COMPUTATION OF HARMONIC WEAK MAASS FORMS
JAN H. BRUINIER AND FREDRIK STROMBERG

ABSTRACT. Harmonic weak Maass forms of half-integral weight are the subject of many
recent works. They are closely related to Ramanujan’s mock theta functions, their theta
lifts give rise to Arakelov Green functions, and their coefficients are often related to central
values and derivatives of Hecke L-functions. We present an algorithm to compute harmonic
weak Maass forms numerically, based on the automorphy method due to Hejhal and Stark.
As explicit examples we consider harmonic weak Maass forms of weight 1/2 associated to
the elliptic curves 11al, 37al, 37bl. We made extensive numerical computations and the
data we obtained is presented in the final section of the paper. We expect that experiments
based on our data will lead to a better understanding of the arithmetic properties of the
Fourier coeflicients.

1. INTRODUCTION

Half-integral weight modular forms play important roles in arithmetic geometry and
number theory. Their coefficients serve as generating functions for various interesting
number theoretic functions, such as representation numbers of quadratic forms in an odd
number of variables or class numbers of imaginary quadratic fields. Moreover, employing
the Shimura correspondence [Sh|, Waldspurger [Wal, and Kohnen and Zagier [KZ, K]
showed that the coefficients of half-integral weight cusp forms essentially are square-roots
of central values of quadratic twists of modular L-functions. In analogy with these works,
Katok and Sarnak [KS] used a Shimura correspondence to relate coefficients of weight 1/2
Maass forms to sums of values and sums of line integrals of Maass cusp forms.

In more recent work Zagier discovered that the generating function for the traces of
singular moduli (the CM values of the classical j-function) is a weakly holomorphic modular
form of weight 3/2 [Zal]. This result, which was generalized in various directions (see e.g.
[BO2|, [BF2], [DJ], [Ki]), demonstrates that also the coefficients of automorphic forms with
singularities at the cusps carry interesting arithmetic information.

In a similar spirit, Ono and the first author proved that the coefficients of harmonic weak
Maass forms of weight 1/2 are related to both the values and central derivatives of quadratic
twists of weight 2 modular L-functions [BruO]. Harmonic weak Maass forms are also closely
related to mock modular forms and to Ramanujan’s mock theta functions, which have been
the subject of various recent works (see e.g. [BO1, BO3, On, Za2, Zwl, Zw2]). In view of
these connections, it is desirable to develop tools for the computation of such automorphic
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forms. In the present paper we propose an approach to this problem which yields an
efficient algorithm. An implementation of this algorithm can be found at [St3]. Moreover,
we compute some harmonic weak Maass forms which are related to rational elliptic curves
as in [BruO].

The non-holomorphic nature of harmonic weak Maass forms prevents the use of the
well developed algorithms existing for (weakly) holomorphic modular forms, such as e.g.
modular symbols. The use of Poincaré series does not work well either in small weights
due to the poor convergence of the infinite series which appear in the explicit formulas
for the coefficients. Instead we adapt the ‘automorphy method’, originally developed by
Hejhal for the computation of Maass cusp forms on Hecke triangle groups (see e.g. [He),
to the setting of harmonic weak Maass forms.

We now describe the content of this paper in more detail. Let k € %Z, and let N be a
positive integer (with 4 | N if k € $Z\ Z). A harmonic weak Maass form of weight k on
[o(N) is a smooth function on H, the upper half of the complex plane, which satisfies:

(i) f |y = f for all v € [o(N);
(ii) Agf =0, where Ay is the weight & hyperbolic Laplacian on H (see (2.3));
(iif) There is a polynomial Py = Y _ c¢"(n)¢" € Clg'] such that f(r) — P(r) =
O(e™*") as v — oo for some £ > 0. Analogous conditions are required at all cusps.

Throughout, for 7 € H, we let 7 = u + iv, where u,v € R, and we let ¢ := €2>™". The
polynomial Py is called the principal part of f at oo.
Such a harmonic weak Maass form f has a Fourier expansion at infinity of the form

(1.1) f(r) =Y ¢ (n)g"+ Y ¢ (mI (1 = k,4r|nlv) ¢,

n>>>—oo n<0

where I'(a,z) denotes the incomplete Gamma function. The series > o c"(n)q" is
called the holomorphic part of f, and its complement is called the non-holomorphic part.
Naturally, f has similar expansions at the other cusps. There is an antilinear differential

operator, taking f to the cusp form & (f) := 2ivk6—£ of weight 2—k, see (2.5). The kernel of
&, consists of the space of weakly holomorphic modular forms, those meromorphic modular
forms whose poles (if any) are supported at cusps.

Every weight 2 — k cusp form is the image under & of a weight & harmonic weak Maass
form. Ramanujan’s mock theta functions correspond to those forms whose images under
12 are weight 3/2 unary theta functions. Here we mainly consider those weight 1/2
harmonic weak Maass forms whose images under &/, are orthogonal to the unary theta
series. According to [BruO], their coefficients are related to both the values and central
derivatives of quadratic twists of weight 2 modular L-functions.

We now briefly describe this result in the special case that the level is a prime p. Let G €
S9(TCo(p)) be a normalized Hecke eigenform whose Hecke L-function L(G, s) satisfies an odd
functional equation. That is, the completed L-function A(G,s) = p*/2(27)~*T(s)L(G, s)
satisfies A(G,2—s) = egA(G, s) with root number e = —1. Therefore, the central critical
value L(G,1) vanishes. By Kohnen’s theory of plus-spaces [K], there is a half-integral

weight newform ¢ € S;/?(Fo(élp)), unique up to a multiplicative constant, which lifts to
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GG under the Shimura correspondence. We choose g so that its coefficients are in Fi, the
totally real number field generated by the Hecke eigenvalues of G. There exists a weight
1/2 harmonic weak Maass form f on I'g(4p) in the plus space whose principal part Py has
coefficients in F, and such that

&u2(f) = llgll g,
where ||g|| denotes the usual Petersson norm. For a fundamental discriminant A let xa be

the Kronecker character for Q(v/A), and let L(G, xa, s) be the quadratic twist of L(G, s)
by xa. One can show that the root number of L(G, xa, s) is equal to sign(A) - xa(p) ea-

Theorem 1.1 (See [BruO)). Assume that G, g, and f are as above, and let ¢*(n) denote
the Fourier coefficients as in (1.1).

1) If A <0 is a fundamental discriminant for which (2) = 1, then
W 1 8) 1,

A
LG xa 1) = 82 CP gl 5 ()

(2) If A > 0 is a fundamental discriminant for which (%) =1, then L'(G, xa,1) =0
if and only if cT(A) is algebraic.

Note that the harmonic weak Maass form f is uniquely determined up to the addition of
a weight 1/2 weakly holomorphic modular form with coefficients in F. Furthermore, the
absolute values of the nonvanishing coefficients ¢™(A) are typically asymptotic to subex-
ponential functions in n. For these reasons, the connection between L'(G, xa,1) and the
coefficients ¢*(A) in Theorem 1.1(2) cannot be modified in a simple way to obtain a for-
mula as in the first part of the Theorem. In fact, the proof of Theorem 1.1(2) is rather
indirect. It relies on the Gross-Zagier formula and on transcendence results of Waldschmidt
and Scholl on periods of differentials on algebraic curves.

The above result is one of the main motivations for the present paper. Our goal is to carry
out numerical computations for the involved harmonic weak Maass forms. In that way we
hope to find more direct connections of the coefficients ¢*(A) to periods or L-functions.
When L'(G, xa, 1) vanishes, meaning that ¢™(A) is algebraic (actually contained in Fg), it
would be interesting to see if ¢™(A) carries any arithmetic information related to G. In a
forthcoming paper [Br2], the coefficients ¢ (n) will be linked to periods of certain algebraic
differentials of the third kind on modular curves. It leads to a conjecture on differentials of
the third kind on elliptic curves, which is based on the numerical data presented in Section
4 of the present paper.

Our computations make use of an adaption of the so-called automorphy method. The
key point of this method is to view an automorphic form on a non-co-compact (but co-
finite) Fuchsian group I" as a function on the upper half-plane with certain transformation
properties under the group I' as well as convergent Fourier series expansions at all cusps.
This classical point of view, in terms of functions on the upper half-plane, stands in con-
trast to the more algebraic point of view, in terms of Hecke modules, usually taken when
computing holomorphic modular forms.
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By computing an automorphic form ¢ in this setting we mean that to any given (small)
e > 0 we compute a sufficient number of Fourier coefficients, each to high enough precision,
so that we are able to evaluate the function ¢ at any point in the upper half-plane with an
error at most e.

To calculate these Fourier coefficients we truncate the Fourier series representing ¢ and
view the resulting trigonometric sum as a finite Fourier series. Using the Fourier inversion
theorem together with the automorphic properties of ¢ (which will additionally intertwine
the Fourier series at various cusps or components) we are able to obtain a set of linear
equations satisfied approximately by the coefficients. Cf.e.g. [He, St, Avl]. The (surprising)
effectiveness of this algorithm is closely related to the equidistribution properties of closed
horocycles (cf. e.g. [Hel, S]). We describe the main algorithm in detail in Section 3. The
implementation of the software package is briefly described in Section 3.3.

In Section 4 we describe our computational result in three cases of particular interest.
We consider the elliptic curves 11al, 37al, and 37b1l and their corresponding weight 2
newforms. For instance, the elliptic curve 37al, is the curve of smallest conductor with
rank 1. It corresponds to the unique weight two normalized newform G on I'g(37) whose L-
function has an odd functional equation. We verified the statement of Theorem 1.1 for all
fundamental discriminants A which are squares modulo 148 in the range 0 < A < 15000.
For eight of these fundamental discriminants the quantity L'(G, xa, 1) vanishes. In all these
cases we found a stronger statement then that of the Theorem 1.1 to be true, namely, that
the associated coefficient ¢*(A) was an integer. For the corresponding data see Tables 4
and 5. We conclude Section 4 by describing some analogous experiments for newforms G
of weight 4, where g is of weight 5/2 and f of weight —1/2.

The present paper is organized as follows. In Section 2 we recall some facts on (half
integral weight) harmonic weak Maass forms. When working with arbitrary (not necessarily
prime) level, it is convenient to use vector valued modular forms. In Section 2.3 we therefore
recall from [BruO] the vector valued version of Theorem 1.1. In Section 3 we describe the
automorphy method in the context of harmonic weak Maass forms. In Section 4 we collect
our computational results. In particular, we present results for the elliptic curves 11al,
37al, and 37b1; cf., e.g. Tables 1, 4 and 7. More extensive tables can be obtained from the
authors on request.

2. PRELIMINARIES

In order to be able to work with newforms of arbitrary level, it is convenient to work
with vector valued modular forms of half integral weight for the metaplectic extension of
SLy(Z). We describe the necessary background in this section.

2.1. A Weil representation. Let H = {7 € C; (1) > 0} be the complex upper half
plane. We write Mp,(R) for the metaplectic two-fold cover of SLy(R), realized as the group
of pairs (M, (7)), where M = (2¢b) € SLy(R) and ¢ : H — C is a holomorphic function
with ¢(7)? = ¢ + d. The multiplication is defined by

(M, ¢(m))(M', ¢'(7)) = (MM, p(M'T)¢'(T)).
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We denote the inverse image of I' := SLy(Z) under the covering map by I' := Mpy,(Z). It
is well known that T' is generated by T := ((§1),1) and S := ((¢ o) VT).

Let N be a positive integer. There is a certain representation p of I' on C[Z/2NZ], the
group ring of the finite cyclic group of order 2N. For a coset h € Z/2NZ we denote by
ep, the corresponding standard basis vector of C[Z/2NZ]. We write (-, -) for the standard
scalar product (antilinear in the second entry) such that (e, ep) = 0. In terms of the

generators 1" and S of f, the representation p is given by

(2.1) p(T)e, =e (4h—N> eh,
_ 1 hh
(2.2) p(S)e, = Ner h/%;w e (—ﬁ) e

Here the sum runs through the elements of Z/2NZ and we have put e(a) = ¢*™. Note
that p is the Weil representation associated to the one-dimensional positive definite lattice
K = (Z, Nz?) in the sense of [Bol], [Brl], [BruO]. It is unitary with respect to the standard
scalar product. Using (2.2), a simple computation shows that p(Z)(e;) = —ie_j, where
Z:=58%=((" 2),i) is the generator of the center of T

For M = (9%) € SLy(Z) we define jy(7) = Vet + d by the principal branch of the
argument and set

p(M) = p((M, ju(7)))-
Since p(Z?)e, = —ey, it is easy to see that if A, B € ' then p(A)p(B)p(AB)™' = o(A, B)
where o(A, B) is the two-cocycle with values in £1 defined by

0(A,B) = ja(B7)jp(1)jas(r)”".

It follows that p is a projective representation of I' and it can be viewed as a matriz-
valued multiplier system on I'. That is, it is possible to write p(M) = v(M)R(M) where
R:T — U(C[Z/2NZ]) is a unitary representation and v : I' — S! is a half-integral weight
multiplier system in the classical sense, satisfying v(AB) = o(A, B)v(A)v(B). Cf. e.g. [Pe]
and [He2, Ch. 9.2-3].

From this point on we will only deal with the Weil representation in the guise of the
induced multiplier system p. Abusing notation slightly we continue to use the name Weil
representation also for p.

If k € 3Z, we write M, , for the space of C[Z/2NZ]-valued weakly holomorphic modular
forms of weight k for I' with multiplier system p, that is holomorphic functions f : H —
C[Z/2NZ) which satisfy f(M7) = ja(7)**p(M)f(7) for all M € T and has possible poles
at the cusps of I'. The subspaces of holomorphic modular forms and cusp forms are denoted
by My, and Si ,, respectively.

2.2. Harmonic weak Maass forms. In this subsection we assume that k¥ < 1. A twice
continuously differentiable function f : H — C[Z/2NZ] is called a harmonic weak Maass
form (of weight k with respect to I' and p) if it satisfies:
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(i) f(MT) = jap(7)*p(M)f(7) for all M € T;
(iii) there is a C[Z/2NZ]-valued Fourier polynomial

Z Z nhq4Neh

h (2N) n€Z<

such that f(7) — Py(1) = O(e™*") as v — oo for some ¢ > 0.

Here we have that

2 2
(2.3) Ag = —v <% + %) + kv (% + z(%)

is the usual weight k& hyperbolic Laplace operator (see [BF1]). The Fourier polynomial
Py is called the principal part of f. We denote the vector space of these harmonic weak
Maass forms by Hj, , (it was called H, ,j , in [BF1]). Any weakly holomorphic modular form
is a harmonic weak Maass form. The Fourier expansion of any f € Hj, gives a unique
decomposition f = f* + f~, where

(2.4a) Z S t(n,h)gtve,

N) neZz
n>—oo

(2.4b) Z Zc n, h)I' <1—k:,47r‘%‘v) qiNe,.

nEZ
<0

We refer to f* as the holomorphic part and to f~ as the non-holomorphic part of f. Note
that ¢*(n, h) = 0 unless n = h% (4N).
Recall that there is an antilinear differential operator { = &, : Hy , — Sa_i 5, defined by
WOf

(25 F(7) = §((7) 1= 20 5.

Here p denotes the complex conjugate of the representation p, which can be identified with
the dual representation. The map £ is surjective and its kernel is the space M, ,L ,- There is
a bilinear pairing between M,_j, ; and Hj, , defined by the Petersson scalar product

26) 0.7 = (.60 = | Loty

o_pdudv
v?
for g € My 5 and f € Hy,. If g has the Fourier expansion g = 3,  b(n, h)q"/*N ey, and

if we denote the Fourier expansion of f as in (2.4), then by [BF1, Proposition 3.5] we have

(2.7) {o. £y = > > ' —n, h).

h (2N) n<0

Hence {g, f} only depends on the principal part of f.
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2.3. The Shimura lift. Let k € JZ \ Z. According to [EZ, Chapter 5], the space M ;
is isomorphic to Jii1/2,n, the space of holomorphic Jacobi forms of weight k& + 1/2 and
index N. According to [Skl] and [SZ], M}, is isomorphic to J,jfl“/’ZN, the space of skew
holomorphic Jacobi forms of weight k£ + 1/2 and index N. There is an extensive Hecke
theory for Jacobi forms (see [EZ], [Sk1], [SZ]), which gives rise to a Hecke theory on A, ,
and M, 5, and which is compatible with the Hecke theory on vector valued modular forms
considered in [BrSt]. In particular, there is an Atkin-Lehner theory for these spaces.

The subspace 57" of newforms of S , is isomorphic as a module over the Hecke algebra

to the space of newforms S5e*;"(N) of weight 2k — 1 for ['((N) on which the Fricke in-

volution acts by multiplication with (—1)¥=1/2, The isomorphism is given by the Shimura
correspondence. Similarly, the subspace Sp%" of newforms of Sy, ; is isomorphic as a module
over the Hecke algebra to the space of newforms Sy} (N) of weight 2k — 1 for I'¢(NV) on
which the Fricke involution acts by multiplication with (—1)**1/2 (see [SZ], [GKZ], [Sk1]).
Observe that the Hecke L-series of any G' € Sy (V) satisfies a functional equation under
s+ 2k — 1 — s with root number e5 = £1.

We now state the vector valued version of Theorem 1.1. Let G € S}(NN) be a nor-
malized newform (in particular a common eigenform of all Hecke operators) of weight 2
and write Fg for the number field generated by the eigenvalues of G. If e = —1 we put
p = p,and if eg = +1 we put p' = p. There is a newform g € 39y Mapping to G under
the Shimura correspondence. It is well known that we may normalize ¢ such that all its
coefficients are contained in Fg. According to [BruO, Lemma 7.3], there is a harmonic
weak Maass form f € H, /5, whose principal part has coefficients in F; with the property
that

&2(f) = llgll 2.

This form is unique up to addition of a weakly holomorphic form in Ml' o whose principal
part has coefficients in Fg.
In practice, the principal part of such an f can be computed as follows: We may complete

the weight 3/2 form g to an orthogonal basis g, g2, . .., gq of Ss/2 7 consisting of cusp forms
with Fourier coefficients in Fi. Let f € Hy /5, such that
(2.8) {9,f} =1, and{g;, f} =0fori=2,...d.

Then f has the required properties. In view of (2.7) the conditions of (2.8) translate into
an inhomogeneous system of linear equations for the principal part of f.

Theorem 2.1. Let G € Sy**(N) be a normalized newform. Let g € Sy",, and f € Hya,

be as above. Denote the Fourier coefficients of f by ¢t(n,h) forn € Z and h € Z/2NZ.
Then the following are true:

(1) If A # 1 is a fundamental discriminant and r € Z such that A = r* (mod 4N)
and egA > 0, then
A

L(G,xa 1) = 822Gy 5 - e (A2,
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(2) If A # 1 is a fundamental discriminant and v € Z such that A = r* (mod 4N)
and egA < 0, then

L'(G,xa,1) =0 <= cT(~egA,r)eQ <+ c(—egA,r)E Fg.

When S5, = {0} the above result also holds for A = 1, see also [BruO, Remark 18].
This is for instance the case when N is a prime. If NV is a prime and e = —1, then the space
H, 5y can be identified with a space of scalar valued modular forms satisfying a Kohnen
plus space condition. In that way one obtains Theorem 1.1 stated in the introduction.

3. COMPUTATIONAL ASPECTS

3.1. The automorphy method for vector valued weak Maass forms. To compute
the Fourier coefficients of the harmonic weak Maass forms we use the so-called automorphy
method, sometimes called “Hejhal’s method”. This is a general method which has been
used to successfully compute various kinds of automorphic functions and forms on GLs (R).
It was originally developed by Hejhal in order to compute Maass cusp forms for the modular
group and other Hecke triangle groups (cf. e.g. [He]). The method was later generalized by
the second author in [St] to computations of Maass waveforms with non-trivial multiplier
systems and arbitrary real weights, as well as to general subgroups of the modular group
(see also [St1]). Another generalization to automorphic forms with singularities (Eisenstein
series, Poincaré series and Green’s functions) was made by Avelin [Av2, Av3].

In the current paper we show how to adapt the algorithm to the case of vector-valued
harmonic weak Maass forms for the Weil representation. To treat this case we need to
deal with a combination of difficulties: singularities, non-trivial weights and matrix-valued
multiplier systems. Additionally, we also give an explicit (a posteriori) error bound (3.5)
which can be used to determine the accuracy for the computed Fourier coefficients.

For simplicity we consider the representation p (the case of p is analogous) and k € Z+ %
Furthermore, in order to avoid questions of uniqueness we assume that either £ < 0 or that
k = % and that N is prime. In these cases, a harmonic weak Maass form is uniquely
determined by its principal part.

It should be emphasized that the algorithm described in this paper, as well as the
implementation [St3], works for any integral or half-integral weight, although in Section 4
we only give examples of weights % and —%. The first reason for focusing on these weights
is that they are connected to holomorphic modular forms of weights 2 and 4. The weight
1 is special in that the non-holomorphic Poincaré series (as in e.g. [Brl] or [He2]) can not
be used to compute harmonic weak Maass forms. This is because of a lack of absolute
convergence of certain sums of twisted Kloosterman sums. For weight —% these sums
converge absolutely, albeit very slowly.

For computational purposes it is not feasible to use the definition of p in terms of the
action on the generators of the metaplectic group. Such an approach would involve a large
number of matrix multiplications with 2N x 2N complex matrices. We instead use explicit
formulas from [St2] to evaluate the matrix coefficients of p(M) for any M € I' in terms of

p-adic invariants of the associated lattice (Z, Nz?).
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Although we are mostly interested in those harmonic weak Maass forms which are not
related to mock theta functions (this is the setting of [BruO]) we would like to stress that
it is also possible to use the method described in this paper to compute these. They can
be obtained as the non-holomorphic parts of the appropriate harmonic weak Maass forms.
The challenge is to find the principal part of the Maass form in its entirety from the form
in which the mock theta function is given. It should also be noted that it is usually more
efficient to use a combinatorial interpretation (if it exists) to compute the coefficients of a
mock theta function then to use our method.

3.1.1. The algorithm — phase 1. Let f € Hy, , with a given (fixed) principal part Py (1) =
S Prn (T) en where Py (1) = S0__a(n,h)gix (for some finite K > 0) and write
f=f"+f (asin2.3aand 2.3b) with f*=3", oy, fien and f~ = >_nn) Jn en where

0

Z (n,h) q4N —l—Z and

n>0

T <1_,€,%,v>ﬁ

<0

for 7 = u 4+ iv € H. Our goal is to obtain numerical approximations to the coefficients
ct(n,h). To formulate our algorithm we prefer to separate the u- and the v-dependence
in f and therefore introduce the function W defined by W(v) = e *™ if v > 0 and
W(v) = e T(1 — k,4rx|v|) if v < 0. We also set c¢(n,h) = ¢ (n,h) for n > 0 and
¢ (n, h) for n < 0 and write eqy (u) = e 1v . With this notation

fn(r) = i a(n,h)qiv + Zc(n,h) W <nv> eqn (nu).

4N
n=—K n#0
By standard inequalities for the incomplete gamma function one can show that

1 v >0
W < —27|v| ) )
W)l < ene {(47r|v|)_k, v <0,

where ¢, is an explicit constant only depending on k. To be able to determine a truncation
point of the Fourier series above we also need bounds of the coefficients ¢ (n,h). Using
[BF1, Lemma 3.4] it follows that there exists an explicit constant C' > 0 such that

c¢(n,h) =0 (exp (47r0\/ﬁ)) , N — 400,
c(n,h) = O(|n|§)7 n — —oo.

For £ < 0 we are able to make the implied constants explicit using non-holomorphic
Poincaré series as in e.g. [Brl] or [He2]. For k = § we rely on numerical a posteriori tests
to assure ourselves that the truncation point was chosen correctly. See e.g. Section 3.2.
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Let e >0and fix Y <Y, = \/75 By the estimates above we can find an My = M (Y, €)
such that the function f => h(2N) fheh given by the truncated Fourier series

o) =P+ Y el )W (1) e (nu)

0<‘n‘§Mg

satisfies

A

foy - s <o

for any 7 € Hy = {r € 1|37 >Y}. Here ||| = 2,221 |zp|? for z € CN. Let A =
(%) € SLy(Z) and set z = x + iy = Ar. Then y = SAT = < %5 < 1 and hence

lem+d)?
ja(D)|* = ler +d|* = o< % Using the fact that p is unitary it is now easy to see that if
7, AT € Hy then

: <€ (1 +Y_2k) < 2 - Y2,

~

(3.1 |7 an =ja@™ o) £ (7)

Consider now a horocycle at height Y and a set of 2Q) (with Q > M;) equally spaced points

1—-2m
4Q

If we view the series fh as a finite Fourier series we can invert it over this horocycle and it
is easy to see that if n is an integer with 0 < |n| < My and n = h? (4N) then

n

Q
(3.2) % Z fh (zm) €an (—nxy,) =W (—Y) c(n,h)+a(n,h)e -y
m=1-Q

AN

One can also interpret the left-hand side as a Riemann-sum approximation to the integral

fh( ) ean (—nx) du.

l\]\)—l

Let 2, = ¥ + iy, = T, 2, (T, € PSLy(Z)) denote the pull-back of z,, into the standard
(closed) fundamental domain of PSLy(Z), F = {z =z +iy| |z| < 3, |2| > 1}. Using (3.1)
we obtain

P (zm) = G, (z0) D e (Tn) fir (23,) + [2Y 7],

b’ (2N)

where pp (T),) is the (h, h')-element of the matrix p (T},), and we use [2¢Y %] to denote
a quantity bounded in absolute value by 2¢Y ¥, Inserting this into (3.2) we see that the
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left-hand Side can be written as

2Q Z IT ( Z Pri (

m=1-Q b (2N)

0 ol

a(l,h") exp < 4Nym> ean (127))

>

[
-+ 81%% (4Nym> ean (1z2) | ean(—nx,,)

0<|I|< Mo

(3.3) =Y Y MW 4 [2e ],

W (2N) 0<|1|< My

where
w1~ Lo, .
vh @m;Q It () prae (L) W {55 | €an(ly, = na) - and
—, 1 0 2l .
W, = E Z Z J1m (Z0) prr (Thn) €xp 4Nym ean (lxy, — nw,y,) .
R’ (2N) I=—K m=1-Q

We thus have an inhomogeneous system of linear equations which is (approximately) satis-
fied by the coefficients ¢ (n, h). Let D = {(n,h) |0 < |n| < My, 0 < h < 2N} (with a fixed
ordering) and note that [D| = 4MyN. If we set D = (d (n,h)), 1)ep:

_ hh' hh! __ 1 7hh'
V=V()= (v )(hn)(h,l) . v 5l5th(4NY) and

W =W ()= (Wh Wh=Wh—a(n, h)e Y,

(h,n)eD”’
we can write this linear system as |D| linear equations in |D| variables:
(3.4) VD+W =0.

In practice it turns out that the the matrix V' is non-singular as soon as the subspace of
Hj, , consisting of functions with a given singular part is one-dimensional. In these cases
we can immediately obtain the solution as

D=-V1w,
and since we know that the vector of the “true” coefficients, C' = (¢ (n, ) (n.yep: Satisfies
v o] o=

we see that
35)  |[C-D|_=|c+vw|_ <Vl Ve[ <2 v
To obtain a theoretical error estimate we thus need to estimate ||[V7!||_ from below.

Unfortunately this does not seem to be possible from the formulas above and we have to
use numerical methods to estimate this norm. Hence, to obtain the Fourier coefficients up
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to a (proven) desired precision we might have to go back and decrease the original € or
increase either of M, or Q).

At this point one should also remark that the error bound ||V ™' is in general much
worse than the actual apparent error, as verified by studying coefficients known to be
integers. The reason for this is that the sums V" exhibit massive cancellation and are
therefore overpowered by the terms W (&Y) on the diagonal.

d

3.1.2. The algorithm — phase 2. Returning to (3.3) and solving for ¢ (n, h) we see that

(3.6) c(n,h)zW( ) SN e )V + W+ [2ev ]

h (2N) |1|< Mo

for any n, i.e. also when |n| > My, provided that @ > M (Y"). If we first choose Y such that
w (ﬁY) is not too small then we can in fact use this equation to compute ¢ (n, h) with an

error of size e W (&Y)fl. In this manner, we may produce long stretches of coefficients
(before we need to decrease Y again) at arbitrary intervals Ny < n < Np without the need
of computing intermediate coefficients above the initial set up to n = M,.

Remark 1. The exact same algorithm, with the non-holomorphic parts set to zero, also
lets one compute holomorphic vector-valued modular forms for the Weil representation.
This has been exploited by the second author, in verifying computations of holomorphic
Poincaré series in [RSS].

3.2. Heuristic error estimates. For k < 0 all implied constants and therefore all error
estimates can be made explicit. In the remaining case which interests us, k = %, the known
bounds for the twisted Kloosterman sums are not enough to prove the necessary explicit
bounds for the Fourier coefficients of the associated Poincaré series. We are therefore not
able to give effective theoretical error estimates in this case. However, this is not a serious
problem since there are a number of tests we may perform on the resulting coefficients to
assure ourselves of their accuracy. We list a few tests which we have used.

e First of all, one can simply use two different values of Y and verify that the resulting
vectors D = D(Y') are independent of Y.

This test is completely general and can be used for all instances where the algorithm can be
applied. Suppose now that we have a harmonic weak Maass form f € H}, , of half-integral
weight & such that & (f) = ||g|| 2g, with g € Sa_k 5. We then know the following.

e The coefficients y/|A|c™(—eg - A) are proportional to the coefficients b(eg - A) of ¢
(cf. e.g. [BruO, p. 3]).

If additionally the Shimura lift of ¢ is a newform G € S§°Y, (I'o(INV)) then we can predict
that certain coefficients ¢t(A) are algebraic (cf. e.g. [BruO, Sect. 7]) and if we are able to
identify these coefficients as algebraic numbers to a certain precision this can be used as
another measure of the accuracy.
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3.3. Implementation. The first implementation of the above described algorithm was
made in Fortran 90, using the package ARPREC [AR] for arbitrary (fixed) precision arith-
metic. The second and current implementation uses Python and Sage [SA| and the included
package mpmath for arbitrary (fixed) precision arithmetic. The core parts of the algorithm
are also using Cython [Cy] for efficiency. Current versions of the algorithm can be obtained
from [St3]. The goal is for it to be included as a standard package in Sage or Purple Sage.

4. RESULTS

4.1. Harmonic Maass forms corresponding to elliptic curves. In this section we
present the numerical results we have obtained for harmonic weak Maass forms correspond-
ing to weight two holomorphic forms associated to elliptic curves. We have concentrated
on three particular examples. In Cremona’s notation, these correspond to the curve 11al
of level 11 and the two curves 37al and 37b1 of level 37.

Recall that if the holomorphic weight 2 newform G of level N has Atkin-Lehner eigen-
value £1 then the L-function L(G,s) has root number ¢ = F1. Furthermore, since
the root number of the twisted L-function L(G, xa, s) is sign(A)xa(N)eq and we always
consider fundamental discriminants for which ya(N) = 1 we see that the central value
L(G, xa, 1) vanishes if sign(A)eg = —1, i.e., if L(G, s) has an even functional equation we
consider A < 0 and otherwise A > 0.

For each of these examples we computed a large set of central derivatives of the twisted
L-functions with the appropriate A using Sage and the standard algorithms there which
were developed by Dokchitser. We then fixed a harmonic weak Maass form with non-zero
principal part Py such that £ 1 (f) maps to G under the Shimura lift. In all cases we took

a Poincaré series P_; having principal part q_ﬁ and computed an initial set of Fourier
coefficients for this function using the methods described in the previous section. We then
used the second phase of the algorithm and computed more Fourier coefficients.

Note that for the results in this section, all initial “phase 17 computations were all
performed using the new Sage package and all further, “phase 2”7, computations were done
in Fortran 90.

We would like to give a flavor of the CPU-times involved. The initial computations,
using our Sage code, took in all cases approximately 2 hours on a 2.66GHz Xeon processor.
On the same processor, the CPU time for a single stretch of phase 2 calculations range
between less than an hour for the smallest discriminant up to several days for the largest
discriminant.

As a measure of the accuracy of our computations one can consider the difference between
the coefficients in Tables 2, 5 and 8 and the nearest integer (the third column). To further
support the correctness we also list, in Tables 3, 6 and 4.4, normalized coefficients of the
non-holomorphic parts, i.e. /|Alc™(A)/+/|Ao|c™(Ag) by some fixed non-zero coefficient
of index Ay.

4.1.1. 11al. Here the unique newform of weight two and level 11 is given by

G = 7](7')277(117')2 =q—-2¢-¢@F+2*+P5+-- € S5 (To(11))
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and the corresponding L-function L(G, s) has an even functional equation. Using Sage we
computed all values of L'(G, xa, 1) for fundamental discriminants A < 0 such that (%) =1
and |A| < 19703. This set consists of 2749 fundamental discriminants and amongst these
we found 14 discriminants for which L'(G, xa, 1) vanished up to the numerical precision
(see Table 2).

As a representative for the harmonic weak Maass form in the space H,/; ; corresponding
to (G, we choose the Poincaré series P_5 with the principal part q’% (e; —e_7). To compute
the Fourier coefficients of P_5 we used the method described in the previous section with an
initial ¢ = 107%* and Y = 0.5, which gave us a truncation point of My = 42, corresponding
to A between —1847 and 1885. For a short selection of computed values of ¢t(A) see
Table 1 and for a table of coefficients corresponding to all vanishing L'(G, xa, 1) see Table
2. The first few normalized “negative” coeflicients are displayed in Table 3. These values
should be compared to the list in [Sk2, p. 505].

4.1.2. 37al. Consider the newform of weight two and level 37 which has an odd functional
equation. The g-expansion is given by

G=q—2¢" -3¢ +2¢" —2¢° +6¢° — ¢" + 6¢° +4¢"° — 5¢"" + - -- € S (['(37)).

Using Sage we computed all values of L'(G, xa,1) for fundamental discriminants A > 0
such that (£) =1 and |A| < 15000. This set consists of 2217 fundamental discriminants
and amongst these we found 8 discriminants for which L'(G, xa,1) vanished up to the
numerical precision (see Table 5). For the corresponding harmonic weak Maass form in
H, 5, we took P_s, which has a principal part q_%(egl + ¢_91). The initial computation
was done in Sage, using ¢ = 1-107%, which gave a value of My = 30, corresponding to
discriminants in the range —4440 < A < 4585. For examples of the coefficients ¢t (A) see
Tables 4 and 5. The first few normalized “negative” coefficients are displayed in Table 6.

4.1.3. 37b1. In this case we consider the newform of weight two and level 37 which has an
even functional equation. The g-expansion is given by

G=q+q¢ —2¢"—q"—2¢° +3¢" +--- € S5 ([y(37)).

Using Sage we computed all values of L'(G, xa, 1) for fundamental discriminants A < 0
such that (%) =1 and |A| < 12000. This set consists of 1631 fundamental discriminants
and amongst these we found 15 discriminants for which L'(G, xa, 1) vanished up to the
numerical precision (see Table 8). For the corresponding harmonic weak Maass form in
Hy /5 we took P_j5, which has a principal part q_%(e% —¢_30). The initial computation
was done in Sage, using ¢ = 1-1073%, which gave a value of M, = 33, corresponding to
discriminants in the range —4883 < A < 5029. For examples of the coefficients ¢t (A) see
Tables 7 and 8. The first few normalized “negative” coeflicients are displayed in Table 4.4.

4.2. Conclusions of the numerical experiments for weight two. In each of the ex-
amples of weight two newforms that we studied we saw agreement with the theorem, i.e. the
coefficients ¢ (A) (for fundamental discriminants with the appropriate property) were only
algebraic when the corresponding central derivative L'(G, xa, 1) vanished. Furthermore,
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we observed that in the cases we considered, the algebraic coefficients ¢t (A) were in fact
even rational integers. It would be interesting to find an explanation for this observation.

4.3. Further computations. To investigate whether a result analogous to Theorem 1.1
also holds for newforms of weight 4, we computed L'(2, G, xa) for all newforms G of weight
4 on I'g(N) with 5 < N < 150 and fundamental discriminants A with |A| < 300 and the
property that the twisted L-function L(s,G, xa) has an odd functional equation. For
5 < N < 10 we additionally computed these values for fundamental discriminants A with
|A| < 5000. Amongst all these values we did not find a single example of a vanishing
derivative. Even though we did not get any positive case where we could test the theorem
we still wanted to make sure that there was no easily accessible counter example.

We therefore computed the Fourier coefficients, up to 40 digits precision, of the associated
weight —% harmonic Maass form corresponding to all weight 4 newforms defined over Q
for N up to 100. To test the accuracy (and making sure that the implementation was
correct) we did not only rely on the provable error bounds, but also checked algebraicity
of certain coefficients corresponding to non-fundamental discriminants. These coefficients
were indeed all found to be integers or rational with fairly small denominators. In contrast
to this, the Fourier coefficients corresponding to fundamental discriminants were found not
to be similarly “simple” rational numbers.

Another test case which we have used to check the implementation of the algorithm
is the generating function for the partition function. This can be given as a weight —%
weakly holomorphic modular form for the dual of the Weil representation corresponding
to the lattice (Z,622) and is uniquely determined by its principal part P(q) = ¢~ /**(e; —
e5 —e7 +e11). The interested reader is encouraged to use [St3] to compute this function by
her /him self. See also [BruO2].

The L-value computations were performed in Sage [SA], using the included version of
Rubinstein’s lcalc library [L].

4.4. Tables.
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TABLE 2. E =11al, P_5 € H%ﬁ
A c'(A) " (A) = [c"(A)]|
—824 —5798520 3.0-1077
—1799  —2708450784 2.7-10746
—4399  —68135748249936640 2.3-1072%
—8483 214445760716391388216704 9.1-10728
—11567 —12412267149099919205092899456 1.6-107%
—14791  66850179291021019012709832099520 3.1-1073°
—15487 —478732239405182448762415030881280 5.6 10730
—15659 —804489814454597618648064770159415 6.8-1073°
—15839 —1162122495004344641799524116135680 7.0-10730
—16463  4542575922533728228643934862230144 1.5-10739
—17023 —23302350713109514450879400185948800 2.0-107%

—17927  110133238181959291703634158808374784 1.2-107%
—18543  464726791864282489334104058164482624 1.9-107%

TABLE 3. E = 1lal, P_; € H ;. Coefficients are scaled by ¢ (1).

A VA (D) e (D) [ (A)]

4 -3 2.0-107100
5 5 2.1-107%
9 -2 1.7-10710
12 5 8.0- 1071
16 4 1.5-107%
20 5 1.1-10710
25 0 1.0-10710
36 6 1.0-107%
37 5 4.2-107%
45 0 6.4-107%
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TABLE 5. E =37al, P_3 € Hé,p

A T (A) et (A) = [t (A)]

1489 9 1.6-1077
4393 66 1.5-107%
5116 —746 851072
5281 153 8.2.107%
5560 —1124 1.2-10722
5761 —974 1.1-10722
6040 —1404 42.107%
6169 336 1.1-10722

TABLE 6. E'=3T7al, P_s € H; ,. Coefficients are scaled by V3 (=3).

A VA (D) e (D)~ [ (A)]

—4 1 4.0-107%
—7 -1 5.0-107%
—11 1 45-107%
—12 -1 2.0-107%
—16 —2 1.1-107%
—27 -3 1.3-107%
—28 3 1.4-107%
—36 —2 1.0-107%
—40 2 3.6-107%
—44 —1 1.1-107%
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TABLE 8. E =37bl, P_5 € Hé,ﬁ

A ct(A) et (A) = [ (A)]]
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—823 312 9.1-107%
—2051 —26724 1.0-107%7
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—9112  —224548% 1.6-1073°
—9715 236934 2.8-10732
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TABLE 9. E =37bl, P_y; € H; ;. Coefficients are scaled by ¢ (1).

A VA (D) e (D) [ (A)]
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12 3 9.6-107%°
16 -2 1.6-107%
21 3 2.7-107%
25 -1 1.7-107%
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33 3 3.6-107%°
36 0 3.9-107%
40 0 5.6-107%°
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