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Abstract. Zagier proved that the traces of singular moduli, i.e., the sums of the
values of the classical j-invariant over quadratic irrationalities, are the Fourier co-
efficients of a modular form of weight 3/2 with poles at the cusps. Using the theta
correspondence, we generalize this result to traces of CM values of (weakly holomor-
phic) modular functions on modular curves of arbitrary genus. We also study the
theta lift for the weight 0 Eisenstein series for SL2(Z) and realize a certain generat-
ing series of arithmetic intersection numbers as the derivative of Zagier’s Eisenstein
series of weight 3/2. This recovers a result of Kudla, Rapoport and Yang.

1. Introduction

In [25], Zagier considers the normalized Hauptmodul J(z) = j(z) − 744 for the
group Γ(1) = PSL2(Z), where j(z) = e−2πiz + 744 + 196884e2πiz + . . . is the classical
j-invariant on the complex upper half plane H. Let D be a positive integer and
write QD for the set of positive definite integral binary quadratic forms [a, b, c] of
discriminant −D = b2 − 4ac. The group Γ(1) acts on QD. If Q = [a, b, c] ∈ QD we

write Γ(1)Q for the stabilizer of Q in Γ(1) and αQ = −b+i
√

D
2a

for the corresponding
CM point in H. The values of j at such points αQ are known as singular moduli.
They play an important role in many branches of number theory. The modular trace
of J of index D is defined as

(1.1) tJ(D) =
∑

Q∈QD/Γ(1)

1

|Γ(1)Q|
J(αQ).

By the theory of complex multiplication, tJ(D) can also be viewed as a suitable Galois
trace. It is a rational integer.

Zagier shows that the generating series

(1.2) −q−1 + 2 +
∞∑

D=1

tJ(D)qD = −q−1 + 2− 248q3 + 492q4 − 4119q7 + 7256q8 + . . .

is a meromorphic modular form of weight 3/2 for the Hecke subgroup Γ0(4) whose
poles are supported at the cusps. Here q = e2πiτ with τ = u + iv ∈ H. He gives
two proofs of this result. The first uses certain recursion relations for the tJ(D),
the second uses Borcherds products on SL2(Z) and an application of Serre duality.
Both proofs rely on the fact that (the compactification of) Γ(1)\H has genus zero. In
[12, 13], Kim extended Zagier’s results to other modular curves of genus zero using
similar methods.
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It is quite interesting to compare this result with an older theorem of Zagier [24]
concerning the Hurwitz-Kronecker class numbers H(D) =

∑
Q∈QD/Γ(1)

1
|Γ(1)Q|

, which

we consider here as the trace t1(D) of the constant modular function 1 of weight 0.
Zagier constructs a certain Eisenstein series F(τ, s) of weight 3/2 and shows that for
the special value at s = 1

2
(in our normalization)

(1.3) F(τ,
1

2
) =

∞∑
D=0

t1(D)qD +
1

16π
√
v

∞∑
N=−∞

β(4πN2v)q−N2

is a non-holomorphic modular form of weight 3/2 for Γ0(4). Here t1(0) = − 1
12

=

vol(Γ(1)\H) and β(s) =
∫∞

1
t−3/2e−stdt. It is striking that while the positive Fourier

coefficients of (1.2) and (1.3) are both traces of modular functions, the negative
coefficients are very different in nature. Furthermore, Zagier’s proofs for (1.2) and
(1.3) are totally different.

In [9], the second named author extended (1.3) to realize the generating series of the
class numbers of CM points for general congruence subgroups Γ as the holomorphic
part of a non-holomorphic modular form of weight 3/2. These modular forms take
the same form as in (1.3) and are obtained as a theta integral

(1.4) I(τ, 1) =

∫
Γ\H

1 · θL(τ, z, ϕ)
dx dy

y2
,

integrating the constant function 1 against a theta series associated to an even lattice
L of signature (1, 2) and a certain Schwartz function ϕ coming from [18].

In the present paper, we use the method of [9] to generalize (1.2) to traces tf of
arbitrary modular functions f of weight 0 whose poles are supported at the cusps
on modular curves of higher genus. Namely, we consider the theta integral I(τ, f)
replacing in (1.4) the constant 1 by the more general modular function f . Here the
starting point is that I(τ, f) does converge since the decay of the theta kernel turns
out to be faster than the exponential growth of f at the cusps, see Proposition 4.1.
Furthermore, the Schwartz function ϕ underlying the theta kernel is closely related
to a Green function for the CM points constructed by Kudla [16]. This approach
also gives a unifying proof for (1.2) and (1.3). Furthermore, we obtain geometric
interpretations for the constant and the negative Fourier coefficients. For instance,
the constant coefficient can be interpreted as the “average value”

− 1

2π

∫ reg

Γ\H
f(z)

dx dy

y2
,

of f on Γ\H. Here
∫ reg

Γ\H indicates a certain kind of regularization of the divergent

integral. The negative coefficients involve data coming from infinite geodesics joining
two cusps of Γ\H.

To illustrate our result, we now describe a special case, see section 6. For the
general statement which is phrased in terms of the orthogonal group of a rational
quadratic space of signature (1, 2), see Theorem 4.5.

Let p be a prime (or p = 1). For a positive integer D, we consider the subset
QD,p of quadratic forms [a, b, c] ∈ QD such that a ≡ 0 (mod p). Note that Γ∗0(p), the
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extension of the Hecke group Γ0(p) ⊂ Γ(1) with the Fricke involution Wp =
(

0 −1
p 0

)
,

acts on QD,p with finitely many orbits.
Let f be a modular function (of weight 0) for Γ∗0(p) whose poles are supported at

the cusp and denote its Fourier expansion by f(z) =
∑

n�−∞ a(n)e(nz). We define
the modular trace of f of index D by

(1.5) t∗f (D) =
∑

Q∈QD,p/Γ∗0(p)

1

|Γ∗0(p)Q|
f(αQ),

where Γ∗0(p)Q is the stabilizer of Q in Γ∗0(p). Finally, we put σ1(0) = − 1
24

and σ1(n) =∑
t|n t for n ∈ Z≥0 and σ1(x) = 0 for x /∈ Z≥0.

Theorem 1.1. Let f be a modular function for Γ∗0(p) and denote its Fourier expansion
as above. Assume that the constant coefficient a(0) vanishes. Then

G(τ, f) =
∑
D>0

t∗f (D)qD +
∑
n≥0

(
σ1(n) + pσ1(n/p)

)
a(−n)

−
∑
m>0

∑
n>0

ma(−mn)q−m2

is a meromorphic modular form of weight 3/2, holomorphic outside the cusps, for the
group Γ0(4p) satisfying the Kohnen plus space condition (see (6.7)). If a(0) does not
vanish, then in addition non-holomorphic terms as in (1.3) occur.

For p = 1, and f = J , we recover (1.2).

One can also consider the theta lift I(τ, f) for other types of automorphic forms
of weight 0. We consider I(τ, E0(z, s)), where E0(z, s) is the (normalized) Eisen-
stein series for SL2(Z) of weight 0. Via the Kronecker limit formula we then study
I(τ, log ‖∆(z)‖). Here ‖∆(z)‖ is the suitably normalized Petersson metric of the
Delta function ∆(z).

Theorem 1.2. We have

(i) I(τ, E0(z, s)) = ζ∗(s+
1

2
)F(τ, s).

Here ζ∗(s) is the completed Riemann Zeta function. Moreover,

(ii) − 1

12
I(τ, log ‖∆(z)‖) = F ′(τ,

1

2
),

where F ′(τ, 1
2
) is the derivative of Zagier’s Eisenstein series at s = 1

2
.

Taking residues at s = 1
2

in both sides of (i), we obtain another proof that the

theta integral (1.4) is equal to 2F(τ, 1
2
). This can be viewed as a special case of the

Siegel-Weil formula.
On the other hand, I(τ, log ‖∆‖) can be interpreted in terms of arithmetic geometry.

In that way, one can recover the main result of [23], to which we refer for background
information and further details. We let M be the Deligne-Rapoport compactification
of the moduli stack over Z of elliptic curves, so that M(C) is the orbifold SL2(Z)\H∪
∞. For D ∈ Z and v > 0, Kudla, Rapoport and Yang [20, 23] construct cycles

Ẑ(D, v) in the extended arithmetic Chow group of M with real coefficients ĈH
1

R(M),
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see [3, 14, 6, 22]. For D > 0, the complex points of the underlying divisor of Ẑ(D, v)
are the Γ(1)-equivalence classes of CM points of discriminant −D in H. Furthermore,
we let ω̂ be the normalized metrized Hodge bundle on M, which defines an element

ĉ1(ω̂) = 1
12

(∞,− log ‖∆(z)‖2) in ĈH
1

R(M). Finally, we let 〈 , 〉 be the Gillet-Soulé

intersection pairing. Since the divisor of ∆ over Z does not intersect Ẑ(D, v) at the
finite places, the D-th Fourier coefficient of − 1

12
I(τ, log ‖∆(z)‖) turns out to be equal

to 4〈Ẑ(D, v), ω̂〉.

Theorem 1.3 ([23]). We have

(1.6)
∑
D∈Z

〈Ẑ(D, v), ω̂〉qD =
1

4
F ′(τ,

1

2
).

Note that the proof of Theorem 1.3 of given in [23] relies on the explicit calculation
and comparison of the Fourier coefficients on both sides of (1.6), while our method
does not require that. Also note that we realize the ‘arithmetic’ theta series (Kudla)
on the left hand side of (1.6) as an honest theta integral. Theorem 1.3 can be
viewed as an instance of an ‘arithmetic’ Siegel-Weil formula envisioned and pursued
by Kudla and his collaborators, see e.g. [17], realizing the arithmetic theta series as
the derivative of an Eisenstein series.

Finally, we show that for f a Maass cusp form of weight 0, the lift I(τ, f) is
equivalent to a theta lift first introduced by Maass [21] and later reconsidered by
Katok and Sarnak [11].

We thank Ulf Kühn for suggesting to consider I(τ, log ‖∆‖). We also thank Gautam
Chinta, Jürg Kramer, Steve Kudla and Steve Rallis for helpful discussions on this
project.

2. Preliminaries

Let V be a rational vector space of dimension 3 with a non-degenerate symmetric
bilinear form ( , ) of signature (1, 2). We write q(x) = 1

2
(x, x) for the associated

quadratic form and let d be the discriminant of V , chosen to be a square-free positive
integer. We fix an orientation for V once and for all. We let G = Spin(V ) ' SL2

viewed as an algebraic group over Q and write Ḡ ' PSL2 for the image in O(V ). We
let D = G(R)/K be the associated symmetric space, where K ' SO(2) is a maximal
compact subgroup of G(R). We have D ' H, where H = {z ∈ C; =(z) > 0} is the
complex upper half plane. For our purposes, it is most convenient to identify D with
the space of lines in V (R) on which the bilinear form ( , ) is positive definite:

D ' {z ⊂ V (R); dim z = 1 and ( , )|z > 0}.

Let L ⊂ V (Q) be an even lattice of full rank and write L# for the dual lattice
of L. Let Γ be a congruence subgroup of Spin(L) which takes L to itself and acts
trivially on the discriminant group L#/L. We write M = Γ\D for the attached
locally symmetric space. Throughout we will assume that M is a modular curve,
i.e., non-compact. Note that this happens if and only if V is isotropic over Q. We
can then view V (Q) as the trace zero part B0(Q) of the indefinite quaternion algebra
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B(Q) = M2(Q). So

(2.1) V (Q) '
{
X =

(
x1 x2

x3 −x1

)
∈M2(Q)

}
with q(X) = d det(X) and (X, Y ) = −d tr(XY ). In this setting the action of G ' SL2

on B0 is the conjugation:
g.X := gXg−1

for X ∈ B0 and g ∈ G. Moreover, G(Q) ' SL2(Q).

Notation. From now on, we will write z = x + iy for an element in the orthogonal
symmetric space D ' H. The upper case letter X we reserve for vectors in V (R),
thought of as elements in B0(R). Its coefficients we denote by xi. Later on, we will
write τ = u+ iv ∈ H for a modular form variable in H; i.e, we consider τ as a variable
for the (symplectic) symmetric space associated to SL2 ' Sp(1).

We make the previous discussion explicit by giving the following identification of D
with the upper half plane. We pick as base point of D the line z0 spanned by ( 0 1

−1 0 ),
and note that K = SO(2) is its stabilizer in G(R). For z ∈ H, we define gz ∈ G(R)/K
by the condition gzi = z; the action is the usual linear fractional transformation on
H. We obtain the isomorphism H → D,

(2.2) z 7−→ gzz0 = span (gz. (
0 1
−1 0 )) .

So for z = x+ iy ∈ H, the associated positive line is generated by

(2.3) X(z) :=
1√
d
gz.

(
0 1
−1 0

)
=

1√
dy

(
−1

2
(z + z̄) zz̄
−1 1

2
(z + z̄)

)
.

In particular, q(X(z)) = 1 and g.X(z) = X(gz) for g ∈ G(R). For X = ( x1 x2
x3 −x1

) ∈
V (R) we have

(X,X(z)) = −
√
d

y
(x3zz̄ − x1(z + z̄)− x2)(2.4)

= −d(x3x− x1)
2 + q(X)√

dx3y
−
√
dx3y,

if x3 6= 0. We let ( , )z be the minimal majorant of ( , ) associated to z ∈ D. One
easily sees that (X,X)z = (X,X(z))2 − (X,X).

The set Iso(V ) of all isotropic lines in V (Q) can be identified with P 1(Q) = Q∪∞,
the set of cusps of G(Q), by means of the map

ψ : P 1(Q) −→ Iso(V ), ψ((α : β)) = span
(
−αβ α2

−β2 αβ

)
∈ Iso(V ).(2.5)

One easily checks that ψ is a bijection, commuting with the G(Q)-actions, that is,
ψ(g(α : β)) = g.ψ((α : β)). So the cusps of M , i.e., the Γ-classes of P 1(Q), can
be identified with the Γ-classes of Iso(V ). The cusp ∞ ∈ P 1(Q) is mapped to the
isotropic line `0 ∈ Iso(V ) spanned by X0 = ( 0 1

0 0 ). For ` ∈ Iso(V ), we pick σ` ∈ SL2(Z)
such that σ``0 = `. We orient all lines ` ∈ Iso(V ) by requiring that σ`X0 is a positively
oriented basis vector of `. We let Γ` be the stabilizer of the line `. Then (if −1 ∈ Γ)

σ−1
` Γ`σ` =

{
±
(

1 kα`

0 1

)
; k ∈ Z

}
,
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where α` ∈ Q>0 is the width of the cusp `. Since σ` ∈ SL2(Z), we see that α` does
not depend on the choice of σ` ∈ SL2(Z). For each `, there is a β` ∈ Q>0 such that(

0 β`
0 0

)
is a primitive element of `0 ∩ σ−1

` L. Finally, we write ε` = α`/β`. Note (see
[9], Definition 3.2) that ε` would be even well defined if we picked σ` ∈ SL2(Q). The
quantities α`, β`, and ε` only depend on the Γ-class of `.

We compactify M to a compact Riemann surface M̄ in the usual way by adding a
point for each cusp ` ∈ Γ\ Iso(V ); we also denote this point by `. For each ` ∈ Iso(V ),
there is a neighborhood U` of ` such that z = γz′ for some γ ∈ Γ and z, z′ ∈ U` implies
γ ∈ Γ`. We write Q` = e

(
σ−1

` z/α`

)
with z ∈ U` for the local variable (and for the

chart) around ` ∈ M̄ . For T > 0, we let D1/T = {w ∈ C; |w| < 1
2πT
}, and note that

for T sufficiently big, the inverse images Q−1
` D1/T are disjoint in M . We truncate M

by setting

(2.6) MT = M̄ −
∐

`\ Iso(V )

Q−1
` D1/T .

In this setting, Heegner points in M are given as follows. For X ∈ V (Q) of positive
length, i.e., q(X) > 0, we put

(2.7) DX = span(X) ∈ D.
The stabilizer GX of X in G(R) is isomorphic to SO(2) and for X ∈ L#, ΓX = GX∩Γ
is finite. We then denote by Z(X) the image of DX in M , counted with multiplicity

1
|Γ̄X |

. We set DX = ∅ if q(X) ≤ 0.

For m ∈ Q>0 and h ∈ L#, Γ acts on Lh,m = {X ∈ L+ h; q(X) = m} with finitely
many orbits. We define the Heegner divisor of discriminant m on M by

(2.8) Z(h,m) =
∑

X∈Γ\Lh,m

Z(X).

On the other hand, a vector X ∈ V (Q) of negative length defines a geodesic cX in
D via

cX = {z ∈ D; z ⊥ X}.
We denote the quotient ΓX\cX in M by c(X). The stabilizer Γ̄X is either trivial
(if the orthogonal complement X⊥ ⊂ V is isotropic over Q) or infinite cyclic (if X⊥

is non-split over Q). If ΓX is infinite, then c(X) is a closed geodesic in M , while
c(X) is an infinite geodesic if Γ̄X is trivial. Note that the case X⊥ ⊂ V (Q) split is

equivalent to q(X) ∈ −d (Q×)
2
, see for example [9], Lemma 3.6. In that case X is

orthogonal to two isotropic lines `X = span(Y ) and ˜̀
X = span(Ỹ ), with Y and Ỹ

positively oriented. We say `X is the line to associated to X if the triple (X, Y, Ỹ ) is

a positively oriented basis for V , and we write X ∼ `X . Note ˜̀
X = `−X .

3. A Schwartz function of weight 3/2

3.1. Geometric Aspects. In [18], Kudla and Millson explicitly construct a Schwartz
function ϕKM = ϕ on V (R) valued in Ω1,1(D), the differential forms on D of Hodge
type (1, 1). It is given by

(3.1) ϕ(X, z) =

(
(X,X(z))2 − 1

2π

)
e−π(X,X)z ω,
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where ω = dx∧dy
y2 = i

2
dz∧dz̄

y2 . We have ϕ(g.X, gz) = ϕ(X, z) for g ∈ G(R). We define

ϕ0(X, z) = eπ(X,X)ϕ(X, z) =

(
(X,X(z))2 − 1

2π

)
e−2πR(X,z) ω,(3.2)

where, following [16], we set

(3.3) R(X, z) := 1
2
(X,X)z − 1

2
(X,X) = 1

2
(X,X(z))2 − (X,X).

The quantity R(X, z) is always non-negative. It equals 0 if and only if z = DX , i.e.,
if X lies in the line generated by X(z). Hence, for X 6= 0, this does not occur if
q(X) ≤ 0.

The geometric significance of this Schwartz function lies in the fact that for q(X) >
0, the 2-form ϕ0(X, z) is a Poincaré dual form for the Heegner point DX , while
ϕ0(X, z) is exact for q(X) < 0. Furthermore, Kudla [16] constructed a Green function
ξ0 associated to ϕ0. We recall the construction of ξ0. We consider the exponential
integral Ei(w) for w ∈ C, defined by Ei(w) =

∫ w

−∞
et

t
dt, where the path of integration

lies in the plane cut along the positive real axis, see e.g. [1]. It is well known that
Ei(w) has a logarithmic singularity at w = 0. For X ∈ V (R), X 6= 0, we define

(3.4) ξ0(X, z) = −Ei(−2πR(X, z)).

Hence ξ0(X, z) is a smooth function on D \DX . For q(X) > 0, the function ξ0(X, z)
has logarithmic growth at the point DX , while it is smooth on D if q(X) ≤ 0. In
particular, ξ0(X, z) is locally integrable.

We let ∂, ∂̄ and d be the usual differentials on D. We set dc = 1
4πi

(∂ − ∂̄), so that

ddc = − 1
2πi
∂∂̄.

Theorem 3.1 (Kudla [16], Proposition 11.1). Let X 6= 0. Away from the point DX

(3.5) ddcξ0(X, z) = ϕ0(X, z).

The function ξ0(X, z) is a Green current of logarithmic type for DX associated to
ϕ0(X, z) (see [22]), i.e., as currents

(3.6) ddc[ξ0(X, z)] + δDX
= [ϕ0(X, z)],

where δDX
denotes the delta distribution concentrated at DX .

Proposition 3.2. For q(X) > 0, the differential forms ξ0(X, z), ∂ξ0(X, z), ∂̄ξ0(X, z),
and ϕ0(X, z) are of “square-exponential” decay in all directions of D, i.e., they are

O(e−Cx2

), as x→ ±∞,

O(e−Cy2

), as y →∞,

O(e−C/y2

), as y → 0,

for some constants C > 0, and uniformly in y in the first case, and uniformly in
x in the other two. In particular, the current equation (3.6) does not only hold
for compactly support functions on D, but also for functions of “linear-exponential”
growth in all directions, i.e., O(eC|x|), O(eCy), and O(eC/y), respectively.
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Proof. Write X = ( x1 x2
x3 −x1

). Since q(X) > 0, we have x3 6= 0. By (2.4) we see

−2πR(X, z) = 2π(X,X) − π

(
d(x3x− x1)

2 + q(X)√
dx3y

+
√
dx3y

)2

.

This implies the described decay of the above differential forms. �

3.2. Automorphic Aspects. For τ = u + iv ∈ H we put g′τ = ( 1 u
0 1 )

(
v1/2 0

0 v−1/2

)
,

and define

ϕ(X, τ, z) := v−3/4ω(g′τ )ϕ(X, z) =

(
v(X,X(z))2 − 1

2π

)
eπi(X,X)τ,z ω,(3.7)

where (X,X)τ,z = u(X,X) + iv(X,X)z = τ̄(X,X) + iv(X,X(z))2. Hence

(3.8) ϕ(X, τ, z) = e2πiq(X)τϕ0(
√
vX, z).

Then, see [19, 9], for h ∈ L#/L, the theta kernel

(3.9) θh(τ, z, ϕ) =
∑

X∈h+L

ϕ(X, τ, z) ∈ Ω1,1(D)Γ

defines a non-holomorphic modular form of weight 3/2 with values in Ω1,1(M), for
the congruence subgroup Γ(N) of SL2(Z), where N is the level of the lattice L (and
for Γ0(N) if h = 0). More precisely, we let Mp2(R) be the two-fold cover of SL2(R)
realized by the two choices of holomorphic square roots of τ 7→ j(g, τ) = cτ+d, where
g = ( a b

c d ) ∈ SL2(R). Then there is a certain representation ρL of the inverse image Γ′

of SL2(Z) in Mp2(R), acting on the group algebra C[L#/L] (see [2], [4]). We denote
the standard basis elements of C[L#/L] by eh, where h ∈ L#/L. For the generators
S = (( 0 −1

1 0 ) ,
√
τ), and T = (( 1 1

0 1 ) , 1) of Γ′, the action of ρL is given by

ρL(T )eh = e((h, h)/2)eh,

ρL(S)eh =

√
i√

|L#/L|

∑
h′∈L#/L

e(−(h, h′))eh′ .

We then define a vector valued theta series by

Θ(τ, z, ϕ) =
∑

h∈L#/L

θh(τ, z, ϕ)eh.

We have, see [18, 5],

Θ(τ, z, ϕ) ∈ A3/2,L ⊗ Ω1,1(M),

where A3/2,L denotes the space of C∞-automorphic forms of weight 3/2 with respect
to the representation ρL, that is, for (γ′, φ) ∈ Γ′,

Θ(γ′τ, z, ϕ) = φ3(τ)ρL(γ′, φ)Θ(τ, z, ϕ).

More generally, we denote the holomorphic modular forms of weight k for Γ′ with
respect to ρL by Mk,L, and write M !

k,L for those forms which are holomorphic on H
but meromorphic at the cusp, see e.g. [2, 4].

To lighten the notation, we will frequently drop the argument ϕ.
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4. The Theta Integral

We now consider Θ(τ, z) as a vector valued top-degree differential form on M =
Γ\D. We want to pair it with suitable 0-forms f on M . We need the following result
on the growth of Θ(τ, z) in D.

Proposition 4.1 ([9], Proposition 4.1). For each h ∈ L# and τ ∈ H and at each
cusp `, we have

θh(τ, σ`z) = O(e−Cy2

) as y →∞,

uniformly in x, for some constant C > 0.

Proof. This follows from the proof of Proposition 4.1, [9]. Note however the confusing
typesetting errors in this proof; several occurrences of exp(·) should be e(·). We
therefore give a very brief sketch of the argument given there.

It is easy to see that it is sufficient to assume L = Z3 in (2.1) and that it suffices to
show that θh(τ, z) is rapidly decreasing as y → ∞. For simplicity we assume d = 1.
Note h =

(
h1 0
0 −h1

)
with h1 = 0 or h1 = 1/2. . So we have to consider the growth of

θh(τ, z) =
∑

x1∈Z+h1
x2,x3∈Z

ϕ (( x1 x2
x3 −x1

) , τ, z)

as y →∞. Applying partial Poisson summation with respect to x2, we obtain

θh(τ, z) = − y

v3/2

∑
x1∈Z+h1
w,x3∈Z

(w + x3τ̄)
2 e
(
−τ̄x2

1

)
e (−[w + x3τ̄ ][x3zz̄ − 2x1x])(4.1)

× exp

(
−πy

2

v
(w + x3τ̄)

2

)
dxdy.

= − y

v3/2

∑
x1∈Z+h1
w,x3∈Z

(w + x3τ̄)
2 e
(
−τ̄(x1 − x3x)

2
)
e (2(x1 − x3x/2)xw)

× exp

(
−πy

2

v
|w + x3τ |2

)
dxdy.

The assertion follows. �

We denote by M !
0(Γ) the space of (scalar valued) weakly holomorphic modular

forms of weight 0 with respect to Γ. It consists of those modular functions for Γ
which are holomorphic on D ' H and meromorphic at the cusps of Γ. Hence any
f ∈M !

0(Γ) has a Fourier expansion at the cusp ` of the form

f(σ`z) =
∞∑

n∈ 1
α`

Z

a`(n)e(nz),(4.2)

with a`(n) = 0 for n� 0. In particular,

f(σ`z) = O(e2πNy) (y →∞)

for some N > 0.
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We define the theta lift of f by

I(τ, f) =

∫
M

f(z)Θ(τ, z) =
∑

h∈L#/L

(∫
M

f(z)θh(τ, z)

)
eh.(4.3)

We also write

(4.4) Ih(τ, f) =

∫
M

f(z)θh(τ, z)

for the individual components. Proposition 4.1 implies the convergence of (4.3). Then
it is clear that I(τ, f) defines a (in general non-holomorphic) modular form on the
upper half plane of weight 3/2.

Definition 4.2. (Modular trace for positive index)
For m ∈ Q>0 and h ∈ L#/L, we then define the modular trace function of f by

(4.5) tf (h,m) =
∑

z∈Z(h,m)

f(z) =
∑

X∈Γ\Lh,m

1

|Γ̄X |
f(DX).

Definition 4.3. (Modular trace for m = 0)
For m = 0, we set

tf (h, 0) = −δh,0

2π

∫ reg

M

f(z)
dx dy

y2
.

For f non-constant, the integral
∫

M
f(z)dx dy

y2 is divergent, and is regularized by setting

(4.6)

∫ reg

M

f(z)
dx dy

y2
= lim

T→∞

∫
MT

f(z)
dx dy

y2
,

where MT is the truncated surface defined by (2.6). The regularized integral is com-
puted in Remark 4.9 below.

Definition 4.4. (Modular trace for negative index)
If n ∈ Q<0 is not of the form n = −dm2 with m ∈ Q>0 we put tf (h, n) = 0. If
n = −dm2 with m ∈ Q>0 we define tf (h,−dm2) as follows: Let X ∈ Lh,−dm2 , so that
X⊥ is split over Q, and c(X) is an infinite geodesic. We can choose the orientation
of V such that

σ−1
`X
X =

(
m r
0 −m

)
.

for some r ∈ Q. In this case the geodesic cX is explicitly given in D ' H by

cX = σ`X
{z ∈ H; <(z) = −r/2m}.

We call the quantity −r/2m the real part of the infinite geodesic c(X) and denote it
by Re(c(X)). Recall that for the cusp `X , we denote the corresponding local variable
by Q`X

= e
(
σ−1

`X
z/α`X

)
. We write Qc(X) = Q`X

e2πiRe(c(X))/α`X . We now define

< f, c(X) > = −
∑
n<0

a`X
(n)e2πi Re(c(X))n −

∑
n<0

a`−X
(n)e2πi Re(c(−X))n

= ResQ`X
=0

(
f(Qc(X))

Q`X
− 1

)
+ ResQ`−X

=0

(
f(Qc(−X))

Q`−X
− 1

)
.
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We then put

tf (h,−dm2) =
∑

X∈Γ\Lh,−dm2

< f, c(X) > .

Theorem 4.5. Let f ∈ M !
0(Γ) with Fourier expansion as in (4.2), and assume that

the constant coefficients of f at all cusps of M vanish. Then the Fourier expansion
of Ih(τ, f) is given by

Ih(τ, f) =
∑
m≥0

tf (h,m)qm +
∑
m>0

tf (h,−dm2)q−dm2

,

with q = e2πiτ , and where tf (h,m) is the modular trace function defined above.
If the constant coefficients of f do not vanish, then Ih(τ, f) is non-holomorphic,

and in the Fourier expansion the following terms occur in addition:

1

2π
√
vd

∑
`∈Γ\ Iso(V )
`∩L+h 6=∅

a`(0)ε` +
∑
m>0

∑
X∈Γ\Lh,−dm2

a`X
(0) + a`−X

(0)

8π
√
vdm

β(4πvdm2)q−dm2

,

where β(s) =
∫∞

1
t−3/2e−stdt.

Remark 4.6. (i) The theta lift I(τ, f) was studied in [9] for the constant function
f = 1 ∈M !

0(Γ). There it was shown that Ih(τ, 1) is non-holomorphic and

Ih(τ, 1) =
∑
m≥0

t1(h,m)qm +
1

2π
√
vd
ε(h) +

∑
m>0

∑
X∈Lh,−dm2

1

4π
√
vdm

β(4πvdm2)q−dm2

.

Here ε(h) =
∑

`∈Γ\ Iso(V ) δ`(h)ε` with δ`(h) = 1 if ` ∩ L + h 6= ∅ and zero otherwise.

This generalizes Zagier’s non-holomorphic Eisenstein series of weight 3/2 [24].
(ii) If M is compact, i.e., a Shimura curve, then M !

0(Γ) = M0(Γ) = C, and Ih(τ, 1)
was considered by Kudla-Millson, see e.g. [19]. Here one has

Ih(τ, 1) =
∑
m≥0

t1(h,m)qm.

We will now show that the trace function tf (h,−dm2) vanishes for large m > 0, so
that I(τ, f) ∈ M !

3/2,L. For this, we sort the infinite geodesics according to the cusps

from where they originate. Form ∈ Q>0, we define Lh,−dm2,` = {X ∈ Lh,−d2m; X ∼ `}
and see

Lh,−dm2 =
∐

`∈Γ\ Iso(V )

∐
γ∈Γ`\Γ

γ−1Lh,−dm2,`.

Furthermore

#Γ\Lh,−dm2 =
∑

`∈Γ\ Iso(V )

#Γ`\Lh,−dm2,`

so that we conclude

ν`(h,−dm2) := #Γ`\Lh,−dm2,` =

{
2mε` if Lh,−dm2,` 6= ∅
0 else.

(4.7)

with ε` = α`/β` as in section 2 (see [9], Lemma 3.7).
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Proposition 4.7. Let f ∈M !
0(Γ) with Fourier expansion as in (4.2). Then

tf (h,−dm2) = −
∑

`∈Γ\ Iso(V )

ν`(h,−dm2)
∑

n∈ 2m
β`

Z<0

a`(n)e2πirn

−
∑

`∈Γ\ Iso(V )

ν`(−h,−dm2)
∑

n∈ 2m
β`

Z<0

a`(n)e2πir′n,

with r = Re(c(X)) for any X ∈ Lh,−dm2,` and r′ = Re(c(X)) for any X ∈ L−h,−dm2,`.
In particular,

tf (h,−dm2) = 0 for m� 0.

Proof. We have

tf (h,−dm2) = −
∑

X∈Γ\Lh,−dm2

∑
n∈ 1

α`
Z<0

a`X
(n)e2πi Re(c(X))n(4.8)

−
∑

X∈Γ\Lh,−dm2

∑
n∈ 1

α`
Z<0

a`−X
(n)e2πi Re(c(−X))n.

We denote the first term in (4.8) by G(h,−dm2). So the second term in (4.8) is equal
to G(−h,−dm2). We have

G(h,−dm2) =
∑

`∈Γ\ Iso(V )

G(h,−dm2, `),

where

G(h,−dm2, `) = −
∑

X∈Γ\Lh,−dm2,`

∑
n∈ 1

α`
Z<0

a`(n)e2πi Re(c(X))n

We can assume that a set of representatives for Γ`\Lh,−dm2,` is given by{
Yk = σ`m

(
1 2r + kβ`/m
0 −1

)
; k = 0, . . . , 2mε` − 1

}
for some r ∈ Q. In particular, Re(c(Yk)) = −r − k β`

2m
. Thus,

G(h,−dm2, `) = −
2ε`m−1∑

k=0

∑
n∈Z<0

a`(n/α`)e
−2πi(r+kβ`/2m)n/α`

= −
∑

n∈Z<0

a`(n/α`)e
−2πirn/α`

2ε`m−1∑
k=0

e−2πink/(2mε`)

= −2mε`

∑
n∈2mε`Z<0

a`(n/α`)e
−2πirn/α` .

The other term, G(−h,−dm2), is treated in the same way. �

Theorem 4.5 and Proposition 4.7 imply

Corollary 4.8. Assume that all constant coefficients of f ∈M !
0(Γ) vanish. Then

I(τ, f) ∈M !
3/2,L.
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Remark 4.9. One can compute tf (h, 0) as follows. We consider the Eisenstein series
for Γ of weight 2 at the cusp `0, i.e., at ∞:

(4.9) E2(z, s) =
∑

γ∈Γ`0
\Γ

j(γ, z)−2|j(γ, z)|−2s,

where j(g, z) = cz + d for g = ( a b
c d ). Then, see e.g., [15], the series E2(z, s) converges

for s > 0 and has a meromorphic continuation to C. At s = 0, E2(z, s) is holomorphic,
and we put E2(z) = E2(z, 0) which defines a (non-holomorphic) modular form of
weight 2 for Γ. The Fourier expansion E2,`(z) = j(σ`, z)

−2E2(σ`z) at a cusp ` is of
the form

(4.10) E2,`(z) =

(
b`(0) + c(0)

1

y

)
+

∞∑
n=1

b`(n/α`)e
2πinz/α` .

Here b`(0) = δ`,`0 is the Kronecker delta and c(0) = − α`0

volω(M)
is independent of `.

Using Stokes’ theorem and the fact that ∂̄(E2,`(z)dz) = c(0)dx dy
y2 one sees similarly

to [2] section 9 that the regularized divergent integral
∫ reg

Γ\D f(z)dµ is equal to

− 1

c(0)

∑
`∈Γ\ Iso(V )

α`

∑
n∈ 1

α`
Z≥0

a`(−n)b`(n).(4.11)

In particular, if Γ is a congruence subgroup of SL2(Z), we may make this more
explicit, using the Fourier expansion

E2(z) = − 3

πy
− 24

∞∑
n=0

σ1(n)e2πinz

of the (non-holomorphic) Eisenstein series E2(z) of weight 2 for SL2(Z). Here σ1(0) =
− 1

24
and σ1(n) =

∑
t|n t for n ∈ Z>0. Arguing as in [2] section 9 we find in this case∫ reg

Γ\D
f(z)

dx dy

y2
= −8π

∑
`∈Γ\ Iso(V )

α`

∑
n∈Z≥0

a`(−n)σ1(n).(4.12)

For f = 1 we recover the well known relation
∑

`∈Γ\ Iso(V ) α` = [PSL2(Z) : Γ].

Proof of Theorem 4.5. We give the outline of the structure of the proof, which reduces
the theorem to the computation of several orbital integrals. We will compute these
integrals in the next section.

We define

(4.13) θh,m(τ, z) =
∑

X∈Lh,m

ϕ(X, τ, z) and θ0
h,m(v, z) =

∑
X∈Lh,m

ϕ0(
√
vX, z).

By (3.8) we then have

Ih(τ, f) =

∫
M

∑
m∈Q

f(z)θh,m(τ, z) =
∑
m∈Q

(∫
M

f(z)θ0
h,m(v, z)

)
qm,(4.14)

which is the Fourier expansion of Ih(τ, f). (Hence interchanging summation and
integration is valid in the last step).
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For m 6= 0, Γ\Lh,m is finite. Therefore, for these m, we obtain for the latter integral
in (4.14): ∫

M

f(z)θ0
h,m(v, z) =

∫
M

∑
X∈Γ\Lh,m

∑
γ∈ΓX\Γ

f(z)ϕ0(γ−1
√
vX, z)(4.15)

=
∑

X∈Γ\Lh,m

∫
M

∑
γ∈ΓX\Γ

f(z)ϕ0(
√
vX, γz),

provided the interchange of summation and integration is valid, i.e., the integral in
(4.15) converges for all X.

Then the statement about the positive Fourier coefficients of I(τ, f) follows from

Proposition 4.10. Let X ∈ L+ h such that q(X) > 0. Then∑
γ∈ΓX\Γ

f(z)ϕ0(
√
vX, γz) ∈ L1(M),

and ∫
M

∑
γ∈ΓX\Γ

f(z)ϕ0(
√
vX, γz) =

1

|Γ̄X |
f(DX).

For q(X) < 0, the space X⊥ ⊂ V has signature (1, 1), and we have to distinguish
two cases, depending on whether X⊥ is isotropic over Q or not. If X⊥ is isotropic
over Q, then Γ̄X is trivial and q(X) ∈ −d (Q×)

2
. If not, Γ̄X is infinite cyclic and

q(X) /∈ −d (Q×)
2

(see [9] Lemma 4.2).

For m /∈ −d (Q×)
2
, (4.15) reduces the statement about the m-th coefficient to

Proposition 4.11. Let X ∈ Lh,m with m < 0 such that m /∈ −d (Q×)
2
. Hence Γ̄X is

infinite cyclic. Then ∑
γ∈ΓX\Γ

f(z)ϕ0(
√
vX, γz) ∈ L1(M)

and ∫
M

∑
γ∈ΓX\Γ

f(z)ϕ0(
√
vX, γz) = 0.

For the split case, we have

Proposition 4.12. Let X ∈ Lh,−dm2 (with m ∈ Q>0) so that Γ̄X = 1. Then∫
M

∑
γ∈Γ

f(z)ϕ0(
√
vX, γz) ∈ L1(M)

and∫
M

∑
γ∈Γ

f(z)ϕ0(
√
vX, γz) =

(
a`X

(0) + a`−X
(0)
) 1

8π
√
vdm

β(4πvdm2)

−
∑
n<0

a`X
(n)e2πi Re(c(X))n −

∑
n<0

a`−X
(n)e2πi Re(c(−X))n.
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It remains to compute the constant coefficient of Ih(τ, f), which is given by

(4.16)

∫
M

∑
X∈L+h
q(X)=0

f(z)ϕ0(
√
vX, z).

We would like to split this integral into two pieces; one for X = 0 (if h = 0) and the
other for X 6= 0. However, for X = 0, we simply have ϕ(τ,X) = − 1

2π
ω and therefore∫

M
f(z)ϕ0(0, z) does not converge due to the exponential growth of f . In order to

split the integral (4.16) we therefore have to regularize it, as explained in (4.6). We
obtain

(4.17)

∫
M

θ0
h,0(
√
v, z) = −δh,0

2π

∫ reg

M

f(z)ω +

∫ reg

M

∑
X∈Lh,0

X 6=0

f(z)ϕ0(
√
vX, z).

The first term is tf (h, 0).

Proposition 4.13. For the second regularized integral in (4.17), we have∫ reg

M

∑
X∈Lh,0

X 6=0

f(z)ϕ0(
√
vX, z) =

1

2π
√
vd

∑
`∈Γ\ Iso(V )
`∩L+h 6=∅

a`(0)ε`.

This finishes the (outline of the) proof of Theorem 4.5. �

5. Orbital Integrals

In this part of the paper, we will prove Propositions 4.10, 4.11, 4.12, and 4.13.
We begin with a lemma on Fourier transforms, which we will need later. For a

function g(t) on the real line, let ĝ(w) =
∫∞
−∞ g(t)e2πitwdt be its Fourier transform.

Lemma 5.1. For a, b > 0, let

h(t) = t(t− ib)
e−a2t2

t2 + b2
.

Then

ĥ(w) = −1

a
ea2b2

(
πabe2πbw erfc

(
a2b+πw

a

)
−
√
πe−

a4b2+π2w2

a2

)
.

Here erfc(x) is the standard complementary error function given by

erfc(x) =
2√
π

∫ ∞

x

e−u2

du.

Proof of Lemma 5.1. By [7], p. 74 (26), the Fourier transform of f(t) = t e−a2t2

t2+b2
is

f̂(w) =
πi

2
ea2b2

(
e−2πbw erfc(ab− πw/a)− e2πbw erfc(ab+ πw/a)

)
,

(note the different normalization there). By differentiating under the integral, we see

that the Fourier transform of tf(t) = t2 e−a2t2

t2+b2
is given by the derivative − i

2π
f̂ ′(w).

Since h(t) = tf(t)− ibf(t), we obtain for the Fourier transform of h:

ĥ(w) = − i

2π
f̂ ′(w)− ibf̂(w).
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But

− i

2π
f̂ ′(w) = −πb

2
ea2b2

(
e−2πbw erfc(ab− πw/a) + e2πbw erfc(ab+ πw/a)

)
+

2
√
π

a
ea2b2e−(a2b2+π2w2/a2).

Lemma 5.1 follows. �

Proof of Proposition 4.10. Let X ∈ L# such that q(X) > 0. Then Γ̄X is a finite cyclic
group. Using the Γ-invariance of f , we see∫

Γ\D
f(z)

∑
γ∈ΓX\Γ

ϕ0(
√
vX, γz) =

∫
ΓX\D

f(z)ϕ0(
√
vX, z)(5.1)

=
1

|Γ̄X |

∫
D

f(z)ϕ0(
√
vX, z).

By Proposition 3.2, the decay of ϕ0(
√
vX, z) offsets the growth of f . Therefore the

last integral in (5.1) exists, which implies the existence of the first integral and the
validity of the unfolding. By Theorem 3.1, Proposition 3.2, and D√

vX = DX we see∫
D

f(z)ϕ0(
√
vX, z) = f(DX) +

∫
D

ξ0(
√
vX, z)ddcf(z).

But ddcf = 0, since f is holomorphic. This proves Proposition 4.10. �

Proof of Proposition 4.11. Let q(X) = m < 0 for X ∈ V , so X⊥ has signature (1, 1).
Assume that X⊥ is non-split, so that ΓX is infinite cyclic. By conjugation, we can
always assume that X =

√
−m/d ( 1 0

0 −1 ). Then ΓX =
〈(

ε 0
0 ε−1

)〉
with some ε > 1.

Using (2.4) we find for our particular choice of X that (X,X(z))2 = −4mx2

y2 . There-

fore, in view of the explicit formula for ϕ0(X, z), we obtain by (formally) unfolding
the orbital integral:∫

Γ\D
f(z)

∑
γ∈ΓX\Γ

ϕ0(
√
vX, γz) =

∫
ΓX\D

f(z)ϕ0(
√
vX, z)

= e4πmv

∫
ΓX\D

f(z)

(
−4mv

x2

y2
− 1

2π

)
e
4πmv x2

y2
dx dy

y2
.

A fundamental domain G of ΓX\D is the domain bounded by the semi arcs |z| = 1
and |z| = ε2 > 1 in the upper half plane:

(5.2) G =
{
z ∈ D; 1 ≤ |z| < ε2

}
.

But in this region, the rapid decay of ϕ0(X, z) offsets the growth of f(z) as z ap-
proaches the boundary of G. So all considered integrals actually exist and unfolding
is allowed. Finally, by Theorem 3.1 we have∫

ΓX\D
f(z)ϕ0(

√
vX, z) =

∫
ΓX\D

ξ0(
√
vX, z)ddcf(z) = 0,

since f is holomorphic. This proves Proposition 4.11. �
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Proof of Proposition 4.12. Here we consider the case that q(X) = −dm2 (m > 0).
Note that the proof of Proposition 4.11 does not carry over, since for X ∈ Lh,−dm2

and Γ̄X trivial, the integral
∫

D
f(z)ϕ0(

√
vX, z) does not exist. (Even for f = 1, see

[9]). Since f is holomorphic, by Stokes’ theorem we have∫
M

f(z)
∑
γ∈Γ

ϕ0(
√
vX, γz) =

1

2πi

∫
M

f(z)∂̄∂
∑
γ∈Γ

ξ0(
√
vX, γz)

=
1

2πi

∫
M

d

(
f(z)∂

∑
γ∈Γ

ξ0(
√
vX, γz)

)

=
1

2πi
lim

T→∞

∫
∂MT

f(z)
∑
γ∈Γ

∂ξ0(
√
vX, γz).

Note here

(5.3) ∂ξ0(X, z) = −∂R(X, z)

R(X, z)
e−2πR(X,z).

For an isotropic line `, we write ∂MT,` for the boundary component of MT at the
cusp corresponding to `. So ∂MT =

∐
`∈Γ\ Iso(V ) ∂MT,`.

For any X ∈ L−dm2 , there is an involution JX ∈ G(Q) taking X to −X and

interchanging the lines `X and ˜̀
X . (It could be made unique be requiring in addition

that JX(`X ∩L) = ˜̀
X ∩L.) For example, for X = m ( 1 2r

0 −1 ), we can take JX = T−rJTr

where J = ( 0 1
−1 0 ) and Tr = ( 1 r

0 1 ). So for an arbitrary X ∈ L−dm2 , we can take
JX = σ`X

JX′σ−1
`X

where X ′ = σ−1
`X
X.

Lemma 5.2.

lim
T→∞

∫
∂MT

f(z)
∑
γ∈Γ

∂ξ0(
√
vX, γz) = lim

T→∞

∫
∂MT,`X

f(z)
∑

γ∈Γ`X

∂ξ0(
√
vX, γz)(5.4)

+ lim
T→∞

∫
∂MT,˜̀X

f(z)
∑

γ∈Γ˜̀
X

∂ξ0(
√
vX, γz).

Proof. Choosing the orientation of V appropriately, we have

X ′ := σ−1
`X
X = m

(
1 2r
0 −1

)
for some r ∈ Q. Then

lim
T→∞

∫
∂MT

f(z)
∑
γ∈Γ

∂ξ0(
√
vX, γz)

= − lim
T→∞

∑
`∈Γ\ Iso(V )

∫ α`+iT

z=iT

f(σ`z)
∑
γ∈Γ

∂ξ0(
√
vX, γσ`z)(5.5)

= − lim
T→∞

∑
`∈Γ\ Iso(V )

∫ α`+iT

z=iT

f(σ`z)
∑
γ∈Γ

∂ξ0(
√
vX ′, σ−1

`X
γσ`z).
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We have

(X ′, X(z))2 = 4dm2 (x+ r)2

y2
= 4dm2

(
1

=(z)=(J(z + r))
− 1

)
.(5.6)

If g = ( a b
c d ) ∈ G(R), we see by means of (3.3) and (5.6) that

R(X ′, gz) = 2dm2 1

=(gz)=(JX′gz)
= 2dm2 |cz + d|2|(a+ rc)z + b+ rd|2

y2

with JX′ = T−rJTr as above.
Let Γ̃ be an arithmetic subgroup of G(Q). Then there is an ε > 0 such that

R(X ′, gz) > ε for all g ∈ Γ̃, uniformly on y > 1. Moreover, using (5.3), one easily
checks that there is a δ > 0 such that

∂ξ0(
√
vX ′, gz) � e−δ(|cz+d|2+|(a+rc)z+b+rd|2)e−δy2

dz

for all g = ( a b
c d ) ∈ Γ̃ with c 6= 0 and a+ rc 6= 0, uniformly for y > 1.

This implies that

− lim
T→∞

∑
`∈Γ\ Iso(V )

∫ α`+iT

z=iT

f(σ`z)
∑
γ∈Γ

c(σ−1
`X

γσ`) 6=0,

c(JX′σ
−1
`X

γσ`) 6=0

∂ξ0(
√
vX ′, σ−1

`X
γσ`z) = 0,

where c(g) denotes the lower left entry of g ∈ SL2(R). Consequently, in (5.5) we
only have to consider the terms with c(σ−1

`X
γσ`) = 0 or c(JX′σ−1

`X
γσ`) = 0. But

c(σ−1
`X
γσ`) = 0 is equivalent to σ−1

`X
γσ``0 = `0. Hence ` = σ``0 is Γ-equivalent to

`X = σ`X
`0 and therefore we may assume ` = `X . Now c(σ−1

`X
γσ`X

) = 0 implies
γ ∈ Γ`X

. We obtain the first summand on the right hand side of (5.4).

On the other hand, c(JX′σ−1
`X
γσ`) = 0 means γσ``0 = σ`X

JX′`0 = JX`X = ˜̀
X .

Hence ` is Γ-equivalent to ˜̀
X . So we assume ` = ˜̀

X and hence γ ∈ Γ˜̀
X
. This gives

rise to the second summand on the right hand side of (5.4). �

Lemma 5.3. For X ∈ Lh,−dm2, we have

1

2πi
lim

T→∞

∫
∂MT,`X

f(z)
∑

γ∈Γ`X

∂ξ0(
√
vX, γz)(5.7)

=
1

8π
√
vdm

a`X
(0)β(4πvdm2)−

∑
n∈ 1

α`X
Z<0

a`X
(n)e2πi Re(c(X))n.

Proof. As before, we can write X ′ := σ−1
`X
X = m ( 1 2r

0 −1 ) for some r ∈ Q. Hence
Re(c(X)) = −r. For simplicity, we write α = α`X

and g(z) = f(σ`X
z) with Fourier
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expansion g(z) =
∑

n∈ 1
α

Z a(n)e(nz). We first see

1

2πi
lim

T→∞

∫
∂MT,`X

f(z)
∑

γ∈Γ`X

∂ξ0(
√
vX, γz)(5.8)

= − 1

2πi
lim

T→∞

α+iT∫
z=iT

g(z)
∑
n∈Z

∂ξ0
(√

vm
(

1 2(r+αn)
0 −1

)
, z
)

For Y = m
(

1 2(r+αn)
0 −1

)
, we note

R(Y, z) =
2dm2

y2
(x+ r + αn)2 + 2dm2,

∂R(Y, z) =
2dm2

y2
(x+ r + αn)(1 +

i

y
(x+ r + αn)).

Therefore by (5.3):

∂ξ0(
√
vY, z) =

−i
y
e−4πdm2v(x + r + αn)(x + r + αn − iy)

e−4πvdm2(x+r+αn)2/y2

(x+ r + αn)2 + y2
dz.

We set t = x+ r + αn, a = 2
√

πvdm
y

, and b = y, and obtain

∂ξ0(
√
vY, z) = − i

b
e−a2b2t(t− ib)

e−a2t2

t2 + b2
dz = − i

b
e−a2b2h(t)dz

with h(t) as in Lemma 5.1. Hence, the Fourier transform of h1(t) = h(x+ r + αt) is
given by

ĥ1(w) =
1

α
e−2πi(x+r)w/αĥ(w/α).

By Poisson summation, Lemma 5.1 therefore gives∑
n∈Z

∂ξ0
(√

vm
(

1 2(r+αn)
0 −1

)
, z
)

=
∑

w∈ 1
α

Z

i

2α
√
vdm

e−2πi(x+r)w

×
(
2π
√
vdme2πwy erfc

(
2
√
πvdm+

√
πwy/2

√
vdm

)
− e−4πvdm2−πw2y2/4vdm2

)
dz

Inserting the Fourier expansion for g and carrying out the integration we get for the
quantity in (5.8):

− 1

4π
√
vdm

lim
T→∞

∑
w∈ 1

α
Z

a(w)e−2πirwe−2πwT

×
(
2π
√
vdme2πwT erfc

(
2
√
πvdm+

√
πwT/2

√
vdm

)
− e−4πvdm2−πw2T 2/4vdm2

)
= − 1

4π
√
vdm

lim
T→∞

∑
w∈ 1

α
Z

a(w)e−2πirw

×
(
2π
√
vdm erfc

(
2
√
πvdm+

√
πwT/2

√
vdm

)
− e−π(2

√
vdm+wT/2

√
vdm)2

)
.
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The square exponential decay of e−π(2
√

vdm+wT/2
√

vdm)2 for w 6= 0 implies that the
contribution corresponding to these terms vanishes in the limit. Therefore the above
quantity is equal to

− 1

4π
√
vdm

a(0)
(
2π
√
vdm erfc

(
2
√
πvdm

)
− e−4πvdm2

)
(5.9)

− 1

2
lim

T→∞

∑
w∈ 1

α
Z\{0}

a(w)e−2πirw erfc
(
2
√
πvdm+

√
πwT/2

√
vdm

)
.

Using the identity β(t) = 2
(
e−t −

√
πt erfc(

√
t)
)

we find that the first term in (5.9)
is equal to

1

8π
√
vdm

a(0)β(4πvdm2).

For the second term in (5.9), we first note that erfc(t) = O(e−t2) as t → +∞ and
limt→−∞ erfc t = 2. Hence the second term in (5.9) is equal to

−
∑

w∈ 1
α

Z<0

a(w)e−2πirw.

This gives Lemma 5.3. �

This finishes the proof of Proposition 4.12. �

Proof of Proposition 4.13. We now consider Proposition 4.13; the sum over the non-
zero isotropic vectors. We write X` for the primitive positive oriented vector in L∩ `.
We can write `∩ (L+ h) = ZX` + h` for some h` ∈ L+ h if δ`(h) 6= 0. We then have∫ reg

Γ\D
f(z)

∑
X∈Lh,0

X 6=0

ϕ0(
√
vX, z) =

∫ reg

Γ\D
f(z)

∑
`∈Γ\ Iso(V )

∑
X∈`∩(L+h)

X 6=0

∑
γ∈Γ`\Γ

ϕ0(
√
vγ−1X, z)

=
∑

`∈Γ\ Iso(V )
δ`(h) 6=0

∫ reg

Γ\D
f(z)

∑
γ∈Γ`\Γ

∞∑′

n=−∞

ϕ0(
√
v(nX` + h`), γz).

Here
∑′ indicates that we omit n = 0 in the sum in the case of the trivial coset. As

before, we obtain by Stokes’ theorem

(5.10)

∫ reg

Γ\D
f(z)

∑
X∈Lh,0

X 6=0

ϕ0(
√
vX, z)

=
1

2πi

∑
`∈Γ\ Iso(V )

δ`(h) 6=0

lim
T→∞

∫
∂MT

f(z)
∑

γ∈Γ`\Γ

∞∑′

n=−∞

∂ξ0(
√
v(nX` + h`), γz).

Note (X,X(z)) =
√
dr/y for X = ( 0 r

0 0 ). By (5.3) we find for g = ( a b
c d ) ∈ G(R) that

∂ξ0(
√
vX, gz) = − i

(cz + d)2=(gz)
e−πvdr2/=(gz)2dz.
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Similarly to the proof of Proposition 4.12, we then see that on the right hand side of
(5.10) in the limit the terms for γ 6= 1 vanish, while for γ = 1, we have a contribution
at the boundary component corresponding to the cusp `. Thus∫ reg

Γ\D
f(z)

∑
X∈Lh,0

X 6=0

ϕ0(
√
vX, z) =

1

2π

∑
`∈Γ\ Iso(V )

δ`(h) 6=0

lim
T→∞

∫ iT+α`

iT

f(z)

∞∑′

n=−∞

1

y
e−πvd(nβ`+k`)

2/y2

dx.

Here σ−1
` (X` + h`) =

(
0 β`+k`
0 0

)
for some number k`. Note that in the limit a possible

term for n = 0 and k` = 0 vanishes. Then, by carrying out the integral and Poisson
summation we obtain∫ reg

Γ\D
f(z)

∑
X∈Lh,0

X 6=0

ϕ0(
√
vX, z) =

∑
`∈Γ\ Iso(V )

δ`(h) 6=0

α`

2π
a`(0) lim

T→∞

∞∑
n=−∞

1

T
e−πvd(nβ`+k`)

2/T 2

=
∑

`∈Γ\ Iso(V )
δ`(h) 6=0

ε`a`(0)

2π
√
vd

lim
T→∞

∑
w∈Z

e(−wk`/β`)e
−πw2T 2/(vdβ2

` )

=
∑

`∈Γ\ Iso(V )
δ`(h) 6=0

ε`

2π
√
vd
a`(0).

This concludes the proof of Proposition 4.13. �

6. Example

We explain how to obtain the example from the introduction. Let p be a prime. We
consider the quadratic space V (Q) as in (2.1) with the quadratic form q(X) = det(X).
We let L be the lattice

L =

{(
b 2c

2ap −b

)
; a, b, c ∈ Z

}
.

Then L has level 4p and is stabilized by Γ0(p). The modular curve M = Γ0(p)\D
is compactified by adding the two cusps ∞, 0 of Γ0(p), which are represented by the
isotropic lines

(6.1) `0 = span

(
0 1
0 0

)
, `1 = span

(
0 0
−1 0

)
.

We may take σ`0 = 1 and σ`1 = ( 0 −1
1 0 ). One checks that α`0 = 1, β`0 = 2, ε`0 = 1/2,

and α`1 = p, β`1 = 2p, ε`1 = 1/2.
The Heegner points now can be described as follows. If X =

(
b 2c

−2ap −b

)
∈ L is a

vector of positive norm −∆ = q(X), then the matrix

(6.2) Q =

(
ap b/2
b/2 c

)
=

1

2

(
0 −1
1 0

)
X

defines a definite integral binary quadratic form of discriminant ∆ = b2 − 4pac =
−q(X). Here the Γ0(p)-action on L corresponds to the natural right action on qua-
dratic forms, and the cycle DX coincides with the CM point αQ (resp. α−Q) cor-
responding to Q (resp. −Q) if Q is positive (resp. negative) definite as in the
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introduction. We then easily see

(6.3) Z(0,−∆) =
∑

Q∈Q−∆,p/Γ0(p)

2

|Γ0(p)Q|
αQ.

Let f ∈ M !
0(Γ0(p)) be a weakly holomorphic modular form and denote its Fourier

expansions at the cusps ∞, 0 by

f(z) =
∑
n∈Z

a(n)e(nz) and f(σ`1z) =
∑
n∈ 1

p
Z

b(n)e(nz),

respectively. By (6.3), we have

(6.4) tf (0,−∆) =
∑

Q∈Q−∆,p/Γ0(p)

2

|Γ0(p)Q|
f(αQ).

By means of Remark 4.9, we see that

tf (0, 0) = 4
∑

n∈Z≥0

(
a(−n)σ1(n) + pb(−n)σ1(n)

)
.

We find a different expression for tf (0, 0) by applying the residue theorem to the

meromorphic 1-form f(z)
(
E2(z)− E2|2(Wp)(z)

)
dz on Γ0(p)\H. This yields∑

n∈Z≥0

a(−n)
(
σ1(n)− pσ1(n/p)

)
=
∑

n∈Z≥0

b(−n/p)
(
σ1(n)− pσ1(n/p)

)
,

and therefore

(6.5) tf (0, 0) = 2
∑

n∈Z≥0

(
a(−n) + b(−n/p)

)(
σ1(n) + pσ1(n/p)

)
.

For the modular traces of f with negative index n, we first recall that by Propo-
sition 4.7, we have tf (0, n) = 0 unless n = −m2 with m ∈ N. Furthermore,
( m 0

0 −m ) ∈ L0,−m2,`0 and ( −m 0
0 m ) ∈ L0,−m2,`1 . This implies that the quantities r and r′

in Proposition 4.7 are equal to 0. Thus

(6.6) tf (0,−m2) = −2m
∑

k∈Z>0

(
a(−mk) + b(−mk/p)

)
.

Collecting the terms (6.4), (6.5), (6.6) now shows that Theorem 4.5 implies The-
orem 1.1 of the introduction: For f ∈ M !

0(Γ
∗
0(p)) (i.e., f is in the +1-eigenspace for

the Fricke involution Wp), we have a(n) = b(n/p), and tf (0, N) = 2t∗f (N) for N > 0.
Thus, if a(0) = 0, then

G(τ, f) =
1

4
I0(τ, f).

Finally note that −q(X) is congruent to a square modulo 4p for X ∈ L (which we

write as −q(X) ≡ � (4p)). Consequently, G(τ, f) belongs to M+,!
3/2(p), the Kohnen

plus space of weakly holomorphic modular forms of weight 3/2 for the group Γ0(4p)
having a Fourier expansion of the form

g(τ) =
∑
n∈Z

−n≡� (4p)

c(n)qn.(6.7)
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If f ∈M !
0(Γ0(p)) is in the −1-eigenspace for Wp, we have a(n) = −b(n/p), and

I0(τ, f) = 0,

since we directly see tf (0, N) = 0 for N > 0, while for N ≤ 0 we have tf (0, N) = 0
by (6.5), (6.6).

For p = 1, we get G(τ, f) = 1
2
I0(τ, f), and for f = J , we recover Zagier’s result.

7. Extensions

In this section, we consider other automorphic forms of weight 0 for Γ as input for
the theta lift under consideration in this paper.

7.1. The Lift of the weight 0 Eisenstein Series and log |∆|. For z ∈ H and
s ∈ C, we let

E0(z, s) =
1

2
ζ∗(2s+ 1)

∑
γ∈Γ∞\ SL2(Z)

(=(γz))s+ 1
2

be the (normalized) real analytic Eisenstein series of weight 0 for SL2(Z). Here
Γ∞ = ( 1 Z

0 1 ) and ζ∗(s) = π−s/2Γ( s
2
)ζ(s) is the completed Riemann Zeta function.

Recall that E0(z, s) converges for <(s) > 1/2 and has a meromorphic continuation to
C with a simple pole at s = 1/2 with residue 1/2. Furthermore, it is well known that
E0(z,−s) = E0(z, s).

We consider the quadratic space V (Q) as in (2.1) with the quadratic form q(X) =
det(X). For simplicity, we let L in this section be the lattice

L =

{(
b c
a −b

)
; a, b, c ∈ Z

}
.

We have L#/L ∼= Z/2Z, the level of L is 4, and Γ = SL2(Z) takes L to itself and acts
trivially on L#/L. We let e0, e1 be the standard basis of C[L#/L] corresponding to
the cosets h =

(
h1 0
0 −h1

)
with h1 = 0 and h1 = 1/2, respectively.

We let K be the one-dimensional lattice Z together with the negative definite
bilinear form (b, b′) = −2bb′. We naturally have L#/L ' K#/K. We define a vector
valued Eisenstein series E3/2,K(τ, s) of weight 3/2 for the representation ρK by

E3/2,K(τ, s) = − 1

4π
(s+

1

2
)ζ∗(2s+ 1)

∑
γ′∈Γ′∞\Γ′

(
v

1
2
(s− 1

2
)e0

)
|3/2,K γ′,

where the Petersson slash operator is defined on functions f : H → C[K#/K] by

(f |3/2,K γ′)(τ) = φ(τ)−3ρ−1
K (γ′)f(γτ)

for γ′ = (γ, φ) ∈ Γ′. Here Γ′∞ is the inverse image of Γ∞ inside Γ′. Again we have
E3/2,K(τ,−s) = E3/2,K(τ, s), as we will also see below. We set

(7.1) F(τ, s) =
(
E3/2,K(4τ, s)

)
0
+
(
E3/2,K(4τ, s)

)
1
.

Then the value of F(τ, s) at s = 1/2 is a (non-holomorphic) modular form of weight
3/2 for Γ0(4) and is equal to Zagier’s Eisenstein series as in [10, 24]. This can be
seen as follows. The right hand side of (7.1) realizes the isomorphism of vector
valued modular forms of type ρK with the space of modular forms for Γ0(4) satisfying
the Kohnen plus-space condition, see [8], section 5. On the other hand, Zagier’s
Eisenstein series is the only Eisenstein series of weight 3/2 for Γ0(4) in the plus-space
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and has the same constant coefficient as F(τ, 1
2
). Note that our F(τ, s) has a different

normalization as Zagier’s F(τ, s), see also [23], section 3.

Theorem 7.1. With the notation as above, we have

(7.2) I(τ, E0(z, s)) = ζ∗(s+
1

2
)E3/2,K(τ, s).

Proof. As in [2], section 4 we define the theta series

ΘK(τ, α, β) =
∑

h∈K#/K

∑
x1∈K+h

e
(
−τ̄(x1 + β)2

)
e (−(x1 + β/2, α)) eh.

By (4.1) we then have

Θ(τ, z) = − y

v3/2

∑
w,x3∈Z

(w + x3τ̄)
2 exp

(
−πy

2

v
|w + x3τ |2

)
ΘK(τ,−wx,−x3x)dxdy

= − y

v3/2

∞∑
n=1

n2
∑
c,d∈Z

gcd(c,d)=1

(cτ̄ + d)2 exp

(
−πn

2y2

v
|cτ + d|2

)
ΘK(τ,−ndx,−ncx)dxdy.

Now take a, b ∈ Z such that γ′ =
(
( a b

c d ) ,
√
cτ + d

)
∈ Γ′. By [2], Theorem 4.1 we find

(7.3) ΘK(τ,−ndx,−ncx) = (cτ̄ + d)−1/2 ρ−1
K (γ′) ΘK(γ′τ,−nx, 0).

Hence

Θ(τ, z) = − y

v3/2

∞∑
n=1

n2
∑

γ′∈Γ′∞\Γ′
(cτ̄ + d)3/2 exp

(
−πn

2y2

v
|cτ + d|2

)
× ρ−1

K (γ′) ΘK(γ′τ,−nx, 0)dxdy.

Then by the standard Rankin-Selberg unfolding trick we obtain for <(s) > 1:

I(τ, E0(z, s)) = ζ∗(2s+ 1)

∫
Γ∞\H

Θ(τ, z)ys+ 1
2

= −v−3/2ζ∗(2s+ 1)
∞∑

n=1

n2
∑

γ′∈Γ′∞\Γ′
(cτ̄ + d)3/2

×
∫ ∞

0

exp

(
−πn

2y2

v
|cτ + d|2

)
ys+ 5

2
dy

y

× ρ−1
K (γ′)

(∫ 1

0

ΘK(γ′τ,−nx, 0)dx

)
= −ζ∗(2s+ 1)Γ

(
1

2
(s+

1

2
) + 1

)
π−(1+ 1

2
(s+ 1

2
))ζ(s+

1

2
)

× 1

2

∑
γ′∈Γ′∞\Γ′

v
1
2
(s− 1

2
)

|cτ + d|s− 1
2

1

(cτ + d)3/2
ρ−1

K (γ′) e0

= ζ∗(s+
1

2
)E3/2,K(τ, s).

�
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Taking residues at s = 1/2 on both sides of (7.2) we obtain

Corollary 7.2.

I(τ, 1) = 2E3/2,K

(
τ,

1

2

)
.

We let

∆(z) = e2πiz

∞∏
n=1

(
1− e2πinz

)24
be the Delta function. We normalize the Petersson metric of ∆ such that

‖∆(z)‖ = e−6C |∆(z)(4πy)6|,
with C = 1

2
(γ + log 4π).

Theorem 7.3. We have

− 1

12
I (τ, log (‖∆(z)‖)) = E ′3/2,K

(
τ,

1

2

)
.

Proof. Recall that the Kronecker limit formula states

(7.4) − 1

12
log
(
|∆(z)y6|

)
= lim

s→ 1
2

(E0(z, s)− ζ∗(2s− 1)) .

By (7.4), Theorem 7.1 and Corollary 7.2 we have

− 1

12
I(τ, log

(
|∆(z)y6|

)
) = lim

s→ 1
2

(
I (τ, E0(z, s))− I(τ, ζ∗(2s− 1))

)
= lim

s→ 1
2

(
ζ∗(s+

1

2
)E3/2,K(τ, s)− 2ζ∗(2s− 1)E3/2,K(τ,

1

2
)
)

= E ′3/2,(τ,
1

2
) +

1

2
(log(4π)− γ) E3/2,K(τ,

1

2
).

Here we used

ζ∗(s) =
1

s− 1
− 1

2
(log(4π)− γ) +O(s− 1).

The theorem follows now follows from

−1

2
I(τ, log(4π)− C) = −1

2
(log(4π)− γ) E3/2,K(τ,

1

2
).

�

With the notation as in the introduction, the cycles Ẑ(m, v) for m > 0 with
−m ≡ 0, 1 mod 4, are given by, see [23] section 3,

Ẑ(m, v) = (Z(m),Ξ(m, v)) ∈ ĈH
1

R(M).

Here Z(m) is the divisor in M given by the moduli stack over Z of elliptic curves E
such that there is an embeddingOm ↪→ End(E), whereOm is the order of discriminant
−m in Q(

√
−m). Thus Z(m)(C) = Qm/ SL2(Z) =: Z(m) (with each elliptic curve

counted with multiplicity 1
#Aut(E)

). Moreover,

Ξ(m, v) =
1

4

∑
X∈L#

1
2
(X,X)=m

ξ0(2
√
vX)
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is a Green function for Z(m). For m ≤ 0, the Ẑ(m, v) are defined similarly using ξ0

with the divisor either supported at ∞ (if m = −n2 or m = 0) or empty (otherwise).

Remark 7.4. In [23] and in section 6 (with p = 1), the cycles Z(m) are constructed
using the trivial coset of the lattice L̃ = {

(
b 2c
2a −b

)
; a, b, c ∈ Z} in V (Q). Since

L̃ = 2L#, we can use L instead. On the other hand, for the proof of Theorem 7.1, the
setting of vector valued modular forms and theta series, in particular (7.3), is quite
convenient. Via (7.1) we then can go back to the scalar valued situation.

Theorem 7.5. We have

(7.5)
∑
m∈Z

〈Ẑ(m, v), ω̂〉qm =
1

4
F ′(τ,

1

2
).

Proof. We only show this for m > 0. For the other coefficients we refer to [23]; they
can be done with the methods developed in this paper as well. We have

F ′(τ,
1

2
) = − 1

12

∫
M

∑
X∈L#

ϕ0(2
√
vX,Z) log (‖∆(z)‖) eπi(X,X)4τ .

This follows from (7.2). By (3.6) we have

− 1

12

∑
X∈L#

1
2
(X,X)=m

∫
M

ϕ0(2
√
vX) log (‖∆(z)‖) = −1

3

∑
z∈Z(m)

log (‖∆(z)‖)(7.6)

+
1

2π

∫
M

Ξ(m, v)
dxdy

y2
.

Since the divisor of ∆ over Z is disjoint to Z(m), we now easily see using the definition

of the star product that (7.6) is equal to 4〈Ẑ(m, v), ω̂〉. �

Our method should generalize to modular curves of higher level. Furthermore, the
results above suggest that one should consider I(τ, log ‖f‖) for other modular forms
than ∆. In particular, the case when f is a Borcherds lift [2, 4] could be of interest.

7.2. The lift of Maass cusp forms. We let L2
cusp(Γ\D) be the space of cuspidal

square integrable functions on Γ\D = M . It is clear that we consider I(τ, f) for
f ∈ L2

cusp(Γ\D) as well. It turns out that this lift is closely relating to another
theta lift first considered by Maass [21] and later reconsidered by Katok and Sarnak
[11]. Namely, they considered, in our notation, the space V −, which is the space V
together with the negative bilinear form −( , ). Hence V − has signature (2, 1). The
Siegel theta series for V − is given by

θh(τ, z, ϕ2,1) =
∑

X∈L+h

ϕ2,1(X, τ, z)

with ϕ2,1(X, τ, z) = veπi(−u(X,X)+iv(X,X)z). Then θh(τ, z, ϕ2,1) is automorphic with
weight 1/2 for τ ∈ H. We can then define

IM(τ, f) =
∑

h∈L∗/L

(∫
M

f(z)θh(τ, z, ϕ2,1)
dx dy

y2

)
eh
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for f ∈ L2
cusp(Γ\D). In fact, in [21, 11] only Maass forms are considered, that is,

eigenfunctions of the hyperbolic Laplacian ∆ = −y2
(

∂2

∂x2 + ∂2

∂y2

)
.

For the relationship between I and IM , first recall that the Maass raising and
lowering operators are given by Rk = 2i ∂

∂τ
+kv−1 and Lk = −2iv2 ∂

∂τ̄
. Hence Rk−2Lk =

−∆′
k, where ∆′

k is the weight k Laplacian for τ ∈ H as in [4]. We also need the operator
ξk which maps forms of weight k to forms of “dual” weight 2− k. It is given by

ξk(f)(τ) = vk−2Lkf(τ) = R−kv
kf(τ).

Lemma 7.6. The two kernel functions ϕKM = ϕ and ϕ2,1 of the two lifts I and IM
satisfy the following fundamental relationship:

ξ1/2ϕ2,1(X, τ, z) · ω = −πϕKM(X, τ, z).

Furthermore, we have

−4∆′
1
2
ϕ2,1(X, τ, z) = ∆ϕ2,1(X, τ, z).

Proof. This can be easily seen by a direct and straightforward calculation. Alter-
natively, one can switch to the Fock model of the Weil representation, see e.g. [5],
section 4, and perform the calculation there. �

Theorem 7.7. For f ∈ L2
cusp(Γ\D), we have

ξ1/2IM(τ, f) = −πI(τ, f).

If f is an eigenfunction of ∆ with eigenvalue λ, then we also have

ξ3/2I(τ, f) = − λ

4π
IM(τ, f).

Proof. The first assertion immediately follows from the lemma. For the second, note
that ξ3/2ξ1/2 = R−3/2L1/2 = −∆′

1/2. Then by the adjointness of ∆ we see

ξ3/2I(τ, f) = − 1

π
ξ3/2ξ1/2IM(τ, f) =

1

π
∆′

1/2IM(τ, f) = − 1

4π
IM(τ,∆f) = − λ

4π
IM(τ, f).

�

The theorem shows that the two lifts are equivalent on Maass forms. Note however,
that due to the moderate growth of θh(τ, z, ϕ2,1) one cannot define IM(f) on M !

0. On
the other hand, since I(τ, f) is holomorphic for f ∈M !

0, we have ξ3/2I(τ, f) = 0.

7.3. The lift of weak Maass forms. In [5], section 3, we introduced the space of
weak Maass forms Hk(Γ). It consists of those forms f(z) on D of weight k for Γ which
are annihilated by the weight k Laplacian and satisfy f(σ`z) = O(eCy) as z →∞ for
some constant C. Here we are only interested in H0(Γ). A form f ∈ H0(Γ) can be
written as f = f+ + f−, where the Fourier expansions of f+ and f− are of the form

f+(σ`z) =
∑

n∈ 1
α`

Z

a+
` (n)e(nz)

f−(σ`z) = a−` (0)v +
∑

n∈ 1
α`

Z−{0}

a−` (n)e(nz̄),
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where a+
` (n) = 0 for n� 0 and a−` (n) = 0 for n� 0. We let H+

0 (Γ) be the subspace
of those f that satisfy a−` (n) = 0 for n ≥ 0 (for all `). It consists for those f ∈ H0(Γ)
such that f− is exponentially decreasing at the cusps. It significance lies in the fact
that ξ0 maps H+

0 (Γ) onto S2(Γ), the space of weight 2 cusp forms for Γ. We define
tf (h,m) for m ≥ 0 as before, while we define the modular trace of negative index
tf (h,−dm2) by replacing a`(n) with the holomorphic coefficients a+

` (n).

Theorem 7.8. Let f ∈ H+
0 (Γ) and assume that a+

` (0) = 0 for all `. Then

Ih(τ, f) =
∑
m≥0

tf (h,m)qm +
∑
m>0

tf (h,−dm2)q−dm2

.

Proof. Since f is harmonic, the proofs for the positive coefficients and for q(X) =

m /∈ −d (Q×)
2
, the non-split case, are still valid. That is, Propositions 4.10 and 4.11

carry over with no change. The term for X = 0 stays also the same. Hence we only
need to analyze the orbital integrals over the isotropic lines and for the split case,
q(X) = −dm2. For the extension of Proposition 4.12, we let X ∈ L−dm2 and see∫

M

f(z)
∑
γ∈Γ

ϕ0(
√
vX, γz) =

1

2πi

∫
M

f(z)∂̄∂
∑
γ∈Γ

ξ0(
√
vX, γz)

=
1

2πi

∫
M

d

(
f(z)∂

∑
γ∈Γ

ξ0(
√
vX, γz)

)
− 1

2πi

∫
M

(∂̄f(z))∂
∑
γ∈Γ

ξ0(
√
vX, γz).

The first term is handled in exactly the same manner as in the proof of Proposi-
tion 4.12. Only at the end of the proof of Lemma 5.3, when inserting the Fourier
expansion of f , an extra term occurs. But one easily sees that this extra term vanishes
in the limit. For the second term, we have∫

M

(∂̄f(z))∂
∑
γ∈Γ

ξ0(
√
vX, γz) = −

∫
M

d

(
∂̄f(z)

∑
γ∈Γ

ξ0(
√
vX, γz)

)

+

∫
M

(∂∂̄f(z))
∑
γ∈Γ

ξ0(
√
vX, γz).

But the first summand vanishes by Stokes’ theorem, since ∂̄f(z) is rapidly decreasing
as f ∈ H+

0 , while second term is zero since ∂∂̄f(z) = 0 as f is harmonic. The orbital
integrals over the isotropic lines are treated in the same manner. �
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Norm. Sup. 32 (1999), 241-312.

[4] J. Bruinier, Borcherds products on O(2, l) and Chern classes of Heegner divisors, Springer
Lecture Notes in Mathematics 1780, Springer-Verlag (2002).

[5] J. Bruinier and J. Funke, On two geometric theta lifts, Duke Math J., to appear.
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(1985).

[9] J. Funke, Heegner divisors and nonholomorphic modular forms, Compositio Math. 133 (2002),
289-321.

[10] F. Hirzebruch and D. Zagier, Intersection numbers of curves on Hilbert modular surfaces and
modular forms of Nebentypus, Inv. Math. 36 (1976), 57-113.

[11] S. Katok and P. Sarnak, Heegner points, cycles and Maass forms, Israel J. Math. 84 (1993),
193-227.

[12] C. H. Kim, Borcherds products associated with certain Thompson series, Compositio Math. 140
(2004), 541-551.

[13] C. H. Kim, Traces of singular moduli and Borcherds products, preprint (2003).
[14] U. Kühn, Generalized arithmetic intersection numbers, J. reine angew Math. 534 (2001), 209-

236.
[15] T. Kubota, Elementary Theory of Eisenstein Series, Halsted Press, (1973).
[16] S. Kudla, Central derivatives of Eisenstein series and height pairings, Ann. of Math. 146 (1997),

545-646.
[17] S. Kudla, Special cycles and derivatives of Eisenstein series, MSRI proceeding on Heegner

points (to appear).
[18] S. Kudla and J. Millson, The Theta Correspondence and Harmonic Forms I, Math. Ann. 274

(1986), 353-378.
[19] S. Kudla and J. Millson, Intersection numbers of cycles on locally symmetric spaces and Fourier

coefficients of holomorphic modular forms in several complex variables, IHES Pub. 71 (1990),
121-172.

[20] S. Kudla, M. Rapoport and T. Yang, Derivatives of Eisenstein series and Faltings heights,
Compositio Math. (to appear).
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[22] C. Soulé at al., Lectures on Arakelov Geometry, Cambridge Studies in Advanced Mathematics
33, Cambridge University Press (1992).

[23] T. Yang, Faltings heights and the derivatives of Zagier’s Eisenstein series, MSRI proceeding on
Heegner points (to appear).

[24] D. Zagier, Nombres de classes et formes modulaires de poids 3/2, C. R. Acad. Sci. Paris Sér.
A-B 281 (1975), 883-886.

[25] D. Zagier, Traces of singular moduli, in: Motives, Polylogarithms and Hodge Theory (Part I),
Eds.: F. Bogomolov and L. Katzarkov, International Press, Somerville (2002).

Mathematisches Institut, Universität zu Köln, Weyertal 86–90, D-50931 Köln,
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