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1 Introdution

In the present paper we study ertain vetor valued Eisenstein series on the metapleti

over Mp

2

(R) of SL

2

(R).

Let L be an even lattie of signature (b

+

; b

�

), equipped with a quadrati form q, and

write L

0

for its dual. Reall that the Weil representation �

�

L

attahed to the quadrati

module (L

0

=L; q) is a unitary representation of the integral metapleti group Mp

2

(Z) on

the group algebra C [L

0

=L℄ (f. [No℄, [Bo2℄). Let k 2

1

2

Z and k > 2. We onsider the spae

M

k;L

of C [L

0

=L℄-valued holomorphi modular forms of weight k with respet to Mp

2

(Z)

and �

�

L

. It is easily seen that M

k;L

= f0g, if 2k is not ongruent to b

�

� b

+

modulo 2.

Thus, if the rank m = b

+

+b

�

of L is even, any non-zero modular form inM

�;L

has integral

weight. If m is odd, then any non-zero modular form in M

�;L

has half-integral weight.

We de�ne Eisenstein series in the spae M

k;L

in the usual way. The main purpose of the

present paper is to ompute their Fourier expansion expliitly. For simpliity we restrit

ourselves to the ase 2k�b

�

+b

+

� 0 (mod 4) and to one partiular Eisenstein series E(�)

in M

k;L

. This is suÆient for our later appliations. The more general ase an be treated

similarly.

By a standard omputation the (; n)-th Fourier oeÆient q(; n) of E(�) an be

expressed in terms of a rather ompliated in�nite series ( 2 L

0

=L and n 2 Z � q()).

This was done in hapter 1.2.3 of [Br1℄. The resulting formula was suÆient for the

purposes of [Br1℄ but is not very satisfying. For instane, it does not even show that the

q(; n) are algebrai (or better rational) numbers. In setion 4 we use Shintani's formula

for the oeÆients of the Weil representation [Sh℄ and results of Siegel on representation

numbers of quadrati forms modulo prime powers [Si℄, to ompute the series for q(; n)
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more expliitly. We obtain a �nite formula involving speial values of Dirihlet L-series

and �nitely many representation numbers modulo prime powers attahed to the lattie L

(Theorem 4.6, Theorem 4.8). One pleasant property of the above lass of Eisenstein series

is that it inludes both, the lassial Eisenstein series of integral weight for SL

2

(Z), and

the half-integral weight Cohen-Eisenstein series for �

0

(4), as easy speial ases.

In setion 5 we onsider the ase that L has signature (2; l) with l � 3. Let �(L)

be the subgroup of the orthogonal group of L that ats identially on the disriminant

group L

0

=L. The Eisenstein series E(�) of weight 1 + l=2 attahed to L an be used to

prove some results on automorphi forms on the orthogonal group O(2; l). This is the

main appliation of Theorem 4.8 and motivated the present paper. Reall that for any

� 2 L

0

=L and any t 2 Z + q(�) with t < 0 there is a �(L)-invariant divisor H(�; t) on

the Hermitean symmetri spae H = O

0

(2; l)=K attahed to O

0

(2; l). Here K denotes

a maximal ompat subgroup (see setion 5 for preise de�nitions). Following Borherds

we all H(�; t) Heegner divisor of disriminant (�; t). These divisors generalize the usual

Heegner points on the upper omplex half plane.

In the ontext of Borherds' theory of automorphi produts (f. [Bo1, Bo2, Bo3℄) it

was shown in [Br1℄ that the oeÆients q(; n) of E(�) enode the weights of automorphi

forms for �(L), whose divisors are linear ombinations of Heegner divisors. Hene, if we

know the weight of suh an automorphi form, we obtain some information on its divisor

by means of Theorem 4.8.

In partiular, if there are no usp forms in M

k;L

, then the q(; n) determine ompletely

the positions of the Heegner divisors H(;�n) in the seond ohomology of H=�(L). This

generalizes van der Geer's result on Siegel modular threefolds [Ge℄.

We shall show that the q(; n) are non-positive rational numbers. Moreover, q(; n)

is negative, if and only if H(;�n) is non-trivial. As a onsequene the main result

(Theorem 5.2) of setion 5 an be dedued. It roughly states: Let F be a holomorphi

modular form of weight r for �(L), whose divisor (F ) is a linear ombination of Heegner

divisors. Let D =

1

2

P

�;t

(�; t)H(�; t) be another linear ombination of Heegner divisors

with non-negative integral oeÆients (�; t) suh that D � (F ). Then the orresponding

sum �

1

4

P

�;t

(�; t)q(�;�t) of the oeÆients of E(�) is � r. It equals r, if and only if

D = (F ).

Aknowledgments. We would like to thank M. Bundshuh, E. Freitag and W. Kohnen for

their help.

2 Notation

Let N = f1; 2; : : :g be the set of positive integers. As usual, we denote by H = f� 2

C ; =(�) > 0g the omplex upper half plane. Throughout we will use � as a standard

variable on H and write x for its real part and y for its imaginary part, respetively. For

z 2 C we put e(z) = e

2�iz

, and denote by

p

z = z

1=2

the prinipal branh of the square root,

so that arg(

p

z) 2 (��=2; �=2℄. For any integer k we put z

k=2

= (z

1=2

)

k

. Moreover, if x is

a real number, we let [x℄ = maxfn 2 Z; n � xg. If x is non-zero we write sgn(x) = x=jxj.
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Let D be a disriminant, i.e. a non-zero integer ongruent to 0 or 1 modulo 4. Then we

write �

D

for the Dirihlet harater modulo jDj, whih is given by the Kroneker symbol:

�

D

(a) =

�

D

a

�

. The orresponding Dirihlet series is denoted by L(s; �

D

).

Let n 2 N and � be a Dirihlet harater. We de�ne the twisted divisor sum �

s

(n; �)

by

�

s

(n; �) =

X

djn

�(d)d

s

;

where the sum runs through all positive divisors of n. For x 2 R � N we understand

�

s

(x; �) = 0. As usual, if � = �

1

is the trivial harater modulo 1, we briey write �

s

(n)

instead of �

s

(n; �

1

).

For any prime p we denote by v

p

the (additive) p-adi valuation on Q .

3 Modular forms and the Weil representation

In this setion we briey reall from [Br1℄ and [Bo2℄ some fats about the Weil represen-

tation and ertain vetor valued modular forms.

Let Mp

2

(R) be the metapleti over of SL

2

(R), realized as the group of pairs (M;�(�)),

where M = (

a b

 d

) 2 SL

2

(R), and � is a holomorphi square root of � 7! � + d. The

assignment

(

a b

 d

) 7!

℄

(

a b

 d

) =

�

(

a b

 d

) ;

p

� + d

�

(3.1)

de�nes a loally isomorphi embedding of SL

2

(R) into Mp

2

(R).

We denote by Mp

2

(Z) the inverse image of SL

2

(Z) under the overing map Mp

2

(R) !

SL

2

(R). It is well known that Mp

2

(Z) is generated by the two elements

T =

��

1 1

0 1

�

; 1

�

and S =

��

0 �1

1 0

�

;

p

�

�

:

One has the relations S

2

= (ST )

3

= Z, where Z =

��

�1 0

0 �1

�

; i

�

is the standard generator

of the enter of Mp

2

(Z). We put �

1

:= SL

2

(Z) and write �

1

resp.

e

�

1

for the subgroup of

�

1

resp. Mp

2

(Z) generated by (

1 n

0 1

) resp. T .

Let L be an even lattie, i.e. a free Z-module of �nite rank, equipped with a symmetri

Z-valued bilinear form (�; �) suh that the assoiated quadrati form q(x) =

1

2

(x; x) takes

its values in Z. We assume that L is non-degenerated and denote its signature by (b

+

; b

�

)

and its rank by m = b

+

+ b

�

. We write L

0

for the dual lattie of L. The modulo 1

redution of q(�) is a Q=Z-valued quadrati form on the (�nite) disriminant group L

0

=L,

whose assoiated bilinear form is the modulo 1 redution of the bilinear form (�; �) on L

0

.

Reall that there is a partiular unitary representation �

L

of Mp

2

(Z) on the group

algebra C [L

0

=L℄. If we denote the standard basis of C [L

0

=L℄ by (e



)

2L

0

=L

then �

L

an be
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de�ned by the ation of the generators S; T 2 Mp

2

(Z) as follows:

�

L

(T )e



= e(q())e



(3.2)

�

L

(S)e



=

p

i

b

�

�b

+

p

jL

0

=Lj

X

Æ2L

0

=L

e(�(; Æ))e

Æ

(3.3)

(p. [Bo2℄). We denote by �

�

L

the dual representation of �

L

.

The representation �

L

is essentially the Weil representation assoiated to the quadrati

module (L

0

=L; q) (see [No℄). It fators through a �nite quotient of Mp

2

(Z). Observe that

�

L

(Z)e



= i

b

�

�b

+

e

�

.

Let h�; �i be the standard salar produt on C [L

0

=L℄, whih is linear in the �rst vari-

able and anti-linear in the seond. For �;  2 L

0

=L and (M;�) 2 Mp

2

(Z) we de�ne the

oeÆient �

�

(M;�) of the representation �

L

by

�

�

(M;�) = h�

L

(M;�)e



; e

�

i:

The following result due to Shintani will be of fundamental importane to us (f. [Sh℄,

Prop. 1.6).

Proposition 3.1 (Shintani). Let �;  2 L

0

=L and M = (

a b

 d

) 2 SL

2

(Z). Then the

oeÆient �

�

(

f

M) is given by

p

i

(b

�

�b

+

)(1�sgn(d))

Æ

�;a

e(abq(�)); (3.4)

if  = 0, and by

p

i

(b

�

�b

+

) sgn()

jj

(b

�

+b

+

)=2

p

jL

0

=Lj

X

r2L=L

e

�

a(� + r; � + r)� 2(; � + r) + d(; )

2

�

; (3.5)

if  6= 0. Here, Æ

�;�

denotes the Kroneker-delta.

Let k 2

1

2

Z and f be a C [L

0

=L℄-valued funtion on H . We de�ne the Petersson slash

operator by

(f j

�

k

(M;�)) (�) = �(�)

�2k

�

�

L

(M;�)

�1

f(M�) (3.6)

for (M;�) 2 Mp

2

(Z).

Any holomorphi funtion f : H ! C [L

0

=L℄, whih is invariant under the j

�

k

-operation

of T 2 Mp

2

(Z), has a Fourier expansion

f(�) =

X

2L

0

=L

X

n2Z�q()

(; n)e



(n�); (3.7)

where e



(�) := e



e(�).

Let k 2

1

2

Z. We all a holomorphi funtion f : H ! C [L

0

=L℄ a modular form of weight

k with respet to �

�

L

and Mp

2

(Z) if
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i) f j

�

k

(M;�) = f for all (M;�) 2 Mp

2

(Z) and

ii) f is holomorphi in 1.

Here, the seond ondition means that all oeÆients (; n) with n < 0 vanish in the

Fourier expansion (3.7) of f . The C -vetor spae of modular forms of weight k with respet

to �

�

L

and Mp

2

(Z) is denoted by M

k;L

. It is easily seen that M

k;L

is �nite dimensional. The

transformation behavior under Z

2

implies that M

k;L

= f0g, if 2k 6� b

�

� b

+

(mod 2).

4 Eisenstein series

We now onstrut Eisenstein series E

�

(�) for the spae M

k;L

and determine their Fourier

oeÆients q

�

(; n). Throughout we assume that k 2

1

2

Z and k > 2. For simpliity we

only onsider the ase 2k � b

�

+ b

+

� 0 (mod 4), the ase 2k � b

�

+ b

+

� 2 (mod 4) an

be treated similarly.

Let � 2 L

0

=L with q(�) 2 Z. Then the vetor e

�

2 C [L

0

=L℄, onsidered as a onstant

funtion H ! C [L

0

=L℄, is invariant under the j

�

k

-ation of T; Z

2

2 Mp

2

(Z). The Eisenstein

series

E

�

(�) =

1

2

X

(M;�)2

e

�

1

nMp

2

(Z)

e

�

j

�

k

(M;�) (4.1)

of weight k onverges normally on H and therefore de�nes a Mp

2

(Z)-invariant holomorphi

funtion on H .

The following proposition an be proved in the standard way (see [Br1℄ hapter 1.2.3).

We omit the proof.

Proposition 4.1. The Eisenstein series E

�

has the Fourier expansion

E

�

(�) =

X

2L

0

=L

X

n2Z�q()

n�0

q

�

(; n)e



(n�)

with

q

�

(; n) =

8

>

>

<

>

>

:

Æ

�;

+ Æ

��;

; if n = 0,

(2�)

k

n

k�1

�(k)

X

2Z�f0g

jj

1�k

H

�



(�; 0; ; n); if n > 0.

(4.2)

Here, H

�



(�;m; ; n) denotes the generalized Kloosterman sum

H

�



(�;m; ; n) =

e

��i sgn()k=2

jj

X

d()

�

(

a b

 d

)

2�

1

n�

1

=�

1

�

�

^

�

a b

 d

�

e

�

ma + nd



�

(4.3)

(�;  2 L

0

=L and m 2 Z� q(�), n 2 Z� q()). In partiular E

�

is an element of M

k;L

.
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The sum in (4.3) runs over all primitive residues dmodulo  and (

a b

 d

) is a representative

for the double oset in �

1

n�

1

=�

1

with lower row ( d

0

) and d

0

� d (mod ). Observe that

the expression �

�

℄

(

a b

 d

) e

�

ma+nd



�

does not depend on the hoie of the oset representative.

The oeÆients �

�

℄

(

a b

 d

) are universally bounded, sine �

L

fators through a �nite

group. Hene there is a onstant C > 0 suh that H

�



(�;m; ; n) < C for all  2 L

0

=L,

n 2 Z� q(), and  2 Z� f0g. This implies that the series (4.2) onverges absolutely.

We will mainly be interested in the Eisenstein series E

0

(�) whih we simply denote by

E(�). In the same way we write q(; n) for the Fourier oeÆients q

0

(; n) of E(�).

The rest of this setion is devoted to �nding a more expliit formula for the oeÆients

q(; n) of E(�). Note that the oeÆients of the more general Eisenstein series E

�

(�) an

be omputed analogously.

Proposition 4.2. The generalized Kloosterman sum H

�



(0; 0; ; n) equals

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj

jj

�1+m=2

X

aj

a

1�m

�(jj=a)N

;n

(a):

Here � denotes the Moebius funtion and

N

;n

(a) = #fr 2 L=aL; q(r � ) + n � 0 (mod a)g: (4.4)

Notie that the left hand side of the ongruene in (4.4) is always integral, beause

n 2 Z� q().

Proof. If we insert the formula for the oeÆients of the representation �

L

(Proposition

3.1) into the de�nition of H

�



(0; 0; ; n), we obtain

H

�



(0; 0; ; n) =

e

��i sgn()(2k�b

�

+b

+

)=4

p

jL

0

=Ljjj

1+m=2

X

d ()

�

ad�1 ()

X

r2L=L

e

�

aq(r)� (; r) + dq() + nd



�

=

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Ljjj

1+m=2

X

r2L=L

X

d ()

�

e

�

d(q(r � ) + n)



�

;

where the sums

P

d ()

�

run through all primitive residues dmodulo . We use the evaluation

of the Ramanujan sum

X

d ()

�

e

�

dn



�

=

X

aj(;n)

�(jj=a)a

by means of the Moebius funtion ([Ap℄ Chapter 8.3). We get

H

�



(0; 0; ; n) =

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Ljjj

1+m=2

X

aj

�(jj=a)a

X

r2L=L

q(r�)+n�0 (a)

1:
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The ondition q(r � ) + n � 0 (mod a) in the inner sum depends only on r modulo aL.

Thus

H

�



(0; 0; ; n) =

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Ljjj

1+m=2

X

aj

�(jj=a)a(jj=a)

m

X

r2L=aL

q(r�)+n�0 (a)

1

=

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj

jj

�1+m=2

X

aj

�(jj=a)a

1�m

N

;n

(a):

Proposition 4.3. Let  2 L

0

and n 2 Z� q() with n > 0. The oeÆient q(; n) equals

the value at s = k of the analyti ontinuation in s of

2

k+1

�

k

n

k�1

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj�(k)�(s�m=2)

L

;n

(s):

Here �(s) denotes the Riemann zeta funtion and L

;n

(s) the L-series

L

;n

(s) =

X

a�1

N

;n

(a)a

1�m=2�s

: (4.5)

Proof. We onsider the L-series

e

L

;n

(s) =

X

2Z�f0g

jj

1�s

H

�



(0; 0; ; n): (4.6)

It onverges normally for <(s) > 2. Aording to Proposition 4.2 one has

e

L

;n

(s) =

2(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj

X

�1



m=2�s

X

aj

�(=a)a

1�m

N

;n

(a):

Substituting d = =a in the above sums we �nd

e

L

;n

(s) =

2(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj

X

a�1

N

;n

(a)a

1�m=2�s

X

d�1

�(d)d

m=2�s

=

2(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj�(s�m=2)

L

;n

(s): (4.7)

If we insert this into the formula for q(; n) given in Proposition 4.1, we obtain the assertion.

Note that the L-series L

;n

(s) only onverges for <(s) > 1 + m=2. Using the equality

of (4.6) and (4.7), and the properties of the Riemann zeta funtion, we see that it has a

meromorphi ontinuation to <(s) > 2 and a simple pole at s = 1 +m=2.
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Let S denote the Gram matrix of the lattie L with respet to a �xed basis. Then

jL

0

=Lj = j det(S)j. We use the ommon abbreviation S[x℄ = x

t

Sx, whenever the matrix

produt makes sense. We may obviously write

N

;n

(a) = #

�

r 2 (Z=aZ)

m

;

1

2

S[r � ℄ + n � 0 (mod a)

	

;

where we have identi�ed  2 L

0

with its oordinate vetor.

Let d



= minfb 2 N ; b 2 Lg be the level of  and put

~ = d



; (4.8)

~n = d

2



n: (4.9)

Then ~n is integral, and d



divides det(S) and 2~n. If a is oprime to det(S), then d



is

invertible modulo a. Hene

N

;n

(a) = #

�

r 2 (Z=aZ)

m

;

1

2

S[r℄ � �~n (mod a)

	

(4.10)

in this ase. For general a we have

N

;n

(a) = #

�

r 2 (Z=d



aZ)

m

;

1

2

S[r℄ + ~n � 0 (d

2



a); r � ~ (d



)

	

: (4.11)

It is easily seen that N

;n

(a) is multipliative:

N

;n

(a

1

a

2

) = N

;n

(a

1

)N

;n

(a

2

)

for oprime a

1

and a

2

. This implies that L

;n

(s) has an Euler produt expansion

L

;n

(s) =

Y

p

 

X

��0

N

;n

(p

�

)p

�(1�m=2�s)

!

; (4.12)

where the produt extends over all primes p.

Lemma 4.4. Let p be a prime. Put

w

p

= 1 + 2v

p

(2nd



): (4.13)

Then the equality

N

;n

(p

�+1

) = p

m�1

N

;n

(p

�

)

holds for any � � w

p

.

Proof. This an be proved in the same way as Hilfssatz 13 in [Si℄.

Note that 2nd



is always integral and thereby w

p

� 1.

8



Using the above Lemma, the Euler produt (4.12) an be simpli�ed:

L

;n

(s) =

Y

p

 

w

p

�1

X

�=0

N

;n

(p

�

)p

�(1�m=2�s)

+N

;n

(p

w

p

)p

w

p

(1�m=2�s)

X

��0

p

�(m=2�s)

!

= �(s�m=2)

Y

p

L

;n

(s; p); (4.14)

where L

;n

(s; p) denotes the loal Euler fator

L

;n

(s; p) = (1� p

m=2�s

)

w

p

�1

X

�=0

N

;n

(p

�

)p

�(1�m=2�s)

+N

;n

(p

w

p

)p

w

p

(1�m=2�s)

: (4.15)

The following Theorem is ruial for the further omputation of L

;n

(s).

Theorem 4.5 (Siegel). Let p be a prime not dividing 2 det(S) and � 2 Z with � > v

p

(n).

i) Suppose that m is even. Put D = (�1)

m=2

det(S). Then

p

�(1�m)

N

;n

(p

�

) =

�

1� �

D

(p)p

�m=2

� �

1 + �

D

(p)p

1�m=2

+ � � �+ �

D

(p

v

p

(n)

)p

v

p

(n)(1�m=2)

�

:

ii) Suppose that m is odd. Write n = n

0

f

2

(where n

0

2 Q and f 2 N) suh that

(f; 2 detS) = 1 and v

`

(n

0

) 2 f0; 1g for all primes ` with (`; 2 detS) = 1. Let ~n

0

= n

0

d

2



and D = 2(�1)

(m+1)=2

~n

0

det(S). If m � 3, then

p

�(1�m)

N

;n

(p

�

) =

1� p

1�m

1� �

D

(p)p

(1�m)=2

�

�

2�m

(p

v

p

(f)

)� �

D

(p)p

(1�m)=2

�

2�m

(p

v

p

(f)�1

)

�

:

If m = 1, we have

N

;n

(p

�

) =

�

�

D

(p) + �

D

(p)

2

�

p

v

p

(f)

:

It is well known that (�1)

m=2

det(S) � 0; 1 (mod 4), if m is even, and that det(S) � 0

(mod 2), if m is odd. Thus D and D are disriminants.

Proof. Sine p is oprime to det(S), the numberN

;n

(p

�

) is given by (4.10). So the assertion

is just a reformulation of Hilfssatz 16 in [Si℄. (The formula for m = 1 has to be extrated

diretly from the proof.)

We may now state a formula for q(; n) whih is aessible for omputer omputation.

Theorem 4.6. Let  2 L

0

and n 2 Z� q() with n > 0. The oeÆient q(; n) equals

2

k+1

�

k

n

k�1

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj�(k)

9



times

8

>

>

>

>

>

<

>

>

>

>

>

:

1

L(k; �

D

)

Y

pj2~ndet(S)

L

;n

(k; p)

1� �

D

(p)p

�k

; if m is even,

L(k � 1=2; �

D

)

�(2k � 1)

Y

pj2~ndet(S)

1� �

D

(p)p

1=2�k

1� p

1�2k

L

;n

(k; p); if m is odd.

Here L

;n

(k; p) is given by (4.15) and D, D are de�ned as in Theorem 4.5.

Proof. By Proposition 4.3 and (4.14) we know that

q(; n) =

2

k+1

�

k

n

k�1

(�1)

(2k�b

�

+b

+

)=4

p

jL

0

=Lj�(k)

Y

p

L

;n

(k; p): (4.16)

Let p be a prime with (p; 2~ndetS) = 1. Aording to Theorem 4.5 we have

p

1�m

N

;n

(p) =

8

<

:

1� �

D

(p)p

�m=2

; if 2 j m,

1 + �

D

(p)p

(1�m)=2

; if 2 - m.

Noting that w

p

= 1 we �nd

L

;n

(s; p) =

8

>

<

>

:

1� �

D

(p)p

�s

; if 2 j m,

1� p

1�2s

1� �

D

(p)p

1=2�s

; if 2 - m.

If we insert this into (4.16), we obtain the assertion.

Corollary 4.7. The oeÆients of E(�) are rational numbers.

Proof. This an be dedued using the funtional equation of the Dirihlet series L(s; �

D

)

(resp. L(s; �

D

) and �(s)) and the fat that the values at negative integers an be expressed

in terms of Bernoulli polynomials [Za℄.

Example 1. Let L be a hyperboli plane, i.e. the lattie Z

2

with the quadrati form

q((a; b)) = ab. This is obviously a unimodular lattie of signature (1; 1). Let k be an

even integer. In this ase the spae M

k;L

is simply the spae of ellipti modular forms of

weight k for SL

2

(Z). The funtion E(�) is the lassial Eisenstein series of weight k for

SL

2

(Z), normalized suh that its onstant term equals 2. Aording to Theorem 4.6, for

any positive integer n the n-th Fourier oeÆient q(n) = q(0; n) is given by

2

k+1

�

k

n

k�1

(�1)

k=2

�(k)�(k)

Y

pj2n

L

0;n

(k; p)

1� p

�k

: (4.17)

10



We leave it to the reader to verify that

N

0;n

(p

�

) =

8

<

:

(v

p

(n) + 1)(1� 1=p)p

�

; if v

p

(n) < �,

(� + 1)p

�

� �p

��1

; if v

p

(n) � �,

for any prime p. A straightforward omputation yields L

0;n

(s; p) = (1 � p

�s

)�

1�s

(p

v

p

(n)

).

If we insert this into (4.17), we �nd

q(n) =

2

k+1

�

k

n

k�1

(�1)

k=2

�(k)�(k)

�

1�k

(n):

Using �(k) = �

(2�i)

k

2k!

B

k

, with the k-th Bernoulli number B

k

, we get

q(n) = �

4k

B

k

�

k�1

(n);

in aordane with the lassial result.

Example 2. Let L be the 1-dimensional lattie Z equipped with the quadrati form q(a) =

a

2

. Then L

0

=L

�

=

Z=2Z. Let k be half-integral suh that k + 1=2 is even. The spae M

k;L

is isomorphi to the spae of Jaobi forms of weight k + 1=2 and index 1 ([EZ℄ Theorem

5.1) and thereby isomorphi to the Kohnen spae M

+

k

of modular forms of weight k for the

group �

0

(4) whose n-th Fourier oeÆient equals zero unless �n � 0; 1 (mod 4) ([Ko℄, [EZ℄

Theorem 5.4). In this ase E(�) essentially equals the Cohen-Eisenstein series of weight

k (f. [Co℄). Let  2 L

0

=L and n 2 Z� q() with n > 0. Moreover, let � be the unique

fundamental disriminant suh that �4n = �f

2

with f 2 N . By Theorem 4.6 we have

q(; n) =

2

k+1=2

�

k

n

k�1

(�1)

(2k+1)=4

�(k)

L(k � 1=2; �

�

)

�(2k � 1)

Y

pj2~n

1� �

�

(p)p

1=2�k

1� p

1�2k

L

;n

(k; p): (4.18)

To ompute the �nite Euler produt we note that

N

;n

(p

�

) =

8

<

:

�

�

�

(p) + �

�

(p)

2

�

p

v

p

(f)

; if v

p

(n) < �,

p

[�=2℄

; if v

p

(n) � �,

for any odd prime p. In fat, the ase v

p

(n) � � is easy, and the ase v

p

(n) < � follows

from Theorem 4.5. With some extra work it an be seen that this formula still holds for

p = 2. (That is why we have worked with � instead of D.) It an be dedued that

L

;n

(s; p) =

1� p

1�2s

1� �

�

(p)p

1=2�s

�

�

2�2s

(p

v

p

(f)

)� �

�

(p)p

1=2�s

�

2�2s

(p

v

p

(f)�1

)

�

:

Inserting this into (4.18), we obtain

q(; n) =

2

k+1=2

�

k

n

k�1

(�1)

(2k+1)=4

�(k)

L(k � 1=2; �

�

)

�(2k � 1)

X

djf

�(d)�

�

(d)d

1=2�k

�

2�2k

(f=d):

11



Throughout the rest of this paper we suppose that k = m=2. (For later appliations

we will only need this ase.) Then the ondition 2k � b

�

+ b

+

� 0 (mod 4) is equivalent

to requiring that b

+

is even. The ondition k > 2 implies m � 5.

Under this assumption the formula of Theorem 4.6 an be onsiderably simpli�ed.

Theorem 4.8. Let  2 L

0

and n 2 Z � q() with n > 0. The oeÆient q(; n) of the

Eisenstein series E(�) of weight k = m=2 is equal to

2

k+1

�

k

n

k�1

(�1)

b

+

=2

p

jL

0

=Lj�(k)

times

8

>

>

>

>

>

<

>

>

>

>

>

:

�

1�k

(~n; �

4D

)

L(k; �

4D

)

Y

pj2det(S)

p

w

p

(1�2k)

N

;n

(p

w

p

); if 2 j m,

L(k � 1=2; �

D

)

�(2k � 1)

X

djf

�(d)�

D

(d)d

1=2�k

�

2�2k

(f=d)

Y

pj2det(S)

p

w

p

(1�2k)

N

;n

(p

w

p

)

1� p

1�2k

; if 2 - m.

Here N

;n

(p

w

p

) is given by (4.4), (4.13); and D, D, f are de�ned as in Theorem 4.5.

Moreover, �

1�k

(~n; �

4D

) denotes the twisted divisor sum (see setion 2).

Proof. Let p be a prime. Sine k = m=2 the loal Euler fator L(k; p) (4.15) is equal to

p

w

p

(1�2k)

N

;n

(p

w

p

):

If we put this into the formula given in Theorem 4.6, we �nd that q(; n) is equal to

2

k+1

�

k

n

k�1

(�1)

b

+

=2

p

jL

0

=Lj�(k)

times

8

>

>

>

>

>

<

>

>

>

>

>

:

1

L(k; �

D

)

Y

pj2~ndet(S)

p

w

p

(1�2k)

N

;n

(p

w

p

)

1� �

D

(p)p

�k

; if 2 j m,

L(k � 1=2; �

D

)

�(2k � 1)

Y

pj2~ndet(S)

1� �

D

(p)p

1=2�k

1� p

1�2k

p

w

p

(1�2k)

N

;n

(p

w

p

); if 2 - m.

(4.19)

If m is even, then aording to Theorem 4.5 the �nite Euler produt over p j 2~ndet(S) in

(4.19) is given by

Y

pj~n

p-2 det(S)

�

1�k

(p

v

p

(n)

; �

4D

)

Y

pj2det(S)

p

w

p

(1�2k)

N

;n

(p

w

p

)

1� �

D

(p)p

�k

= �

1�k

(~n; �

4D

)

1

1� �

D

(2)2

�k

Y

pj2det(S)

p

w

p

(1�2k)

N

;n

(p

w

p

): (4.20)
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If m is odd, then the �nite Euler produt over p j 2~n det(S) in (4.19) is equal to

Y

pj~n

p-2det(S)

�

�

2�2k

(p

v

p

(f)

)� �

D

(p)p

1=2�k

�

2�2k

(p

v

p

(f)�1

)

�

Y

pj2 det(S)

p

w

p

(1�2k)

N

;n

(p

w

p

)

1� p

1�2k

=

X

djf

�(d)�

D

(d)d

1=2�k

�

2�2k

(f=d)

Y

pj2det(S)

p

w

p

(1�2k)

N

;n

(p

w

p

)

1� p

1�2k

: (4.21)

Inserting (4.20) resp. (4.21) into (4.19), we obtain the assertion.

We have written a C++ program to evaluate the above formula. The soure ode and

the binary (ompiled for x86-Linux) an be downloaded from the �rst author's home-page.

In [Bu℄ for some latties L the Eisenstein series E(�) is expressed in terms of elementary

theta funtions.

5 Modular forms on O(2; l)

Throughout this setion we assume that L has signature (2; l) with l � 3. Moreover, we

suppose that L splits two hyperboli planes over Q . (This is always true if l � 5.) We put

V = L


Z

R and denote by

O(V ) = fg 2 SL(V ); q(ga) = q(a) for all a 2 V g

the (speial) orthogonal group of V . If O

0

(V ) denotes the onneted omponent of the

identity and K a maximal ompat subgroup, then O

0

(V )=K is a Hermitean symmetri

spae. The Hermitean struture an be desribed expliitly as follows.

We extend the bilinear form (�; �) on V to a C -bilinear form on the omplexi�ation

V

C

= V 


R

C of V . Let P (V

C

) denote the assoiated projetive spae and write W 7! [W ℄

for the anonial projetion V

C

! P (V

C

). Consider the subset

K =

�

[W ℄ 2 P (V

C

); (W;W ) = 0; (W;W ) > 0

	

of P (V

C

). It is easily seen that K is a omplex manifold of dimension l that onsists of 2

onneted omponents. The ation of the orthogonal group O(V ) on V indues an ation

on K. The onneted omponent of the identity preserves the omponents of K, whereas

O(V )� O

0

(V ) interhanges them. We hoose one �xed omponent of K and denote it by

H. Then O

0

(V ) ats transitively on H and the stabilizer K of a �xed point is a maximal

ompat subgroup. Thus O

0

(V )=K = H.

Let O(L) =

�

g 2 O

0

(V ); gL = L

	

be the orthogonal group of L. We denote by

�(L) the subgroup of �nite index of O(L) onsisting of all elements whih at trivially on

the disriminant group L

0

=L. Aording to Baily-Borel the quotient H=�(L) is a quasi-

projetive algebrai variety.

Let X be a normal irreduible omplex spae. By a divisor D on X we mean a formal

linear ombination D =

P

n

Y

Y (n

Y

2 Z) of irreduible losed analyti subsets Y of

13



odimension 1 suh that the support

S

n

Y

6=0

Y is a losed analyti subset of everywhere

pure odimension 1. For two divisors D =

P

n

Y

Y and D

0

=

P

n

0

Y

Y on X we write

D � D

0

, if n

Y

� n

0

Y

for all irreduible losed analyti subsets Y of odimension 1.

Reall that for any vetor � 2 L

0

of negative norm there is a divisor �

?

on H whih is

given by the orthogonal omplement of � in H. Let � 2 L

0

=L and t 2 Z+ q(�) with t < 0.

Then

H(�; t) =

X

�2L

0

q(�)=t

�+L=�

�

?

(5.1)

is a �(L)-invariant divisor onH. It is the inverse image under the anonial projetion of an

algebrai divisor on H=�(L) (whih will also be denoted by H(�; t)). The multipliities of

all irreduible omponents equal 2, if 2� = 0, and 1, if 2� 6= 0 in L

0

=L. Following Borherds

we all this divisor Heegner divisor of disriminant (�; t). Note that H(�; t) = H(��; t).

We now de�ne automorphi forms for the group �(L). Denote by

e

H = fW 2 V

C

� f0g; [W ℄ 2 Hg � V

C

(5.2)

the one over H. Let r 2 Q and � be a harater of �(L). A meromorphi funtion G on

e

H is alled automorphi form of weight r and harater � with respet to �(L), if

i) G is homogeneous of degree �r, i.e. G(W ) = 

�r

G(W ) for any  2 C � f0g;

ii) G is invariant under �, i.e. G(�W ) = �(�)G(W ) for any � 2 �(L).

If G is in addition holomorphi on

e

H, it is alled modular form. (Sine l � 3, then the

Koeher priniple ensures that G is also holomorphi on the Satake boundary.)

Let E(�) be the Eisenstein series of weight k = 1+l=2 with onstant term 2e

0

inM

k;L

(as

in Theorem 4.8) and write q(; n) for its Fourier oeÆients ( 2 L

0

=L and n 2 Z� q()).

The signi�ane of E(�) lies in the following theorem whih was proved in [Br1℄ Theorem

13.15 and Corollary 13.15 (see also [Br2℄ Theorem 9).

Theorem 5.1. Let F be an automorphi form of weight r with some harater for the

group �(L). Suppose that its divisor (F ) is a linear ombination of Heegner divisors

(F ) =

1

2

X

�2L

0

=L

X

t2Z+q(�)

t<0

(�; t)H(�; t); (5.3)

where the (�; t) are integral oeÆients with (�; t) = (��; t). Then r satis�es

r = �

1

4

X

�2L

0

=L

X

t2Z+q(�)

t<0

(�; t)q(�;�t):

14



Using Theorem 4.8 of the present paper, the q(; n) an be omputed expliitly. By

Theorem 5.1 we obtain some information on the existene of automorphi forms for �(L)

with presribed zeros and poles along Heegner divisors.

Theorem 5.2. Let F be a holomorphi modular form of weight r with some harater for

the group �(L), whose divisor (F ) is a linear ombination of Heegner divisors. Let

D =

1

2

X

�2L

0

=L

X

t2Z+q(�)

t<0

(�; t)H(�; t)

be a linear ombination with non-negative integral oeÆients (�; t) (satisfying (�; t) =

(��; t)) suh that D � (F ). Then

�

1

4

X

�2L

0

=L

X

t2Z+q(�)

t<0

(�; t)q(�;�t) � r: (5.4)

The equality sign in (5.4) holds, if and only if D = (F ).

This theorem is an immediate onsequene of Theorem 5.1 and the following proposi-

tion. (Observe that H(�; t) equals 0 in the divisor group, if there is no � 2 L

0

suh that

� � � (mod L) and q(�) = t.)

Proposition 5.3. The Fourier oeÆients q(; n) ( 2 L

0

and n 2 Z� q() with n > 0)

of E(�) are non-positive rational numbers. Furthermore, q(; n) < 0, if and only if there

exists a � 2 L

0

suh that � �  (mod L) and q(�) = �n.

Proof. We onsider the formula for q(; n) of Theorem 4.8. Obviously the �rst fator is

negative. Moreover, it is easily seen that �

1�k

(~n; �

4D

) and

X

djf

�(d)�

D

(d)d

1=2�k

�

2�2k

(f=d)

are positive.

The following argument shows that L(u; �

D

) > 0 for any u 2 R with u > 1 and any

disriminant D. The Euler produt expansion implies that we may assume that D is a

fundamental disriminant, i.e. the disriminant of a quadrati �eld K over Q . It is well

known that the L-series L

K

(s) attahed to K is equal to �(s)L(s; �

D

) (f. [Za℄ x11). The

values L

K

(u) and �(u) are positive by de�nition.

We �nd that q(; n) is the produt of a negative (rational) number with

Y

pj2det(S)

p

w

p

(1�2k)

N

;n

(p

w

p

):

Hene q(; n) � 0. If there is a � 2 L

0

suh that � �  (mod L) and q(�) = �n, then

N

;n

(a) = N

�;�q(�)

(a) = #fr 2 L=aL; q(r � �)� q(�) � 0 (mod a)g
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(a 2 N). Sine r = 0 is a solution of the ongruene, we have N

;n

(a) � 1 and thereby

q(; n) < 0.

Now suppose that there is no � 2 L

0

suh that � �  (mod L) and q(�) = �n. Assume

that q(; n) < 0. Then N

;n

(p

w

p

) � 1 for any prime p dividing 2 det(S). Hene, by Lemma

4.4 the equation q(r � ) + n = 0 has a solution r over Z

p

for any prime p. Sine q is

inde�nite of rank � 5 we may infer that there exists a global solution r 2 L of the latter

equation (f. [Wa℄ Theorem 63 and 72). But then �r +  2 L

0

satis�es �r +  � 

(mod L) and q(�r + ) = �n ontraditing our assumption. (The latter statement an

also be proved in a rather indiret way: If there is no � 2 L

0

suh that � �  (mod L)

and q(�) = �n, then H(;�n) = 0 in the divisor group of H=�(L). Thus any onstant

non-zero funtion F on

e

H is a modular form of weight 0 with divisor (F ) = H(;�n). By

Theorem 5.1 we obtain q(; n) = 0.)
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