughout we will frequently use the abbreviations �

1

= SL

2

(Z),

�

1

= f(

1 n

0 1

) ; n 2 Zg � �

1

, and

~

�

1

= f((

1 n

0 1

) ; 1); n 2 Zg � Mp

2

(Z).
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Let (V; q) be a non-degenerate real quadrati
 spa
e of signature (b

+

; b

�

) and rank

r = b

+

+ b

�

. We denote by (�; �) the bilinear form 
orresponding to the quadrati
 form q

su
h that q(x) =

1

2

(x; x). Let L � V be an even latti
e and write L

0

for its dual. Then q

indu
es a Q=Z-valued quadrati
 form on the �nite dis
riminant group L

0

=L.

Let (e




)


2L

0

=L

be the standard basis of the group ring C [L

0

=L℄, and write h�; �i for the

standard s
alar produ
t on C [L

0

=L℄, whi
h is linear in the �rst variable and anti-linear in

the se
ond. Re
all that there exists a unitary representation �

L

of Mp

2

(Z) on C [L

0

=L℄,

given by

�

L

(T )e




= e(q(
))e




; (2.1)

�

L

(S)e




=

p

i

b

�

�b

+

p

jL

0

=Lj

X

Æ2L

0

=L

e(�(
; Æ))e

Æ

(2.2)

(
f. [Bo2℄). This representation is essentially the Weil representation asso
iated with the

quadrati
 module (L

0

=L; q). It fa
tors through a �nite quotient of Mp

2

(Z). Observe that

�

L

(Z)e




= i

b

�

�b

+

e

�


. For �; 
 2 L

0

=L and (M;�) 2 Mp

2

(Z) we de�ne the 
oeÆ
ient

�

�


(M;�) of �

L

by

�

�


(M;�) = h�

L

(M;�)e




; e

�

i:

Let � 2

1

2

Z. The group Mp

2

(R) a
ts on fun
tions f : H ! C [L

0

=L℄ via the Petersson

slash operator f 7! f j

�

�

(M;�), where

�

f j

�

�

(M;�)

�

(�) = �(�)

�2�

�

�

L

(M;�)

�1

f(M�)

and �

�

L

denotes the dual representation of �

L

. If f : H ! C [L

0

=L℄ is a smooth fun
tion,

whi
h is invariant under T , then f has a Fourier expansion of the form

f(�) =

X


2L

0

=L

X

n2Z�q(
)


(
; n; y)e




(nx):

Here we have abbreviated e




(�) = e




e(�).

3 Eisenstein series

In this se
tion we study real analyti
 ve
tor valued Eisenstein series for Mp

2

(Z) transform-

ing with the Weil representation. We 
ompute their Fourier expansion by modifying the

argument of [BK℄.

Throughout we assume that � 2

1

2

Z, � � 2, and 2� � b

�

+ b

+

� 0 (mod 4). (The


ase 2� � b

�

+ b

+

� 2 (mod 4) 
an be treated similarly.) If � 2 L

0

=L with q(�) 2 Z

and s 2 C , then the fun
tion H ! C [L

0

=L℄ given by e

�

y

s

is invariant under the a
tion of

T; Z

2

2 Mp

2

(Z). We de�ne the Eisenstein series E

�

(�; s) of weight � by

E

�

(�; s) =

1

2

X

(M;�)2

~

�

1

nMp

2

(Z)

(e

�

y

s

) j

�

�

(M;�): (3.1)

7



It 
onverges normally on H for <(s) > 1 � �=2 and de�nes a Mp

2

(Z)-invariant real ana-

lyti
 fun
tion, whi
h is an eigenfun
tion of the hyperboli
 Lapla
ian in weight �. Similar

Eisenstein series are 
onsidered by Kudla and Yang from the adeli
 point of view in [KuYa℄.

Let W

�;�

(z) be the usual W -Whittaker fun
tion as in [AbSt℄ Chapter 13 p. 190. For

brevity we put for s 2 C and y 2 R n f0g:

W

s

(y) = jyj

��=2

W

sgn(y)�=2;(1��)=2�s

(jyj): (3.2)

Noti
e that

W

0

(y) =

(

e

�y=2

; if y > 0,

e

�y=2

�(1� �; jyj); if y < 0,

(3.3)

where �(a; x) =

R

1

x

e

�t

t

a�1

dt denotes the in
omplete Gamma fun
tion as in [AbSt℄ p. 81.

Proposition 3.1. The Eisenstein series E

�

has the Fourier expansion

E

�

(�; s) =

X


2L

0

=L

X

n2Z�q(
)




�

(
; n; s; y)e




(nx);

where the 
oeÆ
ients 


�

(
; n; s; y) are equal to

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(Æ

�;


+ Æ

��;


)y

s

+ 2�y

1���s

�(�+ 2s� 1)

�(�+ s)�(s)

X


2Z�f0g

j2
j

1���2s

H

�




(�; 0; 
; 0); n = 0;

2

�

�

s+�

jnj

s+��1

�(s+ �)

W

s

(4�ny)

X


2Z�f0g

j
j

1���2s

H

�




(�; 0; 
; n); n > 0;

2

�

�

s+�

jnj

s+��1

�(s)

W

s

(4�ny)

X


2Z�f0g

j
j

1���2s

H

�




(�; 0; 
; n); n < 0;

and H

�




(�;m; 
; n) denotes the generalized Kloosterman sum

H

�




(�;m; 
; n) =

e

��i sgn(
)�=2

j
j

X

d (
)

�

(

a b


 d

)

2�

1

n�

1

=�

1

�

�


^

�

a b


 d

�

e

�

ma+ nd




�

: (3.4)

The sum in (3.4) runs over all primitive residues dmodulo 
 and (

a b


 d

) is a representative

for the double 
oset in �

1

n�

1

=�

1

with lower row (
 d

0

) and d

0

� d (mod 
). Observe that

the quantity �

�


℄

(

a b


 d

) e

�

ma+nd




�

does not depend on the 
hoi
e of the 
oset representative.

The 
oeÆ
ients �

�


℄

(

a b


 d

) are universally bounded, sin
e �

L

fa
tors through a �nite

group. Hen
e there is a 
onstant C > 0 su
h that H

�




(�; 0; 
; n) < C for all 
 2 L

0

=L,

n 2 Z � q(
), and 
 2 Z � f0g. This implies that the series for the Fourier 
oeÆ
ients


onverge absolutely for <(s) > 1� �=2.

8



Proof. Let 
 2 L

0

=L and n 2 Z� q(
). We argue as in [Br2℄ Chapter 1.2.3. The 
oeÆ
ient




�

(
; n; s; y) is given by the Fourier integral




�

(
; n; s; y) =

1

2

1

Z

0

X

(M;�)2

~

�

1

nMp

2

(Z)




(e

�

y

s

) j

�

�

(M;�); e




(nx)

�

dx:

We split the above sum into the sum over 1; Z; Z

2

; Z

3

2

~

�

1

nMp

2

(Z) and the sum over

((

a b


 d

) ; �) 2

~

�

1

nMp

2

(Z) with 
 6= 0. Sin
e e

�

y

s

is invariant under the a
tion of Z

2

, we get




�

(
; n; s; y) = Æ

0;n

(Æ

�;


+ Æ

��;


)y

s

+

X


6=0

(

a b


 d

)

2�

1

n�

1

=�

1

�

�


^

�

a b


 d

�

1

Z

�1

y

s

e(�nx)

(
� + d)

�+s

(
�� + d)

s

dx:

We now 
ompute the integral. Be
ause

p


� + d = sgn(
)

p




p

� + d=
, we have

1

Z

�1

y

s

e(�nx)

(
� + d)

�+s

(
�� + d)

s

dx = j
j

���2s

sgn(
)

�

y

s

1

Z

�1

e(�nx)

(� + d=
)

�+s

(�� + d=
)

s

dx

= j
j

���2s

sgn(
)

�

e(nd=
)y

s

1

Z

�1

e(�nx)

�

�+s

��

s

dx:

Consequently




�

(
; n; s; y) = Æ

0;n

(Æ

�;


+Æ

��;


)y

s

+i

�

y

s

1

Z

�1

e(�nx)

�

�+s

��

s

dx

X


2Z�f0g

j
j

1���2s

H

�




(�; 0; 
; n): (3.5)

Using [E2℄ 3.2 (12) on p. 119 (and 
orre
ting the sign of the �rst formula there), we �nd

for the latter integral

1

Z

�1

e(�nx)

�

�+s

��

s

dx = i

��

1

Z

�1

e

�2�inx

(y � ix)

�+s

(y + ix)

s

dx

= 2�i

��

(

(2y)

��=2�s

�(�+ s)

�1

(2�n)

s�1+�=2

W

�=2;(1��)=2�s

(4�ny); n > 0;

(2y)

��=2�s

�(s)

�1

(2�jnj)

s�1+�=2

W

��=2;(1��)=2�s

(4�jnjy); n < 0;

= 2

�

�

s+�

i

��

jnj

s+��1

y

�s

W

s

(4�ny)

(

�(�+ s)

�1

; n > 0;

�(s)

�1

; n < 0:

For n = 0 we derive by means of [Fr℄ Chap. III Lemma 4.4 that

1

Z

�1

1

�

�+s

��

s

dx = i

��

y

1�2s��

1

Z

�1

1

(1� ix)

�

j1� ixj

2s

dx

= 2

2���2s

�i

��

�(�+ 2s� 1)

�(�+ s)�(s)

y

1���2s

:
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Inserting into (3.5), we obtain the assertion.

The Weil representation �

L

is trivial on the prin
ipal 
ongruen
e subgroup �(N) of

level N of Mp

2

(Z), where N is the least positive integer su
h that Nq(
) 2 Z for all


 2 L

0

=L. So the Eisenstein series E

�

(�; s) is a �nite linear 
ombination of Mp

2

(Z)=�(N)-

translates of 
lassi
al s
alar valued Eisenstein series for �(N). This implies that E

�

(�; s)

has a meromorphi
 
ontinuation in s to the whole 
omplex plane, whi
h is holomorphi
 in

s at s = 0.

Be
ause of Proposition 3.1 and (3.3) the spe
ial value E

�

(�; 0) is always a holomorphi


modular form of weight �, if � > 2. For � = 2 it is holomorphi
, if �

L

does not 
ontain the

trivial representation as an irredu
ible 
onstituent.

We are mainly interested in the Eisenstein series E

0

(�; s). Using the ideas of [BK℄, its


oeÆ
ients 
an be 
omputed more expli
itly. We brie
y indi
ate the main steps. By means

of Shintani's formula [Sh℄ for the 
oeÆ
ients of the Weil representation it 
an be shown

that

H

�




(0; 0; 
; n) =

(�1)

(2��b

�

+b

+

)=4

p

jL

0

=Lj

j
j

�1+r=2

X

aj


a

1�r

�(j
j=a)N


;n

(a);

where � denotes the Moebius fun
tion and N


;n

(a) the representation number

N


;n

(a) = #fx 2 L=aL; q(x� 
) + n � 0 (mod a)g (3.6)

modulo a (see [BK℄ Proposition 3). As a 
onsequen
e we may infer that

X


2Z�f0g

j
j

1���2s

H

�




(0; 0; 
; n) =

2(�1)

(2��b

�

+b

+

)=4

p

jL

0

=Lj�(2s+ �� r=2)

1

X

a=1

N


;n

(a)a

1�r=2���2s

(see [BK℄ Proposition 4). Here �(s) is the Riemann zeta fun
tion.

We now 
ompute the L-series

L


;n

(s) =

1

X

a=1

N


;n

(a)a

�s

: (3.7)

Sin
e the representation number fun
tion N


;n

(a) is multipli
ative in a, this L-series has

an Euler produ
t expansion. We let

d




= minfb 2 Z

>0

; b
 2 Lg

be the level of 
. Then d





learly divides jL

0

=Lj, and d

2




n and 2d




n are integers. If we put

w

p

= 1 + 2v

p

(2nd




); (3.8)

where v

p

denotes the (additive) p-adi
 valuation on Q , then N


;n

(p

�+1

) = p

r�1

N


;n

(p

�

) for

all � � w

p

. We may 
on
lude that

L


;n

(s) = �(s� r + 1)

Y

p prime

L

(p)


;n

(p

�s

);
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where L

(p)


;n

(X) denotes the polynomial

L

(p)


;n

(X) = N


;n

(p

w

p

)X

w

p

+ (1� p

r�1

X)

w

p

�1

X

�=0

N


;n

(p

�

)X

�

2 Z[X℄: (3.9)

Observe that L

(p)


;n

(X) does not 
hange, if w

p

is repla
ed by any greater integer.

Proposition 3.2. The 
oeÆ
ient 


0

(
; n; s; y) of E

0

(�; s) is equal to

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

2Æ

0;


y

s

+ 2

3���2s

�y

1���s

�(�+ 2s� 1)

�(�+ s)�(s)

(�1)

(2��b

�

+b

+

)=4

p

jL

0

=Lj

Y

p

L

(p)


;n

(p

1�r=2���2s

); n = 0;

2

�+1

�

s+�

jnj

s+��1

�(s+ �)

W

s

(4�ny)

(�1)

(2��b

�

+b

+

)=4

p

jL

0

=Lj

Y

p

L

(p)


;n

(p

1�r=2���2s

); n > 0;

2

�+1

�

s+�

jnj

s+��1

�(s)

W

s

(4�ny)

(�1)

(2��b

�

+b

+

)=4

p

jL

0

=Lj

Y

p

L

(p)


;n

(p

1�r=2���2s

); n < 0:

For n 6= 0 we de�ne 
oeÆ
ients C(
; n; s) by




0

(
; n; s; y) = C(
; n; s)W

s

(4�ny); (3.10)

so that C(
; n; s) is essentially the part of 


0

(
; n; s; y) 
oming from the �nite pla
es of

Q . In this 
ase the Euler produ
ts in Proposition 3.2 
an be 
omputed using a result of

Siegel on representation numbers of quadrati
 forms modulo prime powers ([Si℄ Hilfssatz

16). One �nds that if p is a prime 
oprime to the integer 2d

2




njL

0

=Lj (in parti
ular w

p

= 1),

then

L

(p)


;n

(X) =

8

>

<

>

:

1� �

D

(p)p

r=2�1

X; if r is even,

1� p

r�1

X

2

1� �

D

(p)p

r=2�1=2

X

; if r is odd.

Here D is the dis
riminant

8

<

:

(�1)

r=2

det(L); if r is even,

2(�1)

(r+1)=2

d

2




n det(L); if r is odd,

and det(L) means the Gram determinant of L. We may write D uniquely as the produ
t

D = D

0

f

2

of a fundamental dis
riminant D

0

and the square of a positive integer f . Then

D

0

is the dis
riminant of the quadrati
 number �eld Q (

p

D), and the 
hara
ter �

D

0

is

primitive. We �nd that, up to a �nite produ
t of rational fun
tions in p

�s

over primes p

dividing 2d

2




njL

0

=Lj, the Euler produ
t

Q

p

L

(p)


;n

(p

1�r=2���2s

) is equal to

8

>

>

>

<

>

>

>

:

1

L(�

D

0

; 2s+ �)

; if r is even,

L(�

D

0

; 2s+ �� 1=2)

�(4s+ 2�� 1)

; if r is odd.

(3.11)
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Theorem 3.3. If n > 0, then C(
; n; s) is equal to

2

2�2s

�

�s

jnj

�+s�1


os

�

�(s�

Æ

2

+

b

�

�b

+

4

)

�

jD

0

j

2s+��1=2

�(2s+ �)

p

jL

0

=Lj�(s+ �)

�

�


;n

(2s+ �)

L(�

D

0

; 1� 2s� �)

;

if r is even, and to

2

2s+2��1=2

�

�s

jnj

�+s�1

�

sin

�

�(2s+ �)

�

jD

0

j

1���2s

�(2s+ �)


os

�

�(s�

Æ

2

+

b

�

�b

+

�1

4

)

�

p

jL

0

=Lj�(s+ �)

�

L(�

D

0

; 3=2� 2s� �)

�(2� 4s� 2�)

�


;n

(2s+ �);

if r is odd. Here D

0

denotes the fundamental dis
riminant de�ned above and Æ = 0, if

D

0

> 0, and Æ = 1, if D

0

< 0. Moreover, �


;n

(s) is the generalized divisor sum

�


;n

(s) =

8

>

>

>

>

>

<

>

>

>

>

>

:

Y

pj2d

2




ndet(L)

L

(p)


;n

(p

1�r=2�s

)

1� �

D

0

(p)p

�s

; if r is even,

Y

pj2d

2




ndet(L)

1� �

D

0

(p)p

1=2�s

1� p

1�2s

L

(p)


;n

(p

1�r=2�s

); if r is odd.

(3.12)

Analogous formulas hold for n < 0, but with �(s+ �) repla
ed by �(s).

Proof. From Proposition 3.2 and the above dis
ussion we may infer that C(
; n; s) is equal

to

(�1)

(2��b

�

+b

+

)=4

2

�+1

�

s+�

jnj

s+��1

p

jL

0

=Lj�(s+ �)

�

8

>

>

>

<

>

>

>

:

1

L(�

D

0

; 2s+ �)

�


;n

(2s+ �); if r is even,

L(�

D

0

; 2s+ �� 1=2)

�(4s+ 2�� 1)

�


;n

(2s+ �); if r is odd.

(3.13)

Be
ause the 
hara
ter �

D

0

is primitive, the Diri
hlet series L(�

D

0

; s) satis�es the fun
tional

equation

L(�

D

0

; s) =

2

s�1

�

s

jD

0

j

1=2�s


os(�(s� Æ)=2)�(s)

L(�

D

0

; 1� s):

In fa
t, this form of the fun
tional equation 
an be dedu
ed from the standard form (see

e.g. [Za1℄ p. 53) by means of the identity �(s)�(1 � s) = �= sin(�s) and the Legendre

dupli
ation formula. In parti
ular, the Riemann zeta fun
tion has the fun
tional equation

�(s) =

2

s�1

�

s


os(�s=2)�(s)

�(1� s):

If we insert this into (3.13), we see that C(
; n; s) is equal to

(�1)

(2��b

�

+b

+

)=4

2

2�2s

�

�s

jnj

�+s�1

jD

0

j

2s+��1=2

p

jL

0

=Lj

� 
os

�

�(s+ �=2� Æ=2)

�

�(2s+ �)

�(s+ �)

�


;n

(2s+ �)

L(�

D

0

; 1� 2s� �)

;
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if r is even, and to

(�1)

(2��b

�

+b

+

)=4

2

2s+2��1=2

�

�s

jnj

�+s�1

jD

0

j

1���2s

p

jL

0

=Lj

�


os

�

�(2s+ �� 1=2)

�


os

�

�(s+ �=2� 1=4� Æ=2)

�

�(2s+ �)

�(s+ �)

L(�

D

0

; 3=2� 2s� �)

�(2� 4s� 2�)

�


;n

(2s+ �);

if r is odd. This easily implies the assertion.

The �nite Euler produ
ts �


;n

(s) are interesting invariants of the latti
e L (or better of

L

0

=L as we shall see below). Noti
e that in their de�nition one 
ould repla
e the produ
t

over primes dividing 2d

2




n det(L) by the produ
t over any larger set of primes in
luding the

primes dividing 2d

2




n det(L). The part of �


;n

(s) given by primes dividing d

2




n but 
oprime

to 2 det(L) 
an also be evaluated just in terms of n; 
; det(L), not involving representation

numbers (see [BK℄ Theorem 7).

We have the following table for sgn(D

0

) (and hen
e for Æ):

b

+

� b

�

(mod 4) 0 1 2 3

n > 0 + � � +

n < 0 + + � �

The following proposition is very useful for expli
it 
omputations.

Proposition 3.4. Suppose that L and

~

L are even latti
es of rank r and ~r, respe
tively.

Write L

(p)


;n

(X) and

~

L

(p)


;n

(X) for the p-polynomials de�ned in (3.9) 
orresponding to L and

~

L, respe
tively. If L

0

=L

�

=

~

L

0

=

~

L, then

L

(p)


;n

(p

�r=2

X) =

~

L

(p)


;n

(p

�~r=2

X):

Consequently, if �


;n

(s) and ~�


;n

(s) denote the �nite Euler produ
ts de�ned in (3.12) 
or-

responding to L and

~

L, then �


;n

(s) = ~�


;n

(s).

Proof. This 
an be dedu
ed from the fa
t that the de�nition (3.1) of E

0

(�; s) only depends

on L

0

=L (via the Weil representation). The quantities apart from �


;n

(s) in the formula

for C(
; n; s) in Theorem 3.3 also only depend on L

0

=L. Hen
e the same must be true for

�


;n

(s). We leave it to the reader to �ll in the details.

4 Green's fun
tions asso
iated with Heegner divisors

For the rest of this paper let (V; q) be a real quadrati
 spa
e of signature (2; p) and put

� = 1 + p=2. We assume that either p > 2, or that p = 2 and the dimension of a maximal

isotropi
 subspa
e of L


Z

Q equals 1. (We will use many results of [Br1℄, where the general

assumption was p > 2 for simpli
ity. However, it is easily veri�ed that everything we need

here also works for the latter 
ase. See also [Br2℄.) In this se
tion, beside other things, we
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will relate the values of integrals over 
ertain Green's fun
tions to the derivatives of the


oeÆ
ients of the Eisenstein series E

0

(�; s) in weight �.

We start by re
alling some fa
ts on the Hermitean symmetri
 spa
e asso
iated with the

real orthogonal group O(V ) of (V; q). It 
an be realized as the Grassmannian Gr(V ) of

oriented positive de�nite subspa
es v � V of dimension 2. It is a real analyti
 manifold of

real dimension 2p 
onsisting of 2 
onne
ted 
omponents given by the 2 possible 
hoi
es of

the orientation. The 
omplex stru
ture on Gr(V ) 
an be most easily realized as follows.

We 
onsider the 
omplexi�
ation V

C

= V 


R

C of V and extend the bilinear form (�; �) to

a C -bilinear form on V

C

. The subset

K = f[Z℄ 2 P (V

C

); (Z;Z) = 0; (Z;

�

Z) > 0g

of the proje
tive spa
e over V

C

is invariant under the a
tion of O(V ). By mapping a

positively oriented orthogonal basis X; Y of v 2 Gr(V ) with X

2

= Y

2

> 0 to [X + iY ℄ 2

P (V

C

), one obtains a real analyti
 isomorphism Gr(V )! K. It de�nes a 
omplex stru
ture

on the Grassmannian.

We �x a 
onne
ted 
omponent Gr

0

(V ) of Gr(V ) and write K

0

for the 
orresponding


omponent of K. A subgroup of O(V ) of index 2, denoted by O

0

(V ), preserves these


omponents. It is readily veri�ed that O

0

(V ) is the set of elements whose spinor norm

has the same sign as the determinant. Let O

0

(L) = O(L) \ O

0

(V ), and write �(L) for

the dis
riminant kernel of O

0

(L), i.e., the kernel of the natural homomorphism O

0

(L) !

O(L

0

=L). By the theory of Baily-Borel, the quotient

X

L

= �(L)nK

0

is a quasi-proje
tive algebrai
 variety over C of dimension p.

There are 
ertain spe
ial divisors on X

L

arising from embedded quotients analogous to

X

L

of dimension p�1. For any ve
tor � 2 V of negative norm the orthogonal 
omplement

�

?

in Gr(V ) de�nes a 
omplex analyti
 divisor on Gr(V ). If � 2 L

0

=L, and m 2 Z+ q(�)

is negative, then

H(�;m) =

X

�2L+�

q(�)=m

�

?

is a �(L)-invariant divisor on Gr(V ) 
alled the Heegner divisor of dis
riminant (�;m). Its

restri
tion to Gr

0

(V ) is the inverse image under the 
anoni
al proje
tion of an algebrai


divisor on X

L

, also denoted by H(�;m). Noti
e that H(�;m) = H(��;m), and that the

multipli
ities of all irredu
ible 
omponents of H(�;m) are 2, if 2� = 0, and 1, if 2� 6= 0 in

L

0

=L.

We 
onsider automorphi
 Green's fun
tions for these Heegner divisors. They were �rst

introdu
ed in [Br1, Br2℄, and independently from a di�erent perspe
tive in [OT℄. We de�ne

the Green's fun
tion asso
iated with H(�;m) for v 2 Gr(V ) n H(�;m) and s 2 C with

14



<(s) > �=2 by

�

�;m

(v; s) = 2

�(s� 1 + �=2)

�(2s)

X

�2�+L

q(�)=m

�

m

m� q(�

v

)

�

s�1+�=2

� F

�

s� 1 + �=2; s+ 1� �=2; 2s;

m

m� q(�

v

)

�

: (4.1)

Here �

v

denotes the orthogonal proje
tion of � to v � V and

F (a; b; 
; z) =

1

X

n=0

(a)

n

(b)

n

(
)

n

z

n

n!

(4.2)

(with (a)

n

= �(a + n)=�(a)) the Gauss hypergeometri
 fun
tion as in [AbSt℄ Chap. 15.

In [Br1℄ the fun
tion �

�;m

(v; s) was originally de�ned as a regularized theta lifting of a


ertain non-holomorphi
 Poin
ar�e series of weight k = 2�� and then shown to be equal to

the series above. (See [Br1℄ Theorem 2.14. Note that the regularization due to Bor
herds

and Harvey-Moore is repla
ed by a 
ertain automorphi
 regularization.) Here we prefer

to take (4.1) as our de�nition, sin
e it is a bit more dire
t. This is also the approa
h of

[Br2℄ and [OT℄. The series 
onverges normally for v 2 Gr(L) n H(�;m) and <(s) > �=2

and de�nes a �(L)-invariant fun
tion. It 
an be easily written in the 
oordinates of K

by noting that q(�

v

) = j(�; Z)j

2

=(Z;

�

Z) for [Z℄ 2 K 
orresponding to v. We denote the

resulting �(L)-invariant fun
tion on K by �

�;m

(Z; s).

A

ording to [Br1℄ Prop. 2.8 the fun
tion �

�;m

(v; s) has a meromorphi
 
ontinuation

in s to a neighborhood of �=2. It has a simple pole at s = �=2. As a fun
tion in v,

it is real analyti
 on Gr(V ) n H(�;m) and has a logarithmi
 singularity along H(�;m).

If U � Gr(V ) denotes a 
ompa
t neighborhood of v, then there is a �nite set S(U) of

� 2 � + L with q(�) = m su
h that

�

�;m

(v; s) = �4

X

�2S(U)

log j�

v

j+O(1)

on U (
f. [Br1℄ Theorem 2.12 and [Bo2℄ Theorem 6.2).

Let � be the O(V )-invariant Lapla
e operator on Gr(V ) indu
ed by the Casimir element

of the Lie algebra of O(V ). We normalize it as in [Br1℄. The Green's fun
tion �

�;m

(v; s)

is an eigenfun
tion of �. More pre
isely, a

ording to [Br1℄ Theorem 4.6, we have

��

�;m

(v; s) =

1

2

(s� �=2)(s� 1 + �=2)�

�;m

(v; s): (4.3)

The Fourier expansion of �

�;m

(v; s) 
an be 
omputed using the integral representation

as a regularized theta integral. Let z 2 L be a primitive isotropi
 ve
tor and N be the

unique positive integer su
h that (z; L) = NZ. Let z

0

2 L

0

with (z; z

0

) = 1. Then

K = L\ z

?

\ z

0

?

is an even latti
e of signature (1; p� 1) isomorphi
 to (L\ z

?

)=Zz. The

subset

H

z

= fZ 2 K 


Z

C ; q(=(Z)) > 0g
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of K 


Z

C

�

=

C

p

, is a tube domain realization of the Hermitean symmetri
 spa
e K, the

isomorphism being given by Z 7! [Z + z

0

� q(Z)z� q(z

0

)z℄. The invarian
e of a fun
tion F

on K under 
ertain Ei
hler transformations in �(L) implies that the 
orresponding fun
tion

F

z

on H

z

is periodi
 with period latti
e K

0

, i.e., F

z

(Z + �) = F

z

(Z) for all � 2 K

0

. In

parti
ular any suÆ
iently smooth �(L)-invariant fun
tion on K has a Fourier expansion

with Fourier 
oeÆ
ients indexed by the latti
e K

0

. We 
all it the Fourier expansion at the


usp z. The 
oeÆ
ient 
orresponding to � = 0 2 K

0

is loosely 
alled the 
onstant Fourier


oeÆ
ient at the 
usp z.

A

ording to [Br1℄ Theorem 2.15 and Lemma 1.15 the 
onstant 
oeÆ
ient at the 
usp

z of the fun
tion �

�;m

(Z; s) is given by

U

�;m

(Y; s) + 2(Y

2

)

�=2�s

'

�;m

(s)�(2s+ 1� �); (4.4)

where

'

�;m

(s) =

1

p

�

�

2

�

�

s��=2

�(s+ 1=2� �=2)b(0; 0; s); (4.5)

U

�;m

(Y; s) =

jY j

p

2

�

K

�;m

(Y=jY j; s) (4.6)

+

2

p

�

�

2

�Y

2

�

s��=2

�(s+ 1=2� �=2)

N�1

X

`=1

b(`z=N; 0; s)

X

n�1

e(`n=N)n

��1�2s

;

b(
; 0; s) = �

2

�

�

s+�=2

jmj

s�1+�=2

(2s� 1)�(s+ 1� �=2)�(s� 1 + �=2)

X


2Z�f0g

j
j

1�2s

H

�

�


(
; 0; �;�m);

(4.7)

and Z 2 H

z

with Y = =(Z). Here we have used that k = 2 � �, jz

v

j = 1=jY j, and

w = Y=jY j. The fun
tion U

�;m

(Y; s) is 
ontinuous in Y and holomorphi
 in s at �=2. The

se
ond summand in (4.4) will be of parti
ular interest to us. It has a simple pole with

residue '

�;m

(�=2) at s = �=2. Observe that '

�;m

(s) is independent of the 
hoi
e of z. The

di�eren
e of �

�;m

(Z; s) and its 
onstant 
oeÆ
ient at z is holomorphi
 in s near �=2.

We will be interested in the following regularized Green's fun
tions.

De�nition 4.1. Let � 2 L

0

=L and m 2 Z+ q(�) with m < 0. We de�ne the regularized

Green's fun
tion �

�;m

(v) asso
iated with the Heegner divisor H(�;m) to be the 
onstant

term in the Laurent expansion in s of �

�;m

(v; s) at s = �=2.

Proposition 4.2. The regularized Green's fun
tion �

�;m

(v) is given by

�

�;m

(v) = lim

s!�=2

�

�

�;m

(v; s)�

'

�;m

(�=2)

s� �=2

�

:

Its 
onstant Fourier 
oeÆ
ient at the 
usp z is equal to

U

�;m

(Y; �=2)� '

�;m

(�=2) log(Y

2

) + '

0

�;m

(�=2)� 2'

�;m

(�=2)�

0

(1):
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Proof. To 
ompute �

�;m

(v) we need the Laurent expansion of the se
ond summand

2(Y

2

)

�=2�s

'

�;m

(s)�(2s+ 1� �)

of (4.4) at s = �=2. Using the Laurent expansion �(s) = 1=(s � 1) � �

0

(1) + O(s� 1) of

the Riemann zeta fun
tion at s = 1, we see that it is given by

'

�;m

(�=2)

s� �=2

� '

�;m

(�=2) log(Y

2

) + '

0

�;m

(�=2)� 2'

�;m

(�=2)�

0

(1) +O(s� �=2):

In view of the properties of the 
onstant Fourier 
oeÆ
ient of �

�;m

(v; s) at the 
usp z, this

implies the assertion.

To ease the 
omparison we noti
e that the 
onstant C

�;m

in [Br1℄ Theorem 3.9 (whi
h

depends on the 
hoi
e of the 
usp z) is given by

C

�;m

= '

0

�;m

(�=2)� 2'

�;m

(�=2)�

0

(1)� 2

N�1

X

`=1

b(`z=N; 0; �=2) log j1� e(`=N)j: (4.8)

We now relate '

�;m

(s) to the 
oeÆ
ients of the Eisenstein series E

0

(�; s) in weight

� = 1 + p=2 of the previous se
tion. If �

�;m

(v; s) is viewed as the regularized theta

lifting of a 
ertain non-holomorphi
 Poin
ar�e series F

�;m

(�; s) for Mp

2

(Z) as in [Br1℄, then

b(0; 0; s) naturally arises as the 
onstant Fourier 
oeÆ
ient of F

�;m

(�; s). The point is that

this 
onstant 
oeÆ
ient is up to a universal fa
tor equal to C(�;�m; s� �=2).

Proposition 4.3. The fun
tion '

�;m

(s) satis�es

'

�;m

(s) = �

1

p

�

�

2

�

�

s��=2

(s� 1 + �=2)�(s+ 1=2� �=2)

(2s� 1)�(s+ 1� �=2)

C(�;�m; s� �=2): (4.9)

Proof. By Proposition 3.1 we have

C(
; n; s) =

2

�

�

s+�

n

s+��1

�(s+ �)

X


2Z�f0g

j
j

1���2s

H

�




(0; 0; 
; n); (4.10)

if n > 0. Comparing (4.7) and (4.10) we �nd

b(0; 0; s) = �C(�;�m; s� �=2)

s� 1 + �=2

(2s� 1)�(s+ 1� �=2)

:

If we insert this into (4.5), we obtain the assertion.
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4.1 Green's fun
tions and meromorphi
 modular forms

Let C

0

� V

C

� f0g denote the 
one over K

0

� P (V

C

). Let � � �(L) be a subgroup of �nite

index, � a 
hara
ter

1

of �, and k an integer. By a meromorphi
 (holomorphi
) modular

form F of weight k with respe
t to � and � we mean a meromorphi
 (holomorphi
) fun
tion

on C

0

satisfying

1. F is �-invariant, i.e., F (�Z) = �(�)F (Z) for all � 2 �,

2. F is homogeneous of degree �k, i.e., F (aZ) = a

�k

F (Z) for all a 2 C n f0g.

Our assumptions on L from the beginning of se
tion 4 ensure that F is automati
ally

meromorphi
 (holomorphi
) at the boundary of X

L

be
ause of the Koe
her prin
iple.

Observe that for Z = X + iY 2 C

0

we have

(Z;

�

Z) = X

2

+ Y

2

= 2Y

2

> 0:

If F is a modular form of weight k for the group � with some 
hara
ter, then the fun
tion

kF (Z)k = jF (Z)j � q(4�Y )

k=2

(4.11)

on C

0

is �-invariant and homogeneous of degree 0. It is 
alled the Petersson norm of

F . It de�nes a Hermitean metri
 on the line bundle L

k

of modular forms of weight k.

The multipli
ative normalization of the Petersson norm is adapted to the normalization of

Faltings heights in arithmeti
 interse
tion theory. In parti
ular it is 
hosen to be 
onsistent

with the normalization used in [BBK℄, [K�u1℄.

The logarithm of the Petersson norm of any modular form, whose divisor 
onsists of

Heegner divisors, must be a linear 
ombination of the Green's fun
tions �

�;m

(Z):

Theorem 4.4. Let F be any meromorphi
 modular form of weight k 2 Z for the group

�(L) with some 
hara
ter, and assume that

div(F ) =

1

2

X

�2L

0

=L

X

m2Z+q(�)

m<0

a(�;m)H(�;m) (4.12)

is a linear 
ombination of Heegner divisors.

i) The Petersson norm of F is given by

log kF (Z)k = A�

1

8

X

�2L

0

=L

X

m2Z+q(�)

m<0

a(�;m)�

�;m

(Z);

where A denotes an additive 
onstant.

ii) The weight of F is given by the 
oeÆ
ients of the Eisenstein series E

0

(�; 0):

k = �

1

4

X

�2L

0

=L

X

m2Z+q(�)

m<0

a(�;m)C(�;�m; 0):

1

Throughout all 
hara
ters are unitary.
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Proof. The �rst assertion is Theorem 4.23 in [Br1℄, and the se
ond immediately follows

from Corollary 4.24 there.

Re
all that a large 
lass of modular forms for the group �(L) with divisors 
onsisting

of Heegner divisors is given by Bor
herds produ
ts (
f. [Bo2℄ Theorem 13.3, [Br1℄ Theorem

3.22). These are 
onstru
ted as multipli
ative liftings of C [L

0

=L℄-valued nearly holomorphi


modular forms of weight 1� p=2 for the group Mp

2

(Z) and the Weil representation �

L

. In

fa
t, if the latti
e L splits two orthogonal hyperboli
 planes over Z, then every modular

form with divisor as in (4.12) is a 
onstant multiple of a Bor
herds produ
t.

For our puroses it is important to noti
e that Bor
herds produ
t have ni
e arithmeti


properties. Their 
onstru
tion as in�nte produ
ts, together with a result of M
Graw [MG℄,

implies that some integral power 	

a

of any Bor
herds produ
t 	 is a modular form, whose

Fourier 
oeÆ
ients at the 
usp z belong to Z[�

N

℄, where �

N

denotes a primitive N -th root

of unity. (The greatest 
ommon divisor of the Fourier 
oeÆ
ients of 	

a

at the 
usp z 
an

be expli
itly 
omputed in terms of the 
oeÆ
ients of the Eisenstein series E

�

(�; 0) with

� 6= 0. It is equal to 1, if N = 1.) In parti
ular, Bor
herds produ
ts should de�ne se
tions

of the line bundle of modular forms over Z[�

M

℄ for some positive integerM , whenever there

is a regular model of X

L

over Z[�

M

℄.

Finally, noti
e that there is a slight di�eren
e in the multipli
ative normalizations of

Bor
herds produ
ts in [Bo2℄ and [Br1℄ (whi
h only o

urs if N > 1). For our purposes

here it is more 
onvenient to work with Bor
herds' normalization. To adapt [Br1℄ to this

normalization, one has to multiply the generalized Bor
herds produ
t 	

�;m

(Z) in De�nition

3.14 by the fa
tor

Q

N�1

`=1

(1 � e(`=N))

b(`z=N;0)

. Then (3.40) still holds, if we repla
e the


onstant C

�;m

(see (4.8)) by '

0

�;m

(�=2)� 2'

�;m

(�=2)�

0

(1).

For questions regarding the arithmeti
 of Bor
herds produ
ts, it is 
onvenient to renor-

malize the Green's fun
tion �

�;m

(Z) as follows.

De�nition 4.5. If � 2 L

0

=L, and m 2 Z+ q(�) with m < 0, then we de�ne

G

�;m

(Z) = �

1

4

�

�

�;m

(Z)� L

�;m

�

;

where

L

�;m

= '

�;m

(�=2)

�

'

0

�;m

(�=2)

'

�;m

(�=2)

� 2�

0

(1) + log(8�

2

)

�

: (4.13)

Proposition 4.2 implies the identity

G

�;m

(Z) = �

1

4

lim

s!�=2

�

�

�;m

(Z; s)� 2�(2s+ 1� �)(8�

2

)

s��=2

'

�;m

(s)

�

:

Proposition 4.6. If F is a Bor
herds produ
t in the sense of [Bo2℄ Theorem 13.3 with

divisor as in (4.12), then

log kF (Z)k

2

=

X

�2L

0

=L

X

m2Z+q(�)

m<0

a(�;m)G

�;m

(Z):
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Proof. This immediately follows from Theorem 3.22 in [Br1℄.

Proposition 4.6 
an be viewed as a generalization of the well known Krone
ker limit for-

mula, whi
h relates the spe
ial value of an eigenfun
tion of the Lapla
ian to the logarithm

of the Petersson metri
 of an arithmeti
 modular form. To be more pre
ise, if

E(�; s) =

1

2

X


2�

1

n�

1

(=(
�))

s

is the real analyti
 Eisenstein series for �

1

= SL

2

(Z), then the logarithm of the Petersson

norm of the Delta fun
tion is given by

log

�

j�(�)j

2

(4�y)

12

�

= �4� lim

s!1

�

E(�; s)�

�(1=2)�(s� 1=2)�(2s� 1)

�(s)�(2s)

�

+ 12 log(4�):

(4.14)

We expe
t that the Green's fun
tion G

�;m

(Z) is a Green's fun
tion for the divisor

1

2

H(�;m) in the sense of [BKK℄ whi
h has a \good" additive normalisation for questions

in arithmeti
 interse
tion theory (
ompare this with [BBK℄).

4.2 Integrals over Green's fun
tions

The di�erential form 
 = �dd




log(Z;

�

Z) on Gr(V ) is O(V )-invariant and positive. It is

the asso
iated (1; 1)-form of an invariant K�ahler metri
 g on Gr(V ). The 
orresponding

invariant volume form is given by

1

p!




p

. We let

B =

Z

X

L




p

be the volume of X

L

and de�ne the degree of a divisor D on X

L

by

deg(D) =

Z

D




p�1

:

A

ording to (4.11), the fun
tion jY j

�k

de�nes a Hermitean metri
 on the line bundle

L

k

of modular forms of weight k for �(L), 
alled the Petersson metri
. The 
orresponding

�rst Chern form of L

k

is given by




1

(L

k

) = �kdd




logY

2

= k
:

By means of results of Oda and Tsuzuki (based on an unfolding argument and the

properties of spheri
al fun
tions) it is possible to 
ompute the integral of �

�;m

(v) over X

L

.
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Theorem 4.7. i) If <(s) > �=2, then �

�;m

(v; s) 2 L

1

(X

L

). Moreover, if f 2 L

1

(X

L

) is

a smooth bounded eigenfun
tion of the Lapla
ian � with eigenvalue �

f

, then

Z

X

L

�

�;m

(v; s)f(v)


p

=

A(s)

�

f

� �

�

Z

H(�;m)

f(v)


p�1

: (4.15)

Here A(s) denotes the normalizing fa
tor

A(s) = �

p

2�(s+ 1� �=2)

(4.16)

and �

�

=

1

2

(s� �=2)(s� 1 + �=2) the eigenvalue of �

�;m

(v; s).

ii) The regularized Green's fun
tion �

�;m

(v) belongs to L

1

(X

L

) and

Z

X

L

�

�;m

(v)


p

= lim

s!�=2

Z

X

L

�

�

�;m

(v; s)�

'

�;m

(�=2)

s� �=2

�




p

: (4.17)

Proof. The Green's fun
tion �

�;m

(v; s) is a Poin
ar�e series built out of the fun
tion

g

s

(v; �) = 2

�(s� 1 + �=2)

�(2s)

�

m

m� q(�

v

)

�

s�1+�=2

� F

�

s� 1 + �=2; s+ 1� �=2; 2s;

m

m� q(�

v

)

�

; (4.18)

where v 2 Gr(V ) and � 2 V . We now 
ompare this fun
tion with the se
ondary spheri
al

fun
tion �

(2)

s

(x) in [OT℄. As far as possible we use the notation of [OT℄. We write G

R

for

the 
onne
ted 
omponent of O(V ) and �x a ve
tor �

0

in �+L with q(�) = m. There exists

a basis e

1

; : : : ; e

p+2

of V su
h that the quadrati
 form has the Gram matrix

2

2S, where

S =

0

B

B

B

B

B

�

1

1

�1

.

.

.

�1

1

C

C

C

C

C

A

;

and su
h that �

0

=

p

jmje

p+2

. We write v

0

for the element of Gr(V ) given by the span

of e

1

; e

2

. The stabilizer K

R

in G

R

of v

0

is a maximal 
ompa
t subgroup. Let H

R

be

the 
onne
ted 
omponent of the stabilizer in G

R

of �

0

. Clearly H

R

�

=

O

0

(2; p � 1). We

write � for the arithmeti
 subgroup of G

R

given by the dis
riminant kernel �(L) and put

�

H

= � \H

R

. We 
onsider the fun
tion

G

s

(x; �

0

) =

X


2�

H

n�

g

s

(
xv

0

; �

0

) (x 2 G

R

)

2

Unspe
i�ed matrix entries are assumed to be 0.
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and show that (up to a 
onstant fa
tor depending only on s) G

(s+1)=2

(x; �

0

) is equal to the

fun
tion G

s

(x) de�ned in [OT℄ x3.1. Sin
e �

�;m

(v; s) is a �nite linear 
ombination of the

fun
tions G

s

(x; �

0

), we will be able to apply the results of lo
. 
it.

We begin by re
alling some properties of the Lie algebra g = fg 2M

p+2

(R); g

T

S+Sg =

0g of G

R

following [OT℄ x1.3. The assignment g 7! SgS de�nes a Cartan involution � on

G

R

with �xed point subgroup K

R

. If J denotes the matrix

J =

0

B

B

B

B

B

�

1

1

.

.

.

1

�1

1

C

C

C

C

C

A

;

then g 7! JgJ de�nes another involution � on G

R

with �xed point subgroup H

R

. These

involutions 
ommute. They indu
e eigenspa
e de
ompositions g = k � p (Cartan de
om-

position 
orresponding to �) and g = h� q (de
omposition 
orresponding to �) of g. Here

k denotes the Lie algebra of K

R

and h the Lie algebra of H

R

. We obtain the dire
t sum

de
omposition

g = (k \ h)� (k \ q)� (p \ h)� (p \ q):

The subspa
e p \ q is given by matri
es in M

p+2

(R) of the form

0

B

B

B

B

B

�

g

1

0 g

2

0

.

.

.

g

1

g

2

0 � � � 0

1

C

C

C

C

C

A

with g

1

; g

2

2 R. Let

Y

0

=

0

B

B

B

�

1

0 0

.

.

.

1 0 � � � 0

1

C

C

C

A

and put a

p;q

= RY

0

. Then a

p;q

is a maximal Abelian subspa
e of p \ q, and it is easily


he
ked that we may take Y

0

for the Y

0

in [OT℄.

We now evaluate our fun
tion g

s

(xv

0

; �

0

) (where x 2 G

R

) on the 1-parameter subgroup

fexp(tY

0

); t 2 Rg of G

R

. To this end we have to determine the norm of (exp(�tY

0

)�

0

)

v

0

.

Using the fa
t that

(Y

k

0

e

p+2

)

v

0

=

(

0; 2 j k;

e

1

; 2 - k;

we �nd that (exp(tY

0

)e

p+2

)

v

0

= e

1

sinh(t). Hen
e

q

�

(exp(�tY

0

)�

0

)

v

0

�

= m sinh

2

(t)
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and 
onsequently

g

s

�

exp(tY

0

)v

0

; �

0

�

= 2

�(s� 1 + �=2)

�(2s)

(
osh(t))

2�2s��

� F

�

s� 1 + �=2; s+ 1� �=2; 2s;

1


osh

2

(t)

�

:

On the other hand, by (2.5.3) of [OT℄ (and noting �

0

= p=2) we have

�

(2)

2s�1

(exp(tY

0

)) = �

�(s� 1 + �=2)�(s+ 1� �=2)

2�(2s)

(
osh(t))

2�2s��

� F

�

s� 1 + �=2; s+ 1� �=2; 2s;

1


osh

2

(t)

�

:

By virtue of Proposition 2.4.2. and x2.5 of [OT℄ we may infer that

g

s

(xv

0

; �

0

) = A

0

(s)�

(2)

2s�1

(x); (4.19)

A

0

(s) = �

4

�(s+ 1� �=2)

:

Thus G

s

(x; �

0

) = A

0

(s)G

2s�1

(x), where G

s

(x) denotes the Green's fun
tion de�ned in [OT℄

x3.1 with respe
t to H

R

and �.

Now Proposition 3.1.1 of [OT℄ tells us that �

�;m

(v; s) 2 L

1

(X

L

) for <(s) > �=2. To

prove that �

�;m

(v) 2 L

1

(X

L

) and (4.17) one 
an use the expli
it Fourier expansions with

respe
t to the various paraboli
 subgroups (see [Br1℄ Theorems 2.15 and 3.9) to derive

estimates on Siegel domains following the argument of [Br1℄ Chapter 4.2. Alternatively,

one 
an use the fa
t that �

�;m

(v; s) 
an be written as a regularized theta lifting together

with a variant of the 
onvergen
e proof of Kudla [Ku2℄. In fa
t, by means of the 
lassi
al

Weil estimate for the Siegel theta fun
tion and identity (2.20) in [Br1℄ the 
laim 
an redu
ed

to Propositions 3.2 and 3.4 of [Ku2℄.

We are left with proving (4.15). Up to a 
onstant fa
tor the formula follows immediately

from Proposition 3.3.1 in [OT℄. We have

1

B

Z

X

L

�

�;m

(v; s)f(v)


n

= �

A

0

(s)

�

f

� �

�

Z

H(�;m)

f(v)


p�1

; (4.20)

with � 2 C 
oming from the di�erent normalizations of the Lapla
ian and the invariant

measures on G

R

and H

R

. We may use the fa
t that �

�;m

(v; s) is an eigenfun
tion of � with

eigenvalue �

�

, the 
orresponding statement in [OT℄ (see Proposition 2.4.2b), and (4.19) to

infer that the Lapla
ian in [OT℄ equals 8 times our �. Moreover, from identity (1.3.2) in

[OT℄ it 
an be 
on
luded that

�

H

R

;OT

vol

OT

(X

L

)

= p �

�

H

R

;


p�1

vol




p

(X

L

)

:
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Here �

H

R

;OT

(respe
tively vol

OT

(X

L

)) denotes the Haar measure on H

R

(respe
tively the

volume of X

L

) normalized as in [OT℄, and �

H

R

;


p�1

, B = vol




p

(X

L

) the 
orresponding

quantities in our normalzation. We �nd that � = p=8. If we insert � into (4.20) we obtain

the assertion with A(s) = �A

0

(s).

M. Tsuzuki kindly informs the authors that the meromorphi
 
ontinuation of �

�;m

(v; s)

to a neighborhood of s = �=2 and integrability results as in (ii) 
ould also be obtained by

means of the spe
tral theoreti
 methods developed in [OT℄.

Proposition 4.8. i) The Eisenstein series E

0

(�; 0) of weight � = 1 + p=2 en
odes the

degrees of the Heegner divisors. More pre
isely we have for � > 2:

E

0

(�; 0) = 2e

0

�

2

B

X


2L

0

=L

X

n2Z�q(
)

n>0

deg(H(
;�n))e




(n�):

If � = 2, then the same identity holds, ex
ept for the fa
t that in the 
onstant 
oeÆ
ient on

the right hand side an additional term ay

�1

might o

ur, where a 2 C [L

0

=L℄ is invariant

under �

L

.

ii) Using the notation of Theorem 3.3, deg(H(�;�n))=B is equal to

8

>

>

>

>

<

>

>

>

>

:

(�1)

�=2�Æ=2

2n

��1

jD

0

j

��1=2

p

jL

0

=Lj

�

�


;n

(�)

L(�

D

0

; 1� �)

; if r is even,

(�1)

�=2�1=4+Æ=2

2

2��3=2

n

��1

jD

0

j

1��

p

jL

0

=Lj

�

L(�

D

0

; 3=2� �)

�(2� 2�)

�


;n

(�); if r is odd.

Proof. If we apply (4.15) of Theorem 4.7 to the 
onstant fun
tion 1, we �nd

Z

X

L

�

�;m

(v; s)


p

= �

A(s)

�

�

Z

H(�;m)




p�1

=

p

(s� �=2)(s� 1 + �=2)

�

deg(H(�;m))

�(s+ 1� �=2)

:

At s = �=2 the right hand side has the Laurent expansion

2 deg(H(�;m))(s� �=2)

�1

+O(1):

But now it follows from (4.17) that the leading term is equal to B'

�;m

(�=2)(s � �=2)

�1

.

Thus

'

�;m

(�=2) =

2

B

deg(H(�;m)):

On the other hand, by (4.9) we know that '

�;m

(�=2) = �C(�;�m; 0). This implies the

�rst assertion.
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To prove the se
ond statement we use the �rst assertion and Theorem 3.3. We get

deg(H(�;�n))

B

=

8

>

>

>

>

<

>

>

>

>

:

�2n

��1


os

�

�(�

Æ

2

+

p�2

4

)

�

jD

0

j

��1=2

p

jL

0

=Lj

�

�


;n

(�)

L(�

D

0

; 1� �)

; r even,

�

2

2��3=2

n

��1

jD

0

j

1��

sin(��)

p

jL

0

=Lj 
os

�

�(�

Æ

2

+

p�3

4

)

�
�

L(�

D

0

; 3=2� �)

�(2� 2�)

�


;n

(�); r odd.

Re
all that Æ 2 f0; 1g is uniquely determined by p modulo 4 (see table on page 13). In the

r even 
ase it is easily 
he
ked that


os

�

�(�

Æ

2

+

p�2

4

)

�

= �(�1)

�=2�Æ=2

:

Moreover, in the r odd 
ase we have

sin(��)


os

�

�(�

Æ

2

+

p�3

4

)

�

= �(�1)

�=2�1=4+Æ=2

:

Putting this into the above equation, we obtain the assertion.

To 
ompute the 
oeÆ
ients C(
; n; 0) and thereby the degrees of the H(�;m) expli
itly,

it remains to determine the generalized divisor sums �


;n

(�). This 
an easily be 
arried

out on a 
omputer for any given latti
e L. A 
omputer program 
an be downloaded from

the �rst authors home-page.

Theorem 4.9. Let G

�;m

(v) be the Green's fun
tion of De�nition 4.5. If h 2 L

1

(X

L

) is a

smooth bounded eigenfun
tion of the Lapla
ian � with eigenvalue �

h

6= 0, then

Z

X

L

G

�;m

(v)h(v)


p

=

p

8�

h

Z

H(�;m)

h(v)


p�1

:

In parti
ular, if F is a Bor
herds produ
t in the sense of [Bo2℄ Theorem 13.3, then

Z

X

L

log kF (v)k

2

h(v)


p

=

p

8�

h

Z

div(F )

h(v)


p�1

:

Proof. The symmetry of the Lapla
ian and the assumption �

h

6= 0 imply that

R

X

L

h(v)


p

=

0. Therefore, inserting the de�nition of G

�;m

(v) we �nd

Z

X

L

G

�;m

(v)h(v)


p

= �

1

4

Z

X

L

(�

�;m

(v)� L

�;m

)h(v)


p

= �

1

4

Z

X

L

�

�;m

(v)h(v)


p

:
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As in (4.17) this 
an be written in the form

�

1

4

lim

s!�=2

Z

X

L

�

�

�;m

(v; s)�

'

�;m

(�=2)

s� �=2

�

h(v)


p

= �

1

4

lim

s!�=2

Z

X

L

�

�;m

(v; s)h(v)


p

:

Hen
e, by means of Theorem 4.7 we obtain

Z

X

L

G

�;m

(v)h(v)


p

=

p

8�

h

Z

H(�;m)

h(v)


p�1

:

The se
ond assertion follows from Proposition 4.6.

If h 2 L

1

(X

L

) is a bounded eigenfun
tion of the Lapla
ian � with eigenvalue �

h

= 0,

then h has to be 
onstant.

Theorem 4.10. Let G

�;m

(v) be the Green's fun
tion of De�nition 4.5. Then

1

B

Z

X

L

G

�;m

(v)


p

= �

C(�;�m; 0)

4

�

C

0

(�;�m; 0)

C(�;�m; 0)

+ log(4�)� �

0

(1)

�

:

Here C(
; n; s) denotes the (
; n)-th 
oeÆ
ient of the Eisenstein series E

0

(�; s) of weight

� = 1 + p=2. In parti
ular, if F is a Bor
herds produ
t of weight k in the sense of [Bo2℄

Theorem 13.3 with divisor as in (4.12), then

1

B

Z

X

L

log kF (v)k

2




p

= k (log(4�)� �

0

(1))�

1

4

X

�;m

a(�;m)C

0

(�;�m; 0):

Proof. We use Theorem 4.7 to 
ompute the integral:

1

B

Z

X

L

G

�;m

(v)


p

= �

1

4B

Z

X

L

(�

�;m

(v)� L

�;m

)


p

= �

1

4B

lim

s!�=2

Z

X

L

�

�

�;m

(v; s)�

'

�;m

(�=2)

s� �=2

�




p

+

L

�;m

4

= lim

s!�=2

�

A(s)

4B�

�

deg(H(�;m)) +

'

�;m

(�=2)

4(s� �=2)

�

+

L

�;m

4

:

If we insert the Laurent series expansions of �

�

=

1

2

(s� �=2)(s� 1 + �=2) and

A(s) = �

p

2

+

p

2

�

0

(1)(s� �=2) +O((s� �=2)

2

)
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at s = �=2, and use that 2 deg(H(�;m)) = B'

�;m

(�=2), we obtain

1

B

Z

X

L

G

�;m

(v)


p

=

'

�;m

(�=2)

4

�

�

0

(1) +

1

�� 1

�

+

L

�;m

4

:

Inserting the de�nition (4.13) of L

�;m

, we get

1

B

Z

X

L

G

�;m

(v)


p

=

'

�;m

(�=2)

4

�

'

0

�;m

(�=2)

'

�;m

(�=2)

+

1

�� 1

� �

0

(1) + log(8�

2

)

�

: (4.21)

It follows from (4.9) that

'

�;m

(�=2) = �C(�;�m; 0);

'

0

�;m

(�=2)

'

�;m

(�=2)

=

C

0

(�;�m; 0)

C(�;�m; 0)

� log(2�)�

1

�� 1

:

Putting this into (4.21), we obtain the �rst assertion, the se
ond follows from Proposition

4.6 and Theorem 4.6 (ii).

We are now ready to prove the main result of this se
tion. Re
all that G

�;m

(Z) is an

automorphi
 Green's fun
tion for

1

2

H(�;m).

Theorem 4.11. i) If G

�;m

(v) denotes the Green's fun
tion of De�nition 4.5, then

2

degH(�;m)

Z

X

L

G

�;m

(v)


p

=

C

0

(�;�m; 0)

C(�;�m; 0)

+ log(4�)� �

0

(1): (4.22)

Here C(
; n; s) denotes the (
; n)-th 
oeÆ
ient of the Eisenstein series E

0

(�; s) of weight

� = 1 + p=2.

ii) Using the notation of Theorem 3.3, this is equal to

2

L

0

(�

D

0

; 1� �)

L(�

D

0

; 1� �)

+ 2

�

0

�;�m

(�)

�

�;�m

(�)

+ log jmD

2

0

j+

��1

X

j=1

1

j

;

if r even, and to

4

�

0

(2� 2�)

�(2� 2�)

� 2

L

0

(�

D

0

; 3=2� �)

L(�

D

0

; 3=2� �)

+ 2

�

0

�;�m

(�)

�

�;�m

(�)

+ log j4m=D

2

0

j+

��1=2

X

j=1

2

2j � 1

;

if r is odd.
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Proof. The �rst statement is an immediate 
onsequen
e of Theorem 4.10 and Proposition

4.8.

If we 
ompute the logarithmi
 derivative of C(�;�m; s) at s = 0 by means of Theorem

3.3, we �nd that it is equal to

2

L

0

(�

D

0

; 1� �)

L(�

D

0

; 1� �)

+ 2

�

0

�;�m

(�)

�

�;�m

(�)

� log(4�) + log jmj+ log(D

2

0

) +

�

0

(�)

�(�)

;

if r even, and to

4

�

0

(2� 2�)

�(2� 2�)

� 2

L

0

(�

D

0

; 3=2� �)

L(�

D

0

; 3=2� �)

+ 2

�

0

�;�m

(�)

�

�;�m

(�)

� log(�=4) + log jmj � log(D

2

0

) +

�

0

(�)

�(�)

;

if r odd. Here we have used that the logarithmi
 derivatives of the sin- and 
os-terms

vanish at s = 0. The fun
tional equation of the �-fun
tion implies that

�

0

(�)

�(�)

=

(

�

0

(1) +

P

��1

j=1

1

j

; if r is even

�

0

(1)� 2 log(2) +

P

��1=2

j=1

1

j�1=2

; if r is odd.

Inserting this into the above formula and then into (4.22), we obtain the assertion.

If we res
ale the Petersson metri
 by a 
onstant fa
tor a, then, by Proposition 4.8, the

right hand side of (4.22) 
hanges by the additive 
onstant log(a). In that way one 
ould

absorb the 
onstant log(4�)� �

0

(1) in (4.22). Moreover, one 
ould 
ompensate 
hanges in

the formulas resulting from res
aling E

0

(�; s) by a fa
tor depending on s.

5 Examples

1. We �rst 
onsider the 
ase of the Siegel modular group of genus 2 and 
on�rm the

result of Kudla [Ku2℄. Let V = R

5

equipped with the quadrati
 form

q((x

1

; : : : ; x

5

)) = x

1

x

2

+ x

3

x

4

� x

2

5

:

Then (V; q) is a quadrati
 spa
e of signature (2; 3) and � = r=2 = 5=2. Furthermore,

L = Z

5

is an even latti
e in V , whose dis
riminant group L

0

=L is isomorphi
 to Z=2Z.

The spa
e of modular forms of weight � with respe
t to the Weil representation �

�

L

and

Mp

2

(Z) is isomorphi
 to the spa
e of modular forms of weight � for the group �

0

(4) having

a Fourier expansion of the form f(�) =

P

1

n=0

a(n)e(n�) with a(n) = 0 if n 6� 0; 1 (mod 4)

(Kohnen's plus spa
e [Ko℄). Thus the Eisenstein series E

0

(�; s) de�ned in (3.1) is essentially

the non-holomorphi
 Cohen Eisenstein series of weight �.

Let D be a positive fundamental dis
riminant. We simply write C(D; s) for the 
oeÆ-


ient C(�;D=4; s) of E

0

(�; s), where � 2 L

0

=L is taken to be 0+L, if D � 0 (mod 4), and
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the non-zero element of L

0

=L, if D � 1 (mod 4). We may 
ompute C(D; s) by means of

Theorem 3.3. Noting that D

0

= D and Æ = 0, we �nd

C(D; s) = 2�

�s

D

�s

sin(�(2s+ �))�(2s+ �)


os(�s)�(s+ �)

�

L(�

D

; 3=2� 2s� �)

�(2� 4s� 2�)

�

�;D=4

(2s+ �)

= 2�

�s

D

�s


os(2�s)�(2s+ 5=2)


os(�s)�(s+ 5=2)

�

L(�

D

;�1� 2s)

�(�3� 4s)

�

�;D=4

(2s+ 5=2);

where �

�;D=4

(s) is given by (3.12). In view of Proposition 3.4 it is easily veri�ed that

�

�;D=4

(s) = 1. Here we need the assumption that D be fundamental. For general dis
rim-

inants �

�;D=4

(s) 
an be 
omputed using [EZ℄ x2 p. 21 or [BK℄ Example 10. The result is

�

�;D=4

(s) =

P

djf

�(d)�

D

0

(d)d

1=2�s

�

2�2s

(f=d), where D = D

0

f

2

as in se
tion 3.

It is well known that in this 
ase the dis
riminant kernel �(L) is isomorphi
 to the

Siegel modular group Sp

2

(Z) of genus 2 (see for instan
e [GN℄). The quotient X

L

is

isomorphi
 to the Siegel modular threefold Sp

2

(Z)nH

2

, where H

2

denotes the Siegel upper

half plane of genus 2. The Heegner divisor

1

2

H(�;�D=4) (� being determined by D) 
an

be identi�ed with the Humbert surfa
e H(D) of dis
riminant D (
f. [Ge1℄ Chapter IX).

It is an irredu
ible divisor on Sp

2

(Z)nH

2

, whi
h is birational to the symmetri
 Hilbert

modular surfa
e of dis
riminant D.

In the 
oordinates of H

2

the K�ahler form 
 is given by �dd




log(det(Y )), where Z 2 H

2

and Y = =(Z). It is well known that B =

R

Sp

2

(Z)nH

2




3

= ��(�1)�(�3). A

ording to

Proposition 4.8 we have

deg(H(D)) = �

B

4

C(D; 0) = �

B

2

L(�

D

;�1)

�(�3)

=

1

2

�

K

(�1);

where �

K

(s) denotes the Dedekind zeta fun
tion of K = Q(

p

�1); a result whi
h was �rst

proved by van der Geer (see [Ge1℄ Chapter IX.2).

For any Humbert surfa
e H(D) there exists a Bor
herds produ
t 	

D

(Z) with divisor

H(D). It 
an be viewed as the Bor
herds lifting ([Bo2℄ Theorem 13.3) of the unique

modular form of weight �1=2 for �

0

(4), whi
h is holomorphi
 on H and whose Fourier

expansion has the form

f(�) = q

�D

+

1

X

n�0

�n�0;1 (4)

a(n)e(n�):

If we brie
y write G

D

(Z) for the Green's fun
tion G

�;�D=4

(Z) of De�nition 4.5, then by

Proposition 4.6 we have

log k	

D

(Z)k

2

= log

�

j	

D

(Z)j

2

(det(4�Y ))

k

�

= G

D

(Z);

where k = �C(D; 0)=4 is the weight of 	

D

(Z). By virtue of Theorem 4.11 we �nd that

2

�

K

(�1)

Z

Sp

2

(Z)nH

2

log k	

D

(Z)k

2




3

= 4

�

0

(�3)

�(�3)

� 2

L

0

(�

D

;�1)

L(�

D

;�1)

+

8

3

� log(D):
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2. We now 
onsider Hilbert modular surfa
es using our results for the orthogonal

group O(2; 2). This 
ase was also 
onsidered in [BBK℄, but working entirely with the

group SL

2

(O) and the Green's fun
tions as de�ned in [Br2℄.

Let D > 0 be a positive fundamental dis
riminant and K = Q(

p

D) the real quadrati


�eld of dis
riminantD. For simpli
ity we assume thatD is a prime. We write a 7! a

0

for the


onjugation, N(a) = aa

0

for the norm, and O for the ring of integers inK. As usual we view

the 
orresponding Hilbert modular group �

K

= SL

2

(O) as a subgroup of SL

2

(R)�SL

2

(R).

We brie
y re
all some fa
ts on the identi�
ation of (SL

2

(R) � SL

2

(R))=f�(1; 1)g with the

orthogonal group O

0

(2; 2) (for more details see [Ge1℄ Chapter V.4 and [Bo3℄ Example 5.5).

Let V be the ve
tor spa
e of real 2 � 2 matri
es equipped with the quadrati
 form

given by q(M) = � det(M). Then (V; q) is a real quadrati
 spa
e of signature (2; 2) and

� = r=2 = 2. We 
onsider the even latti
e L � V of matri
es X = (

a �

�

0

b

) with a; b 2 Z and

� 2 O. The dual latti
e L

0

is given by matri
es X as before, but with � 2 d

�1

, the inverse

of the di�erent. The group �

K

a
ts on V by X 7!MXM

0

t

forM 2 �

K

, the quadrati
 form

and the latti
e L being preserved. In that way one gets an isomorphism �

K

=f�1g ! �(L).

The Grassmannian Gr

0

(V ) 
an be identi�ed with the produ
t H

2

of two 
opies of H . The

a
tion of SL

2

(R) � SL

2

(R) by fra
tional linear transformations 
orresponds to the linear

a
tion of O

0

(V ) on Gr

0

(V ). Therefore modular forms for �(L) on Gr

0

(V ) 
an be identi�ed

with Hilbert modular forms on H

2

for the group �

K

. Moreover, the Heegner divisors on

X

L


orrespond to Hirzebru
h-Zagier divisors on �

K

nH

2

. In the 
oordinates of H

2

we have


 = �dd




log(y

1

y

2

) =

1

4�

�

dx

1

dy

2

y

2

1

+

dx

2

dy

2

y

2

2

�

;

where Z = (z

1

; z

2

) 2 H

2

, and (y

1

; y

2

) = =(z

1

; z

2

). It is well known that B =

R

�

K

nH

2




2

=

�

K

(�1), where �

K

(s) denotes the Dedekind zeta fun
tion of K.

Let � 2 L

0

=L = d

�1

=O

�

=

Z=DZ and M a positive integer su
h that M=D 2 Z� q(�),

that isM � �N(�) (mod D). If we 
ompute the 
oeÆ
ient C(�;M=D; s) of the Eisenstein

series E

0

(�; s) of weight � using Theorem 3.3 (noting D

0

= D), we �nd that

C(�;M=D; s) = 2

2�2s

�

�s

D

s

M

�+s�1


os(�s)

�(2s+ �)

�(s+ �)

�

�

M

(2s+ �)

L(�

D

; 1� 2s� �)

;

where

�

M

(s) =

Y

pj2MD

L

(p)

�;M=D

(p

1�r=2�s

)

1� �

D

(p)p

�s

: (5.1)

To determine the p-polynomials in the �nite Euler produ
t �

M

(s) more expli
itly one 
an

use Proposition 3.4, whi
h redu
es the 
omputation of representation numbers of the latti
e

L modulo prime powers to the 
omputation of su
h numbers for the smaller latti
e O. We

see that

L

(p)

�;M=D

(p

�r=2

X) =

~

N

�;M=D

(p

w

p

)(p

�1

X)

w

p

+ (1�X)

w

p

�1

X

�=0

~

N

�;M=D

(p

�

)(p

�1

X)

�

;
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where

~

N

�;M=D

(p

�

) = #fx 2 O=p

�

O; N(x� �) +M=D � 0 (mod p

�

)g:

It is easily veri�ed that

~

N

�;M=D

(p

�

) =

(

#fy 2 O=p

�

O; N(y) �M (mod p

�

)g; p 6= D;

S(M)

D

�#fy 2 O=p

�+1

O; N(y) � M (mod p

�+1

)g; p = D;

where S(M) = 1, if D divides M , and S(M) = 1=2, if D does not divide M . If we de�ne

N

b

(M) = #fx 2 O=bO; N(x) �M (mod b)g

as in [Za2℄ p. 27, we �nd that L

(p)

�;M=D

(p

�r=2

X) is equal to

(

N

p

w

p

(M)(p

�1

X)

w

p

+ (1�X)

P

w

p

�1

�=0

N

p

�(M)(p

�1

X)

�

; p 6= D;

S(M)

D

�

N

p

w

p

+1

(M)(p

�1

X)

w

p

+ (1�X)

P

w

p

�1

�=0

N

p

�+1(M)(p

�1

X)

�

�

; p = D:

The representation numbers N

p

�
(M) are 
omputed in Lemma 3 on p. 27 of [Za2℄. This 
an

be used to determine L

(p)

�;M=D

(p

�r=2

X) more expli
itly. Sin
e the 
omputation is somewhat

lengthy (but trivial), we omit the details. If we write M = M

0

D

�

with M

0


oprime to D,

we obtain

L

(p)

�;M=D

(p

�r=2

X) =

(

�

1� �

D

(p)p

�1

X

�

P

v

p

(M)

�=0

�

�

D

(p)X

�

�

; p 6= D;

S(M)(1 + �

D

(M

0

)X

�

); p = D:

Inserting this into (5.1) we infer

�

M

(s) = S(M)(1 + �

D

(M

0

)D

(1�s)�

)

Y

pj2MD

v

p

(M)

X

�=0

�

D

(p

�

)p

(1�s)�

= S(M)

X

djM

�

�

D

(d) + �

D

(M=d)

�

d

1�s

;

and therefore

C(�;M=D; s) = 2

2�2s

�

�s

D

s

M

s+1


os(�s)�(2s+ 2)S(M)

�(s+ 2)L(�

D

;�1� 2s)

X

djM

�

�

D

(d) + �

D

(M=d)

�

d

�1�2s

:

The Hirzebru
h Zagier divisor T (M) on �

K

nH

2

(
f. [Ge1℄ Chap. V) 
an be identi-

�ed with the divisor

1

2

H(�;�M=D), if D divides M , and with H(�;�M=D), if D does

not divide M . The multipli
ities of the irredu
ible 
omponents of T (M) are equal to

1. Therefore we de�ne the Green's fun
tion on H

2


orresponding to T (M) by G

M

(Z) =

S(M)

�1

G

�;�M=D

(Z). It has a logarithmi
 singularity along T (M) of type log jf j

2

, where f

denotes a lo
al holomorphi
 equation for T (M). Now Proposition 4.8 says that

deg(T (M)) = �

B

4S(M)

C(�;M=D; 0) = ��(�1)

X

djM

�

�

D

(d) + �

D

(M=d)

�

d;
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a result whi
h was already proved by Hirzebru
h-Zagier. By means of Theorem 4.11 we

obtain

1

deg(T (M))

Z

�

K

nH

2

G

M

(Z)


2

= 2

L

0

(�

D

;�1)

L(�

D

;�1)

+ 1 + 2

�

0

M

(2)

�

M

(2)

+ log(DM): (5.2)

If 	(Z) is a Bor
herds produ
t (see Theorem 9 in [BB℄), then its divisor is a linear 
ombi-

nation of the T (M) and the integral over log k	(Z)k

2

is given by the 
orresponding linear


ombination of the quantities on the right hand side of (5.2).

For instan
e, if D = 5 and K = Q (

p

D), the produ
t � of the 10 theta 
onstants


onsidered by Gundla
h [Gu℄ is a Hilbert modular form of weight 5 for the group �

K

with

divisor T (1). The Fourier 
oeÆ
ients of � are integral and have greatest 
ommon divisor

64. Thus 2

�6

� is a Bor
herds produ
t and

log k2

�6

�(z

1

; z

2

)k

2

= log

�

j2

�6

�(z

1

; z

2

)j

2

(16�

2

y

1

y

2

)

5

�

= G

1

(z

1

; z

2

):

Hen
e, inserting �

1

(s) = 1 and deg(T (1)) = �2�(�1), we get

�1

2�(�1)

Z

�

K

nH

2

log k2

�6

�(z

1

; z

2

)k

2




2

= 2

L

0

(�

D

;�1)

L(�

D

;�1)

+ 1 + log(D):

3. We �nally 
onsider the 
lassi
al modular group �

1

= SL

2

(Z) in
luding the example

(1.1) mentioned in the introdu
tion. This 
ould be done using the ex
eptional isomorphism

relating SL

2

(R) to the orthogonal group O(2; 1) and by 
arefully extending our results

(and some of [Br1℄) to p = 1. However, be
ause of the diÆ
ulties 
aused by possible

singularities at the 
usps and by 
onvergen
e questions, we 
hose to give a dire
t proof

based on Rohrli
h's modular Jensen formula and the 
lassi
al Krone
ker limit formula.

Let D be a negative fundamental dis
riminant and K = Q(

p

D). We brie
y re
all

some properties of Heegner divisors. Every ideal 
lass [a℄ of K de�nes a unique point [�

a

℄

on �

1

n H by asso
iating with a fra
tional ideal a = Za+Zb with oriented (i.e. =(b�a) > 0)

Z-basis a; b the point �

a

= b=a 2 H . The Heegner divisor H(D) on �

1

n H 
onsists of the

sum of the [�

a

℄, where a runs through all ideal 
lasses of K, 
ounted with multipli
ity 2=w,

where w is the number of units in K. The 
ardinality of H(D) is equal to the 
lass number

h of K, its degree is 2h=w. We write 	

D

(�) for the unique modular form for �

1

whose

divisor equals H(D) and whose value at the 
usp 1 is given by 	

D

(1) = 1.

Theorem 5.1. Let D and H(D) be a as above. The degree of H(D) is equal to L(�

D

; 0)

and

1

L(�

D

; 0)

Z

�

1

nH

log

�

j	

D

(�)j

2

(4�y)

k

�

dxdy

4�y

2

= 2

�

0

(�1)

�(�1)

+ 1�

L

0

(�

D

; 0)

L(�

D

; 0)

�

1

2

log jDj: (5.3)

Here k = 24h=w denotes the weight of 	

D

.

32



Proof. If f 2 M

k

(�

1

) is a modular of weight k for �

1

with f(1) = 1, then a beautiful

formula of Rohrli
h [Ro℄ says:

3

�

Z

�

1

nH

log

�

jf(�)j

2

(4�y)

k

�

dxdy

y

2

= k

�

2

�

0

(�1)

�(�1)

+ 1

�

�

X

�2div(f)

m

�

log

�

j�(�)j

2

(4�=�)

12

�

:

In the sum we view div(f) =

P

�

m

�

[�℄ as a divisor on SL

2

(Z)nH su
h that

P

m

�

= k=12.

Re
all the Krone
ker limit formula (4.14) and the identity

X

�2H(D)

E(�; s) =

w

2

�

�

�

�

D

4

�

�

�

�

s=2

�

K

(s)

�(2s)

; (5.4)

where �

K

(s) = �(s)L(�

D

; s) denotes the Dedekind zeta fun
tion of K (see [GZ℄ p. 210).

By means of the fun
tional equations we obtain the Laurent expansions

1

�(2s)

=

�1

2�

2

�(�1)

�

1 +

�

2

�

0

(�1)

�(�1)

+ 2� 2
 � 2 log(�)� 2 log(2)+

�

(s� 1)

�

+ : : : ;

�

K

(s) =

�L(�

D

; 0)

p

D

�

(s� 1)

�1

�

L

0

(�

D

; 0)

L(�

D

; 0)

+ 2
 + log(2)� log jDj+ log(�)

�

+ : : : :

Hen
e the Eisenstein series E(�; s) has the expansion

X

�2H(D)

E(�; s) =

3wL(�

D

; 0)

2�

�

(s� 1)

�1

+ 2

�

0

(�1)

�(�1)

�

L

0

(�

D

; 0)

L(�

D

; 0)

+ 2�

1

2

log jDj � log(4�)

�

+O(s� 1)

at s = 1. Finally we have

�(1=2)�(s� 1=2)�(2s� 1)

�(s)�(2s)

=

3

�

�

(s� 1)

�1

+ 2

�

0

(�1)

�(�1)

+ 2� 2 log(4�)

�

+O(s� 1):

By the Krone
ker limit formula we derive the degree relation

wL(�

D

; 0)

2

= h: (5.5)

Moreover, we �nd

X

�2H(D)

log

�

j�(�)j

2

(4�=�)

12

�

= �4� lim

s!1

0

�

X

�2H(D)

E(�; s)� h

�(1=2)�(s� 1=2)�(2s� 1)

�(s)�(2s)

1

A

+ 12h log(4�)

= 12h

�

L

0

(�

D

; 0)

L(�

D

; 0)

+

1

2

log jDj

�

:
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Sin
e m

�

= 2=w, the modular form 	

D

has weight 24h=w and therefore

3

�

Z

�

1

nH

log

�

j	

D

(�)j(4�y)

k=2

�

dxdy

y

2

=

24h

w

�

2

�

0

(�1)

�(�1)

+ 1

�

�

24h

w

�

L

0

(�

D

; 0)

L(�

D

; 0)

+

1

2

log jDj

�

:

The 
laims follows by resorting the above terms.

We remark that the degree formula (5.5) is in this 
ase the well known analyti
 
lass

number formula.
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