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1 Introduction

In [Bol, Bo2] Borcherds constructed a lifting from elliptic modular forms of weight 1 —n/2
with poles in the cusps to automorphic forms on the orthogonal group O(2,n) with known
zeros and poles along Heegner divisors. These can be written as infinite products, so-called
Borcherds products. The present paper was motivated by the question whether every
principal Heegner divisor can be obtained as the divisor of such a Borcherds product.

We shall give an affirmative answer in the special O(2, 2)-case of Hilbert modular forms
(under a technical condition on the underlying real quadratic field). We shall construct
for each Heegner divisor H a certain “generalized Borcherds product” Wy. Considering
suitable finite products of these Uy we find a new proof of [Bo2] Theorem 13.3 and [Bo3] in
this particular case. Moreover it turns out that the function Uy can be used to determine
the Chern class of H explicitly. One obtains a lifting from elliptic modular forms into the
cohomology. We shall show that it coincides with the Doi-Naganuma lifting.

We now describe the content of this paper in more detail. Let K be a real quadratic field
of discriminant D with D =1 (mod 4). Let O be the ring of integers and 0 the different
in K. Denote by = + 2’ the conjugation and by N(z) = zz' the norm of an element
x € K. The Hilbert modular group I'x = Sly(O) acts on the product H x H of two upper
half-planes, and the quotient X = (H x H)/T'x is a quasi-projective algebraic variety. In
this context Borcherds’ Heegner divisors are essentially the well known Hirzebruch-Zagier
divisors [HZ]. For a positive integer m the Hirzebruch-Zagier divisor T'(m) of discriminant
m on H x H is given by

T(m) ={(21,2) € HxH; J(a,b,\) € Zx Z x 0" with ab — N(\) =m/D
and az123 + Az + Nz + b = 0}.

It is the inverse image of an algebraic divisor on the quotient Xg, which will also be
denoted by T'(m).
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The idea of our approach to Borcherds’ theory is quite simple and can be described as
follows: For each Hirzebruch-Zagier divisor T'(m) we consider the Poincaré series

laz1Zo + A2y + Nz + b|>
m\%Z1,22) = lo .
P71, 2) abZEZ g <|az1z2 + Az1 + Nz + b

Aot
ab—N(\)=m/D

It is formally invariant under I'sc and has a logarithmic singularity along 7' (m). Therefore
one could hope to obtain the absolute value of a generalized Borcherds product by taking
exp(dm (21, 22)).

Unfortunately ¢, (21, 22) diverges. However, it can be regularized in the following way.
For s = 0 4+ 1t € C with ¢ > 1 we define

laz120 + Az1 + N2y + b|2>
®,,(21,29,8) = E Qs— <1 + ,
m( b ) a.beZ ! 2y1y2m/D
Aeo!
ab—N(X\)=m/D

where QQs_1(2) is the Legendre function of the second kind and z; = z +iy;, 20 = xa +iys.

It can be easily seen that the series converges normally for (21, 2,) € Hx H—T(m) and
o > 1 and therefore defines a I'g-invariant function. Since Q,_1(z) = —3 log(z — 1)+ O(1)
fort — 1, ®,,,(21, 22, s) has a logarithmic singularity along T'(m). Note that for D =m =1
the function ®,,(z1, 22, s) equals the resolvent kernel function for Sly(Z) (cf. [He]). The
identity Qo(2z) = 1 log (£5}) implies the formal equality @, (21, 22,1) = (21, 22).

In section 3.1 we determine the Fourier expansion of ®,,(z1, 23, s) explicitly and prove
that it can be continued to a holomorphic function on {s € C; o > 3/4, s # 1}, which
has a simple pole at s = 1. We define the regularized Poincaré series ®,, (21, 22) to be the
constant term of the Laurent expansion of ®,,(z1, 22, s) at s = 1.

Let Ms(D, xp) be the vector space of modular forms of weight 2 with character xp =
(2) with respect to I'g(D), and denote the subspace of cusp forms by Sa(D, xp).

In section 3.3 we show that ®,,(21,22) can be written as the sum of two real valued
functions 1y, (21, 22) and &,,(21, 22) with the following properties:

The function &,,(z1, 22) has no singularities, i.e. is real analytic on the whole domain

H x H. In its Fourier expansion

Em (21, 22) = 3q0(m) log(yry2) + 2 Z piow|(m)log |1 — e(vz + V7))

veo~!
v>0>0

the m-th coefficients p,(m) of certain Poincaré series P, € Sy(D, xp) occur. These P,
are essentially the linear combinations of Poincaré series attached to the cusps of T'y(D)
introduced by Zagier in [Zal]. The generating series Q(z) = 14+ Y. ., qo(n)e*™* of the
qo(m) is an (analogous) linear combination of Eisenstein series in My(D, xp).

Moreover, —%wm(zl, 27) is the logarithm of the absolute value of a holomorphic function
U,,(21,22) on H x H. The only zeros of U, (21, 22) lie on T'(m), and in certain non-empty
open subsets W C H x H the function ¥,,(z, z5) has a Borcherds product expansion

(21, 22) = e(pw21 + Py 22) H (1—e(vz + V’ZQ))iqDUU,(m) i

veo!
(v, WW)>0

2



Here py and py;, are real constants, and the g,(m) (n # 0) denote the Fourier coefficients
of certain Poincaré series of weight 2 with respect to I'y(D) which have poles in the cusps.

Let a, (r € N) be the functional in the dual space of Sy(D, xp) which takes a modular
form f to its r-th Fourier coefficient. Write A(D, xp) for the Z-module generated by the
a,. One can infer the following version of [Bo2] Theorem 13.3: If ¢y, ..., cx are integers
with Z;Vﬂ cja; = 0, then

N

\I’(Zl, 22) = H \I’] (21, Zg)cj

j=1

is an automorphic form of weight —1 Z;vzl ¢;jqo(j) with respect to ' whose divisor is given
by Z;VZI ¢;T(j) (Theorem 5). In particular we find that a, — T(r) defines a homomorphism

3 from A(D,yp) to the (suitably modified) divisor class group Cl(Xx) of Xg.

Furthermore, in section 5 we use the function &, to determine the Chern class of
the divisor T'(m) explicitly. (This can be done in a different way by means of results of
Hirzebruch-Zagier [HZ] and Oda [Od], cf. [Ge].) The above properties of ¥,, and &, imply
that efm(#122)/2 ig 3 Hermitian metric on the sheaf £(7(m)) attached to T(m). Therefore
the Chern class of T'(m) can be computed as

(T (m) = 50060 (21, 2)

(Theorem 7). For simplicity let us now assume that O contains a unit g4 of negative
norm. Then one finds that the Chern class of T'(m) is essentially given by a certain Hilbert
Poincaré series of weight 2 for I'k.

Hence over C the composition of 3 with the Chern class map can be considered as a map
from Sy(D, xp) into the space Sy(I'k) of Hilbert cusp forms of weight 2 with respect to I'g.
In Theorem 8 we prove that it is equal to the Doi-Naganuma-lifting (cf. [DN, Na, Zal, As]).

As a consequence we may answer the question raised at the beginning. We may identify
the kernel of § with the kernel of the Doi-Naganuma-lifting and deduce (Theorem 9):

Let f be an automorphic form with respect to I'x with an arbitrary character. Assume

that its divisor has the form (f) = Z;\;l ¢;T(j). Then up to a constant multiple f equals

N
\If(zl, 2’2) = H \Ifj (2’1, ZQ)cj .
j=1

In particular f has a Borcherds product expansion, and its weight is given in terms of the
coefficients of the Eisenstein series Q(z) by —3 Zjvzl ¢iqo(J)-

Certainly the Poincaré series ®,,(z1,22) can be generalized to arbitrary orthogonal
groups O(2,n). One should obtain generalized Borcherds products and a lifting into the
cohomology in a similar way. However, new technical difficulties arise due to the fact that
the cohomology of the underlying complex space is more difficult to describe. We hope to
come back to this topic in a future paper.
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2 Eisenstein series and Poincaré series for I'g(D)

In the following section we briefly recall some basic facts concerning Eisenstein series and
Poincaré series for I'y(D). This mainly serves to fix our notation. We omit the proofs
which are either given in [Zal] or can be obtained by slight modifications of the arguments
in [Zal] and [Sc] chapter III.

2.1 Eisenstein series for I'y(D)

Recall from the introduction that D denotes a positive fundamental discriminant with
D =1 (mod 4). Let xp be the primitive character modulo D defined by the Kronecker
symbol x +— (%) As usual we put

To(D) = {(‘CL Z) €SL(Z); ¢=0 (mod D)}

and write My (D, xp) for the space of modular forms of weight 2 and Nebentypus character
xp with respect to I'y(D). The subspace of cusp forms is denoted by Ss(D, xp).

The cusps of T'o(D) correspond one-to-one to the positive divisors of D via k/I — (I, D).
For Dy > 0, D;|D and Dy = D/D; we choose p,q € Z with pD; + ¢Dy = 1 and put

_ (D2 —p
e (),
Then {A} 00; Dy > 0, D;|D} is precisely the set of cusps of [y(D). Throughout we will
simply write Dy for the cusp Af)}oo.

For z = x + iy in the upper half-plane H and s = 0 + it € C, 0 > 0 we define the
Eisenstein series (with parameter s) of weight 2 in the cusp D; by

1 _ 1 y®
ED: S AL A 1
(2:5) 2 Z Xo(Ap, )(cz+d)2 lcz + d|?s’ (1)
AGFDI\ADIF()(D)
4=(¢ 3)

where
1 1 b
FDl = ADlro(D)ADl N 0 1 > beZ;.

This series converges normally for 2 € H and o > 0 and therefore transforms according to
EP1(yz,s) = xp(7)(cz + d)?EP1(z,s) under v = (¢ 8) € Ty(D).

As usual, calculating the Fourier expansion, one can show that E”!(z,s) has a mero-
morphic continuation in s which is holomorphic in a neighborhood of s = 0. Hence we
may define the Eisenstein series of weight 2 in the cusp D; by EP'(z2) = EP'(z,0). It can
be proved that EP! lies in My(D, xp) and has the Fourier expansion

1
EP1(2) = dp,p — 47 E E —H"1(0,n)ne(nz).
n>1 c>1 ¢
(CaD):Dl
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Here

ron (G e o

e(z) := €?™ and 0p, p denotes the Kronecker delta. The sum in (2) runs over all primitive
residues d modulo c.

We now introduce some linear combinations of the EP' (similar to [Zal] p. 22) which
will be needed later. We define

U(D>)
B = Y Uldpo), )
D1>0 2
D1 Dy=D
where
. (&) VDy,  ifD =1 (mod 4), "
B(Dy) = 4 \ P 4
) (D—) Dy, D=3 (mod 4)
for D1D2 =D.
Proposition 1. The Fisenstein series E(z) lies in My(D, xp) and has the Fourier expan-
5101
42 1
E(z)=1- 573 Z Z EHb(O’ —n)ne(nz)
n>1 b>1
with

Hy(0,n) = Y w(D2)HbDDll(0,n).

D1Dy=D
(szZ):l

2.2 Poincaré series for I'y(D)

As usual we write J, for the Bessel function of the first kind, I, for the modified Bessel func-
tion of the first kind, and K, for the modified Bessel function of the third kind (cf. [AbSt]
§9). Let r be a non-zero integer and Dy, Dy € N with DDy = D.

We define the r-th Poincaré series (with parameter s) of weight 2 in the cusp D; by

1 _ r 1 y®
GP == At A)e | =—A 0). (5
D=y X e () L 00 0
AEFDI\ADlro(D)
4=(25)

(Note that D, is the width of the cusp D;.) Again, it can be shown that GP(z,s) has a
holomorphic continuation in s to a neighborhood of s = 0. One defines GP'(2) = GP1(z,0).
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In the case r > 0 it is proved in [Zal] Appendix 1 that GP'(z) € S3(D, xp) and

GP1(2) = 6p,pe(rn —QWZW S HP(r,n)d (%m) e(n),

c>1
(¢c,D)=D;

where HP'(r,n) is given by

HP (m,n) = © (é) 3 <_—d> e (M> (m,n € Z,). (6)

D
aey N ¢

The sum in (6) runs over all primitive residues d modulo ¢; and D5, d are determined by
DyDy =1 (mod c¢) respectively dd =1 (mod ¢). For r < 0 one can calculate the Fourier
expansion of GP! analogously and obtains

GP'(2) = dp,pe(rz) — 271'2 vnDsy/|r| Z HP (r,n)I (%\/n|r|/D2> e(nz).

n>1 c>1
(caD):Dl

In the same way as above we consider suitable linear combinations of the GP'. For
r € 7Z — {0} we define

re= Y Ulen (), 7
Da|r, Dy>0 2

where 1(Dy) is given by (4). Using (Dy) = (5—1) (D) and the obvious identity
HP'(—r,—n) = <5—1> HP'(r,n), we find

Proposition 2. Let r > 0. Then P, is an element of So(D, xp) and has the Fourier
expansion P,(z) =Y <, pr(n)e(nz) with

pr(n) = 0 — 20/n /7y Hy(—r,—n)J; (%W) (8)

b>1

and

Z w bD1 m/Da,n). (9)

D1 D=
Dz‘m
(b7D2):1

In the case r < 0 the Poincaré series P, is not contained in Sy (D, xp) but still transforms
in the same way under I'g(D). Its Fourier expansion has the form

Py(z) =e(rz) —2m Y _\/n/lr] Y Hy(—r,—n)Iy (;% n|r|> e(nz). (10)

n>1 b>1



3 Poincaré series attached to Hirzebruch-Zagier
divisors

Recall that K is a real quadratic field of discriminant D. We write x — 2’ for the
conjugation, N(x) = xa’ for the norm, tr(z) = 2 + 2’ for the trace, and 0 = (/D) for
the different in K. We denote by O the ring of integers and by 'y = Sly(O) the Hilbert
modular group of K.

Let m be a positive integer. We consider the Hirzebruch-Zagier divisor

T(m) ={(21,2) e HxH; I(a,b,\) € Z x Z x 0" with ab — N(\) = m/D
and azizp + Az; + Nz +b =0} (11)

of discriminant m on H x H. It is the inverse image under the canonical projection of an
algebraic divisor on the quotient X = (H x H)/Tx.

Definition 1. Let (21,23) € HXx H —T(m) and s = o+ it € C, 0 > 1. The Poincaré
series @, (21, 29, 8) attached to T(m) is defined by

laz120 + Az1 + N2y + b|?
P (21, 22, 8) = Z Qs <1 + - (12)
obel 2y1y2m/D
et

ab—N(X\)=m/D

Here Qs 1(2) is the Legendre function of the second kind (cf. [AbSt] §8), defined by
Qs-1(2) = /(z + V22 — 1coshu) *du (z>1,s8>0), (13)
0

and z; =z + iyy, 22 = Ta + 1yo. Note that T'(m) is empty if m is not a quadratic residue
modulo D. In this case we put ®,,(21, 22, s) = 0.

The following argument shows that ®,,(21, 22,s) converges normally for ¢ > 1 and
(21,22) € H x H — T(m). It is well known that for any compact set B C H x H and for
any C' > 0 the set

MB,m,C’:{(aab,)\) EZXZXD_l; ab_N()\):m/D,
laz122 + Az1 + Nz + 0] < C for a (21, 20) € B} (14)

is finite. This, together with the asymptotic property Qs_1(z) = O(27%) (2 — o) of the
Legendre function, implies that ®,, (21, 29, s) has the local majorant

1
abZEZ |a2122 + )\2’1 + )\IZQ + b|20 '
A€o~
ab—N(X\)=m/D

The normal convergence of the latter series for o > 1 is well known (cp. [Zal]).
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For (§ 7) € Tk and (a,b,\) € Z x Z x 0! we have the identity

az + 0 o'z + (3 az + 0 , (o + [ Az129 + A\z1 + N2g + b
a +A N 2L ) =
v+ ) \ Y2+ Yz + 0 V29 + 6 (y21 +0) (V' 22 + &)

with uniquely determined (a,b,\) € Z x Z x 0! and ab — N(\) = ab — N()\). Hence the
function ®,,(z, 29, s) is ' x-invariant.

In the following section we will determine the Fourier expansion of ®,,(z, 20, s) ex-
plicitly. Thereby one can show that ®,,(21, 29, s) has a meromorphic continuation in s to
{s € C; o > 3/4} which is holomorphic up to a simple pole at s = 1. As explained in
the introduction, we define ®,,(z1, 23) to be the constant term of the Laurent expansion of
D, (21,29, 8) at s = 1.

The function @,,(2, 29) has a logarithmic singularity along T(m). It can be written
as the sum of two functions ¢, (21, 22) + &n (21, 22) where —1),,,/2 is the logarithm of the
absolute value of a “generalized Borcherds product” ¥,, and &,, has a cohomological in-
terpretation.

3.1 Fourier expansion and meromorphic continuation

We write ®,,(z1, 22, s) in the form

D, (21, 29,8) = @gl(zl,zg,s)+22<I>$l(z1,z2,3) (15)
a=1
with
laz120 + Az1 + N2y + b|?
B° - (1 . 16
m(Zh = S) ,,EZZ Qe < " 2y1y2m/D ( )
Aeo!
ab—N(\)=m/D

Note that the partial sums ®2 (zy, 25, s) converge normally for o > 1/2.
For the calculation of the Fourier expansion of the functions ®¢ (21, 29, s) we distinguish
the cases a = 0 and a > 0. In the latter case it is useful to write

D7 (21, 22, 9) :ZZQsﬂ (1+ (21 + 0+ N/a)(zo + 0 + \a) + AJa?| )

2
AER €O 2y1y24/a

similar as in [Zal] §2. Here we have put A =m/D, and R denotes a set of representatives
for

{Ae0d'/a0; N(AVD)=m (modaD)}.

Let H” be the function

Ka+@@ﬁﬂﬁ+mv
2y112A



and denote its Fourier expansion in the form
Hy'(z1,2) = Z b (v, g1, yo)e (v + V'), Yiya > A.
veo—!
Then we have
02 (21,22,8) = Y Ga(m, )b (v, y1,p)e(var + V')
ved—!
with the finite exponential sum

Gmn = 3 (M), (19

A€o~ /aO
N(AN=-m/D (aZ)

Note that our G,(m,v) equals G,(—m,v) in the notation of [Zal]. We finally obtain

D, (21, 22,5) = <I>?n(zl,22,s) + 2 Z

veo— 1

ZGa(m, )b (v, yl,yg)] e(vey +vV'xy).  (19)

a=1
Therefore it suffices to calculate the Fourier expansions of ®° (21, 25, s) and HA(2y, 29).
We put
S(m) = {(z1,2) EHxH;, Ixe€d ! with N(A\) =—m/D and \y; + Ny, = 0}.  (20)
Furthermore, if r; and r, are real numbers we abbreviate
a(ry,r2) := max(|ri, |raf),
B(ry,re) := min(|r], |ra|).
Lemma 1. The series

A N b|?
(I)?n(zl,ZQ,S) = Z Zstl <1+| atAnt | >

reo-l  beZ 2y1yom /D
N(A\)=—-m/D

converges normally for (z1,29) € HxH—T(m) and o > 1/2. Moreover, on Hx H— S(m)
one has the Fourier expansion

27
(P?n(zla 29, S) = (23 _ 1) Z a()‘yla Aly?)l_sﬁ()\yla )‘,yQ)S
Aeo!

N(X)=—m/D
+ 47 Z Z IMNy1yo| 2, 1o (2B (A1, Ny))

Aeo~l n2>1
N(A\)=—m/D

X Ky 1/2(2mna(Ayr, Nyz))e(ndzy + nX'z,). (21)



Proof. The convergence statement can be easily verified. The function ®° (zy, 2, s) can
also be written in the form

Azy + Nwy + )2 + Nyf + X3
(I)O - S— ( - : ) '
m (21,22, 5) AE :1 bZ Qs—1 < 20AN |y11/2
€ €Z

N(X)=—m/D

Fora> (3> 0,0 >1/2 and € R we consider the function

baalie) = 3 Qs (EELEEEEY,

beZ

It is periodic and has a Fourier expansion

hap(@) = ) aas(n)e(ne).

nez

Using Poisson summation we find

i 2 2, 32
Ga,p(n) = / Qs_1 <%> e(—nx) dx. (22)

First suppose that n # 0. By virtue of the identity

/K,,(a:r)fy(ﬂ:r) cos(xy) dr = %(Ozﬂ)mQu—ug < 208
0

([EMOT] p. 49 (47)), which is valid for y > 0, the right-hand side of (22) can be evaluated
by the Fourier inversion formula:

x 2 2 2
/le/z (%) cos(zy) dv = m\/a K, (ay)I,(By), (23)
0

tap(n) = 27r\/oTﬁKs_l/g(27r|n|a)[s_1/2(27r|n|ﬁ).

Since the integral (22) is a continuous function in n € R, we have
10.5(0) = lim (0, 5(n))

Using the asymptotic properties

e~ 2 R~ ey 21

(z — 0) of the Bessel functions, we find

2
2s — 1

a,5(0) = at i e,
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Thus the Fourier expansion of h, g() is given by

ha,ﬂ(az):;flal—sgsmw\/@ S L1 pal210]B) K1 o2l a)e(n).

n€Z—{0}

The assertion now follows from the identity

(sz(zla 22, S) = Z ha(/\yl,A’yz),ﬂ(Ay1,A’y2)()‘xl + )\1332).
Aeo~!
N(X)=—m/D
0

Lemma 2. Let A > 0. The function H*(z1, 20) defined by (17) converges normally for
o > 1/2. For yjys > A it has the Fourier expansion

H 2z, 2) = Z b (v, 1, yo)e(vay + V')

veo—!
with
(s — 1/2)° )
bA 0, , _ ﬂ-— 4A)° 1 s,
5( U1 y?) 2\/51_‘(23) ( ) (ylyQ)
Ay1yo

12571(477'\/ A|UU’|)KS,1/2(27T|U|y1)Ks,1/2(27T|l/,|y2), UUI > 0,

bf(”a Z/l;yz) =dm D

A
b (v, 1, ) = 47”/% Tos 1 (AN /A ) Ky (27 |V]31) K1 2 (27| 12), w0/ < 0.

Proof. The convergence statement can be easily verified. By Poisson summation we have

o0 o0

1 2129 + A?
b v,y ) = —= / / Qs—1 (1 + %) e(—vay — V'wy) dridzs.  (25)

S

To=—00 L] =—00

Azy )\ Ays \
2120 + A2 = |2? <x1 + —2) + (yl - —y§>
B2 |20

and substitute z; — 11 — Azy/|2:]? to obtain

We write

o0

/6(VA$2/|ZQ|2)€(—V,Q?2)

To=—00

b?(l/, ylayQ) =

Si-

o0

2 2 2\2
i + i + (Aya/|20°)
_ — dridzs.
X / QS 1< 2Ay1y2/|22|2 6( l/‘rl) T1axo

T1=—00
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Now suppose v # 0. The assumption y;yo > A implies y; > Ays/|22|>. Therefore we
may apply formula (23) to evaluate the inner integral:

Ayry
b:‘(l/, ylay2) =27 #K571/2(2W|1/|y1)
o0
' vA 1 12 27 |v| Ay
X elxe | —V + S 3 S 3 15,1/2 Q5 a5 de’Q.
Ty + Y5 x5 + Y5 72 + y2
T9=—00
In the latter integral I we substitute u = —27v'xy, y' = 27|v'|y, and find

r Anvu’ A
I = (47r2|1/1/’|Ay/)—1/2 / exp (zu (1 — %))

A2 o' A 1/2 A2 " Ay
X<7r|yy|y ) 151/2<7r|1/1/| y)du.

w2+ 2 w2+ 2
Putting £ = 47%|v/|A and € = — \%\ we obtain
Py [ e (i (10 22 ) (7)o ()
u2 + y? u? + y” s—1/2 u2 + y?
%

= (ky) 2Ty, Ky ),

where I'(y', k, ) denotes the latter integral. This was computed by Niebur in [Ni] (where
it is denoted by G1(y',k)). One has

125_1(2\/E), ife < 0,
J25_1(2\/E), if e > 0.
(Note that in [Ni] the factor 2 is missing. Furthermore, in the statement of Theorem

1 [Ni] K, 1/9(27|nly) should be replaced by K, y/2(27|m|y) and Mas_q (47 (mn)'/%c) by
My, (47 (mn)*/?/c).) We finally find

) L1 (4m\/Alv']), if v/ >0,
I=2K; 1,2n(V|ya) - T e
Jos—1(4dmy/Alv|), if v/ <O.

This proves the assertion in the case v # 0.
Since the integral on the right-hand side of (25) is continuous in v, we may determine

b?(oaylayZ) as

I'(y' k,e) = 2/ Ky Ks_12(y') - {

bf(oa Y1, y2) = ll—I}(l) (b?(l/, Y1, yQ)) :
By (24) we deduce
(s — 1/2)?
2v/DT(2s)

b0, y1,y0) = (44)% (y1y2)' %,

12



We now show that ®@,,(z, 22, $) has a meromorphic continuation in s to {s € C; o >
3/4}. The following lemma due to Zagier ([Zal] §4 Proposition) is important for our
argument.

Lemma 3. Leta € N, m € Z, and v € 0. Then

1 Duvv/'
Ga ) = HaT‘ 5 9 )
/0o =St (57 )

rlv
rla

where the finite exponential sums Go(m,v) resp. Hy(m,n) are defined by (18) resp. (9).

Corollary 1. There exists a constant C > 0 such that

|Go(m,v)| < Cd(a)\/alvV'|

forallm € Z,v € ="' — {0}, and a € N. Here d(a) denotes the number of positive divisors

of a.

Proof. Tt is known that there is a C' > 0 with

[H (n,m)] < CV/|nl/e

forall c € N, n € Z — {0}, and m € Z (cf. [Br] Lemma 3.2, notice the different normal-
ization). This implies an analogous estimate for the H,(n, m). Now the assertion can be
deduced by Lemma 3. U

Theorem 1. Let (21,20) € HxH—T(m). Then the function ®.,(z1, 22, s) has a meromor-
phic continuation in s to {s € C; o > 3/4}. Up to a simple pole in s = 1 it is holomorphic
in this domain.

Proof. Let ag be an arbitrary positive integer and put A = m/D. Tt suffices to prove that
the function

B, (21, 22,5) = 2 Z O (21, 29, 9)

a>ao

has for 3,y > A/a? a holomorphic continuation to {s € C; o > 3/4,s # 1} with a simple
pole at s = 1. Since the ®¢ (21, 22, 5) (a € Ny) are holomorphic functions in s for o > 1/2,
the assertion then follows from (15).

We will use the Fourier expansion

D, (21, 22, 8) = 2 Z Z Go(m, )N (v, y1, 42) | e(vay + V'y)

veo—1 La>ao

of ®,,(z1, 22, 8) to establish its continuation. It suffices to show:

13



i) The sum

Z ZGa(ma U)bf/az(ya ylay2) 6(1/[1,’1 +ylx2)
veo~!t La>ao

v#£0
converges normally for o > 3/4. Here the bf/a2(u, Y1, Y2) are given by Lemma 2.

ii) The function

Z Ga (ma O)b?/a2 (07 Y1, y2)

a>ao

has a holomorphic continuation to {s € C; o > 3/4,s # 1} with a simple pole at
s=1.

Assertion (i) can be proved using Corollary 1 and some standard estimates for the
Bessel functions. For (ii) it suffices to consider the function

() =" Galm, 006" (0,41, 1)

a>1
According to Lemma 2 and Lemma 3 we have

— M 5 1—s m. 0)a =2
f(s) = DT (29) (44)° (y112) ;Ga( ,0)

- %(M)s(ylw)” > at P Hy(0,~m)

a>1 rla

— %232)2(414)5@1%)1_5((23 - 1) ; 0! Hy (0, —m).

The assertion now follows from H,(0, —m) = O(a~'/?) for a — oo and the properties of
the Riemann zeta-function ((s). O

Definition 2. Let D C C be an open subset, a € D, and f a meromorphic function on
D. We denote the constant term of the Laurent expansion of f at s = a by Cs—,[f(s)].

Definition 3. Using the above notation we define

(I)m(zla ZZ) — Cs:l [(I)m(zla 22, S)] .

By construction ®,,(z1,22) is a ['g-invariant function. We now consider its Fourier
expansion.

14



Definition 4. For a positive integer m we put

;

T ifn <0,
A1%m,
— Hy (0, —m)b™", ifn=0,
Gn(m) = D b; ol ) / (26)
4
—2m\/m/ny " Hy(n, <b—l7;\/nm>  ifn > 0.
b>1

According to Proposition 1, go(m) is precisely the m-th Fourier coefficient of the Eisen-
stein series F(z) € My(D, xp). If n > 0 then ¢,(m) equals the m-th coefficient of the
Poincaré series P_, of weight 2 (see (10)). Since Hy(n,m) = Hy(n,m), all ¢,(m) are real
numbers.

Note that the ¢,(m) (n # 0) could also be viewed as the Fourier coefficients of suitable
non-holomorphic Poincaré series of weight 0.

Lemma 4. For (z1,2) € Hx H — S(m) with y1yo > m/D we have the identity

m
D (21,22) = L+ % log(yige) +7 > (Mg — Nya| — [\ys + Nipa))

Aeo~!
N(A\)=-m/D

1 ! !
i Z Z L (6—27rn|>\y1+/\ va| _ p=2mn[Ayi—X w\) e(nhat + nNzs)

)\ea 1 n>1

A)=—m/D

Z Z 4—7T mDuvv' ) (e(vz + V'z0) + e(—vz — V'7))
co~! v aD

V20

Z \/ o] Z —Gy(m,v) < D\/mD|1/1/’|> (e(vzy + V%) +e(—vz — V).
525

V<0

Here L denotes a suitable real constant which is independent of (21, 23).

Proof. For brevity we put A = m/D. By definition and (15) one has

22@%(21,@,3)]

a=1

Ppy(21,22) = Comr [0 (21, 22,8)] + Com

= (I) Z17Z27 +2 Z

ZG m,v) /a2 (v, yl,yQ)] e(vey + vV's)

veo t La>1
v#£0
+ Cs:l 2 Z Ga(ma O)bf/GQ (07 Y1, y2)] . (27)
a>1

15



Putting s = 1 into the Fourier expansion (21) and using the identities

,/%Il/g(z) = sinh(z) = %, (28)

2z _
2 Kiplz) = e, (29)
T
we obtain
1
O (21, 2,1) =27 > BOwL N+ Y. Y -
et Aeot n>1
N(A\)=-m/D N(A\)=-m/D

% (6—2wn(a(xy1,xyz)—ﬂ(xy1,A'yz)> _ 6—27Tn(a(/\y1,/\'yz)-l-ﬁ(/\yl,/\'yz))) e(nAay + n\as).

For r1,r9 € R, 17y < 0 one has the relations

a(ry,re) + B(ri,re) = |r1 — 12,
a(ry,re) — fB(ri,re) = |r1 + 172,

|T1 — ’I“Q| — |T1 +’I“2| = 25(7‘1,7‘2),

which make it possible to write ®% (21, 22, 1) in the form

O (21,22, 1) =7 > (g — Nal = [Ayr + Na)

Aot
N(A\)=—m/D

]. ! ’
+ Z Z n (eiZMMyHA vl — g2y y2|> e(nAzy + n\xy).

Aeo—t  n2>l
N(A)=—m/D

The second term in the right-hand side of (27) can be evaluated in a similar way by Lemma
2 and (29).
To compute the remaining term, we write as in the proof of Theorem 1

%5 S G, 0)a~> = ¢(25 — 1) S al = H, (0, —m),

a>1 a>1

and obtain

Cs:l

23 " Ga(m, O)bf/‘*(o,yl,w)]

a>1

= Co—1 [(?h@n)lsg(% - 1)7rf‘(;(;281)/2)2 (%) ZGIQSH‘I(O, —m)] -

Observe that

ml(s —1/2)? (4m)° y
Co=1 [W <6> Za H, (0, —m)]

a>1

16



is holomorphic at s = 1 with value —go(m). Now by virtue of the Laurent expansions at
s=1

(1y2)" =1 —log(yaye)(s — 1) + ...,
(25— 1) = %(s— D =) ...,

the assertion can be deduced.
O

Theorem 2. On {(z1,22) € H x H — S(m); y1y2 > m/D} the function ®,,(z1, 22) has the
Fourier expansion

P(21,22) = L+ Z (IAyr = Nya| = [Ayr + N'yal)

Aeo!
N(A)=—m/D
+2 Z qpu (m)log|l — e(vey + V'eg + ilvy + Vsl

veo~!
v>0

QO( )

+ log(y192) +2 Y pypww(m)log |l — e(vzy + /5]

veo !

v>0

V<0
Here L is a real constant (as in Lemma 4), and the p.(n) denote the Fourier coefficients
of P, € So(D, xp) as in Proposition 2.
Proof. We may use Lemma 3 to rewrite the expression given in Lemma 4. For instance
one has

2 m 1 4m
1= ;1 /W ; EGa(m’ v)Jy <E\/mD|w/’|> (e(vzy + V') + e(—vz) — V'2))

v>0
V' <0
4T
= /|Dw/ ZH (Dvv', —m).Jy (aD\/mD|uu’|>]
uea—l n>1
u>0
V<0
X (e(nvzy +nv'z) + e(—nvz; — nv'z))
4
=2 Zl [27r1 / Do ZH (Dvv', —m).J; (ag\/mD|l/l/'|>] log |1 — e(vz + V' 2Z)|
“520
V' <0
and
1 )
T, - — — = —27mnjvyr—v'ys| ’
5 Z Z ne e(nvry + nv'xy)
veo~t n2>l
N(v)=—m/D
=2 Z log|1 —e(vz + V'2)].
veo!
v>0
N(v)=-m/D

17



Hence we find
T, +T5 =2 Z piow|(m)log |l — e(vzy + /7).

veo~!
v>0
V' <0

By an analogous argument for the remaining terms, the assertion can be inferred. O

3.2 The singularities of ®,,(21, 22)

It is well known that for any open subset V' C H x H with compact closure V C H x H
the set
My ={(a,b,\) €ZxZx 0 ab—N(\) =m/D,

az12o + Az1 + N2g +b=0for a (21,2) € V} (30)
is finite.
Theorem 3. Let V be an open subset with compact closure V C H x H. Then

D, (21, 29) + Z log |az120 + Az + N'zp + b
(a;b,\)EMy

is a real analytic function on (HxH—T(m))NV, which can be continued analytically to V.
In other words: ®,,(z1, 23) is a real analytic function on H x H — T'(m) with a logarithmic
singularity along T'(m).
Proof. Let A = m/D. Choose an ay € N such that V' is contained in {(z1,29) € H X
H; y1y2 > A/a2}. By definition and (15) we have
ap—1
(21, 20) = B0 (21, 20, 1) + 2 Z D7 (21, 29, 1) + Cs=q [Z D2 (21, 22, S) (31)

a=1

a>ag
Using the Fourier expansion (cf. Lemma 4) one easily sees that Co—y [Y 5, @8 (21, 22,5)]
is a real analytic function on {(z1, 20) € Hx H; yy2 > A/a3}. Hence it suffices to consider
the first two terms in the right-hand side of (31). Since

anle) = 5105 (57

these can be written as

ap—1 _ _
az1Zy + Az + Nz + b|
0 H+2) o 1) = 1 |
m(Zlaz% )+ Z m(zlaz% ) Z 0g <|a2122 + )\Zl + )\,22 + b|
a=1 a,b€Z,|al<ao
Aeo~!
ab—N(\)=m/D
(a’b’/\)¢MV,m
+ Z log |az1Z2 + A2y + N2y + 0|
(a,bN)EMy
- Z log |aziza + Az1 + Nz3 + b). (32)
(a,b, A )eMy
For ab — N(A\) = m/D the function az;z, + Az; + X'z + b has no zeros in H x H. O

18



3.3 An infinite product that vanishes on T'(m)

We now write ®,,(21, 22) as the sum of two functions &,, and ,,, where &,, has no singu-
larities, and —%wm is the logarithm of the absolute value of a holomorphic infinite product
U,,, whose only zeros lie on T'(m).

Definition 5. For a positive integer m we put

qo(m)

Em(21, 20) = log(y1y2) + 2 Z pIDW’I(m) log|1 — e(vz + 1/52)|

veo !
v>0
V' <0

and

1/1m(31, 2’2) = (Pm(Zl, 2’2) - fm(Zl, 2’2)-

Using some standard estimates for the .J;-Bessel function one easily finds p.(m) = O(r)
as r — 00. Thus the series defining &,,(z1, 22) converges normally on H x H. This implies
that &, (21, z2) is real analytic on H x H.

Let W be a fixed connected component of H x H — S(m). For A € 0! we write
(A W) >0, if Ayp + Nye > 0 for all (21, 25) € W. Let pw, piy be the uniquely determined
real numbers such that

Yowyr +pwy2) = > (I = Nopl = Dy + Vo))

Aeo~!
N(A\)=-m/D

for all (21, 29) € W. Then, for (21, 25) € W with 190 > m/D, the Fourier expansion of 1,,
can be written as

Um (21, 22) = L+ 47 (pwyr + piy2) + 2 Z qpu (m)log|l —e(vzy + V'2z)|.  (33)
)50
Definition 6. For (21, 22) € {(21,22) € W; y1y2 > m/D} we define
U, (21, 22) = e(pwz1 + ply22) H (1 —e(vz + Z/'ZQ))_qD””'(m) : (34)
veo~!

(v, W)>0

Note that the convergence of the infinite product (34) follows from the normal conver-
gence of (33). We may also write

U, (21, 22) = e(pw21 + pyy22) H (1 —e(vzy +V'29)) H (1—e(vz + Z/'ZQ))_qD””'(m) :

veo— !t veo !
(V7W)>0 VI>0
N(v)=-m/D >0

Therefore W,, (21, 22) is holomorphic on {(z1, z5) € W; y1y2 > m/D}. It obviously satisfies

1

log [W,, (21, 22)| = —§(wm(21, z9) — L). (35)
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Theorem 4. The function Wy, (21, 22) has a holomorphic continuation to Hx H, and (35)
holds on HxH—T(m). Let V C HxH be an open subset with compact closure V- C Hx H
and denote by My, the finite set

My ={(a,b,)) € Myp; a>0or (a=0and X >0)}.
Then
U, (21, 22) H (az 29+ Azp + Ny +b) 7! (36)
(@b NeMT
15 a holomorphic function without any zeros on V.
Proof. 1t suffices to show that ¥,, can be continued holomorphically to any set
V = (a1,b1) x i(ag, by) x (a3, bs) x i(as,by) C H x H

with compact closure V' C H x H and non-empty intersection V N {(z1,2) € W; 1o >
m/D}, and that (35), (36) hold on V.
According to Theorem 3 we may consider

'Q/)m + 2 Z log |CL212’2 + )\2’1 + )\,ZQ + b| (37)
(abNEMT

as a real analytic function on V. Moreover, the Fourier expansion (33) of v, on {(21, 22) €
W yi1y2 > m/D} implies that (37) is even pluriharmonic, i.e. is annihilated by the matrix

differential operator
9?2 9?2
021071 021022
9?2 9?2 :
(3zgazl 3zgazz>

Hence there exists a holomorphic function f : V' — C with

Ym+2 Y loglazizm + Az 4+ Ny + b = R(f(21, 22))
(abNeM

(cf. [GR] ch. IX sect. C). On the non-empty intersection of the open sets V" and {(z1, z3) €
W: y1y2 > m/D} we therefore have

1
R | Log U, (21,20) — L/2 — Z Log(aziza + Az1 + Nza +0) | = —§§R(f(zl, 23)).
(abN)eM

But now f can only differ by an additive constant from the expression in brackets on the
left-hand side. We may assume that this constant equals zero and find

U, (21, 22) H (az129 + Aoy + N +b) 1 = el/2e=1(21:22)/2
(a.bNeMT

Since e /(#1:%2)/2 ig a holomorphic function without any zeros on V, we obtain the assertion.
O

According to (35), W,,(21, 22) is independent from the choice of W up to multiplication
by a constant of absolute value 1.
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4 Borcherds products on Hilbert modular surfaces

In the previous section we constructed for each T (m) a holomorphic infinite product ¥,
vanishing on T'(m). This is not necessarily automorphic; by construction we only know
that

O (39)

is I'k-invariant. However, taking suitable finite products of the ¥,, one can attain that
the main parts of the &, cancel out. Thereby one finds a new proof of [Bo2] Theorem 13.3
and [Bo3] in the special case of Hilbert modular surfaces.

Lemma 5. (cp. [Bo2] Lemma 13.1.) Let ¥ be a meromorphic function on H x H and
k € R. Suppose that |V (zy, z)|(y1y2)*/? is invariant under T'x. Then there is a character
x of I'x such that V is an automorphic form of weight k and character x with respect to
'k, i.e. satisfies

b
U(yz1,7'2) = x(V)(ez1 + ) (20 + d)VoU (21, 20)  for all v = <Z d> €l'k.
Proof. Let v € T'. According to the assumption we have

[ (y21,7'2) [(S(721) (7 22))? = [ (21, 22) | (5172)"*,

‘I’(’Yzla 7'22)

d) (2 +d)7F = 1.
V(21 ) |(cz1 +d)™ (2o + d') 77|

By the maximum modulus principle there exists a constant x(7) of absolute value 1 with

U(vz1, 'z _ _
\(17(;1 72«2)2) (cz1 +d) (2 +d) ™" = x(7).
One easily checks that x(7) is multiplicative. O

Lemma 6. The space So(D, xp) has a basis of cusp forms with integral rational Fourier
coefficients.

Proof. Cf. [DI] Corollary 12.3.8, Proposition 12.3.11. O

Theorem 5. Let fi,..., fq be a basis of So(D, xp) with integral rational Fourier coeffi-
cients and write f;(2) = _,, an(fj)e(nz). Assume that N € N and cy, ..., cx € Z with

clal(fj) 4+ ...+ cNaN(fj) =0
forj=1,...,d. Then

N

U(z1,22) = [ ¥5(21, )7

Jj=1

15 a meromorphic function on H x H with the following properties:
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i) U is an automorphic form of weight —3 Zjvzl ¢jqo(j) with a certain character x with
respect to T'x. Here qo(j) is the j-th Fourier coefficient of the Fisenstein series
E € My(D, xp) (cf. Prop. 1).

ii) For any open subset V with compact closure V. C H x H the function
(21, 29) H (az129 + Az + Nzp + b) ™%

j=1,...,N
(@b N EM

s holomorphic without any zeros on V.
iii) Let W be a connected component of H x H — U;vzl S(j). Then there exist real num-

bers pw, piy and a constant C' of modulus 1 such that ¥ has the Borcherds product
erpansion

(21, 29) = Ce(pwz1 + phy 22 H H (1—e(vzy +v ZQ))*‘IDWI(J')

Jj=1 veo—1
(v, W)>0

on {(z1,22) € W3 yyo > N/D}. Here q,(j) (n > 0) denotes the j-th Fourier
coefficient of the Poincaré series P_,, of weight 2 (cf. (10)). For n < 0 we simply
have q,,(j) = —0_jn (cf. Def. 4).

Proof. i). The assumption implies in particular
epr()+ ...+ enp(N) =0

for all r € N. Thus we have
N N

(2, ) =Y ci&i(z1,22) = %log(yﬂn) > ciali)

Since
W (21, 25) ] 6C22)/2 = W (2, z2)|(y1y2)*i 331 ¢ia0()

is invariant under I'x, we find by Lemma 5 that WU(zy, z5) is an automorphic form of weight

| N
—5 > citoli)
j=1
Assertion (ii) follows by Theorem 4 and (iii) by the definition of U,,. O

Remark. The coefficients go(m) of the Eisenstein series E(z) can be computed explicitly.
For instance suppose that D = p is a prime with p =1 (mod 4) and that m also is a prime.

Then go(m) = 0, if (%) = —1, and

m-+1

qo(m) = 47[/(_17)(])),

if (%) S
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5 Chern classes of Hirzebruch-Zagier divisors

Let X be a normal irreducible complex space. By a divisor on X we mean a formal linear
combination D = Y nyY (ny € Z) of irreducible closed analytic subsets Y of codimension
1 such that the support Uny s Y isa closed analytic subset of everywhere pure codimension
1. We denote the group of divisors on X by D(X).

Now let X = H x H and I' be the Hilbert modular group ', of the real quadratic field
K or a subgroup of finite index. For each positive integer m the Hirzebruch-Zagier divisor
of discriminant m on X /T is defined as follows: The support of its inverse image under the
canonical projection m : X — X/T is precisely the set T'(m) (see (11)), and the multiplic-
ities of all irreducible components equal 1. (There is no ramification in codimension 1.)
For simplicity we denote this divisor on X/T" by T'(m), too. It is well known that T'(m) is
algebraic. B

We will use the following modified divisor class group C1(X/T'): Each automorphic form
f with character xy with respect to I' defines via its zeros and poles a I'-invariant divisor
in D(X), which is the inverse image of an algebraic divisor (f) in D(X/T"). We denote the
subgroup generated by these divisors (f) by H(X/I') and put

CI(X/T) = D(X/T)/H(X/T).

We write C1(X/T') for the usual divisor class group of X /T, i.e. the quotient D(X/T") modulo
the group of divisors coming from automorphic forms of weight 0 with trivial character.

We now give an algebraic interpretation of Theorem 5. First we need some more
notation. Let S(D, xp) be the Z-module of all cusp forms in Sy(D, xp) whose Fourier
coefficients lie in Z, and put d = dim Sy(D, xp). By virtue of Lemma 6 we have

S(D,xp) =2 Z* and S(D,xp)®7C = So(D, xp).

Special elements of the dual Z-module §*(D, xp) of S(D, xp) are the functionals

a.: S(D,xp) > Z, f= ane(nz) — a.(f) = by (r eN). (39)

n>1

The usual unfolding argument shows that a, can also be described by means of the Pe-
tersson scalar product as f — a,(f) = 47r(f, GP), where GP denotes the Poincaré series
defined in (5). Denote the Z-submodule of §*(D, xp) generated by the a, by A(D, xp)
and the C-dual space of Sy(D, xp) by S5(D, xp). Then we have

A(D7XD) = Zd and A(D7XD) ®ZC: S;(DJXD)
Now Theorem 5 obviously implies:
Theorem 6. By a, — T(r) (r € N) a homomorphism
3:A(D, xp) — Cl(Xg) (40)

15 defined.
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Let us briefly recall some basic facts on Chern classes and the cohomology of Xx. For
any divisor D on X/T one has a corresponding sheaf £(D). The sections of £(D) over an
open subset U C X/T" are meromorphic functions f with (f) > —D on U.

We now temporarily assume that I" acts fixed point freely on X. Then X/T is an
analytic manifold and every divisor D on X/T" a Cartier divisor, i.e. £(D) is a line bundle.
The Chern class

¢(D) = ¢(L(D)) € H*(X/T,C)

of L(D) can be constructed as follows: One chooses a meromorphic function f on X such
that (f) equals the inverse image 7*(D) of D under the canonical projection m. Then

J(v,2) = veT,
is a 1-cocycle of ' in the ring of holomorphic invertible functions on X. Hence a Hermitean
metric on the bundle £(D) is given by a positive C*-function h : X — R with

h(vyz) = (7, z)|h(z) for all y € I

Then w = 00 log(h) defines a cohomology class in H2(X/T',C). This is the Chern class of
D in the case that I" acts fixed point freely on X.

In the general case one chooses a normal subgroup I'y < I' of finite index and obtains
the Chern class ¢(D) by the isomorphism H?(X/T',C) = H?(X /Ty, C)"/ o,

The construction of the Chern class gives rise to a homomorphism

C: CI(XK) — H2(XK,(C)

into the second cohomology. We will determine the images of the T'(m) explicitly. This
has been done in a different way by Hirzebruch, Zagier and Oda (cf. [HZ] Conjecture 2, 2’,
[Od]).

According to the theory of Harder on the cohomology of X [Ha], the space H?( X, C)
decomposes into a direct sum

(Xk,C) @ HY!

squ

(Xk,C) @ HY?

HQ(XKv(C) = HEQJis(XKv(C) ® HZ squ(XK?(C)'

squ
Here the classes of the Eisenstein cohomology Hz: (X, C) are given by Eisenstein series,
and HL? (X, C) consists of all cohomology classes which can be represented by a square
integrable differential form of type (p, q).

It will turn out that the Chern classes of the Hirzebruch-Zagier divisors 7'(m) lie in the

subspace

H&rﬁv(XKa (C) D Hsl};rln(XKa (C) - Hslxilli(XK; (C)a
where
HY (Xg,C) = (Cdzl A dz o (Cdzg A dz

y? Y3
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is given by the universal classes, and HSIY}H(X &, C) can be described by Hilbert cusp forms
as follows: Let T'}, be the subgroup

D ={((25), (%)) (24 €Tk}

of Slo(R) x Sly(R) and denote by S»(T'k) the space of holomorphic cusp forms of weight 2
with respect to T'}. Then HL! (X, C) is the image of the (well defined) map

sym

(07 52(1—‘1 ) — Hl ! (XK, C), g(Zl, ZQ) — g(Zl, —Zg)dzl A dZQ + g(ZQ, _Zl)dZQ A le. (41)

squ

In the same way as Zagier (cf. [Zal] Appendix 1, [Za2] §6) we define for s = o+ it € C
with 0 > 0 and (2, 25) € H x H:

wr (21, 22,8) = Z 1 (v132)° . (42)

a,b€7 (—azizo + Azt — Nzg + 0)% | — az12o + Az — N2g + b

Aot
ab—N(X\)=m/D

Since this series converges normally for o > 0, the function w;, (21, 2, s) transforms like a
modular form of weight 2 under T'k. Tt can be seen that w! (z1, 22, 5) has a holomorphic
continuation in s to {s € C; ¢ > —1/4}, and that

wh (21, 2) == w! (21, 22,0) (43)

belongs to Sy(T')). The Fourier expansion of w} (21, 22) has the form

Wi (21, 22) = 872 Z {— Z r

veo ! reN
v>0 rlvv/D
V'<0 N(v/r)=—m/D

+ 27 ,/|VV Z —Go( ( m|ly)yl|> }e(uzl—y'zz). (44)

Theorem 7. The Chern class of the Hirzebruch-Zagier divisor T(m) is given by

Go(m) (dzy Ndz;  dzg N dZ m L
T(m)) = — m

where qo(m) denotes the m-th Fourier coefficient of the Fisenstein series E(z) and « the
map in (41).

Proof. By Theorem 4 and (38) the function efm(?122)/2 defines a Hermitean metric on
L(T(m)). Thus the Chern class of T'(m) equals

AT () = 5 021, ).
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The Fourier expansion of &, can be written in the form (cp. Lemma 4 and Theorem 2)

m 1
Em(21, 22) = qo(2 ) log(y1ys) — Z Z - (e(nvz +nv'z2) + e(—nvz; — nv'z))
veo~!  n>l
v>0
N(v)=-—m/D
Z N m Z —Go(m,v) < D\/mD|w/’|> (e(vzy + V'Z) + e(—vz — V' 29)) .
1/>0
V<0
Now the claim can be deduced by a straight-forward calculation. O

5.1 The Doi-Naganuma lifting

Let Cly(Xx) resp. Cly(Xx) be the subgroup of Cl(Xx) resp. C1(Xf) generated by the
T'(m). The composition of the Chern class map
¢: Cly(Xg) — H (Xg,C) @ HL!

univ sym

(XK, (C)

with the canonical projection on Hy (Xg, C) induces a homomorphism

¢: Cly(Xx) — HLL (X g, C). (45)

sym
If we combine 3, ¢ and a~" (cf. (40), (45), (41)) we obtain a homomorphism
A(Da XD) — SQ(F}()v (46)

which is characterized by a, — 5w, (21, 22) (cf. Theorem 6, Theorem 7). We may tensor

by C and identify S3(D,xp) = S5(D,xp), f — (-, f) and get a map

SQ(D, XD) — 52(1—‘}() with GTD — wl(zl, ZQ). (47)

1
167D "

In the following we show that it essentially equals the Doi-Naganuma map [DN, Na, Zal,
Asl.

For simplicity we assume from now on that O contains a unit ¢y > 0 > £ of negative
norm. In this case the spaces Sy(T'k) and Sy(T'g) are identical via the isomorphism

52(F}() — SQ(FK)a f(Zl, 22) = f(5021, —5622)- (48)

Let w,, denote the image of w! under (48), i.e. wy,(21,22) = w! (g021, —€h22). (Notice that
it equals the function w,, defined in [Zal] Appendix 1.) The composition of (47) and (48)
yields a homomorphism

7:8(D,xp) — S2(Tg) with GP — wr(21, 22). (49)

167D

The latter property characterizes 7 uniquely, since the Poincaré series GP generate the
space So(D, xp).
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But it follows from the description of the Doi-Naganuma map
1
v:S9(D, xp) — S2(l'k), fe _%<f(7—)79(_217 —Z2,T))r
by means of its holomorphic kernel function

(21, 29,7) = Z nwy (21, 22)e(nT)

n>1

([Zal] Theorem 4) that ¢ satisfies 1(G)) = —gw,. Indeed, we find that j = —F5.. (Here
¢ is normalized such that normalized eigenforms in Sy(D, xp) are mapped to normalized

Hilbert eigenforms.) Let us now summarize the above discussion.

Theorem 8. Suppose that O contains a unit g > 0 > & of negative norm. Denote by (3
the map (40), by ¢ the Chern class map (45), and by v the Doi-Naganuma lifting. Identify
So(T) with HY! (Xg, C) via

sym
T
f(z1,22) = _ﬁa(f(gozh —€0%2)),
and consider the map So(D, xp) — Cly(Xx) ®z C which is given by GP — —=T(r) =

B((-,GPY). Then the following diagram commutes:
So(D, xp) — Cly(Xx) ®7 C

l le (50)

SQ(FK) — HU! (XK,(C)

sym

5.2 Automorphic forms whose zeros and poles lie on Hirzebruch-
Zagier divisors

Regarding Theorem 8 we may use the properties of the Doi-Naganuma lifting to study the
map . In this way we now show that every automorphic form with respect to I'x, whose
zeros and poles lie on Hirzebruch-Zagier divisors can be written as a finite product of the
functions ¥,, (21, 29). Note that the W,,(21, 2z3) itself are not necessarily automorphic. In
this sense they could be viewed as “generalized Borcherds products”.

By a standard lemma of the theory of newforms, Sy(D, xp) is the direct sum of the
subspaces

ST ={f€S(D,xp); xn(n)=—1= a.(f) =0},
ST = {f S SQ(D,XD), XD(n) =+1= (ln(f) = 0} .

It is well known that the Doi-Naganuma lifting ¢ is injective on S* and zero on S~. This
follows from the description of + on Hecke eigenforms by means of the attached L-functions
[Na, As, Ge].

It can be easily seen that there is a corresponding decomposition A(D, xp) = AT® A~
where AT resp. A~ denotes the Z-submodule of A(D,xp), which is generated by the a,
with xp(r) = 41 resp. xp(r) = —1. By Theorem 8 we find that § (40) is injective on A"
and zero on A™.
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Theorem 9. Assume that O contains a unit of negative norm. Let f be an automorphic
form of weight k with respect to I'ic with an arbitrary character. Suppose that the divisor

of f in D(Xg) has the form
N
(£)=> TG (¢ e).
7=1
Then up to a constant multiple f equals

N
U(z1,22) = H (21, 22)7,

j=1
with the functions ¥; defined in (34). In particular f has a Borcherds product expansion,
and k = —3 Z;Vﬂ ¢jqo(j) is given by the coefficients of the Eisenstein series E(z).

Proof. The assumption implies that

N
ﬂ (Z dej) =0€ ClH(XK)
j=1

Therefore Z;VZI cjaj lies in A™. Thus there is an N’ € N and integers b; (j = 1,...,N’)
with b; = 0 for xp(j) # —1 such that Z;V:1 cjaj—l—Z;.V:l bja; =0 € A(D, xp). By Theorem
5 we may infer that

N
‘I’(Zl, 22) = H ‘I’] (21, Zg)cj
j=1
is an automorphic form of weight —3 Z;\;l ¢jqo(j) with (U) = (f). (Note that U;(z, 22) is
trivially constant for j € N with xp(j) = —1.) Thus U(zy, 22)/f is an automorphic form
without zeros and poles and thereby constant. O

Remark. To prove Theorem 8 and Theorem 9 without the restriction that O contains a unit
of negative norm, one would have to compare the map (47) with a modified Doi-Naganuma
lifting, given by the kernel function Q'(z1, 29, 7) = >, o, nw; (21, 22)e(n7).
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