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1 Introduction

Let k be an integer and N a positive integer divisible by 4. If ` is a prime denote

by v

`

a continuation of the usual `-adic valuation on Q to a �xed algebraic

closure. Let f be a modular form of weight k + 1=2 with respect to �

0

(N) and

Nebentypus character � which has integral algebraic Fourier coe�cients a(n),

and put v

`

(f) = inf

n

v

`

(a(n)). Suppose that f is a common eigenform of all

Hecke operators T (p

2

) with corresponding eigenvalues �

p

.

In a recent paper, Ono and Skinner (under the additional assumption that

f is \good") proved the following theorem [OnSk]: For all but �nitely many

primes ` there exist in�nitely many square-free integers d for which v

`

(a(d)) = 0.

Their proof uses the theory of `-adic Galois representations. Similar results

were obtained by Jochnowitz [Jo] by developing a theory of half-integral weight

modular forms modulo ` analogous to the integral weight theory due to Serre,

Swinnerton-Dyer and Katz.

Results of this type can be viewed as mod ` versions of a well known theorem

of Vign�eras about the non-vanishing of Fourier coe�cients of half-integral weight

modular forms [Vi]. A new proof for this was given by the author [Br].

In the present paper we extend the method introduced in [Br] to the mod `

situation and thereby obtain a new approach to the above stated theorem and

certain generalizations.

We shall use an application of the q-expansion principle of arithmetic alge-

braic geometry (Lemma 1) and exploit the properties of various well known op-

erators de�ned on modular forms to infer our �rst result (Theorem 1). Roughly

speaking it states that if for a given prime p and a given " 2 f�1g all Fourier

coe�cients a(n) with

�

n

p

�

= " vanish modulo `, then the Hecke eigenvalue �

p

satis�es a certain congruence modulo `.

Under the (obviously necessary) assumption that f is not a linear combi-

nation of elementary theta series of weight 1=2 or 3=2, one can deduce several

non-vanishing theorems. For instance in Theorem 4 we shall show that there

exists a �nite set A

N

(f) of primes which has an explicit description in terms

of the eigenvalues �

p

with the property: For every prime ` with (`;N) = 1,

v

`

(f) = 0 and ` =2 A

N

(f) there are in�nitely many square-free d such that

�
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2 JAN H. BRUINIER

v

`

(a(d)) = 0. Note that we do not need the notion of a \good" modular form.

Theorem 2 and Theorem 3 contain certain re�nements.

In the last section we will briey indicate some applications. By the works

of Waldspurger [Wa], Kohnen and Zagier [KoZa, Koh2] the results above have

interesting consequences for the study of critical values of twisted L-series at-

tached to newforms of weight 2k (Theorem 5). Moreover, one can consider the

Cohen-Eisenstein series of level 4 and weight k + 1=2 to �nd indivisibility re-

sults for special values L(1� k; �

D

) of Dirichlet L-series (Theorem 6). Finally,

we shall give a generalization of results due to Horie [Ho2] on the existence of

certain in�nite families of imaginary quadratic �elds (Theorem 7).

Acknowledgments. I am indebted to Winfried Kohnen whose suggestions

improved the content of this paper. Moreover I would like to thank Ken Ono

for some useful comments.

2 Notation

Let GL

+

2

(R) denote the group of all real 2�2-matrices with positive determinant.

GL

+

2

(R) acts on the upper complex half plane H by Moebius transformations.

As in [Sh2] we denote by G the set of ordered pairs (�; �(z)), where � 2 GL

+

2

(R)

with last row (c d), and � is a holomorphic function on H with the property

�

2

(z) = t det�

�1=2

(cz + d) (where jtj = 1). A group structure is de�ned on G

by the multiplication law (�; �(z))(�;  (z)) = (��; �(�z) (z)).

For an integer k, the group G acts on the set of holomorphic functions

f : H ! C by

f j

k+

1

2

� = f j � = �(z)

�2k�1

f(�z); � = (�; �(z)) 2 G:

As usual, this operation can be extended to the group algebra C [G] by

f j

k+

1

2

X

�

c

�

�

�

:=

X

�

c

�

f j

k+

1

2

�

�

for

X

�

c

�

�

�

2 C [G]:

Write �

0

for the trivial character, and if M is a non-zero integer, let �

M

denote the quadratic character corresponding to Q(

p

M).

Let k be a non-negative integer, N a positive integer divisible by 4, and � a

Dirichlet character modulo N . We denote byM

k+

1

2

(N;�) the space of modular

forms of weight k+

1

2

with respect to �

0

(N) with Nebentypus character � (in the

sense of [Sh2]). The subspace of cusp forms is denoted by S

k+

1

2

(N;�). (Spaces

of modular forms of integral weight occurring in the applications section will be

denoted in an analogous way.)

For instance the standard theta function �(z) =

P

1

n=�1

e(n

2

z) (where

e(z) := exp(2�iz)) is a modular form of weight 1=2 with respect to �

0

(4).

Moreover, for a primitive Dirichlet character  modulo r and a positive integer

m we have the Shimura theta function

�

 ;m

(z) =

1

X

n=�1

 (n)n

�

e(n

2

mz); (1)

where � is taken to be 0 resp. 1, if  is an even resp. odd character. It is shown

in [Sh2] x2 that

�

 ;m

2M

1

2

(4r

2

m;�

m

 ) if � = 0;
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�

 ;m

2 S

3

2

(4r

2

m;�

�m

 ) if � = 1:

Serre and Stark proved that every modular form in M

1

2

(N;�) is a linear com-

bination of suitable theta series with even character of the above type [SeSt].

Let S

�

3

2

(N;�) denote the orthogonal complement (with respect to the Pe-

tersson inner product) of the subspace of S

3

2

(N;�), which is spanned by theta

series �

 ;m

with odd character  . According to [Ci] or [St], S

�

3

2

(N;�) maps to

S

2

(N=2; �

2

) under the Shimura lifting. For k � 2 we put for notational conve-

nience S

�

k+

1

2

(N;�) := S

k+

1

2

(N;�). Thus by [Sh2, Ni] and the results cited above,

for every integer k � 1 we have the Shimura lifting which maps S

�

k+

1

2

(N;�) to

S

2k

(N=2; �

2

).

For each rational prime ` let v

`

denote the `-adic valuation on Q (recall the

convention v

`

(0) = 1). Fix algebraic closures

�

Q of Q and

�

Q

`

of Q

`

and an

embedding of

�

Q into

�

Q

`

. Thereby a continuation of v

`

to

�

Q is de�ned which

we also denote by v

`

. For two elements a, b of the valuation ring O

`

= fz 2

�

Q ; v

`

(z) � 0g we write a � b (mod `), if a � b is contained in the maximal

ideal of O

`

. Furthermore, for an integer n we write `jjn if `jn and ` does not

divide n=`.

We de�ne a continuation of v

`

to the algebra

�

Q [[q]] of formal power series by

v

`

(f) = inffv

`

(a(n)) ; n � 0g for f =

1

X

n=0

a(n)q

n

2

�

Q [[q]]:

Obviously, if c 2

�

Q and f; g 2

�

Q [[q]], we have v

`

(cf) = v

`

(c) + v

`

(f) and

v

`

(fg) � v

`

(f) + v

`

(g).

3 Operators

In the following section we briey recall the properties of some operators de�ned

on M

k+

1

2

(N;�). Let f =

P

1

n=0

a(n)e(nz) 2M

k+

1

2

(N;�) and put

W

N

=

��

0 �1

N 0

�

; N

1=4

(�iz)

1=2

�

2 G:

Then the Fricke involution is given by f 7! f j

k+

1

2

W

N

. It takes M

k+

1

2

(N;�) to

M

k+

1

2

(N;

�

N

�

�

��). Let m be a positive integer and

V

m

= m

�k=2�1=4

��

m 0

0 1

�

;m

�1=4

�

2 C [G]:

The shift f 7! f j

k+

1

2

V

m

induces a map fromM

k+

1

2

(N;�) toM

k+

1

2

(Nm;

�

m

�

�

�),

and f j

k+

1

2

V

m

=

P

1

n=0

a(n)e(nmz).

If r is a real number, let �(r) = (

�

1 r

0 1

�

; 1). For a primitive Dirichlet character

 mod m we introduce the twist-operator. We put

f

 

= f j

k+

1

2

 

1

W (

�

 )

X

u mod m

�

 (u)�(u=m)

!

;
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where W ( ) denotes the Gauss sum of  . Then f

 

has the Fourier expansion

f =

P

1

n=0

 (n)a(n)e(nz). The twist with  gives a map to M

k+

1

2

(Nm

2

; � 

2

).

Furthermore, if we de�ne

B

m

=

1

m

X

u mod m

�(u=m) 2 C [G]

we have a projection operator f 7! f j

k+

1

2

B

m

=

P

1

n=0

a(mn)e(mnz). The latter

is an element ofM

k+

1

2

(Nm

2

; �). This can be proved by an obvious modi�cation

of [Sh2] Lemma 3.6.

For a prime p one has the Hecke operator T (p

2

) as de�ned in [Sh2] which

takes M

k+

1

2

(N;�) to itself. Let f jT (p

2

) =

P

1

n=0

c(n)e(nz). Then the action

of T (p

2

) on the Fourier coe�cients is given by

c(n) = a(p

2

n) + �

�

(p)

�

n

p

�

p

k�1

a(n) + �

�

(p

2

)p

2k�1

a(n=p

2

)

where �

�

=

�

�1

�

�

k

�. (Recall the convention a(x) = 0 for a number theoretic

function a, if x =2 N

0

.)

All operators introduced above are linear and take S

�

k+

1

2

(N;�) to a suitable

S

�

k+

1

2

(N

0

; �

0

). Moreover, they satisfy the following commutation relations :

For a positive integer m one immediately veri�es

W

Nm

= m

k=2+1=4

W

N

V

m

: (2)

Now let p be a prime not dividing N and ' the primitive Dirichlet character

de�ned by '(x) =

�

x

p

�

. For brevity de�ne g = f jW

N

. Then the identity

f

'

jW

Np

2

= �

�

(p)

�

p

1=2

g jB

p

� p

�1=2

g

�

(3)

holds (see [Sh2] x5). Note that by Mellin transform (3) is equivalent to the

functional equation of the twisted Dirichlet series

P

n�1

�

n

p

�

a(n)n

�s

. From

(2) and (3) one immediately infers

f jB

p

jW

Np

2

= �

�

(p)p

�1=2

g

'

+ p

k�1=2

g jV

p

2

: (4)

Moreover the identity

pf jB

p

2

jW

Np

4

= �(p

2

)

�

pg jB

p

2

� g jB

p

�

+ �

�

(p)p

k

g

'

jV

p

2

+ p

2k

g jV

p

4

(5)

will be needed. As (5) is not standard, we briey indicate how it can be proved:

If we de�ne for the moment

C

p

2

=

1

p

2

X

u mod p

2

(u;p)=1

�(u=p

2

) 2 C [G];

then B

p

2

= C

p

2

+

1

p

B

p

. In the usual way (as e.g. in [Sh2] Prop. 5.1) one easily

shows

f jC

p

2

jW

Np

4

= �(p

2

)g jC

p

2

:
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Now using (2) and (4) the stated equality can be deduced.

As above let p be a prime not dividing N . Then an easy calculation shows

f jW

N

jT (p

2

) = ��(p

2

)f jT (p

2

) jW

N

: (6)

If m is a positive integer prime to p and  is a quadratic character modulo m,

one has

f jB

m

jT (p

2

) = f jT (p

2

) jB

m

;

f

 

jT (p

2

) = (f jT (p

2

))

 

: (7)

4 Results

Recall that N always denotes a positive integer divisible by 4 and � a Dirichlet

character modulo N . Let k be an integer, k � 1, and put �

�

:=

�

�1

�

�

k

�. For

a modular form f of integral weight k and level N , let us also denote the usual

Fricke-involution by W

N

. Thus f j

k

W

N

= f j

k

�

0 �1

N 0

�

= N

�k=2

z

�k

f(�

1

Nz

).

We need the following fundamental lemma:

Lemma 1. Let f be a modular form of weight k + 1=2 with respect to �

1

(N),

whose Fourier coe�cients a(n) are algebraic integers. Let ` be a prime not

dividing N . Then f jW

N

has algebraic Fourier coe�cients and v

`

(f jW

N

) =

v

`

(f).

Let us �rst give a proof of an analogous statement for a modular form f

of integral weight. By [Sh1] Th. 3.52, the Fourier coe�cients a(n) of f are

contained in a �nite extension K of Q. Since O

K;`

= fz 2 K ; v

`

(z) � 0g is

a discrete valuation ring, we may multiply f with a suitable power of a local

parameter of the maximal ideal of O

K;`

, in order to normalize v

`

(f) = 0. Then it

su�ces to show that f jW

N

has algebraic Fourier coe�cients and v

`

(f jW

N

) �

0, i.e. that the coe�cients of the expansion at the cusp 0 are all contained in O

`

.

This follows immediately from the well known q-expansion principle, which is a

deeper fact (see [DeRa] Th. VII 3.9 or [Katz] x1.6). Note that the assumption

(`;N) = 1 is needed here. We will reduce Lemma 1 to this result, by multiplying

with �.

Proof of Lemma 1. Let m be a positive integer and q = e

2�iz

. Then �j

1

2

V

m

is

invertible in Z[[q]], since its constant term equals 1, and (�j

1

2

V

m

)

�1

also has the

constant term 1. Therefore v

`

(�j

1

2

V

m

) = v

`

((�j

1

2

V

m

)

�1

) = 0 and

v

`

(f) � v

`

((� jV

m

)

�1

)+v

`

(� jV

m

�f) = v

`

(� jV

m

�f) � v

`

(� jV

m

)+v

`

(f) = v

`

(f);

which shows

v

`

(f) = v

`

(� jV

m

� f): (8)

Since �f is a modular form of weight k + 1 with respect to �

1

(N), by

the earlier result (�f)j

k+1

W

N

has algebraic Fourier coe�cients and v

`

(�f) =

v

`

((�f)j

k+1

W

N

). If we write N = 4M , we have

�j

1

2

W

N

=M

1=4

�j

1

2

W

4

j

1

2

V

M

=M

1=4

�j

1

2

V

M

:
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Thus f j

k+

1

2

W

N

has algebraic Fourier coe�cients, and with (8) and (`;M) = 1

we get

v

`

(f) = v

`

(�f) = v

`

((�f)j

k+1

W

N

) = v

`

(�j

1

2

V

M

� f j

k+

1

2

W

N

) = v

`

(f j

k+

1

2

W

N

):

This proves the lemma.

For the rest of this section (unless otherwise speci�ed) let f 2 M

k+

1

2

(N;�)

be a modular form with integral algebraic Fourier coe�cients a(n) (n 2 N

0

) and

de�ne g =

P

1

n=0

b(n)e(nz) = f jW

N

. By Lemma 1 the b(n) are algebraic.

Lemma 2. Let p be a prime not dividing N and ` a prime with v

`

(f) = 0 and

(`;Np(p�1)) = 1. Then there is an n 2 N which is prime to p with v

`

(a(n)) = 0.

Proof. Since v

`

(f) = 0 by Lemma 1 we �nd v

`

(g) = 0. Using the assumption

(`; p(p � 1)) = 1 we see v

`

�

p

1=2

g jB

p

� p

�1=2

g

�

= 0. If we put ' =

�

�

p

�

, then

according to (3) we have

f

'

= �

�

(p)

�

p

1=2

g jB

p

� p

�1=2

g

�

jW

Np

2
:

By Lemma 1 we conclude v

`

(f

'

) = 0 and this implies the assertion.

Theorem 1. Assume that N is a square. Let p be a prime not dividing N and

' =

�

�

p

�

. Further, let ` be a prime with (`;Np(p � 1)) = 1 and v

`

(f) = 0.

Suppose that f is an eigenform of T (p

2

) with corresponding eigenvalue �

p

.

1. Let " 2 f�1g and

h := f j (1�B

p

)� "f

'

= 2

X

n�0

'(n)=�"

a(n)e(nz):

Assume that � := v

`

(h) > 0, then v

`

�

�

p

� "�

�

(p)(p

k

+ p

k�1

)

�

� �.

2. Let d

�

be a square-free positive integer with v

`

(b(d

�

m

2

)) = 0 for an m 2 N.

De�ne

H := f jB

p

� f jB

p

2

=

X

n�0

pjjn

a(n)e(nz)

and assume that � := v

`

(H) > 0. Then d

�

is prime to p and the congruence

v

`

�

�

p

�

�

d

�

p

�

�

�

(p)(p

k

+ p

k�1

)

�

� � holds.

Note that the assumption that N is a square means no restriction, because

f can always be considered as a modular form of level N

2

without violating the

conditions on p and `. Moreover, note that according to Lemma 1 v

`

(f) = 0

implies v

`

(g) = 0. Thus by Lemma 2 there always exists a d

�

as required in the

second part.

Proof. 1. Since h 2M

k+

1

2

(Np

2

; �) and ` is prime to Np by Lemma 1 we have

v

`

(h) = v

`

(h jW

Np

2

) = �: (9)
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We consider the twist of g with ' and use (3):

g

'

jW

Np

2

= ��

�

(p)

�

p

1=2

f jB

p

� p

�1=2

f

�

= ��

�

(p)

�

p

1=2

(f � "f

'

� h)� p

�1=2

f

�

= ��

�

(p)

�

p

1=2

� p

�1=2

�

f � "��

�

(p)p

1=2

f

'

� ��

�

(p)p

1=2

h

Applying W

Np

2

for a second time yields:

g

'

= ��

�

(p)

�

p

1=2

� p

�1=2

�

p

k+1=2

f jW

N

V

p

2

� " (pg jB

p

� g)� ��

�

(p)p

1=2

h jW

Np

2

= ��

�

(p)

�

p

k+1

� p

k

�

g jV

p

2
+ "g � "pg jB

p

� ��

�

(p)p

1=2

h jW

Np

2

Thus we get an identity of power series

1

X

n=0

�

n

p

�

b(n)e(nz) = ��

�

(p)

�

p

k+1

� p

k

�

1

X

n=0

b(n=p

2

)e(nz)

� "(p� 1)

1

X

n=0

b(n)e(nz) + "p

1

X

n=0

(n;p)=1

b(n)e(nz)

� ��

�

(p)p

1=2

h jW

Np

2

: (10)

By (9) we have v

`

(��

�

(p)p

1=2

h jW

Np

2

) = �. Hence, comparing Fourier coe�-

cients in (10) we obtain the following congruences:

(i) If p does not divide n, then v

`

��

n

p

�

b(n)� "b(n)

�

� �.

(ii) If pjn and p

2

does not divide n, we get v

`

("(p� 1)b(n)) � �. Since ` is

prime to p� 1, we obtain v

`

(b(n)) � �.

(iii) If p

2

jn, we see after division by p� 1 that

v

`

�

b(n)� "��

�

(p)p

k

b(n=p

2

)

�

� �: (11)

Now put g jT (p

2

) =

P

1

n=0

c(n)e(nz). Since p is prime to N and f jT (p

2

) =

�

p

f , by (6) one has

g jT (p

2

) = f jW

N

jT (p

2

) = ��(p

2

)f jT (p

2

) jW

N

= ��(p

2

)�

p

g;

and therefore

c(n) = ��(p

2

)�

p

b(n) for all n 2 N. (12)

On the other hand we know

c(n) = b(p

2

n) + ��

�

(p)

�

n

p

�

p

k�1

b(n) + ��

�

(p

2

)p

2k�1

b(n=p

2

):

If we consider this equation modulo ` and use (i){(iii) above, we obtain for every

non-negative integer n by an easy calculation

v

`

�

c(n)� "��

�

(p)

�

p

k

+ p

k�1

�

b(n)

�

� �: (13)
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Comparing (12) and (13) gives

v

`

�

��(p

2

)�

p

b(n)� "��

�

(p)

�

p

k

+ p

k�1

�

b(n)

�

� �:

Since v

`

(g) = 0, there exists an n with v

`

(b(n)) = 0. For this n we may divide

by b(n) and get

v

`

�

�

p

� "�

�

(p)

�

p

k

+ p

k�1

��

� �:

This proves the �rst part of the lemma.

2. The proof of the second part is based on the same idea. Since H 2

M

k+

1

2

(Np

4

; �) and ` is prime to Np, by Lemma 1 we have

v

`

(H) = v

`

(H jW

Np

4

) = �: (14)

As above we consider the twist of g with ':

g

'

jW

Np

2

= ��

�

(p)

�

p

1=2

f jB

p

� p

�1=2

f

�

= ��

�

(p)

�

p

1=2

f jB

p

2
� p

�1=2

f

�

+ ��

�

(p)p

1=2

H

p

1=2

g

'

jW

Np

2

jW

Np

4

= ��

�

(p)pf jB

p

2

jW

Np

4

� ��

�

(p)f jW

Np

4

+ ��

�

(p)pH jW

Np

4

Using (2) and (5) we obtain

p

k

(p� 1)g

'

jV

p

2

= �

�

(p)

�

pg jB

p

2

� g jB

p

�

� ��

�

(p)p

2k

(p� 1)g jV

p

4

+ ��

�

(p)pH jW

Np

4

; (15)

where v

`

(��

�

(p)pH jW

Np

4

) = � according to (14). Carefully comparing Fourier

coe�cients and using (`; (p � 1)) = 1 we �nd for every square-free d 2 N and

every positive integer m:

(i) v

`

�

b(dm

2

p

2

)�

�

d

p

�

��

�

(p)p

k

b(dm

2

)

�

� �.

(ii) v

`

�

b(dm

2

)

�

� �, if pjd.

The latter congruence implies (p; d

�

) = 1. Again, denote the Fourier coe�-

cients of g jT (p

2

) by c(n). In the same way as in the �rst part we �nd

v

`

�

c(dm

2

)�

�

d

p

�

��

�

(p)

�

p

k

+ p

k�1

�

b(dm

2

)

�

� �

and therefore

v

`

�

�

p

b(dm

2

)�

�

d

p

�

�

�

(p)

�

p

k

+ p

k�1

�

b(dm

2

)

�

� � (16)

for every square-free d and every positive integer m.

Applying (16) for d

�

and an m 2 N with v

`

(b(d

�

m

2

)) = 0 we infer

v

`

�

�

p

�

�

d

�

p

�

�

�

(p)

�

p

k

+ p

k�1

�

�

� �:

This concludes the proof of the second part.
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Corollary 1. Let p, ', f , �

p

, ` be de�ned as in Theorem 1. For " 2 f�1g de�ne

w

"

= v

`

�

�

p

� "�

�

(p)(p

k

+ p

k�1

)

�

. 1. There is an integer m

"

with '(m

"

) = �"

and v

`

(a(m

"

)) � w

"

. 2. Let d

�

be a square-free positive integer with (p; d

�

) = 1

and v

`

(b(d

�

m

2

)) = 0 for an m 2 N. Then there is an integer m

0

with pjjm

0

and

v

`

(a(m

0

)) � w

'(d

�

)

.

Proof. 1. Suppose that there is no suchm

"

. Then using the notation of Theorem

1 we have v

`

(h) > w

"

. (Note that the Fourier coe�cients of f are contained

in a �nite extension of Q.) Hence, we �nd v

`

�

�

p

� "�

�

(p)(p

k

+ p

k�1

)

�

> w

"

, a

contradiction. 2. The second statement can be proved in a completely analogous

way.

Lemma 3. Let p, ', f , �

p

be de�ned as in Theorem 1 and " 2 f�1g. As in

Corollary 1 put w

"

= v

`

�

�

p

� "�

�

(p)(p

k

+ p

k�1

)

�

. Further, let m

�

be a positive

integer with '(m

�

) = " and assume that ` is a prime not dividing Np(p � 1)

such that v

`

(a(m

�

)) = 0. Then there exist in�nitely many square-free integers

d, such that '(d) = �" and v

`

(a(dm

2

d

)) � w

"

for an integer m

d

.

Proof. If w

"

= 1 we have nothing to prove, so let us assume w

"

< 1. We

are going to show by induction on t that there are integers m

1

; : : : ;m

t

and

distinct square-free integers d

1

; : : : ; d

t

, with '(d

j

) = �" and v

`

(a(d

j

m

2

j

)) � w

"

for j = 1; : : : ; t.

For t = 1 the assertion follows from Corollary 1.

Now let t > 1. According to the above argument, there is a square-free

integer d

1

and an integer m

1

, such that

v

`

(a(d

1

m

2

1

)) � w

"

; and

�

d

1

p

�

= �":

Thus, in particular d

1

is di�erent from the square-free part of m

�

. We can

choose a prime q with

(q; `) = 1; (q; p) = 1;

�

m

�

q

�

= +";

�

d

1

q

�

= �":

(In fact, there exist in�nitely many such primes.) Put  =

�

�

q

�

and

f

1

=

1

2

(f j (1�B

q

) + "f

 

) 2M

k+

1

2

(Nq

2

; �):

If we denote the Fourier coe�cients of f

1

by a

1

(n), we have

f

1

=

1

X

n=0

a

1

(n)e(nz) with a

1

(n) =

�

a(n) if  (n) = ",

0 if  (n) 6= ".

(17)

By (17) we �nd in particular a

1

(m

�

) = a(m

�

), and therefore v

`

(f

1

) = 0.

Further, we have a

1

(d

1

m

2

) = 0 for all m 2 N.

Since by (7)

f

1

jT (p

2

) =

1

2

�

f j (1�B

q

) jT (p

2

) + "f

 

jT (p

2

)

�

= �

p

f

1

;

we may apply the induction assumption on f

1

. Thus there exist t � 1 distinct

square-free integers d

2

; : : : ; d

t

and integers m

2

; : : : ;m

t

, such that '(d

j

) = �"
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and v

`

(a

1

(d

j

m

2

j

)) � w

"

. Hence, in particular a

1

(d

j

m

2

j

) 6= 0 and thereby d

1

6= d

j

for j = 2; : : : ; t.

Now d

1

; : : : ; d

t

satisfy the desired properties (for f):

'(d

j

) = �"; v

`

(a(d

j

m

2

j

)) � w

"

for j = 1; : : : ; t.

In order to get non-trivial statements by Corollary 1 and Lemma 3 we now

have to show that in the relevant situations �

p

6= "�

�

(p)(p

k

+ p

k�1

).

Lemma 4. Let p be a prime and �

p

an eigenvalue of the Hecke operator T (p

2

)

on S

�

k+

1

2

(N;�). Then the estimate j�

p

j < p

k

+ p

k�1

holds.

Proof. Via Shimura lifting (see [Sh2], [Ni], [Ci], [St]) �

p

also is an eigenvalue of

the Hecke operator T (p) on S

2k

(N=2; �

2

). The assertion now follows for instance

from a simple estimate due to Kohnen [Koh1] (which applies to our situation

by an obvious modi�cation).

Remark. The numbers �

�

(p)(p

k

+ p

k�1

) occur as eigenvalues of the restriction

of T (p

2

) on the space spanned by Shimura theta series (as de�ned in (1)).

Theorem 2. Let ` be a prime not dividing N and suppose that f is a common

eigenform of all T (p

2

) with corresponding eigenvalues �

p

. Assume that there is

an m

�

2 N with v

`

(a(m

�

)) = 0. Put

w(f ; `;m

�

) = min

p

v

`

�

�

p

�

�

m

�

p

�

�

�

(p)(p

k

+ p

k�1

)

�

;

where the minimum is taken over all primes p with (p;N`m

�

) = 1 and p 6� 1

(mod `). Then there are in�nitely many square-free integers d with v

`

(a(d)) �

w(f ; `;m

�

).

Proof. We may choose a prime p with (p;N`m

�

) = 1, p 6� 1 (mod `) and

v

`

�

�

p

�

�

m

�

p

�

�

�

(p)(p

k

+ p

k�1

)

�

= w(f ; `;m

�

):

Then by Lemma 3 it su�ces to prove the following

Lemma 5. Assume that f is a Hecke eigenform. Let ` be a prime and d a

positive square-free integer. Then for every m 2 N the relation v

`

(a(dm

2

)) �

v

`

(a(d)) holds.

Proof by induction on m. For m = 1 we have nothing to prove. Let m > 1 and

choose a prime q dividing m and de�ne m

1

by m

1

q = m. Since f jT (q

2

) = �

q

f ,

one has

a(dm

2

) =

�

�

q

� �

�

(q)

�

dm

2

1

q

�

q

k�1

�

a(dm

2

1

)� �(q

2

)q

2k�1

a(dm

2

1

=q

2

):

Considering v

`

(�

q

) � 0 (�

q

is an algebraic integer) and k � 1 we obtain

v

`

(a(dm

2

)) � minfv

`

(a(dm

2

1

)); v

`

(a(dm

2

1

=q

2

))g:

Hence the assertion follows from the induction assumption.
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Before we state the next result, let us �rst introduce some notation. For a

prime p and an algebraic integer � we de�ne

A(p; �) =

�

q 2 N prime; v

q

(�� "�(p)(p

k

+ p

k�1

)) > 0 for an " = �1

	

;

A

0

(p; �) = A(p; �) [ fq 2 N prime ; qj(p� 1)g [ fpg :

If �

p

is an eigenvalue of the Hecke operator T (p

2

) on S

�

k+

1

2

(N;�) then

#A(p; �

p

) <1 according to Lemma 4.

Theorem 3. Let p

1

; : : : ; p

r

be distinct primes not dividing N , and put '

j

=

�

�

p

j

�

for j = 1; : : : ; r. Let "

1

; : : : ; "

r

2 f�1; 0;+1g. Suppose that f is a common

eigenform of all T (q

2

) with corresponding eigenvalues �

q

. Let ` be a prime not

dividing N with v

`

(f) = 0 and ` =2

S

r

j=1

A

0

(p

j

; �

p

j

). Then there exist in�nitely

many square-free integers d, such that

'

j

(d) = "

j

for every j = 1; : : : ; r and v

`

(a(d)) = 0:

Proof. By Lemma 5 it su�ces to prove the existence of in�nitely many square-

free integers d with '

j

(d) = "

j

for every j = 1; : : : ; r and v

`

(a(dm

2

d

)) = 0 for a

suitable integer m

d

. This will be done by induction on r.

For r = 1 and "

1

2 f�1g the assertion follows from Corollary 1 and Lemma

3. If r = 1 and "

1

= 0, in view of Lemma 1 and 2 there is an n 2 N with

(n; p

1

) = 1 and v

`

(b(n)) = 0. Hence, by Corollary 1 and the assumption on

` there exists an m 2 N with p

1

jjm and v

`

(a(m)) = 0. Moreover there is an

m

�

2 N with (m

�

; p

1

) = 1 and v

`

(a(m

�

)) = 0. The assertion can be deduced

by an inductive argument similar to the proof of Lemma 3. We leave it to the

reader to carry out the details.

Now let r > 1. De�ne

f

1

=

(

1

2

(f j (1�B

p

1

) + "

1

f

'

1

) 2M

k+

1

2

(Np

2

1

; �) if "

1

2 f�1g,

f jB

p

1

� f jB

p

2

1

2M

k+

1

2

(Np

4

1

; �) if "

1

= 0.

In the same way as in (17) f

1

has the Fourier expansion

f

1

=

X

n�0

'

1

(n)="

1

a(n)e(nz) if "

1

2 f�1g, resp.

X

n�0

p

1

jjn

a(n)e(nz) if "

1

= 0,

and according to Corollary 1 we have v

`

(f

1

) = 0 (if "

1

= 0, one has to argue as

indicated above). Moreover, by (7) we see f

1

jT (p

2

j

) = �

p

j

f

1

for j = 2; : : : ; r.

Applying the induction assumption on f

1

concludes the proof.

Finally we state a non-vanishing result comparable to Theorem 2 but not

depending on the existence of a particular m

�

2 N with v

`

(a(m

�

)) = 0.

For an eigenform f of all T (q

2

) with corresponding eigenvalues �

q

(q prime,

(q;N) = 1) put

A

N

(f) =

\

q prime

(q;N)=1

A

0

(q; �

q

): (18)

Theorem 4. Suppose that f 2M

k+

1

2

(N;�) is a common eigenform of all T (q

2

)

with corresponding eigenvalues �

q

(q prime). Then for every prime ` with

(`;N) = 1, v

`

(f) = 0 and ` =2 A

N

(f) there exist in�nitely many square-free

integers d, such that v

`

(a(d)) = 0.
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Proof. Since ` =2 A

N

(f), there is a prime p with (p;N) = 1 and ` =2 A

0

(p; �

p

).

Thus the statement follows from Theorem 3.

5 Applications

1. Critical values of twisted L-series attached to newforms of weight 2k. Let

M be an odd square-free integer and M

+

k+

1

2

(M) resp. S

+

k+

1

2

(M) the subspace of

M

k+

1

2

(4M;�

0

) resp. S

�

k+

1

2

(4M;�

0

) consisting of forms having a Fourier expan-

sion

P

1

n=0

c(n)e(nz) with c(n) = 0 unless (�1)

k

n � 0; 1 (mod 4) (cf. [Koh2]).

Let F =

P

1

n=1

a(n)e(nz) be a normalized newform in S

2k

(M;�

0

) and denote

by �

p

the corresponding eigenvalue of T (p) (p prime) and by w

q

the eigenvalue

of the Atkin-Lehner involution at q (q prime, qjM). If D is an integer, then

denote by L(s;F; �

D

) the twisted L-series

P

1

n=1

�

D

(n)a(n)n

�s

attached to F .

According to [Koh2] the spaces S

2k

(M;�

0

) and S

+

k+

1

2

(M) are isomorphic as

modules over the Hecke algebra. Via this isomorphism, there is an eigenform

g =

P

1

n=1

c(n)e(nz) in S

+

k+

1

2

(M), uniquely determined up to multiplication

with a non-zero complex number, such that

L(k;F; �

D

)jDj

k�1=2

= �

0

(M)

�1

�

k

(k � 1)!

hF; F i

hg; gi

jc(jDj)j

2

(19)

for any fundamental discriminant D, for which (�1)

k

D > 0 and �

D

(q) = w

q

for each prime q dividing M .

If on the contrary D is a fundamental discriminant with �

D

(q) 6= w

q

for

some prime divisor q of M , then c(jDj) = 0. We may now deduce

Theorem 5. For a normalized newform F in S

2k

(M;�

0

), there exists a non-

zero complex number 
 (which is an algebraic multiple of a period of F ) with

the property: For any odd prime ` with (`;M) = 1 and ` =2 A

4M

(F ), there are

in�nitely many fundamental discriminants D with (�1)

k

D > 0 and

v

`

�

L(k;F; �

D

)jDj

k�1=2




�

= 0:

2. Indivisibility of special values of Dirichlet L-series. Let k be an even

positive integer and let ` be a prime such that `� 1 does not divide 2k. Denote

by H

k+

1

2

the Cohen-Eisenstein series of weight k+

1

2

(cf. [Co]), normalized such

that

H

k+

1

2

=

1

X

n=0

c(n)e(nz) = �(1� 2k) + �(1� k)e(z) + : : : :

Cohen showed that H

k+

1

2

is an eigenform inM

+

k+

1

2

(1) with corresponding eigen-

values �

2k�1

(p) (p prime). Furthermore, if D > 0 is a fundamental discriminant

then

c(D) = L(1� k; �

D

);

where L(s; �

D

) denotes the Dirichlet L-series attached to �

D

. It is well known

that L(1 � k; �

D

) = �B

k;�

D

=k with the k-th generalized Bernoulli number
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B

k;�

D

. Hence, by the Staudt-Clausen theorem and results of Carlitz on gener-

alized Bernoulli numbers [Ca], the c(n) are `-integral.

According to Dirichlet's theorem on primes in arithmetic progressions we

may choose a prime p � 3 such that the reduction of p modulo ` generates

the multiplicative group (Z=`Z)

�

. Then p 6� 0; 1 (mod `) and it can be easily

checked that ` does not divide �

2k�1

(p) � p

k

� p

k�1

. By Theorem 2 (applied

with m

�

= 1) we �nd

Theorem 6. Let ` be a prime such that `� 1 does not divide 2k and v

`

(�(1�

k)) = 0. Then there are in�nitely many fundamental discriminants D > 0 with

v

`

(L(1� k; �

D

)) = 0.

Obviously, an analogous result could be deduced for odd k � 3. Theorem 3

could be applied to �nd a similar statement where the discriminants D satisfy

prescribed local conditions at given primes.

I am indebted to W. Kohnen for pointing out the following application of

Theorem 6. By the work of Mazur and Wiles [MaWi], if F is a real quadratic

�eld and O

F

its ring of integers then the order of the corresponding K

2

-group

is given by

#K

2

O

F

= 2

�

w

2

(F )j�

F

(�1)j;

where � is an integer, and �

F

denotes the zeta function of F . If F has discrim-

inant D, then �

F

(�1) = �(�1)L(�1; �

D

). Moreover, w

2

(F ) denotes the largest

positive integer n such that the Galois group Gal(F (�

n

)=F ) has exponent 2

(here �

n

is a primitive n-th root of unity). By elementary Galois theory it can

be seen that Gal(F (�

n

)=F ) is equal to the multiplicative group (Z=nZ)

�

or to

a subgroup of index 2. Hence, for every prime ` � 7 we �nd v

`

(w

2

(F )) = 0.

Applying Theorem 6 for k = 2 we infer the following

Corollary 2. Let ` be a prime � 7. Then there exist in�nitely many real

quadratic �elds F such that K

2

O

F

contains no element of order `.

3. Indivisibility of class numbers of imaginary quadratic �elds. For a fun-

damental discriminant D let as usual h(D) denote the class number of Q(

p

D).

In the following we shall give a generalization of results due to Horie on the

existence of certain in�nite families of imaginary quadratic �elds (Th. 1, Th. 2

in [Ho2]). For related results also see [Ho1] and [HoOn].

Theorem 7. Let p

1

; : : : ; p

r

be distinct odd primes and "

1

; : : : ; "

r

2 f�1; 0;+1g.

Let ` be a prime � 5 such that ` does not divide p

j

(p

j

�1)(p

j

+1) for j = 1; : : : ; r.

Then there are in�nitely many fundamental discriminants D < 0 for which h(D)

is not divisible by ` and

�

D

p

j

�

= "

j

for j = 1; : : : ; r.

Proof. Consider the theta series �

3

(z) =

P

n�0

r(n)e(nz) 2M

3=2

(4; �

0

). By the

work of Gauss it is known that

r(n) =

8

>

<

>

:

12H(4n) if n � 1; 2 (mod 4),

24H(n) if n � 3 (mod 8),

r(n=4) if n � 0 (mod 4),

0 if n � 7 (mod 8),

(20)
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whereH(n) denotes the Hurwitz-Kronecker class number for n � 0; 3 (mod 4).

If �n = Dm

2

with a fundamental discriminant D < 0, then

H(n) =

h(D)

w(D)

X

tjm

�(t)

�

D

t

�

�

1

(m=t);

where w(D) is half the number of units in Q(

p

D).

Since M

3=2

(4; �

0

) is one dimensional, �

3

is an eigenform of all T (p

2

) and

�

3

jW

4

= �

3

. In view of (20) it su�ces to show that there are in�nitely many

square-free d 2 N with

�

d

p

j

�

= "

j

(j = 1; : : : ; r) and v

`

(r(d)) = 0.

Unfortunately, in this particular case Theorem 3 does not apply because

�

3

jT (p

2

) = �

1

(p)�

3

for every odd prime p. However, one can use Lemma 1 and

Lemma 3 in a direct way to prove the assertion.

For a modular form f , a prime p and an " 2 f�1; 0;+1g put ' =

�

�

p

�

and

f j B

p;"

=

�

1

2

(f j (1�B

p

) + "f

'

) if " 2 f�1g,

f jB

p

� f jB

p

2

if " = 0.

For 0 � t � r de�ne

M

t

= p

1

� : : : � p

t

; f

t

= �

3

j B

p

1

;"

1

j : : : j B

p

t

;"

t

2M

3=2

(4M

4

t

; �

0

);

and denote the constant term of f

t

jW

4M

4

t

by b

t

(0).

We claim that v

`

(b

t

(0)) = 0 for all 0 � t � r. For t = 0 this is obvious and

for t > 0 using (3), (4) and (5) the constant term b

t

(0) can be easily computed:

b

t

(0) =

(

p

t

2

�

p

t

+ "

t

�

�1

p

t

��

(p

t

� 1)b

t�1

(0) if "

t

2 f�1g,

(1� p

�1

t

)(p

2

t

� 1)b

t�1

(0) if "

t

= 0.

Hence, the claim follows by induction.

Now v

`

(b

r

(0)) = 0 implies v

`

(f

r

jW

4M

4

r

) � 0. Hence, by Lemma 1 and the

de�nition of f

r

we �nd v

`

(f

r

) = 0. If we write f

r

=

P

n�0

a(n)e(nz), then for

every integer m and every square-free d we have a(dm

2

) = r(dm

2

), whenever

�

d

p

j

�

= "

j

for all j = 1; : : : ; r and (m;M

r

) = 1; and otherwise a(dm

2

) = 0.

Furthermore, f

r

is an eigenform of all primes p with (p;M

r

) = 1.

Let m

�

2 N with v

`

(a(m

�

)) = 0 and choose a prime p with

�

�m

�

p

�

= �1,

p 6� �1 (mod `) and (p; 4M

r

`) = 1. Then by Lemma 3 there exist in�nitely

many square-free d such that

�

d

p

�

= �

�

m

�

p

�

and v

`

(a(dm

2

d

)) = 0 for anm

d

2 N.

Now the assertion follows by an argument similar to Lemma 5.
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