Non-vanishing modulo £ of Fourier coefficients of
half-integral weight modular forms
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1 Introduction

Let &k be an integer and N a positive integer divisible by 4. If £ is a prime denote
by v, a continuation of the usual Z-adic valuation on Q to a fixed algebraic
closure. Let f be a modular form of weight k + 1/2 with respect to ['o(N) and
Nebentypus character x which has integral algebraic Fourier coefficients a(n),
and put ve(f) = inf, ve(a(n)). Suppose that f is a common eigenform of all
Hecke operators T'(p?) with corresponding eigenvalues \,.

In a recent paper, Ono and Skinner (under the additional assumption that
f is “good”) proved the following theorem [OnSk]: For all but finitely many
primes £ there exist infinitely many square-free integers d for which v, (a(d)) = 0.
Their proof uses the theory of f-adic Galois representations. Similar results
were obtained by Jochnowitz [Jo] by developing a theory of half-integral weight
modular forms modulo ¢ analogous to the integral weight theory due to Serre,
Swinnerton-Dyer and Katz.

Results of this type can be viewed as mod £ versions of a well known theorem
of Vignéras about the non-vanishing of Fourier coefficients of half-integral weight
modular forms [Vi]. A new proof for this was given by the author [Br].

In the present paper we extend the method introduced in [Br] to the mod ¢
situation and thereby obtain a new approach to the above stated theorem and
certain generalizations.

We shall use an application of the g-expansion principle of arithmetic alge-
braic geometry (Lemma 1) and exploit the properties of various well known op-
erators defined on modular forms to infer our first result (Theorem 1). Roughly
speaking it states that if for a given prime p and a given £ € {£1} all Fourier

coefficients a(n) with (%) = ¢ vanish modulo /, then the Hecke eigenvalue A,

satisfies a certain congruence modulo /.

Under the (obviously necessary) assumption that f is not a linear combi-
nation of elementary theta series of weight 1/2 or 3/2, one can deduce several
non-vanishing theorems. For instance in Theorem 4 we shall show that there
exists a finite set Ax(f) of primes which has an explicit description in terms
of the eigenvalues A\, with the property: For every prime ¢ with (¢, N) = 1,
ve(f) = 0 and £ ¢ An(f) there are infinitely many square-free d such that
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ve(a(d)) = 0. Note that we do not need the notion of a “good” modular form.
Theorem 2 and Theorem 3 contain certain refinements.

In the last section we will briefly indicate some applications. By the works
of Waldspurger [Wa], Kohnen and Zagier [KoZa, Koh2] the results above have
interesting consequences for the study of critical values of twisted L-series at-
tached to newforms of weight 2k (Theorem 5). Moreover, one can consider the
Cohen-Eisenstein series of level 4 and weight k + 1/2 to find indivisibility re-
sults for special values L(1 — k, xp) of Dirichlet L-series (Theorem 6). Finally,
we shall give a generalization of results due to Horie [Ho2] on the existence of
certain infinite families of imaginary quadratic fields (Theorem 7).

Acknowledgments. 1 am indebted to Winfried Kohnen whose suggestions
improved the content of this paper. Moreover I would like to thank Ken Ono
for some useful comments.

2 Notation

Let GL (R) denote the group of all real 2x2-matrices with positive determinant.
GLF (R) acts on the upper complex half plane H by Moebius transformations.
As in [Sh2] we denote by G the set of ordered pairs (a, ¢(z)), where a € GLF (R)
with last row (¢ d), and ¢ is a holomorphic function on H with the property
$*(z) = tdet aY/?(cz + d) (where |t| = 1). A group structure is defined on G
by the multiplication law (o, ¢(2))(8,¥(2)) = (af, ¢(82)Y(z)).

For an integer k, the group G acts on the set of holomorphic functions
f:H— Cby

flivié=F1E=0(z) > flaz), &= (a,0(2) €C.
As usual, this operation can be extended to the group algebra C[G] by

fliss Db =D euflpsrbs for > & € CG]

Write xo for the trivial character, and if M is a non-zero integer, let xas
denote the quadratic character corresponding to @(\/ M)

Let £ be a non-negative integer, IV a positive integer divisible by 4, and x a
Dirichlet character modulo N. We denote by M, 1 (N, x) the space of modular

forms of weight k+% with respect to ['g(N) with Nebentypus character x (in the
sense of [Sh2]). The subspace of cusp forms is denoted by S;., 1 (N,x). (Spaces
of modular forms of integral weight occurring in the applications section will be
denoted in an analogous way.)

For instance the standard theta function 6(z) = Y .>2 _ e(n?z) (where
e(z) := exp(2miz)) is a modular form of weight 1/2 with respect to [o(4).
Moreover, for a primitive Dirichlet character ¢» modulo r and a positive integer

m we have the Shimura theta function

Opm(2) = Y $(n)n"e(n’mz), (1)

n=—oo

where v is taken to be 0 resp. 1, if ¢ is an even resp. odd character. It is shown
in [Sh2] §2 that

Oym € My (4r*m, Xm¥) if v=0,
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Opm € S% (4r*m, X)) if v=1.

Serre and Stark proved that every modular form in M} (N, x) is a linear com-
bination of suitable theta series with even character of the above type [SeSt].
Let S%(N,x) denote the orthogonal complement (with respect to the Pe-
2

tersson inner product) of the subspace of S 3 (N, x), which is spanned by theta
series Oy, with odd character ¢. According to [Ci] or [St], S5 (IV, x) maps to
2

S5(N/2,x?) under the Shimura lifting. For k& > 2 we put for notational conve-
nience Sk+ 1 (N, X) := S 1 (N, x)- Thus by [Sh2, Ni] and the results cited above,
for every 1nteger k>1we have the Shimura lifting which maps Sk+1 (N, x) to

For each rational prime ¢ let vy denote the ¢-adic valuation on Q (recall the
convention v,(0) = oo). Fix algebraic closures Q of Q and @, of Q and an
embedding of Q into Q. Thereby a continuation of v, to Q is defined which
we also denote by vy. For two elements a, b of the valuation ring O, = {2z €
Q; ve(z) > 0} we write a = b (mod ¢), if a — b is contained in the maximal
ideal of O,. Furthermore, for an integer n we write £||n if £|n and ¢ does not
divide n/¢.

We define a continuation of v, to the algebra Q[[q]] of formal power series by

ve(f) = inf{ve(a(n)); n >0} for f= Z n)q" € Qllall.

n=0

Obviously, if ¢ € Q and f,g € Q[[q]], we have vi(cf) = v(c) + ve(f) and
ve(f9) = ve(f) + ve(g)-

3 Operators

In the following section we briefly recall the properties of some operators defined
on My, 1(N,x). Let f = S pa(n)e(nz) € M, 1 (N, x) and put

Wy = << ]?f _01 >,N1/4(—z’z)1/2> xes

Then the Fricke involution is given by f — f|. 1 Wx. It takes M 1 (N, x) to
My 1 (N, (%) x). Let m be a positive integer and

Vip = m~R/21/4 (( ’g ? ) ,m1/4> € C[G).

The shift f — f|k+%Vm induces a map from M,H%(N,)() to M,H%(Nm, (m) X)s
and flp 1 Vin = Yoo a(n)e(nmz).

If r is a real number, let £(r) = (((1) 1), 1). For a primitive Dirichlet character

1 mod m we introduce the twist-operator. We put

fw=f|k+;< Y d(u U/m>,

umodm
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where W (1)) denotes the Gauss sum of ¢. Then f,, has the Fourier expansion
f =300 ¥(n)a(n)e(nz). The twist with ¢ gives a map to My, 1 (Nm?, xv?).
Furthermore, if we define

1
B, = — &(u/m) € CIG
m Igm (u/m) € C[G]
we have a projection operator f — f|; 1 By = o2 ga(mn)e(mnz). The latter
is an element of My 1 (N m?2,x). This can be proved by an obvious modification
of [Sh2] Lemma 3.6.
For a prime p one has the Hecke operator T'(p®) as defined in [Sh2] which
takes M, 1(N,x) to itself. Let f|T(p?) = 32,7 c(n)e(nz). Then the action
of T'(p?) on the Fourier coefficients is given by

n

wn=wﬁm+xwm(—

p)ﬁ”d@+xﬁﬂﬁ“%mm%

where x* = (’—1)]c X- (Recall the convention a(z) = 0 for a number theoretic

function a, if xgé No.)
All operators introduced above are linear and take S;+l (N, x) to a suitable
2
S,:+l (N’,x"). Moreover, they satisfy the following commutation relations:
2

For a positive integer m one immediately verifies
WNm = mk/2+1/4WNVm. (2)

Now let p be a prime not dividing N and ¢ the primitive Dirichlet character
defined by () = (%) For brevity define g = f|Wyx. Then the identity

fol Wape = x*(p) (pl/Qg | By — p‘l/Qg) (3)

holds (see [Sh2] §5). Note that by Mellin transform (3) is equivalent to the
functional equation of the twisted Dirichlet series ) -, (%) a(n)n=*%. From

(2) and (3) one immediately infers

FIBy [ Wiy = X*(p)p g, + 1" 29| Ve, (4)

Moreover the identity

pf| By |Wipse = x(0°) (pg| Bpe — 9| Bp) + X" (0)¥ 90 | Vie + 0 g | Vs (5)

will be needed. As (5) is not standard, we briefly indicate how it can be proved:
If we define for the moment

1
Cp== > &u/p’)edal,
p u mod p2
(=1
then B2 = Cp2 + 3 Bp. In the usual way (as e.g. in [Sh2] Prop. 5.1) one easily
shows

F1Cp2 | Wit = x(9*)g| Cpe.
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Now using (2) and (4) the stated equality can be deduced.
As above let p be a prime not dividing N. Then an easy calculation shows

FIWNIT®®) = x(®)fIT®)| Wy (6)

If m is a positive integer prime to p and ¢ is a quadratic character modulo m,
one has

FIT®*)| B,
(FIT®*)e- (7)

f1Bm | T(p?)
fol T(P?)

4 Results

Recall that IV always denotes a positive integer divisible by 4 and x a Dirichlet
character modulo N. Let k£ be an integer, £ > 1, and put x* := (’—1)]c x. For
a modular form f of integral weight k and level NV, let us also denote the usual
Fricke-involution by Wy. Thus f|,Wn = f|k(2,_01) = N_k/Qz_kf(—%).

We need the following fundamental lemma:

Lemma 1. Let f be a modular form of weight k + 1/2 with respect to T'y(N),
whose Fourier coefficients a(n) are algebraic integers. Let £ be a prime not
dividing N. Then f| Wy has algebraic Fourier coefficients and vi(f |Wn) =

ve(f).

Let us first give a proof of an analogous statement for a modular form f
of integral weight. By [Sh1] Th. 3.52, the Fourier coefficients a(n) of f are
contained in a finite extension K of Q. Since Ox = {2z € K; ve(z) > 0} is
a discrete valuation ring, we may multiply f with a suitable power of a local
parameter of the maximal ideal of Ok ¢, in order to normalize v¢(f) = 0. Then it
suffices to show that f| Wy has algebraic Fourier coefficients and v,(f | Wn) >
0, i.e. that the coefficients of the expansion at the cusp 0 are all contained in O,.
This follows immediately from the well known g-expansion principle, which is a
deeper fact (see [DeRa] Th. VII 3.9 or [Katz] §1.6). Note that the assumption
(¢, N) = 1is needed here. We will reduce Lemma 1 to this result, by multiplying
with 6.

Proof of Lemma 1. Let m be a positive integer and ¢ = e>™%*. Then 0LV is
invertible in Z[q]], since its constant term equals 1, and (6], Vi)t also has the
constant term 1. Therefore v (6|1 Vi) = vg((0|%Vm)*1) =0 and

ve(f) > 0e((0 ] Vin) ™" ) +0e(0 | Vin - f) = 0e(0| Vi f) > 02(8 | Vi) +0e(f) = ve(f),
which shows
ve(f) = ve(0] Vin - f)- (8)

Since #f is a modular form of weight k¥ + 1 with respect to I'1(N), by
the earlier result (6f)|x+1Wx has algebraic Fourier coefficients and v,(0f) =
ve((0f)k+1Wn). If we write N = 4M, we have

Ol W = MY, Wil Vir = MY9], Viy.
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Thus f|,,1 W has algebraic Fourier coefficients, and with (8) and (¢, M) =1
we get

ve(f) = ve(0f) = ve(ON) k1 Wn) = 0Bt Var - flis s WN) = 0e(flip 1 W)

This proves the lemma. [l

For the rest of this section (unless otherwise specified) let f € M, 1 (N, x)
be a modular form with integral algebraic Fourier coefficients a(n) (n € Ny) and
define g = 377 b(n)e(nz) = f|Wx. By Lemma 1 the b(n) are algebraic.

n=0

Lemma 2. Let p be a prime not dividing N and £ a prime with v,(f) =0 and
(¢, Np(p—1)) = 1. Then there is ann € N which is prime to p with v,(a(n)) = 0.

Proof. Since v;(f) = 0 by Lemma 1 we find vy(g) = 0. Using the assumption
(L,p(p—1)) =1 we see vy (p1/2g | B, —p’1/2g) = 0. If we put ¢ = (;), then
according to (3) we have

fo=x"(p) (pl/Qg | By — p‘mg) | W2
By Lemma 1 we conclude v,(f,) = 0 and this implies the assertion. |

Theorem 1. Assume that N is a square. Let p be a prime not dividing N and
Y = (5) Further, let £ be a prime with (¢, Np(p — 1)) = 1 and v,(f) = 0.

Suppose that f is an eigenform of T (p?) with corresponding eigenvalue \,.
1. Let e € {£1} and

h:==f|(1-Bp) —cf, =2 Z a(n)e(nz).

n>0
e(n)=—c

Assume that v :=ve(h) > 0, then ve (Ap —ex*(p)(P* + p*~1)) > v.
2. Let d* be a square-free positive integer with vy (b(d*m?)) = 0 for anm € N.
Define
H:=f|B,—f|By =) a(n)e(nz)

n>0
plln

and assume that p := ve(H) > 0. Then d* is prime to p and the congruence
Vg (/\p - (d—p*) X" (p) (¥ +pk_1)) > 1 holds.

Note that the assumption that N is a square means no restriction, because
f can always be considered as a modular form of level N2 without violating the
conditions on p and ¢. Moreover, note that according to Lemma 1 v,(f) = 0
implies v;(g) = 0. Thus by Lemma 2 there always exists a d* as required in the
second part.

Proof. 1. Since h € M, 1 (Np?,x) and / is prime to Np by Lemma 1 we have

2

Ug(h) = Uz(h | Wsz) = V. (9)
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We consider the twist of g with ¢ and use (3):
901 Wpe = X'0) (0°F1B, —p7'/2F)
= 0 (P2 —ef =) = 12)
= X0 (02 =) e 2 — X' R
Applying Wi p2 for a second time yields:

9, = X*(p) (pl/z’—p*m) pE2 f | W Ve

—e(pg| By — 9) — X" (0)p'2h | Wi
= ') (" = ") g| Ve +eg —epg| By — X*(0)p" 20| Wiy

Thus we get an identity of power series

5 (B)pmena) = x0) (5 =) 3 b))
—e(p—1) Z b(n)e(nz) +ep Z b(n)e(nz)
n=0 (npr=1
— X ()P0 | Wirpe. (10)

By (9) we have v (x*(p)p'/2h|Wy,2) = v. Hence, comparing Fourier coeffi-
cients in (10) we obtain the following congruences:

(i) If p does not divide n, then v, ((%) b(n) — sb(n)) > .

(i) If p|n and p* does not divide n, we get vy (e(p — 1)b(n)) > v. Since £ is
prime to p — 1, we obtain vy(b(n)) > v.

(iii) If p?|n, we see after division by p — 1 that

v (b(n) —ex* (p)p*b(n/p%)) > v. (11)

Now put g|T'(p?) = 3o, c(n)e(nz). Since p is prime to N and f|T(p?) =
Apf, by (6) one has

g|T(P*) = fFIWN|T®*) = x0) fIT®*) | WNn = X(0")Apg,

and therefore
c(n) = x(p*)M\pb(n) for alln € N. (12)

On the other hand we know
* n — — % —
c(n) = b(p°n) + X*(p) (;) p*to(n) + X* (p°)p**b(n/p?).

If we consider this equation modulo £ and use (i)—(iii) above, we obtain for every
non-negative integer n by an easy calculation

ve (e(n) —ex*(p) (p" + ") b(n)) > v. (13)
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Comparing (12) and (13) gives

ve (X(P*)Apb(n) — ex™(p) (P* +p*71) b(n)) > v.

Since ve(g) = 0, there exists an n with v,(b(n)) = 0. For this n we may divide
by b(n) and get
ve (Ap —ex*(0) (0* +p*71)) > .

This proves the first part of the lemma.

2. The proof of the second part is based on the same idea. Since H €
M,ch 1 (Np*, x) and £ is prime to Np, by Lemma 1 we have

’U[(H) = ’U((H | WNp4) = M. (14)
As above we consider the twist of g with (:
901 W2 = X*O) (p/2F1 B, —p7'%f)
= X*(p) ( Y2 f| By —p_l/Qf) +X*(p)p'/?H

P00 | Wip2 | Wi =

X (P)pf | Bz |[Wrps — X" (D) f | Wips
+ X (p)p H | Wipa
Using (2) and (5) we obtain
P'p—1g,1Ve = X*(0) (9| B> —g|By)

—X (P (0= 1)g|Vps + X ()P H | Wips, (15)

where v (X*(p)pH | Wnps) = p according to (14). Carefully comparing Fourier
coefficients and using (¢, (p — 1)) = 1 we find for every square-free d € N and
every positive integer m:

(i) ve (bdmp?) — (£) X (PP b(dm?)) > p.
(i) ve (b(dm?)) > p, if pld.

The latter congruence implies (p,d*) = 1. Again, denote the Fourier coeffi-
cients of g|T(p?) by c¢(n). In the same way as in the first part we find

o (ctam?) = (5) %0 (0454 b)) >
and therefore
oo (Mabtam®) = ()5 0) (0 4+ ) b)) > g (16)

for every square-free d and every positive integer m.
Applying (16) for d* and an m € N with v,(b(d*m?)) = 0 we infer

v <)‘p - <%> X*(p) (0" +p’”)) > pu.

This concludes the proof of the second part. O
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Corollary 1. Letp, ¢, f, Ap, € be defined as in Theorem 1. Fore € {£1} define

w. = vy (A, —ex*(p)(p* +p"1)). 1. There is an integer m. with p(m.) = —¢

and ve(a(m )) < w.. 2. Let d* be a square-free positive integer with (p,d*) =1

and ve(b(d*m?)) = 0 for an m € N. Then there is an integer mo with p||mo and
0)

ve(a(m )<w¢(d*.

Proof. 1. Suppose that there is no such m.. Then using the notation of Theorem
1 we have v¢(h) > w.. (Note that the Fourier coefficients of f are contained
in a finite extension of Q.) Hence, we find v, (X, —ex*(p)(p* + p*7")) > w:., a
contradiction. 2. The second statement can be proved in a completely analogous
way. ([l

Lemma 3. Let p, ¢, f, A\, be defined as in Theorem I and ¢ € {£1}. As in
Corollary 1 put w. = vy (A, —ex*(p)(p* +p*~")). Further, let m* be a positive
integer with @(m*) = € and assume that £ is a prime not dividing Np(p — 1)
such that ve(a(m*)) = 0. Then there exist infinitely many square-free integers
d, such that o(d) = —e and ve(a(dm?)) < w. for an integer my.

Proof. If w. = oo we have nothing to prove, so let us assume w, < oo. We

are going to show by induction on t that there are integers my,...,m; and
distinct square-free integers di, . .., d;, with ¢(d;) = —¢ and vg(a(djm?)) < w,
forj=1,...,t

For t = 1 the assertion follows from Corollary 1.
Now let ¢ > 1. According to the above argument, there is a square-free
integer d; and an integer my, such that

ve(a(d;m?)) < we, and (%) .

Thus, in particular d; is different from the square-free part of m*.

choose a prime g with

(¢.0)=1, (a,p) =1, (Z) = +e, <%> = —¢.

(In fact, there exist infinitely many such primes.) Put ¢ = (E) and

We can

_%(‘f|(1— )+€f¢)€Mk+ (Nq yX)-

If we denote the Fourier coefficients of f; by a4 (n), we have

fi= Z ai(n)e(nz) with ai(n) = {g(n) i ZEZg ;? 4

n=0

By (17) we find in particular a;(m*) = a(m*), and therefore ve(f1) = 0.
Further, we have a;(dym?) = 0 for all m € N.
Since by (7)

AITR) = % (f1(1=B)IT®*) +efu |T®*) = Mo f1,

we may apply the induction assumption on f;. Thus there exist ¢ — 1 distinct
square-free integers ds,...,d; and integers mao,...,m;, such that o(d;) = —¢
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and vg(ay (djm?)) < w.. Hence, in particular a;(djm3) # 0 and thereby d; # d;
forj=2,...,t
Now dy,...,d; satisfy the desired properties (for f):

o(dj) = =&, vi(a(d;m3)) < w.
forj=1,... 1 0

In order to get non-trivial statements by Corollary 1 and Lemma 3 we now
have to show that in the relevant situations X, # ex*(p)(p* + p*~1).

Lemma 4. Let p be a prime and X\, an eigenvalue of the Hecke operator T (p?)
on SZ+%(N, X). Then the estimate |\p| < p* + pF=1 holds.

Proof. Via Shimura lifting (see [Sh2], [Ni], [Ci], [St]) A, also is an eigenvalue of
the Hecke operator T'(p) on Sa(N/2,x?). The assertion now follows for instance
from a simple estimate due to Kohnen [Koh1] (which applies to our situation
by an obvious modification). O

Remark. The numbers x*(p)(p* + p*~1) occur as eigenvalues of the restriction

of T'(p?) on the space spanned by Shimura theta series (as defined in (1)).

Theorem 2. Let £ be a prime not dividing N and suppose that f is a common
eigenform of all T'(p*) with corresponding eigenvalues \,. Assume that there is
an m* € N with ve(a(m*)) = 0. Put

m*

w(f;¢,m"*) = min v, (Ap — (
P p

@)@+ ),
) )

where the minimum is taken over all primes p with (p, Ntm*) =1 and p Z 1
(mod £). Then there are infinitely many square-free integers d with ve(a(d)) <
w(f;€,m*).

Proof. We may choose a prime p with (p, Ném*) =1, p#1 (mod £) and

m* . _ .
o (3= (Z2) e+ = wisi o),
Then by Lemma 3 it suffices to prove the following

Lemma 5. Assume that f is a Hecke eigenform. Let £ be a prime and d a
positive square-free integer. Then for every m € N the relation v/(a(dm?)) >

ve(a(d)) holds.

Proof by induction on m. For m = 1 we have nothing to prove. Let m > 1 and
choose a prime ¢ dividing m and define m; by mi1q = m. Since f|T(¢*) = A\, f,
one has

2
a(dm®) = </\q —X"(a) (%) q’“) a(dmi) — x(¢*)¢** " a(dm? /¢?).
Considering vs(A;) > 0 (A, is an algebraic integer) and k£ > 1 we obtain

ve(a(dm?)) > min{v(a(dm?)), ve(a(dmi/q*))}.

Hence the assertion follows from the induction assumption. [l
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Before we state the next result, let us first introduce some notation. For a
prime p and an algebraic integer A we define

A(p,\) = {q €N prime; vy(A—ex(p)(p* +p*~")) > 0for an e = +1},
A'(p,\) = A(p,)) U{q€ N prime; ¢|(p — 1)} U {p}.
If ), is an eigenvalue of the Hecke operator T'(p®) on S +1(N,x) then
2

#A(p, A\p) < 0o according to Lemma 4.

Theorem 3. Let pi,...,p, be distinct primes not dividing N, and put ¢; =

(E) forj=1,...,r. Letey,...,e. € {—1,0,+1}. Suppose that f is a common
eigenform of all T(q*) with corresponding eigenvalues \,. Let ¢ be a prime not
diwviding N with ve(f) =0 and { ¢ U;=1 A'(pj, Ap;). Then there exist infinitely

many square-free integers d, such that
pj(d) =¢; foreveryj=1,...,r and wve(a(d)) =0.

Proof. By Lemma 5 it suffices to prove the existence of infinitely many square-
free integers d with ;(d) = ¢; for every j = 1,...,r and v¢(a(dm?)) = 0 for a
suitable integer my. This will be done by induction on 7.

For r =1 and &; € {£1} the assertion follows from Corollary 1 and Lemma
3. If r =1 and g; = 0, in view of Lemma 1 and 2 there is an n € N with
(n,p1) = 1 and ve(b(n)) = 0. Hence, by Corollary 1 and the assumption on
¢ there exists an m € N with p;||m and v,(a(m)) = 0. Moreover there is an
m* € N with (m*,p1) = 1 and vs(a(m*)) = 0. The assertion can be deduced
by an inductive argument similar to the proof of Lemma 3. We leave it to the
reader to carry out the details.

Now let r > 1. Define

fl _ %(f | (1 - Bpl) +51f§01) € Mk+%(Np%7X) if €1 € {:l:]-}a
f|BP1 - f|Bp§ € Mk—i—%(NplllaX) ife; =0.

In the same way as in (17) f; has the Fourier expansion

fi= Z a(n)e(nz) if e; € {£1}, resp. Z a(n)e(nz) ife; =0,

n>0 n>0

e1(n)=cq r1lin
and according to Corollary 1 we have vp(f1) =0 (if €; = 0, one has to argue as
indicated above). Moreover, by (7) we see f; |T(p?) = Ap; frfor j =2,...,r.
Applying the induction assumption on f; concludes the proof. O

Finally we state a non-vanishing result comparable to Theorem 2 but not
depending on the existence of a particular m* € N with v;(a(m*)) = 0.
For an eigenform f of all T'/(¢?) with corresponding eigenvalues \, (¢ prime,
(¢, N) = 1) put
An( = () Ag, ) (18)

g prime
(g,N)=1

Theorem 4. Suppose that f € Mk+% (N, x) is a common eigenform of all T (q?)
with corresponding eigenvalues Ay (q prime). Then for every prime { with
((,N) =1, v(f) = 0 and £ ¢ An(f) there exist infinitely many square-free
integers d, such that ve(a(d)) = 0.
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Proof. Since £ ¢ An(f), there is a prime p with (p, N) =1 and £ ¢ A'(p, Ap).
Thus the statement follows from Theorem 3. [l

5 Applications

1. Critical values of twisted L-series attached to newforms of weight 2k. Let
M be an odd square-free integer and M;;é (M) resp. S];:% (M) the subspace of
M,H_% (4M, xo) resp. SZ-;—% (4M, xo) consisting of forms having a Fourier expan-
sion Y0 c(n)e(nz) with ¢(n) = 0 unless (—1)n =0,1 (mod 4) (cf. [Koh2]).

Let F =37 a(n)e(nz) be a normalized newform in So; (M, xo) and denote
by A, the corresponding eigenvalue of T'(p) (p prime) and by w, the eigenvalue
of the Atkin-Lehner involution at ¢ (¢ prime, g|M). If D is an integer, then
denote by L(s; F, xp) the twisted L-series Y~ | xp(n)a(n)n~* attached to F.

According to [Koh2] the spaces Say (M, xo) and SL% (M) are isomorphic as
modules over the Hecke algebra. Via this isomorphism, there is an eigenform
g = Y2, c(n)e(nz) in S;;_l(M), uniquely determined up to multiplication
with a non-zero complex nurrfber, such that

a*  (F,F)
(k=1! (9,9)

for any fundamental discriminant D, for which (—=1)*D > 0 and xp(q) = w,
for each prime ¢ dividing M.

If on the contrary D is a fundamental discriminant with xp(¢) # w, for
some prime divisor ¢ of M, then ¢(|D|) = 0. We may now deduce

L(k; F,xp)|D|* /2 = g (M) ! le(DDI” (19)

Theorem 5. For a normalized newform F in Sa, (M, x0o), there exists a non-
zero complex number Q (which is an algebraic multiple of a period of F) with
the property: For any odd prime € with ((,M) =1 and ¢ ¢ Aqp(F), there are
infinitely many fundamental discriminants D with (—=1)*D >0 and

g xD>|D|k-1/2>
Uy 9)

2. Indivisibility of special values of Dirichlet L-series. Let k be an even
positive integer and let £ be a prime such that £ — 1 does not divide 2k. Denote
by Hj 1 the Cohen-Eisenstein series of weight k + 5 (cf. [Co]), normalized such
that

o]

Hppy = Zc(n)e(nz) =C(1-2k)+C1—-kle(z)+....

n=0
Cohen showed that Hk+% is an eigenform in M/j.;_l (1) with corresponding eigen-
2

values o251 (p) (p prime). Furthermore, if D > 0 is a fundamental discriminant
then
C(D) = L(l - k:XD)a

where L(s,xp) denotes the Dirichlet L-series attached to xp. It is well known
that L(1 — k,xp) = —By,yp/k with the k-th generalized Bernoulli number
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By, ., - Hence, by the Staudt-Clausen theorem and results of Carlitz on gener-
alized Bernoulli numbers [Ca], the ¢(n) are {-integral.

According to Dirichlet’s theorem on primes in arithmetic progressions we
may choose a prime p > 3 such that the reduction of p modulo ¢ generates
the multiplicative group (Z/¢Z)*. Then p Z 0,1 (mod ) and it can be easily
checked that £ does not divide o2,_1 (p) — p* — p*~'. By Theorem 2 (applied
with m* = 1) we find

Theorem 6. Let £ be a prime such that ¢ — 1 does not divide 2k and v, ({(1 —
k)) = 0. Then there are infinitely many fundamental discriminants D > 0 with
’U((L(l — k,XD)) =0.

Obviously, an analogous result could be deduced for odd k > 3. Theorem 3
could be applied to find a similar statement where the discriminants D satisfy
prescribed local conditions at given primes.

I am indebted to W. Kohnen for pointing out the following application of
Theorem 6. By the work of Mazur and Wiles [MaWi], if F' is a real quadratic
field and Op its ring of integers then the order of the corresponding K»-group
is given by

#K>0p = 2"ws(F)|Cr(-1)],

where v is an integer, and (r denotes the zeta function of F. If F' has discrim-
inant D, then (p(—1) = ((—1)L(—1,xp). Moreover, ws(F') denotes the largest
positive integer n such that the Galois group Gal(F((,)/F) has exponent 2
(here (, is a primitive n-th root of unity). By elementary Galois theory it can
be seen that Gal(F((,)/F) is equal to the multiplicative group (Z/nZ)* or to
a subgroup of index 2. Hence, for every prime £ > 7 we find v;(ws(F)) = 0.
Applying Theorem 6 for k£ = 2 we infer the following

Corollary 2. Let ¢ be a prime > 7. Then there exist infinitely many real
quadratic fields F' such that KoOp contains no element of order (.

3. Indivisibility of class numbers of imaginary quadratic fields. For a fun-
damental discriminant D let as usual h(D) denote the class number of Q(v/D).
In the following we shall give a generalization of results due to Horie on the
existence of certain infinite families of imaginary quadratic fields (Th. 1, Th. 2
in [Ho2]). For related results also see [Hol] and [HoOn)].

Theorem 7. Let py,...,p, be distinct odd primes and ey, ...,e, € {—1,0,+1}.
Let £ be a prime > 5 such that £ does not divide p;(p;—1)(p;+1) forj=1,...,7.
Then there are infinitely many fundamental discriminants D < 0 for which h(D)

is not divisible by ¢ and (p%) =¢gjforj=1,...,r.

Proof. Consider the theta series 8%(z) = 3, < r(n)e(nz) € Ms/»(4, xo)- By the
work of Gauss it is known that a

12H(4n) ifn=1,2 (mod 4),
_J24H(n) ifn=3 (mod8),
r(n) = r(n/4) ifn=0 (mod4),
0 ifn=7 (mod 8),

(20)
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where H(n) denotes the Hurwitz-Kronecker class number forn = 0,3 (mod 4).
If —m = Dm? with a fundamental discriminant D < 0, then

H(n) = % WG (?) o1 (m /1),

where w(D) is half the number of units in Q(v/D).
Since Mj/5(4,X0) is one dimensional, #° is an eigenform of all T'(p*) and
6% | W, = 03, In view of (20) it suffices to show that there are infinitely many

square-free d € N with (pi,) =¢; (j=1,...,r) and v,(r(d)) = 0.
Unfortunately, in this particular case Theorem 3 does not apply because
62 | T (p*) = o1(p)#? for every odd prime p. However, one can use Lemma 1 and

Lemma 3 in a direct way to prove the assertion.

For a modular form f, a prime p and an € € {—1,0,+1} put ¢ = (;) and

1B, = {211 =By +efy) ifee{El},
P f|Bp_f|Bp2 ife=0.

For 0 <t < r define
My=pi-...-pt, ft =6 |Bp1761 | |Bpt75t € M3/2(4Mt47X0)7

and denote the constant term of f; | Wys by b:(0).
We claim that ve(b:(0)) = 0 for all 0 < ¢ <. For ¢ = 0 this is obvious and
for ¢t > 0 using (3), (4) and (5) the constant term b;(0) can be easily computed:

bi(0) = { 5 (pete (55)) e = Dba(0) if € {13,
(1 =p )0 = 1)bi—1(0) if & = 0.

Hence, the claim follows by induction.

Now v,(b.(0)) = 0 implies v(f | Wyps2) < 0. Hence, by Lemma 1 and the
definition of f, we find ve(f,) = 0. If we write f, = > ., a(n)e(nz), then for
every integer m and every square-free d we have a(dm?) = r(dm?), whenever

(p%) =¢; forall j = 1,...,r and (m, M,) = 1; and otherwise a(dm?) = 0.

Furthermore, f, is an eigenform of all primes p with (p, M,) = 1.
Let m* € N with v,(a(m*)) = 0 and choose a prime p with (i) = -1,

P
p #Z +1 (mod ¢) and (p,4M,£) = 1. Then by Lemma 3 there exist infinitely
many square-free d such that %) =— (mT) and v¢(a(dm?)) = 0 foran mgy € N.
Now the assertion follows by an argument similar to Lemma 5. O
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