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Abstrat. In this paper we study the distribution of the oeÆients a(n) of half integral

weight modular forms modulo odd integers M . As a onsequene we obtain improvements of

indivisibility results for the entral ritial values of quadrati twists of L-funtions assoiated

with integral weight newforms established in [O-S℄. Moreover, we �nd a simple riterion for

proving ases of Newman's onjeture for the partition funtion.

1. Introdution and Statement of Results

Suppose that w 2

1

2

Z, that N is a positive integer (with 4 j N if w 62 Z), and that � is

a Dirihlet harater whose ondutor divides N . Let S

w

(N;�) denote the spae of weight

w usp forms with respet to the ongruene subgroup �

0

(N) with Nebentypus harater

� ([K, Sh℄ are standard referenes). As usual, we shall identify every suh usp form f(z)

with its Fourier expansion (where q = e

2�iz

throughout)

f(z) =

1

X

n=1

a(n)q

n

:

Inspired by Kolyvagin's work on the Birh and Swinnerton-Dyer Conjeture and works

of Kohnen, Zagier and Waldspurger relating the oeÆients of half-integral weight Heke

eigenforms to values of modular L-funtions, there have been a number of works on the

indivisiblity of the oeÆients of half-integral weight usp forms. For example, works by

Bruinier, Johnowitz, MGraw, and Ono and Skinner [Br, J, M, O-S℄ imply that if f(z) =

P

1

n=1

a(n)q

n

2 S

�+

1

2

(N;�) \ Z[[q℄℄ is an eigenform whih is not a single variable theta

series, then every suÆiently large prime ` has the property that there are in�nitely many
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2 JAN H. BRUINIER AND KEN ONO

square-free integers n for whih a(n) 6� 0 (mod `). Although this result is satisfying, many

questions remain. For example, it is natural to ask for a preise and natural arithmeti

desription of these primes `.

Muh more is known about the oeÆients of integer weight usp forms. The arithmeti

of Galois representations and the ombinatoris of Heke operators ditate their behavior.

For example, these arguments are very useful for studying the distribution of the oeÆients

moduloM . Using Galois representations and a delightfully simple argument, Serre observed

[6.4, S℄ that there is a set of primes p with positive density with the property that

(1.1) a(np

r

) � (r + 1)a(n) (mod M)

for every pair of positive integers r and n. Obviously, (1.1) implies that eah residue

lass modulo M ontains in�nitely many oeÆients provided that there is an n for whih

gd(a(n);M) = 1.

Half-integral weight usp forms do not neessarily enjoy this property. To see this, notie

that Dedekind's funtion �(24z) := q

Q

1

n=1

(1� q

24n

) 2 S

1

2

(576; �

12

) (here �

12

=

�

12

�

�

) has

the q-expansion

�(24z) =

1

X

n=1

�

12

(n)q

n

2

= q � q

25

� q

49

+ q

121

+ q

169

� � � � :

We begin by determining onditions whih guarantee that a half-integral weight usp form

possesses this property modulo an odd integer M .

Theorem 1. Let f(z) =

P

1

n=1

a(n)q

n

2 S

�+

1

2

(N;�) \ Z[[q℄℄ be a half-integral weight usp

form, and let � be a real Dirihlet harater. If M is an odd integer and there is a positive

integer n for whih gd(a(n);M) = 1, then at least one of the following is true:

(1) If 0 � r < M , then

#f0 � n � X : a(n) � r (mod M)g �

r;M

�

p

X
= logX if 1 � r < M;

X if r = 0:

(2) There are �nitely many square-free integers, say n

1

; n

2

; : : : ; n

t

, for whih

f(z) �

t

X

i=1

1

X

m=1

a(n

i

m

2

)q

n

i

m

2

(mod M):

Moreover if gd(M;N) = 1, � 2 f�1g and p - NM is a prime with

�

n

i

p

�

2 f0; �g

for eah 1 � i � t, then (p � 1)f(z) is an eigenform modulo M of the half-integral

weight Heke operator T (p

2

; �; �). In partiular, we have

(p� 1)f(z) j T (p

2

; �; �) � ��(p)

�

(�1)

�

p

�

(p

�

+ p

��1

)(p� 1)f(z) (mod M):
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Remarks.

(1) For simpliity, the results here are stated for usp forms with integer oeÆients and

real Nebentypus harater. However, we stress that Theorem 1 (2), and Corollaries 2 and

3 apply for any half-integral weight usp form with algebrai integer oeÆients. Theorem

1 (1) requires a minor modi�ation. If � is a suitable algebrai integer and M is a suitable

ideal, then one obtains the frequeny that a(n) � r� (mod M), for every odd number r.

(2) In view of the single variable theta series and those forms ongruent to suh series, it

turns out that the estimates in Theorem 1 (1) are nearly optimal. However, apart from

suh forms, it is plausible that eah residue lass r ontains a positive proportion of a(n)

(mod M).

(3) Conlusions (1) and (2) in Theorem 1 are not neessarily mutually exlusive. In fat,

one may often employ Theorem 1 (2) to prove Theorem 1 (1) (see Theorem 4).

(4) Suppose that f(z) is a Heke eigenform whih is not a single variable theta series. If

f(z) satis�es Theorem 1 (2) and gd(p�1;M) = 1, then Deligne's theorem bounding Heke

eigenvalues requires that M � 2p

��

1

2

.

Theorem 1 has a variety of number theoreti appliations, and we begin with the arith-

meti of the Shimura orrespondene. If f(z) =

P

1

n=1

a(n)q

n

2 S

�+

1

2

(N;�) \ Z[[q℄℄ is a

Heke eigenform, then we address the problem desribed at the outset (i.e. that of obtaining

a preise and purely arithmeti desription of those primes ` for whih there are only �nitely

many square-free n with a(n) 6� 0 (mod `)).

To motivate our result, we reall an example of Kohnen and Zagier [K-Z℄. If �(z) =

P

1

n=1

�(n)q

n

= q�24q

2

+ � � � 2 S

12

(1; �

0

), then Kohnen and Zagier proved that the funtion

f

�

(z) 2 S

13=2

(4; �

0

) de�ned by

f

�

(z) =

1

X

n=1

a(n)q

n

=

60

2�i

(2G

4

(4z)�

0

(z)�G

0

4

(4z)�(z)) = q � 56q

4

+ 120q

5

� : : :

(throughout �

0

denotes the trivial harater) is a preimage of �(z) under the Shimura

orrespondene. Here G

4

(z) is the usual weight 4 Eisenstein series on SL

2

(Z) and �(z) =

1 + 2

P

1

n=1

q

n

2

. It turns out that

(1.2) f

�

(z) =

1

X

n=1

a(n)q

n

�

1

X

n=1

�

n

5

�

q

n

2

(mod 5):

Obviously n = 1 is the only square-free integer for whih a(n) 6� 0 (mod 5). Ramanujan

proved that if p is prime, then

(1.3) �(p) � p+ p

2

(mod 5):

In view of Theorem 1 (2), it is natural to suspet a strong relationship between ongruenes

(1.2) and (1.3).
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In the late 1960s and early 1970s, Serre and Swinnerton-Dyer [SwD℄ employed Deligne's

theory of Galois representations to `explain' ongruenes suh as (1.3). Suppose that F (z) =

P

1

n=1

A(n)q

n

2 S

2�

(N

1

; �

0

) \ Z[[q℄℄ is a normalized Heke eigenform. If ` is prime, then

Deligne proved that there is a Galois representation

(1.4) �

`;F

: Gal(Q =Q) ! GL

2

(Z=`Z)

suh that for every prime p - N

1

` we have

Tr(�

`;F

(Frob

p

)) � A(p) (mod `);

det(�

`;F

(Frob

p

)) � p

2��1

(mod `):

A prime ` � 5 is alled exeptional if Im(�

`;F

(Gal(Q =Q)) does not ontain SL

2

(Z=`Z). The

Serre and Swinnerton-Dyer theory [SwD, R1, R2, R3℄ implies that ongruenes like (1.3)

hold preisely for exeptional primes `. Combining these ideas with Theorem 1, we obtain:

Corollary 2. Suppose that f(z) =

P

1

n=1

a(n)q

n

2 S

�+

1

2

(N

0

; �)\Z[[q℄℄ is an eigenform that

is a preimage of a newform F (z) =

P

1

n=1

A(n)q

n

2 S

2�

(N

1

; �

0

) \ Z[[q℄℄ under the Shimura

orrespondene.

(1) If ` � 5 is a non-exeptional prime for whih ` - N

0

and f(z) 6� 0 (mod `), then

there are in�nitely many square-free integers n for whih a(n) 6� 0 (mod `).

(2) If F (z) has omplex multipliation and ` - N

0

is a prime for whih f(z) 6� 0 (mod `),

then there are in�nitely many square-free integers n for whih a(n) 6� 0 (mod `).

Remark. Every F (z) without omplex multipliation has at most �nitely many exeptional

primes `, and they are easily determined (see [SwD℄, [Th. 2.1, R3℄).

By Kolyvagin's elebrated work on the Birh and Swinnerton-Dyer Conjeture, it is well

known that results like Corollary 2 have many onsequenes for ellipti urves. For example,

reent similar works [Br, J, O-S℄ ontain, for suÆiently large primes `, results regarding the

frequeny of quadrati twists of ellipti urves with analyti rank 0 whose Tate-Shafarevih

groups lak `-torsion, as well as e�etive upper bounds for the order of the `-part of the

Tate-Shafarevih group of ellipti urves with analyti rank 1. Corollary 2 in the present

work yields more preise versions of these results by larifying what is meant for a prime `

to be suÆiently large. Sine the onsequenes (i.e. [Cor. 2-5, O-S℄) follow from [Cor. 1,

O-S℄ in a straightforward way, here we ontent ourselves by stating its improvement.

We begin with some notation. Suppose that F (z) =

P

1

n=1

A(n)q

n

2 S

2k

(N;�

0

) is an

even integer weight newform. If D is the fundamental disriminant of a quadrati �eld whih

is oprime to N , then let (F 
 �

D

)(z) denote the quadrati twist of F (z) de�ned by

(1.5) (F 
 �

D

)(z) =

1

X

n=1

�

D

n

�

A(n)q

n

:
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Moreover, let D

0

be de�ned by

(1.6) D

0

:=

�

jDj if D is odd;

jDj=4 if D is even:

A non-zero omplex number 
 2 C

�

is a nie period for F (z) if

(1.7)

L(F 
 �

D

; k)D

k�

1

2

0




; �D > 0;

is always an algebrai integer. Here L(F 
�

D

; s) denotes the L-funtion of (F 
�

D

)(z), and

� 2 f�1g denotes the sign of the funtional equation of L(F; s), the L-funtion of F (z). If `

is prime and j � j

`

denotes the usual multipliative valuation at ` extended to the algebrai

losure of Q , then we obtain the following improvement of [Cor. 1, O-S℄:

Corollary 3. Let F (z) =

P

1

n=1

A(n)q

n

2 S

2k

(N;�

0

) \ Z[[q℄℄ be an even integer weight

newform, and let � be the sign of the funtional equation for L(F; s). There is a nie period


 for F (z) with the property that every non-exeptional prime ` � 5 with ` - N has in�nitely

many fundamental disriminants D for whih

�D > 0 and

�

�

�

�

�

L(F 
 �

D

; k)D

k�

1

2




�

�

�

�

�

`

= 1:

Theorem 1 also applies to a lassial onjeture in additive number theory. A partition of

a positive integer n is any non-inreasing sequene of positive integers whose sum is n. Let

p(n) denote the number of partitions of n (as usual, we adopt the onvention that p(0) = 1

and p(�) = 0 if � 62 N). If ` � 5 is prime, then de�ne 1 � 

`

< 24 by the ondition

(1.8) 24

`

� 1 (mod `):

If ` = 5; 7 or 11, then Ramanujan proved for every non-negative integer n that

(1.9) p(`n+ 

`

) � 0 (mod `):

Reently we have learned that similar, but more ompliated ongruenes, are quite ommon

(see [A, O℄). For example if M is oprime to 6, then there are integers A and B suh that

for every n we have

p(An+ B) � 0 (mod M):

The ongruene

p(59

4

� 13n+ 111247) � 0 (mod 13)

is a typial example. Although there are many ongruenes, numerial evidene suggests

that ongruenes of the speial form (1.9) only hold for ` = 5; 7 and 11.
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Conjeture R. If ` � 13 is prime, then there are in�nitely many integers n for whih

p(`n+ 

`

) 6� 0 (mod `):

The following lassial onjeture of Newman [N℄ onerns the distribution of the partition

funtion among the omplete set of residue lasses modulo an integer M .

Conjeture N. (Newman) If M is a positive integer, then for every integer 0 � r < M

there are in�nitely many non-negative integers n for whih p(n) � r (mod M).

Works by Atkin, Kolberg and Newman [At, Ko, N℄ veri�ed the onjeture for M = 2; 5; 7

and 13 (note: the M = 11 ase follows similarly). More reently, the seond author and

Ahlgren [A, O℄ obtained an algorithm whih presumably proves the truth of the onjeture

for any given M oprime to 6.

Theorem 1 leads to an interesting onnetion between Conjetures R and N, one whih

produes a simpler algorithm for testing Newman's Conjeture for prime moduli.

Theorem 4. If ` � 5 is prime, then at least one of the following is true:

(1) Newman's Conjeture is true for M = `, and

#f0 � n � X : p(n) � r (mod `)g �

r;`

�

p

X= logX if 1 � r < `;

X if r = 0:

(2) For every integer n we have

p(`n+ 

`

) � 0 (mod `):

In view of this result, Newman's Conjeture for a prime modulus M = ` � 5 follows from

the existene of a single n for whih p(`n+ 

`

) 6� 0 (mod `).

Corollary 5. Conjetures N and R are true for every prime 13 �M < 2� 10

5

.

The proof of Theorem 1 requires Shimura's theory of half-integral weight modular forms,

a result of Serre on the oeÆients of integer weight usp forms, and some ommutation

relations for half-integral weight Heke operators. In x2 we make some preliminary redutions

for the proof of Theorem 1, and in x3 we onlude the proof with an analysis of the ation

of the half-integral weight Heke operators modulo M . In x4 we prove Theorem 4 and

Corollaries 2, 3 and 5.

2. Preliminary redutions

Throughout this setion let M denote an odd integer, and let

(2.1) f(z) =

1

X

n=1

a(n)q

n

2 S

�+

1

2

(N;�) \ Z[[q℄℄
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be a half-integral weight usp form with integer oeÆients and real Dirihlet harater

�. If p - N is prime, then the half-integral weight Heke operator T (p

2

; �; �) is a linear

endomorphism on the spae S

�+

1

2

(N;�) whih is de�ned by

(2.2) f(z) j T (p

2

; �; �) :=

1

X

n=1

�

a(p

2

n) + �

�

(p)

�

n

p

�

p

��1

a(n) + �

�

(p

2

)p

2��1

a(n=p

2

)

�

q

n

:

Here �

�

is the Dirihlet de�ned by �

�

(n) :=

�

(�1)

�

n

�

�(n).

Lemma 2.1. Suppose thatM is an odd integer and p

0

� 1 (mod NM) is a prime for whih

f(z) j T (p

2

; �; �) � 2f(z) (mod M):

If there is a positive integer n

0

for whih

�

n

0

p

0

�

= �1 and gd(a(n

0

);M) = 1, then for every

0 � r < M there are in�nitely many integers n with a(n) � r (mod M).

Proof. By hypothesis, we see that �(p

0

) = 1 and p

0

� 1 (mod 4). Therefore (2.2) implies,

for every positive integer n, that

(2.3) a(np

2

0

) �

�

2�

�

n

p

0

��

a(n)� a(n=p

2

0

) (mod M):

Therefore we �nd that

(2.4) a(n

0

p

2

0

) � 3a(n

0

) (mod M):

Sine

�

n

p

0

�

= 0 if p

0

j n, (2.3) and (2.4) imply that

a(n

0

p

4

0

) � 2a(n

0

p

2

0

)� a(n

0

) � 5a(n

0

) (mod M);

a(n

0

p

6

0

) � 2a(n

0

p

4

0

)� a(n

0

p

2

) � 7a(n

0

) (mod M);

Generally, if k is a positive integer, then

a(n

0

p

2k

0

) � (2k + 1)a(n

0

) (mod M):

Sine gd(a(n

0

);M) = 1, the result follows by varying k.

�

We now turn to the existene of suh primes p

0

. The next result, whih follows from an

observation of Serre and the arithmeti of the Shimura orrespondene, proves that there is

a vast supply of suh primes.
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Lemma 2.2. A positive proportion of the primes p � 1 (mod NM) have the property that

f(z) j T (p

2

; �; �) � 2f(z) (mod M):

Proof. By replaing f(z) by any ongruent form modulo M , we may assume that f(z) is

not a linear ombination of single variable theta series. Hene its image, say F (z), under

the Shimura orrespondene (see [K, Sh℄) is an even integral weight usp form in the spae

S

2�

(N;�

0

) \ Z[[q℄℄. Serre observed [6.4, S℄ that a subset of primes p � 1 (mod NM) with

positive density have the property that

(2.5) F (z) j T

p

(2�; �

0

) � 2F (z) (mod M):

Here T

p

(2�; �

0

) denotes the usual pth Heke operator on the spae S

2�

(N;�

0

). Denote this

set of primes by S(f;M). Sine the Shimura orrespondene ommutes with the Heke

operators for the spaes S

�+

1

2

(N;�) and S

2�

(N;�

0

), if p 2 S(f;M), then (2.5) implies that

f(z) j T (p

2

; �; �

12

) � 2f(z) (mod M):

�

Using Lemma 2.2 and Lemma 2.1, we now make an important observation.

Theorem 2.3. If there is a positive integer n for whih gd(a(n);M) = 1, then at least one

of the following is true:

(1) If 0 � r < M , then there are in�nitely many integers n for whih a(n) � r (mod M).

(2) There are �nitely many square-free integers, say n

1

< n

2

< � � � < n

t

, for whih

f(z) �

t

X

i=1

1

X

m=1

a(n

i

m

2

)q

n

i

m

2

(mod M):

Proof. As in the proof of Lemma 2.2, let S(f;M) denote the set of primes p � 1 (mod NM)

for whih

f(z) j T (p

2

; �; �) � 2f(z) (mod M):

Suppose that (1) is false. If p 2 S(f;M), then Lemma 2.1 implies that every n 2 Z

+

with

gd(a(n);M) = 1 has the property that

(2.6)

�

n

p

�

2 f0; 1g:

Let n

1

< n

2

< : : : denote the sequene of square-free positive integers with the property

there is an integer m

i

for whih a(n

i

m

2

i

) 6� 0 (mod M). By (2.6), eah n

i

has the property

that

�

n

i

p

�

2 f0; 1g for every prime p 2 S(f;M). By quadrati reiproity, S(f;M) annot

ontain a positive proportion of the prime numbers if there are in�nitely many suh n

i

's.

Therefore there are �nitely many square-free integers, say n

1

< n

2

< � � � < n

t

, suh that

f(z) �

t

X

i=1

1

X

m=1

a(n

i

m

2

)q

n

i

m

2

(mod M):

�
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3. Heke eigenvalues modulo M and the proof of Theorem 1

Here we onsider the arithmeti of those modular forms f(z) satisfying Theorem 2.3 (2).

To do so, we prove a general statement regarding the eigenvalues of the half-integral weight

Heke operators moduloM . As in the last setion, throughout we assume thatM is an odd

integer, and that

(3.1) f(z) =

1

X

n=1

a(n)q

n

2 S

�+

1

2

(N;�) \ Z[[q℄℄

is a half-integral weight usp form with integer oeÆients and real harater �.

First we reall some operators on the spae S

�+

1

2

(N;�) (see [S-St, Br℄). The Frike

involution W

N

: S

�+

1

2

(N;�)! S

�+

1

2

(N; (

N

�

)�) is de�ned by

(3.2) f(z) jW

N

= (�i

p

Nz)

���1=2

f(�1=Nz):

If m is a positive integer, then let B

m

: S

�+

1

2

(N;�) ! S

�+

1

2

(Nm

2

; �) be the projetion

de�ned by

(3.3) f(z) j B

m

=

1

X

n=1

a(mn)q

mn

:

Finally, if  is a Dirihlet harater with ondutorm and d(z) =

P

1

n=1

(n)q

n

2 S

�+

1

2

(N;�),

then let d

 

(z) 2 S

�+

1

2

(Nm

2

; � 

2

) denote the twist of d(z) by  :

(3.4) d

 

(z) =

1

X

n=1

 (n)(n)q

n

:

These operators satisfy various ommutation relations (see [S-St℄, [Br℄). For instane, if

p - N is prime, then the twist by the quadrati harater ' =

�

�

p

�

and the Frike involution

W

Np

2

satisfy [(3), Br℄

(3.5) f

'

jW

Np

2

= �

�

(p)

�

p

1=2

f jW

N

j B

p

� p

�1=2

f jW

N

�

:

Theorem 3.1. Let M be a positive integer that is oprime to N , and let p - NM be prime.

If there is an � 2 f�1g for whih

f(z) �

X

(

n

p

)

2f0;�g

a(n)q

n

(mod M);

then

(p� 1)f(z) j T (p

2

; �; �) � ��

�

(p)(p

�

+ p

��1

)(p� 1)f(z) (mod M):
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Proof of Theorem 3.1. We argue in a similar way as in the proof of [Th. 1, Br℄. Without

loss of generality we may assume that N is a square. Let g(z) 2 S

�+

1

2

(N;�) be the usp

form de�ned by

(3.6) g(z) =

1

X

n=1

b(n)q

n

= f(z) jW

N

:

Let ' =

�

�

p

�

and de�ne

(3.7) h(z) = f � f j B

p

� �f

'

= 2

X

'(n)=��

a(n)q

n

:

By hypothesis, we have that h(z) � 0 (mod M).

We onsider the twist of g(z) with the Dirihlet harater '. The ommutation relation

(3.5) implies that

g

'

jW

Np

2

= �

�

(p)

�

p

1=2

f j B

p

� p

�1=2

f

�

= �

�

(p)

�

p

1=2

� p

�1=2

�

f � ��

�

(p)p

1=2

f

'

� �

�

(p)p

1=2

h:

If we apply W

Np

2

one again and use (3.5) for f

'

(z), we get

g

'

= �

�

(p)

�

p

1=2

� p

�1=2

�

f jW

Np

2

+ �g � �pg j B

p

� �

�

(p)p

1=2

h jW

Np

2

:

We substitute

(f jW

Np

2

)(z) = p

�+1=2

(f jW

N

)(p

2

z) = p

�+1=2

g(p

2

z)

and obtain the power series identity

1

X

n=1

'(n)b(n)q

n

= �

�

(p)

�

p

�+1

� p

�

�

1

X

n=1

b(n)q

p

2

n

� �(p� 1)

1

X

n=1

b(n)q

n

+ �p

X

gd(n;p)=1

b(n)q

n

� �

�

(p)p

1=2

h jW

Np

2

:

Sine f(z) has oeÆients in Z, the q-expansion priniple on the modular urve X

0

(N)

implies that the oeÆients b(n) of g(z) are ontained in Z[1=N; �

N

℄. Here �

N

denotes a

primitive N -th root of unity. Beause h(z) � 0 (mod M), we �nd in the same way that

the oeÆients of h j W

Np

2

are ontained in the prinipal ideal MA of the ring A :=

Z[1=Np

2

; �

Np

2

℄ (see also [Lemma 1, Br℄). Notie that the assumption gd(M;Np) = 1 is

needed here.

For b 2 A we write b � 0 (mod M), if b 2 MA. >From the identity (3.7) we obtain the

following ongruenes for the oeÆients b(n) modulo M :

(1) If p does not divide n, then b(n) � �'(n)b(n) (mod M).

(2) If pjn and p

2

does not divide n, then (p� 1)b(n) � 0 (mod M).

(3) If p

2

jn, then (p� 1)b(n) � ��

�

(p)p

�

(p� 1)b(n=p

2

) (mod M).
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Inserting these ongruenes into (2.2), the formula for g(z) j T (p

2

; �; �), we �nd that

(p� 1)g(z) j T (p

2

; �; �) � ��

�

(p)(p

�

+ p

��1

)(p� 1)g(z) (mod M):

The theorem now follows from the fat that the Frike involution W

N

ommutes with the

Heke operator T (p

2

; �; �).

�

Proof of Theorem 1. In view of Theorems 2.3 and 3.1, it suÆes to prove the estimates in

Theorem 1 (1). By Theorem 2.3, for eah 0 � r < M , there is a positive integer n

r

for whih

(3.8) a(n

r

) � r (mod M):

Obviously, we have f(z) 2 S

�+

1

2

(2N

Q

r

n

r

; �). Hene arguing as before, [6.4, S℄ and the

ommutativity of Shimura's orrespondene implies that a positive proportion of the primes

p � �1 (mod 2MN

Q

r

n

r

) have the property that

f(z) j T (p

2

; �; �) � 0 (mod M):

Call this set of primes Z(f;M). If p 2 Z(f;M), then (2.2) implies for eah n

r

that

(3.9) a(p

2

n

r

) � (�1)

�

�

�

(�1)

�

n

r

p

�

r (mod M):

Suppose that n

r

has the prime fatorization n

r

= 2

e(r)

Q

i

p

i;r

, where eah p

i;r

is odd.

Sine every p 2 Z(f;M) satis�es p � �1 (mod 8) and p � �1 (mod p

i;r

), by quadrati

reiproity we have

�

n

r

p

�

=

�

2

p

�

e(r)

Y

i

�

p

i;r

p

�

=

�

2

p

�

e(r)

Y

i

�

p

p

i;r

��

�1

p

i;r

�

=

Y

i

�

1

p

i;r

�

= 1:

Therefore for every p 2 Z(f;M), (3.9) implies that

a(p

2

n

r

) � (�1)

�

�

�

(�1)r (mod M):

For eah p these values onstitute a omplete set of representatives for the residue lasses

modulo M . By varying p, we �nd that

#f0 � n � X : a(n) � r (mod M)g �

p

X= logX:

For the r = 0 estimate, notie that if p 2 Z(f;M), then for all n (2.2) implies that

a(p

2

n) � ��

�

(p)

�

n

p

�

p

��1

a(n)� p

2��1

a(n=p

2

) (mod M):

By replaing n by np where p - n, this beomes

a(p

3

n) � �p

2��1

a(n=p) � 0 (mod M):

This immediately implies that a proportion of n have a(n) � 0 (mod M).

�
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4. Number Theoreti Appliations

Here we onsider the number theoreti onsequenes of Theorem 1 desribed in x1.

Proof of Corollary 2. Begin by observing that if f(z) is an eigenform, then (2.2) implies

that for square-free n we have a(n) j a(nm

2

) for all m. Therefore, if a(nm

2

) 6� 0 (mod `),

then a(n) 6� 0 (mod `).

Suppose that there are �nitely many square-free integers, say n

1

; n

2

; : : : ; n

t

, for whih

f(z) �

t

X

i=1

1

X

m=1

a(n

i

m

2

)q

n

i

m

2

(mod `):

By Theorem 1 (2), there are arithmeti progressions of primes r

j

(mod TN

0

`), for some

positive integer T , with the property that

f(z) j T (p

2

; �; �) � ��

�

(r

j

)(r

�

j

+ r

��1

j

)f(z) (mod `)

for every prime p � r

j

(mod `). Moreover, these residue lasses r

j

(mod TN

0

`) over at

least (`� 3)=2 many residue lasses modulo ` (note. this depends on whether ` divides any

n

i

).

Sine the oeÆient A(p) is the eigenvalue of f(z) with respet to the Heke operator

T (p

2

; �; �) (by the de�nition of Shimura's orrespondene), for primes p � r

j

(mod TN

0

`)

we obtain the ongruene

(4.1) A(p) � ��

�

(r

j

)(r

�

j

+ r

��1

j

) (mod `):

Case (1). If ` is non-exeptional, the Chebotarev Density Theorem, the uniform distribution

of Frob

p

in the Galois group, and an an easy generalization of [Lemma 7, SwD℄ implies that

the A(p) do not satisfy any ongruenes like (4.1). Therefore there are in�nitely many

square-free integers n with a(n) 6� 0 (mod `).

Case (2). Suppose that F (z) has omplex multipliation. By (4.1), it is easy to see that

A(p) � 0 (mod `) only for those primes p above for whih p � �1 (mod `). However, sine

` - N

0

, every residue lass r (mod N

0

) with gd(r;N

0

)=1 ontains some suh primes p with

p 6� �1 (mod `). In partiular, eah lass ontains primes p for whih A(p) 6� 0 (mod `).

However this is a ontradition; for if F (z) had omplex multipliation, then there would

be a disriminant D dividing N

0

with the property that A(p) = 0 for every prime p with

�

D

p

�

= �1. Hene there are in�nitely many square-free n for whih a(n) 6� 0 (mod `).

�

Proof of Corollary 3. There is a twist F

�

; �(�1) = (�1)

k

�, satisfying Hypotheses H1 and H2

of [pp. 377-378 , Wal℄. By [Th�eor�eme 1, Wal℄ there is an integer N

0

, a non-zero eigenform

f(z) =

P

1

n=1

a(n)q

n

2 S

k+

1

2

(N

0

) suh that N jN

0

, and a period 
 suh that for eah

fundamental disriminant D for whih �D > 0

a(D

0

)

2

=

(

"

D

L(F
�

D

;k)D

k�

1

2

0




if D

0

is relatively prime to 4N

0

;

0; otherwise,
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where "

D

is an algebrai integer with j"

D

j

`

= 1. The result now follows from Corollary 2 by

saling 
 appropriately.

�

Proof of Theorem 4. By [Th. 8, O℄, there is a half-integral weight usp form F

`

(z) =

P

1

n=1

a

`

(n)q

n

2 S

�

`

+

1

2

(576`; �

12

) \ Z[[q℄℄ for whih

(4.2) F

`

(z) �

X

n�0;

`n��1 (mod 24)

p

�

`n+ 1

24

�

q

n

(mod `):

Here �

`

= (`

2

� `�2)=2 and �

12

:=

�

12

�

�

. This is the k = 1 ase of [Th. 8, O℄. Although this

theorem asserts that these forms are on the ongruene subgroup �

0

(576`), the proof shows

that they are indeed on �

0

(576). To see this, observe that the U(`) operator modulo ` is the

`th Heke operator for modular forms on SL

2

(Z), and that �(24`z) � �(24z)

`

(mod `). Now

observe that the oeÆients of F

`

(z) (mod `) are preisely the values p(`n + 

`

) (mod `).

Moreover, observe that if a

`

(n) 6� 0 (mod `), then gd(n; 24) = 1.

If Theorem 1 (1) is false for F

`

(z), then by Theorem 1 (2) there are �nitely many square-

free integers, say n

1

; n

2

; : : : ; n

t

, for whih

(4.3) F

`

(z) �

t

X

i=1

1

X

m=1

a

`

(n

i

m

2

)q

n

i

m

2

(mod `):

Without loss of generality, we may assume that

(4.4) 0 6� F

`

(z) �

1

X

m=1

a

`

(n

1

m

2

)q

n

1

m

2

(mod `):

This is easily aomplished by reursively replaing F

`

(z) by a suitable linear ombination

of trivial and quadrati twists.

Fix an integer n

0

for whih a

`

(n

0

) 6� 0 (mod `). As before, we have that gd(n

0

; 24) = 1.

If P

`

denotes the set of primes that are primitive roots modulo `, then for all but �nitely

many primes p 2 P

`

we may apply Theorem 1 (2) with � =

�

n

0

p

�

.

If p

0

- n

0

is suh a prime, then we have

a

`

(p

2

0

n

0

) � �

�

n

0

p

0

�

�

�

12

(p

0

)p

�1

a

`

(n

0

) (mod `);

a

`

(p

4

0

n

0

) � p

�2

a

`

(n

0

) (mod `):

This follows from (2.2), Theorem 1 (2), the fat p

0

is a quadrati non-residue modulo `, and

the fat that �

`

= `(`� 1)=2� 1. More generally, for every positive integer k we have

(4.5) a

`

(p

2k

0

n

0

) �

(

�

�

n

0

p

0

�

�

�

12

(p

0

)p

�k

0

a

`

(n

0

) (mod `) if k is odd;

p

�k

0

a

`

(n

0

) (mod `) if k is even.
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Sine gd(n

0

; 24) = 1, we may selet suh a prime p

0

with the additional property that

�

�

n

0

p

0

�

�

�

12

(p

0

) = 1. Sine p

0

is a primitive root modulo `, (4.5) then implies that eah non-

zero residue lass r (mod `) ontains in�nitely many a

`

(n). One obtains estimates in these

ases by arguing as in the proof of Theorem 1. Similarly, one obtains the r � 0 (mod `)

ase by arguing again in the proof of Theorem 1.

�

Proof of Corollary 5. By Theorem 4, if there is a single n for whih p(`n+ 

`

) 6� 0 mod `,

then Newman's Conjeture is true for `. Moreover, sine F

`

(z) (mod `) annot be a non-zero

polynomial, there must be in�nitely many n for whih p(`n + 

`

) 6� 0 (mod `). A simple

program yields this result.

�
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