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1. Introduction

Recall that if f is a meromorphic elliptic modular form of weight k for the group SL2(Z),
then for instance as a consequence of the Riemann-Roch theorem on modular curves we
have ∑

τ∈SL2(Z)\H

ordτ (f)

wτ
+ ord∞(f) =

k

12
.(1)

Here H denotes the complex upper half plane and wτ the order of the stabilizer of τ in
PSL2(Z). One purpose of this note is to give a generalization of this formula to modular
forms on the orthogonal group O(2, p), which only depends on the Baily-Borel compacti-
fication of the arithmetic quotient in question. Moreover, we show that certain integrals,
occurring in Arakelov intersection theory, associated with modular forms on O(2, p) con-
verge.

We now describe the content in more detail. Let (V,Q) be a non-degenerate real
quadratic space of signature (2, p) and write G ∼= O(2, p) for its real orthogonal group.
We denote the bilinear form corresponding to the quadratic form Q(·) by (·, ·) such that
Q(x) = 1

2
(x, x). Recall that the Hermitean symmetric space corresponding to G can be

realized as follows: Let VC = V ⊗R C be the complexification of V and P (VC) the associated
projective space. We extend the bilinear form (·, ·) C-bilinearly to VC and put

K = {[Z] ∈ P (VC); (Z,Z) = 0, (Z, Z̄) > 0}.

The set K has two connected components. We chose one of them and denote it by H. The
connected component G0 of the identity of G acts transitively on H. The stabilizer K of
a base point is a maximal compact subgroup of G0 and the Hermitean symmetric space
G0/K is isomorphic to H.

Let L ⊂ V be an even lattice, L′ its dual, and write O(L) for the integral orthogonal
group of L. Throughout we let Γ ⊂ O(L) ∩ G0 be a subgroup of finite index that acts
freely on H. By the theory of Baily-Borel [BB], the quotient YΓ = Γ\H is a (non-singular)
quasi-projective algebraic variety over C of dimension p. It can be compactified by adding
finitely many curves and points. The resulting normal complex space is denoted by XΓ.
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Let H̃ ⊂ VC−{0} be the cone over H. Let k ∈ Z and χ a character of Γ. A meromorphic

function F on H̃ is called a meromorphic modular form of weight k and character χ for
the group Γ, if

i) F is homogeneous of degree −k, i.e. F (cZ) = c−kF (Z) for any c ∈ C− {0};
ii) F is invariant under Γ, i.e. F (gZ) = χ(g)F (Z) for any g ∈ Γ;
iii) F is meromorphic at the boundary.

By the Koecher principle the third condition is automatically fulfilled if the Witt rank
of L, i.e. the dimension of a maximal isotropic subspace of L⊗Z Q, is smaller than p. (Note
that because of the signature the Witt rank of L is alway ≤ 2.)

Meromorphic modular forms of weight k with trivial character can be viewed as global
rational sections of an algebraic line bundle Mk on YΓ. If F is a modular form of weight
k, then its Petersson metric is the function on H given by

‖F (Z)‖2
Pet = |F (Z)|2(Z, Z̄)k.

This defines a Hermitean metric on the line bundle Mk.
Let Ω be the first Chern form of M1. It is the (1, 1)-form corresponding to the (up to a

positive multiple) unique G0-invariant Kähler metric on H. We denote by vol(YΓ) =
∫
YΓ

Ωp

the volume of YΓ. If D is a divisor on YΓ, then we define its analytic degree by

degYΓ
(D) =

∫
D

Ωp−1.

If D is an effective divisor, then the positivity of Ω implies that degYΓ
(D) ∈ R≥0 ∪ ∞.

Moreover, degYΓ
(D) vanishes in this case, if and only if D = 0. (The proof of Lemma 8

will actually show that degYΓ
(D) is finite for any divisor D on YΓ.)

In section 5 we prove the following theorem, which can be viewed as a higher dimension
analogue of (1).

Theorem 1. Assume that the Witt rank of L is 0 if p = 1, and ≤ 1 if p = 2, 3 (and
no restriction otherwise). If F is a meromorphic modular form of weight k with some
character for the group Γ, then

degYΓ
(div(F )) = k vol(YΓ).

If YΓ is compact (which can only occur if p ≤ 2), this immediately follows from the
Poincaré-Lelong formula. However, if YΓ is non-compact, it is not obvious at all, because
of the singularity of XΓ and the metric ‖ · ‖Pet at the boundary. For modular forms whose
divisor is a linear combination of Heegner divisors, the above formula also follows from [Ku]
(2.31) and [Br] Corollary 4.24. Notice that for p ≤ 2 the hypothesis on the Witt rank of L
is clearly needed. For instance, we may view the classical Delta function ∆ as a modular
form on O(2, 1) with respect to the orthogonal group of a lattice with Witt rank 1. By (1)
we also have to take account of the zero of ∆ at the cusp ∞. However, for p = 3 we do
not have any counter-example, and it would be interesting to see whether the hypothesis
on the Witt rank can be dropped.

If H is a Heegner divisor on YΓ, then degYΓ
(H) can be computed explicitly (see [Ku],

[BrKü]). It is given by a Fourier coefficient of a certain Eisenstein series of weight 1+p/2 for
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the metaplectic group Mp2(R), and can be evaluated in terms of special values of Dirichlet
L-series and generalized divisor sums. Therefore Theorem 1 has useful applications in this
context.

In section 4 we show:

Theorem 2. Assume that the Witt rank of L is 0 if p = 1, and ≤ 1 if p = 2 (and no
restriction otherwise). If F is a meromorphic modular form with some character for the
group Γ, then log ‖F‖Pet is in L1(YΓ,Ω

p), i.e. the integral
∫
YΓ

∣∣ log ‖F‖Pet
∣∣ Ωp converges.

In the same way as with Theorem 1, the assumption on the Witt rank of L is crucial,
as for instance the example of the Delta function shows. Integrals of this type naturally
occur in the arithmetic intersection theory of (regular models) of Shimura varieties (see
e.g. [Ku] and [BBK]).

The proof of the two theorems relies on the “curve lemma” for orthogonal groups (The-
orem 5 here, see [Fr1] Satz 5.8 and [Fr2] Satz 2.1 for the similar case of Siegel modular
varieties). It can be used to approximate holomorphic charts of any desingularization of
XΓ at the Baily-Borel boundary.

It seems plausible that the results of this note hold in greater generality for arithmetic
quotients of Hermitean symmetric domains (under some condition on the codimension of
the Baily-Borel boundary). However, Heegner divisors (see [KM], [Lo], [Br]) only exist for
such domains associated with O(2, p) or U(1, n), which is why we restricted ourselves to
the O(2, p) case.

I thank E. Freitag for explaining the curve lemma to me and for various useful discussions
on this note. Moreover, I thank U. Kühn for his help.

2. Preliminaries

If R > 0, we let E(R) = {z ∈ C; |z| < R}. For the unit disc E(1) we simply write E and

put Ė = E − {0}. The upper complex half plane is denoted by H = {z ∈ C; =(z) > 0}.
Moreover, if f and g are complex numbers or complex valued functions on some domain,
then we write f � g, if there exists a constant C > 0 such that |f | ≤ C|g|.

Sometimes it is very useful to work with a tube domain realization of the Hermitean
symmetric space H. Let z ∈ L be a primitive isotropic vector. Then we may chose z′ ∈ L′
such that (z, z′) = 1. The lattice K = L∩z⊥∩z′⊥ is Lorentzian, i.e. has signature (1, p−1).
Let C be the cone of positive norm vectors in K⊗ZR. Then Kz = {Z ∈ K⊗ZC; =(Z) ∈ C}
is isomorphic to K via the mapping Z 7→ [Z + z′ −Q(Z)z −Q(z′)z]. The cone C consists
of two connected components. One of these, denoted by C+, has the property that

Hz = {Z ∈ K ⊗Z C; =(Z) ∈ C+}

is mapped isomorphically to H via the above mapping. The connected component of the
orthogonal group of K ⊗Z R viewed as a subgroup of G0 acts linearly on Hz. If Z ∈ Hz,
then we will often denote X = <(Z) and Y = =(Z). A modular form F of weight k for the
group Γ, can be viewed as a function on Hz with a certain transformation behavior under Γ
(see e.g. [Br]). The Petersson metric of F can be written as ‖F (Z)‖2

Pet = |F (Z)|2(4Q(Y ))k.
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On Hz the Kähler form Ω is given by

Ω = −ddc log(Q(Y ))

with dc = 1
4πi

(∂ − ∂̄). Let e1, . . . , ep be a basis of K ⊗Z R. If X ∈ K ⊗Z R, then we write
X = (x1, . . . , xp) = x1e1+. . . xpep with xi ∈ R. It is easily checked that in these coordinates
dQ(Y ) = (Y, dY ) and dcQ(Y ) = − 1

4π
(Y, dX), where dX in the scalar product stands for

the vector dX = (dx1, . . . , dxp), and dY for the analogous vector in the Y -coordinates. It
follows that

Ω =
1

4πQ(Y )

(
(Y, dX)(Y, dY )

Q(Y )
− (dX, dY )

)
.

The (p− 1, p− 1)-form Ωp−1 on Hz is also easily computed explicitly. If we put

d̂xj = (−1)jdx1 · · · dxj−1dxj+1 · · · dxp,(2)

and define d̂yj analogously, then

Ωp−1 =
C

Q(Y )p

p∑
i,j=1

(
yiyj − sijQ(Y )

)
d̂xid̂yj,(3)

where S = (sij) denotes the Gram matrix of Q with respect to the basis e1, . . . , ep, S
−1 =

(sij) its inverse, and C = (−1
2π

)p−1 (p−1)!
2

.

The volume form Ωp is up to a constant multiple equal to DXDY
Q(Y )p , whereDX = dx1 · · · dxp

and DY = dy1 · · · dyp (see also [BrKü]).

We will need the following elementary lemmas on vectors in the closure C+ ⊂ K ⊗Z R
of the positive cone C+.

Lemma 3. a) If λ1, λ2 ∈ C
+
, then (λ1, λ2) ≥ 0 and

Q(λ1) +Q(λ2) ≤ Q(λ1 + λ2) ≤ 2Q(λ1) + 2Q(λ2).

b) If λ1, λ2 ∈ C
+

are linearly independent (hence both non-zero) and λ1 is isotropic, then
(λ1, λ2) > 0.

The proof is left to the reader.

Lemma 4. Let λ1, . . . , λn ∈ C
+

be linearly independent vectors.
a) If n ≥ 2, then for any 0 ≤ A ≤ 1− 2/n we have

(4) Q(t1λ1 + · · ·+ tnλn) � t
2/n+A
1 (t2 · · · tn)2/n−A/(n−1),

uniformly for t1, . . . , tn ∈ R≥0.
b) Moreover, if Q(λ1) > 0, then (4) actually holds for any 0 ≤ A ≤ 2−2/n (and trivially

also for n = 1 with A = 0).

This can be proved by induction on n using Lemma 3 and the inequality between arith-
metic and geometric mean.
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3. The curve lemma

We begin by recalling some facts on the Baily-Borel compactification of YΓ (see [Lo] and
[BF] for more details). The zero-dimensional boundary components of YΓ correspond to
Γ-classes of one-dimensional isotropic subspaces of L⊗Q. The one-dimensional boundary
components of YΓ correspond to Γ-classes of two-dimensional isotropic subspaces of L⊗Q.

If B is a one-dimensional isotropic subspace of L ⊗ Q, then B ⊗ C defines a point in
the zero-quadric N = {[Z] ∈ P (VC); (Z,Z) = 0} ⊂ P (VC). This is the zero-dimensional
rational boundary component of H corresponding to B. If B is a two-dimensional isotropic
subspace of L ⊗ Q, then [B ⊗ C] ⊂ N . A subset of [B ⊗ C], isomorphic to H, belongs to
the closure of H in P (VC). This is the one-dimensional rational boundary component of H
corresponding to B. We write H∗ for the union of H with all zero- and one-dimensional
rational boundary components of H. The group Γ clearly acts on H∗.

By the theory of Baily-Borel there is a certain topology on H∗ such that the quotient
XΓ = Γ\H∗, together with the quotient topology, has a natural structure as a projective
algebraic variety, containing YΓ as a Zariski-open subset.

If s ∈ H∗ is any point and Γs its stabilizer in Γ, then the natural map

Γs\H∗ −→ Γ\H∗(5)

defines an open embedding of a small neighborhood of the image of s. If the group Γ is
neat1, and s is contained in the rational one- or two-dimensional boundary component of
H corresponding to an isotropic subspace B ⊂ L ⊗ Q, then Γs centralizes B, i.e. acts as
the identity on it. In particular, if z ∈ L ∩ B is a primitive isotropic vector, then Γs is
contained in the stabilizer Γz of z in Γ.

The group Γz can be described as follows. We chose a vector z′ ∈ L′ with (z, z′) = 1 and

write K for the lattice L∩z⊥∩z′⊥ as in section 2. We let ∆(L) ⊂ O(L) be the discriminant
kernel of O(L), i.e., the kernel of the natural homomorphism O(L) → O(L′/L). By our
assumption, Γ is commensurable with ∆(L). Hence Γz is commensurable with the stabilizer
∆(L)z, and it suffices (for our purposes) to consider the latter group. We first notice that
the natural inclusion of O(K ⊗Q) into O(L⊗Q) induces an inclusion of the discriminant
kernels ∆(K) → ∆(L) (but in general not of the integral orthogonal groups). Clearly
∆(K) stabilizes z. A second type of elements is given by translations. For any λ ∈ L∩ z⊥,
the Eichler transformation

x 7→ E(z, λ)(x) = x+ (x, z)λ− (x, λ)z −Q(λ)(x, z)z (x ∈ V )

belongs to ∆(L)z ∩ G0 and is unipotent. We identify K with its corresponding group of
Eichler transformations. The group ∆(K) acts onK and we claim that ∆(L)z = ∆(K)nK.
In fact, let g ∈ ∆(L)z. Since g fixes L′/L, the vector z′− gz′ is contained in L. It is clearly
orthogonal to z and therefore E(z, z′−gz′) ∈ ∆(L)z. One easily checks that E(z, z′−gz′)g
stabilizes z′ and z, and consequently is contained in ∆(L)z ∩ O(K ⊗ Q) = ∆(K). This
proves the claim. The action of g = (U, T ) ∈ ∆(K) n K on the tube domain Hz is given

1Recall that a subgroup Γ′ of an algebraic group H ⊂ GL(n, C) is neat, if for every g ∈ Γ′ the
multiplicative subgroup of C× generated by the eigenvalues of g has no torsion. Every arithmetic subgroup
of H contains a congruence subgroup of finite index, which is neat (see [Bo] Proposition 17.4).
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by
gZ = UZ + T (Z ∈ Hz).

The following result is the fundamental for our later argument.

Theorem 5. Let Ψ : Hm × EN → Hz be a holomorphic mapping satisfying

Ψ(τ1 + 1, τ2, . . . , τm, w) = U1Ψ(τ1, . . . , τm, w) + T1,

...

Ψ(τ1, τ2, . . . , τm + 1, w) = UmΨ(τ1, . . . , τm, w) + Tm,

where U1, . . . , Um ∈ ∆(K), and T1, . . . , Tm are translations in K, and w ∈ EN . Then
U1, . . . , Um are of finite order ` for some ` ∈ N, and there exist semi-positive vectors

λ1, . . . , λm ∈ (K ⊗Q) ∩ C+
and a holomorphic function Ψ0 : Em × EN → Hz such that

Ψ(τ1, . . . , τm, w) = λ1τ1 + · · ·+ λmτm + Ψ0(e
2πiτ1/`, . . . , e2πiτm/`, w).

Proof. Theorem 5 for m = 1 is the orthogonal group analogue of the curve Lemma for
Siegel modular groups (see [Fr1] Satz 5.8, [Fr2] Satz 2.1). It can be proved in a similar
way. The case m > 1 can be reduced to the previous case by considering the functions
(τi, w) 7→ Ψ(τ1, . . . , τm, w) for i = 1, . . . ,m, where the τj-variables with j 6= i are being
fixed. �

4. The integral of the logarithm of a modular form

Proof of Theorem 2. Without any restriction we may assume that Γ is neat and acts triv-
ially on L′/L.

Since XΓ is compact, it suffices to show that log ‖F‖Pet is locally integrable near every
point of XΓ. This is easily done for the points of YΓ. Thus we only have to consider the
points of the Baily-Borel boundary ∂XΓ = XΓ − YΓ. In particular, in the case that YΓ is
already compact we are done. Because of our assumption on the Witt rank of L we may
therefore assume that p ≥ 2.

According to Hironaka’s theory there exists a desingularization π : X̃Γ → XΓ of XΓ with
respect to the divisor div(F ) such that π−1(div(F )∪∂XΓ) is a divisor with normal crossings.

Let a ∈ ∂XΓ be a boundary point and ã ∈ X̃Γ be a point with π(ã) = a. Let U ⊂ X̃Γ

and V ⊂ XΓ be open neighborhoods of ã and a, respectively, such that π induces an
isomorphism U−π−1(div(F )∪∂XΓ) → V − (div(F )∪∂XΓ). After a biholomorphic change
of coordinates we may assume without loss of generality that U = Ep, ã = (0, . . . , 0) ∈ Ep,
and

U ∩ π−1(∂XΓ) = {(q1, . . . , qp) ∈ Ep; q1 · · · qm = 0}(6)

U ∩ π−1(div(F )) = {(q1, . . . , qp) ∈ Ep; qi1 · · · qiu = 0}(7)

for some 1 ≤ m ≤ p and 1 ≤ i1 < · · · < iu ≤ p. Moreover, we may assume that V is given
by the open embedding of a neighborhood of a boundary point s ∈ H∗ above a as in (5).

We obtain a holomorphic mapping of complex spaces

ψ : Ėm × Ep−m −→ Γs\H,
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which can be continued to a holomorphic mapping Ep → Γs\H∗ whose image is V . We lift
ψ to a holomorphic mapping Ψ : Hm × Ep−m −→ H of the universal covers and get the
following commutative diagram:

Hm × Ep−m

��

Ψ // H

��

Ėm × Ep−m

��

ψ // Γs\H

��

Em × Ep−m // Γs\H∗

.(8)

The local integrability of log ‖F‖Pet near a ∈ XΓ is equivalent to showing that∫
E(R)p

∣∣ψ∗(log ‖F‖Pet)
∣∣ψ∗(Ωp)(9)

converges for some 0 < R < 1.
Throughout we use τ = (τ1, . . . , τm) as a standard variable in Hm, q = (q1, . . . , qp) as

a standard variable in Ep, and frequently denote w = (qm+1, . . . , qp) ∈ Ep−m. Since the
diagram commutes, there exist elements g1, . . . , gm ∈ Γs such that

Ψ(τ1 + 1, τ2, . . . , τm, w) = g1Ψ(τ1, . . . , τm, w),

...

Ψ(τ1, τ2, . . . , τm + 1, w) = gmΨ(τ1, . . . , τm, w).

The transformations g1, . . . , gm do not depend on (τ, w), because Γ acts properly discon-
tinuously and freely. Moreover, they have to fix the boundary point s.

Let z ∈ L be a primitive isotropic vector such that Γs ⊂ Γz. From now on we work
with the tube domain realization Hz of H. By virtue of the remarks of section 3 we may
conclude that any gi has the form giZ = UiZ+Ti, where Ui ∈ ∆(K), Ti ∈ K, and Z ∈ Hz.

In view of Theorem 5 there exist semi-positive vectors λ1, . . . , λm ∈ (K ⊗ Q) ∩ C+
and

a holomorphic function Ψ0 : Ep → Hz such that

Ψ(τ1, . . . , τm, w) = λ1τ1 + · · ·+ λmτm + Ψ0(e
2πiτ1 , . . . , e2πiτm , w).

Here we have used our assumption that Γ be neat and the fact that the translations Ti are
unipotent to conclude that ` = 1 and Ui = 1. Consequently ψ is given by

ψ(q) =
1

2πi
(λ1 Log q1 + · · ·+ λm Log qm) + Ψ0(q),(10)

where Log(·) denotes a fixed branch of the holomorphic logarithm on E − R≤0. The fact
that ψ(q) ∈ ∂XΓ, if qi = 0 for some 1 ≤ i ≤ m, implies that λ1, . . . , λm 6= 0. Using polar
coordinates

qj = rje
iρj (0 ≤ rj < 1, 0 ≤ ρj < 2π),
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we obtain for the imaginary part of ψ:

ψ∗(Y ) = =(ψ(q)) = − 1

2π
(λ1 log r1 + · · ·+ λm log rm) + =(Ψ0(q)).(11)

In order to prove the convergence of (9), we have to find bounds for ψ∗(Q(Y )) and for the
functional determinant of ψ. Since Ψ0(q) is bounded on E(R)p, this can be done by means
of (10) and (11).

Let µ be the rank of λ1, . . . , λm (1 ≤ µ ≤ m). Without any restriction we may assume
that λ1, . . . , λµ are linearly independent. Using (11) and Lemma 3, we see that

0 < q (λ1 log r1 + · · ·+ λµ log rµ) � ψ∗(Q(Y )) � (log r1)
2 + · · ·+ (log rm)2.(12)

In view of (7) the upper bound in particular implies that

|ψ∗(log ‖F‖Pet)| � | log r1|+ · · ·+ | log rp|(13)

uniformly on E(R)p.
The complex Jacobi Matrix of ψ is given by

J(ψ; q) =
1

2πi

(
λ1/q1 · · · λm/qm 0 · · · 0

)
+ J(Ψ0; q)

= Λ


q−1
1

. . .
q−1
m

0p−m

 + J(Ψ0; q)

where Λ denotes the p × p matrix Λ = 1
2πi

(
λ1 · · · λm 0 · · · 0

)
. The fact that

λ1, . . . , λµ form a basis for the span of all columns of Λ implies that there is a matrix
S of elementary row manipulations such that

SΛ =


l11 ∗ · · · ∗
0

. . . . . .
...

...
. . . lµµ ∗

0 · · · 0 0

 .

The diagonal elements l11, . . . , lµµ are non-zero such that the first µ rows are linearly
independent. The rows µ + 1 to p vanish identically. We find that the determinant of
J(ψ; q) is up to the sign equal to the determinant of

l11/q1 ∗ · · · ∗
0

. . . . . .
...

...
. . . lµµ/qµ ∗

0 · · · 0 0

 + SJ(Ψ0; q).

If we expand the determinant of this matrix successively by the first to the µ-th column
and use the fact that SJ(Ψ0; q) is bounded, we find that

det(J(ψ; q)) � r−1
1 · · · r−1

µ
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and therefore

ψ∗(Ωp) � ψ∗
(
DX DY

Q(Y )p

)
= ψ∗(Q(Y )−p) · | det J(ψ; q)|2 · r1dr1dρ1 · · · rpdrpdρp

� ψ∗(Q(Y )−p)
dρ1 · · · dρp dr1 · · · drp

r1 · · · rµ
.(14)

In view of (13) and (14), to prove that the integral (9) is finite, it suffices to show that∫
E(R)p

| log rj|
ψ∗(Q(Y )p)

dρ1 · · · dρp dr1 · · · drp
r1 · · · rµ

(15)

converges for j = 1, . . . , p. The case µ + 1 ≤ j ≤ p is easily treated using (16) and left to
the reader. For the case 1 ≤ j ≤ µ we may assume without loss of generality that j = 1.
According to Lemma 4a, we may infer from the lower bound of (12) (respectively directly
from (11), if µ = 1 and λ1 is anisotropic) that

ψ∗(Q(Y )) � | log r1| (| log r2| · · · | log rµ|)1/(µ−1) ,(16)

uniformly on E(R)p. Here the right hand side is understood as | log r1|, if µ = 1. Hence it
suffices to prove that

R∫
r1=0

· · ·
R∫

rp=0

dr1 · · · drp
r1 · · · rµ · | log r1|p−1 · | log r2|p/(µ−1) · · · | log rµ|p/(µ−1)

(17)

converges. Since

R∫
r=0

rα
dr

| log r|β
<∞, for α > −1 and β ∈ R,(18)

R∫
r=0

dr

r| log r|β
<∞, for β > 1,(19)

we find that the integrals over r2, . . . , rp converge. Thus (17) is bounded by a positive
constant multiple of

R∫
r1=0

dr1
r1| log r1|p−1

.

This is finite if p > 2. However, if p = 2, then our assumption on the Witt rank of L
implies that K is anisotropic. Hence, by Lemma 4b, we have the estimate

ψ∗(Q(Y )) �

{
| log r1|2, if µ = 1,

| log r1|1+ε| log r2|1−ε, if µ = 2,
(20)
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where ε > 0 is small. Consequently,

ψ∗(Ωp) �

{
r−1
1

dρ1dρ2 dr1dr2
| log r1|4 , if µ = 1,

r−1
1 r−1

2
dρ1dρ2 dr1dr2

| log r1|2+2ε| log r2|2−2ε , if µ = 2.

The same argument as above then shows that the integral (15) (with j = 1) is actually
bounded by

R∫
r1=0

dr1
r1| log r1|1+δ

for some small δ > 0. This concludes the proof of the theorem. �

Remark. The argument of the proof of this theorem actually shows that log ‖F‖Pet belongs
to L1+ε(XΓ,Ω

p) for some ε > 0.

5. The degree formula

If Y is a complex manifold, we write C∞(Y ) for the space of C∞-functions on Y . If X
is any complex space, we define C∞(X) to be the space of those functions f : X → C, for
which for any holomorphic map h : Y → X from a complex manifold Y to X the pull back
satisfies h∗(f) ∈ C∞(Y ). The subspace of compactly supported functions on X is denoted
by C∞

c (X). Using local embeddings of X into some CN , one obtains many C∞-functions
with compact support by pull back. They can be used to construct a partition of unity, if
X is paracompact.

Proof of Theorem 1. We may and will assume that Γ is neat and acts trivially on L′/L. If
YΓ is compact, the assertion is an immediate consequence of the Poincaré-Lelong formula
(see [GH], [SABK] Chapter II.1.4). In view of our assumption on the Witt rank of L we
may therefore assume that p ≥ 2.

Since the Petersson metric and Ωp−1 are smooth on YΓ, the Poincaré-Lelong formula
implies that for all σ ∈ C∞

c (YΓ):

(21) k

∫
XΓ

Ωpσ =

∫
divXΓ

(F )

Ωp−1σ −
∫
XΓ

log ‖F‖2
PetΩ

p−1ddcσ.

We will show that this formula actually holds for σ ∈ C∞(XΓ). This implies the theorem
by taking σ = 1.

The Baily-Borel compactification XΓ admits partition of unity. Hence it suffices to prove
the assertion locally, i.e., that for every a ∈ XΓ there is a neighborhood V ⊂ XΓ such that
(21) holds for all σ ∈ C∞

c (V ). If a ∈ YΓ, this is a consequence of the Poincaré-Lelong
formula. We therefore assume that a ∈ ∂XΓ is a boundary point. In this case the assertion
is not at all clear, because of the singularity of the space XΓ and the metric ‖ · ‖Pet.

We begin by preparing nice local charts using Theorem 5 in the same way as in the proof
of Theorem 2. We stick to the notation introduced before. We chose a desingularization

π : X̃Γ → XΓ of XΓ with respect to the divisor div(F ) such that π−1(div(F ) ∪ ∂XΓ) is

a divisor with normal crossings. Let ã ∈ X̃Γ be a point with π(ã) = a, and let U ⊂ X̃Γ
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and V ⊂ XΓ be open neighborhoods of ã and a, respectively, as in the proof of Theorem
2. After a biholomorphic change of coordinates we may again assume that U = Ep,
ã = (0, . . . , 0) ∈ Ep, and that (6), (7) hold. Moreover, we may assume that V is given
by the open embedding of a neighborhood of a boundary point s ∈ H∗ above a as in
(5). We obtain holomorphic mappings of complex spaces ψ : Ėm × Ep−m → Γs\H and
Ψ : Hm × Ep−m → H such that the diagram (8) commutes. By means of the curve lemma

we find that there exist semi-positive non-zero vectors λ1, . . . , λm ∈ (K ⊗ Q) ∩ C+
and a

holomorphic function Ψ0 : Ep → Hz such that

Ψ(τ1, . . . , τm, w) = λ1τ1 + · · ·+ λmτm + Ψ0(e
2πiτ1 , . . . , e2πiτm , w).

There is a unique splitting of the divisor of ψ∗(F ) into a sum

div(ψ∗(F )) = D1 +D2,

where the support of D1 is contained in E = {q ∈ Ep; q1 · · · qm = 0}, the exceptional
divisor over ∂XΓ, and supp(D2) ∩ supp(E) ⊂ {0}. We find that it suffices to show

k

∫
Ep

ψ∗(Ωp)σ =

∫
D2

ψ∗(Ωp−1)σ −
∫
Ep

ψ∗(log ‖F‖2
PetΩ

p−1)ddcσ(22)

for all σ ∈ C∞
c (Ep). We will prove this following the standard argument for the Poincaré-

Lelong formula and making sure that the various boundary terms caused by the singular-
ities vanish.

Let σ ∈ C∞
c (Ep) and write η = ψ∗(Ωp−1)σ. We putD = {q ∈ Ep; q1 · · · qp = 0} = Ep−Ėp

and note that log ‖F‖2
Pet and η are smooth outside D. We have∫

Ep

ψ∗(log ‖F‖2
Pet)dd

cη =

∫
Ep

d
(
ψ∗(log ‖F‖2

Pet)d
cη

)
−

∫
Ep

(
dψ∗(log ‖F‖2

Pet)
)
(dcη)

= lim
ε→0

∫
Ep−Bε(D)

d
(
ψ∗(log ‖F‖2

Pet)d
cη

)
+

∫
Ep

(
dcψ∗(log ‖F‖2

Pet)
)
(dη)

= − lim
ε→0

∫
∂Bε(D)

ψ∗(log ‖F‖2
Pet)(d

cη) +

∫
Ep

(
dcψ∗(log ‖F‖2

Pet)
)
(dη).

Here Bε(D) denotes a tubular ε-neighborhood of D. It follows from Lemma 6 below that
the limit of the integral over ∂Bε(D) vanishes. Hence∫

Ep

ψ∗(log ‖F‖2
Pet)dd

cη = −
∫
Ep

d
(
(dcψ∗(log ‖F‖2

Pet))η
)

+

∫
Ep

(
ddcψ∗(log ‖F‖2

Pet)
)
η

= lim
ε→0

∫
∂Bε(D)

(dcψ∗(log ‖F‖2
Pet))η − k

∫
Ep

ψ∗(Ω)η.
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We will prove in Lemma 7 below that

lim
ε→0

∫
∂Bε(D)

(dcψ∗(logQ(Y )))η = 0.

Consequently∫
Ep

ψ∗(log ‖F‖2
Pet)dd

cη = lim
ε→0

∫
∂Bε(D)

(dcψ∗(log |F |2))η − k

∫
Ep

ψ∗(Ω)η.

It follows from Lemma 6 that the first integral on the right hand side vanishes, if ψ∗(F )
is a an invertible holomorphic function on Ep. Thus, by linearity we may assume that
ψ∗(F ) = qκ for some 1 ≤ κ ≤ p. It is easily checked that dc log |qκ|2 = 1

2π
dρκ. In Lemma 8

we show that

1

2π
lim
ε→0

∫
∂Bε(D)

dρκ ∧ η =

{
0, if 1 ≤ κ ≤ m,∫
qκ=0

η, if m < κ ≤ p,

concluding the proof of the Theorem. �

Lemma 6. For any n = 1, . . . , p we have

lim
ε→0

∫
∂Bε(D)

| log rn|(dcη) = 0.

Proof. In the same way as in (2) we define

d̂qj = (−1)jdq1 · · · dqj−1dqj+1 · · · dqp,

and d̂q̄j analogously. It follows from (3) and (11) that the d̂qid̂q̄j-component of ψ∗(Ωp−1)
is bounded by a sum over 1 ≤ k, l ≤ p of (p− 1, p− 1)-forms of the form

| log r1|2 + · · ·+ | log rm|2

ψ∗(Q(Y )p)
det(Jik(ψ; q)) det(Jjl(ψ; q))d̂qid̂q̄j.

Here Jik(ψ; q) denotes the matrix obtained from the Jacobi matrix J(ψ; q) by canceling
the i-th column and the k-th row.

Let Λik be the matrix obtained from Λ = 1
2πi

(
λ1 · · · λm 0 · · · 0

)
by canceling

the i-th column and the k-th row. Chose pairwise different indices α1, . . . , αµ ≤ m (with
0 ≤ µ ≤ m− 1 and αt 6= i) such that the sub-matrix of Λik corresponding to λα1 , . . . , λαµ

consists of a basis for the vector space generated by the columns of Λik. Then we find as
in the proof of Theorem 2 that

det(Jik(ψ; q)) � r−1
α1
· · · r−1

αµ
.

In the same way there are pairwise different indices β1, . . . , βν ≤ m (with 0 ≤ ν ≤ m − 1
and βt 6= j) such that the sub-matrix of Λjl corresponding to λβ1 , . . . , λβν consists of a
basis for the vector space generated by the columns of Λjl, and

det(Jjl(ψ; q)) � r−1
β1
· · · r−1

βν
.
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Consequently, the assertion of the lemma follows if we can show that

lim
ε→0

∫
∂Bε(D)

| log rn|3

ψ∗(Q(Y )p)

d̂qid̂q̄j(d
cσ)

rα1 · · · rαµrβ1 · · · rβν

= 0(23)

for all i, j, n = 1, . . . , p. Since σ has compact support, there exists a 0 < R < 1 with
supp(σ) ⊂ E(R)p. It suffices to show that the contribution to the integral coming from

St(ε, R) = {q ∈ ∂Bε(D) ∩ E(R)p; |qt| = ε} = {q ∈ E(R)p; |q1|, . . . , |qp| ≥ ε and |qt| = ε}

goes to zero in the limit for 1 ≤ t ≤ p. Here only the dρtd̂qtd̂q̄t component of d̂qid̂q̄j(d
cσ)

gives a non-zero contribution. In particular the integral vanishes, if both, i and j, are
different from t. Without loss of generality we may therefore assume that j = t. Because
dcσ is bounded, we find that it suffices to show

lim
ε→0

∫
St(ε,R)

| log rn|3

ψ∗(Q(Y )p)

dρ1dr1 · · · dρt−1drt−1 · rtdρt · dρt+1drt+1 · · · dρpdrp
rα1 · · · rαµ

= 0(24)

for all n = 1, . . . , p.
Let us first assume that α1, . . . , αµ are all different from t. Then we may use the (poor)

estimate ψ∗(Q(Y )) � 1 to infer that the integral in (24) is bounded by

ε

R∫
r1=ε

· · ·
R∫

rt−1=ε

·
R∫

rt+1=ε

· · ·
R∫

rp=ε

| log rn|3
dr1 · · · drt−1 · drt+1 · · · drp

rα1 · · · rαµ

.(25)

For any B ∈ R we have

R∫
r=ε

| log r|B dr
r

=


O(| log ε|B+1), if B > −1,

O(log | log ε|), if B = −1,

O(1), if B < −1,

(26)

as ε→ 0. Thus (25) is bounded by ε| log ε|C for some C > 0 as ε→ 0, implying (24).
We now assume that one of the indices α1, . . . , αµ is equal to t, say α1 = t. Then in

particular t ≤ m and without loss of generality we may assume α1 = t = 1. We only
consider the case that n = 1 as well, leaving the similar remaining case to the reader. It
follows from Lemma 4a with A = 1− 2/µ (respectively directly from (11) if µ = 1) that

ψ∗(Q(Y )) � Q(λα1 log rα1 + · · ·+ λαµ log rαµ)

� | log rα1 | ·
(
| log rα2| · · · | log rαµ|

)1/(µ−1)
.
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Thus the integral in (24) is bounded by∫
S1(ε,R)

| log rα1|3−p
(
| log rα2| · · · | log rαµ|

)−p/(µ−1) dρ1 · dρ2dr2 · · · dρpdrp
rα2 · · · rαµ

� | log ε|3−p
R∫

rα2=ε

· · ·
R∫

rαµ=ε

(
| log rα2 | · · · | log rαµ|

)−p/(µ−1) drα2 · · · drαµ

rα2 · · · rαµ

� | log ε|3−p.

Here, in the last line we have used (26). Hence we obtain (24), if p > 3. In the case p ≤ 3
our assumption on the Witt rank of L implies that K is anisotropic. Therefore we may
apply Lemma 4b with A = 2− 2/µ to infer that ψ∗(Q(Y )) � | log r1|2. By means of (26)
we find that the integral in (24) is actually bounded by | log ε|2−2p+µ � | log ε|−1, which
implies (24). �

Lemma 7. We have

lim
ε→0

∫
∂Bε(D)

(dcψ∗(logQ(Y )))η = 0.

Proof. One can use (11), the estimate ψ∗(Q(Y )) � | log r1| + · · · + | log rm|, and the fact
that dc log |qj|2 = 1

2π
dρj, to conclude that

dcψ∗(logQ(Y )) � dρ1 + · · ·+ dρm + rm+1dρm+1 + · · ·+ rpdρp + dr1 + · · ·+ drp.

Here “�” is understood componentwise. Thus the assertion follows from the estimate for
(24) in Lemma 6. �

Lemma 8. We have

1

2π
lim
ε→0

∫
∂Bε(D)

dρκ ∧ η =

{
0, if 1 ≤ κ ≤ m,∫
qκ=0

η, if m < κ ≤ p.

In the latter case, the integral on the right hand side converges absolutely.

Proof. We first consider the case that 1 ≤ κ ≤ m, say κ = 1. By the argument of Lemma
6 (using the notation of that lemma) it suffices to show that

lim
ε→0

∫
St(ε,R)

| log rn|2

ψ∗(Q(Y )p)

dρ1d̂qid̂q̄j
rα1 · · · rαµrβ1 · · · rβν

= 0(27)

for all i, j, t = 1, . . . , p and n = 1, . . . ,m. The integral in (27) vanishes, unless i = 1 and
j = t, or i = t and j = 1. Without loss of generality we may assume that j = 1.

If t ≤ m, then integral is bounded by∫
St(ε,R)

| log rn|2
dρ1dr1 · · · dρt−1drt−1 · dρt · dρt+1drt+1 · · · dρpdrp

ψ∗(Q(Y )p) · rα1 · · · rαµ

,
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and α1, . . . , αµ 6= t. Since λα1 , . . . , λαµ are linearly independent, after possibly renaming
indices, we may assume that λt, λα2 , . . . , λαµ are also linearly independent. Hence, it follows
from Lemma 4a with A = 1− 2/µ (respectively directly from (11) if µ = 1) that

ψ∗(Q(Y )p) � | log rt| ·
(
| log rα2| · · · | log rαµ|

)1/(µ−1)
.

Consequently, the integral in (27) is bounded by∫
St(ε,R)

| log rn|2
dρ1dr1 · · · dρt−1drt−1 · dρt · dρt+1drt+1 · · · dρpdrp
| log rt|p ·

(
| log rα2| · · · | log rαµ|

)p/(µ−1) · rα1 · · · rαµ

(26)
� | log ε|3−p.

We obtain (27), if p > 3. In the case p ≤ 3 our assumption on the Witt rank of L implies
that K is anisotropic. We may apply Lemma 4b to deduce that the the integral in (27) is
actually O(| log ε|−1) as in the proof of Lemma 6.

If t > m, then α1, . . . , αµ 6= t and β1, . . . βν 6= t in (27). Hence, by means of the estimate
ψ∗(Q(Y )) � 1, we find that the integral in (27) is bounded by∫

St(ε,R)

| log rn|2
dρ1dr1 · · · dρt−1drt−1 · rtdρt · dρt+1drt+1 · · · dρpdrp

rα1 · · · rαµ

.

In view of (26), this is � ε| log ε|C for some C > 0, yielding (27).
We now consider the case that m < κ ≤ p. In the same way as above, one shows that

lim
ε→0

∫
St(ε,R)

dρκ ∧ η = 0,

if t 6= κ. If t = κ, then
1

2π
lim
ε→0

∫
Sκ(ε,R)

dρκ ∧ η =

∫
qκ=0

η.

To obtain the absolute convergence of the integral on the right hand side we notice that

only the d̂qκd̂q̄κ-component of ψ∗(Ωp−1) gives a contribution. Thus, by the argument of
Lemma 6, the integral is bounded by a sum of integrals of the form∫

qκ=0

σ
| log r1|2 + · · ·+ | log rm|2

ψ∗(Q(Y )p)

d̂qκd̂q̄κ
rα1 · · · rαµrβ1 · · · rβν

�
R∫

r1=0

· · ·
R∫

rκ−1=0

·
R∫

rκ+1=0

· · ·
R∫

rp=0

| log r1|2 + · · ·+ | log rm|2

ψ∗(Q(Y )p)

dr1 · · · drκ−1 · drκ+1 · · · drp
rα1 · · · rαµ

�
R∫

r1=0

· · ·
R∫

rm=0

| log r1|2 + · · ·+ | log rm|2

ψ∗(Q(Y )p)

dr1 · · · drm
rα1 · · · rαµ

.

The convergence of this integral follows in the same way as before. �
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Corollary 9. The analytic degree degYΓ
(D) of a divisor D on YΓ only depends on the

linear equivalence class of D.

Theorem 1 is very useful for determining the divisor of a given holomorphic modular
form F for Γ of known weight. For instance, if we combine it with the explicit formula
for the degrees of Heegner divisors on YΓ (Proposition 4.8 in [BrKü]), we find that the
assumption that div(F ) be a linear combination of Heegner divisors can be dropped from
Theorem 13 in [BK].
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[BrKü] J. H. Bruinier and U. Kühn, Integrals of automorphic Green’s functions associated to Heegner

divisors, Int. Math. Res. Not. 2003:31 (2003).
[Fr1] E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag (1983).
[Fr2] E. Freitag, Der Körper der Siegelschen Modulfunktionen, Abh. Math. Sem. Univ. Hamburg 47,

25–41 (1975).
[GH] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley, New York (1994).
[Ku] S. Kudla, Integrals of Borcherds forms, preprint (2001), to appear in Compos. Math.
[KM] S. Kudla and J. Millson, Intersection numbers of cycles on locally symmetric spaces and Fourier

coefficients of holomorphic modular forms in several complex variables, IHES Publi. Math. 71
(1990), 121–172.

[Lo] E. Looijenga, Compactifications defined by arrangements II: locally symmetric varieties of type
IV, preprint (2002). (Can be obtained from http://xxx.lanl.gov/abs/math.AG/0201218)
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