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1. Introdution and Statement of Results.

Let j(z) = q

�1

+ 744 + 196884q + � � � denote the usual ellipti modular funtion on

SL

2

(Z) (q := e

2�iz

throughout). We shall refer to a omplex number � of the form

� =

�b+

p

b

2

�4a

2a

with a; b;  2 Z, gd(a; b; ) = 1 and b

2

�4a < 0 as a Heegner point, and

we denote its disriminant by the integer d

�

:= b

2

� 4a. The values of j at suh points

are known as singular moduli, and they play a substantial role in lassial and modern

number theory. For example, the theory of omplex multipliation implies that if � is a

Heegner point with disriminant d

�

, then j(�) is an algebrai integer whih generates a

ring lass �eld of Q(

p

d

�

).

Singular moduli also play an important role in Borherds' [B1, B2℄ reent work on

the in�nite produt expansions of ertain modular forms. A meromorphi modular form

f on SL

2

(Z), by de�nition, has a Heegner divisor if its zeros and poles are supported

at the usp at in�nity and Heegner points. In partiular, Borherds obtains an elegant

desription of the in�nite produt expansion of those meromorphi modular forms on

SL

2

(Z) with a Heegner divisor.

Here we onsider the values of a spei� sequene of ellipti modular funtions j

n

,

where j

1

= j � 744. In an important reent paper [Z℄, Zagier expressed the traes of

the values of j

n

at Heegner points in terms of Fourier oeÆients of half integral weight

modular forms. Here we onsider the more general ase of the sums of the values of

j

n

over divisors of meromorphi modular forms. We show that the \traes" of these

values (see Theorem 1) ditate the properties of modular forms on SL

2

(Z). This result

is obtained using a j

n

-weighted version of the proof of the lassial valene formula for

modular forms on SL

2

(Z).
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Theorem 1 provides a very useful link relating the values of j to the arithmeti of

the Fourier oeÆients of modular forms. Naturally, one then expets a wide variety of

onsequenes. Here we begin by onsidering suh onsequenes in onnetion with the

algebraiity of j-values, ongruene properties and bounds for lass numbers of imaginary

quadrati �elds, in�nite produt expansions of modular forms, and reurrene relations

for Fourier oeÆients. For example, we show that there are universal reursion formulas

for the Fourier oeÆients of every modular form on SL

2

(Z) (see Theorem 3). We also

obtain formulas for the exponents in the in�nite produt expansion of every modular

form on SL

2

(Z) (see Theorem 5), and we obtain new p-adi formulas for lass numbers

as traes of j-values (see Theorem 9).

Our investigation begins with a areful analysis of Ramanujan's Theta-operator, the

di�erential operator de�ned by

�

 

1

X

n=h

a(n)q

n

!

:=

1

X

n=h

na(n)q

n

: (1.1)

We refer to � as Ramanujan's operator sine he �rst observed that [R℄

�(E

4

) = (E

4

E

2

� E

6

)=3 and �(E

6

) = (E

6

E

2

�E

8

)=2; (1.2)

where E

k

, for every even integer k � 2, is the standard Eisenstein series

E

k

(z) := 1�

2k

B

k

1

X

n=1

�

k�1

(n)q

n

: (1.3)

Here B

k

denotes the usual kth Bernoulli number and �

k�1

(n) :=

P

djn

d

k�1

. If k > 2,

then E

k

is a weight k modular form on SL

2

(Z). As usual, let � := (E

3

4

�E

2

6

)=1728, the

unique normalized weight 12 usp form on SL

2

(Z).

Although the Eisenstein series

E

2

(z) = 1� 24

1

X

n=1

�

1

(n)q

n

(1.4)

is not a modular form, it plays an important role. If f(z) =

P

1

n=h

a(n)q

n

is a weight k

meromorphi modular form on SL

2

(Z), then

�(f) = (

~

f + kfE

2

)=12; (1.5)

where

~

f is a meromorphi modular form of weight k+2 on SL

2

(Z) (Note. The formulas

in (1.2) imply (1.5)). Beause of this fat, the �-operator is fundamental in the theory
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of p-adi modular forms and modular forms modulo p. For instane, if f is a p-adi

modular form of weight k, then sine E

2

is a p-adi modular form of weight 2, �(f) is a

p-adi modular form of weight k + 2 [Th. 5, S℄.

Although � is simple to de�ne, its arithmeti nature is muh deeper and is ditated

by the

~

f appearing in (1.5). We derive an expliit formula for �(f) in terms of a natural

sequene of modular funtions j

m

(z). Let j

0

(z) := 1, and for every positive integer m let

j

m

(z) be the unique modular funtion whih is holomorphi on H, the upper half of the

omplex plane, whose Fourier expansion is of the form

j

m

(z) = q

�m

+

1

X

n=1



m

(n)q

n

: (1.6)

Notie that if m is a positive integer, then j

m

(z) = j

1

(z) j T

0

(m), where T

0

(m) is the

usual normalized mth weight zero Heke operator. The �rst few j

m

are:

j

0

(z) = 1;

j

1

(z) = j(z)� 744 = q

�1

+ 196884q + � � � ;

j

2

(z) = j(z)

2

� 1488j(z) + 159768 = q

�2

+ 42987520q + � � � ;

j

3

(z) = j(z)

3

� 2232j(z)

2

+ 1069956j(z)� 36866976 = q

�3

+ 2592899910q + � � �

Eah j

m

is a moni degree m polynomial in j with integer oeÆients.

Let F denote the usual fundamental domain of the ation of SL

2

(Z) on H. By

assumption, F does not inlude the usp at 1. Throughout, let i =

p

�1 and let

! := (1 +

p

�3)=2. If � 2 F, then de�ne e

�

by

e

�

:=

8

>

<

>

:

1=2 if � = i;

1=3 if � = !;

1 otherwise:

(1.7)

For every point � 2 H, Asai, Kaneko, and Ninomiya [Th. 3, A-K-N℄ proved that

H

�

(z) :=

1

X

n=0

j

n

(�)q

n

=

E

2

4

(z)E

6

(z)

�(z)

�

1

j(z)� j(�)

: (1.8)

For � = i and !, we have the following beautiful formulas:

H

!

=

E

6

E

4

=

1

X

n=0

j

n

(!)q

n

; (1.9)

H

i

=

E

8

E

6

=

1

X

n=0

j

n

(i)q

n

: (1.10)
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In partiular, for every � it turns out that H

�

is a weight 2 meromorphi modular form.

The utility of (1.8) was already known; for example, it an be used to prove that

j(�)� j(z) = p

�1

exp

 

�

1

X

n=1

j

n

(z) �

p

n

n

!

;

where p = e

2�i�

. This identity is equivalent to the famous denominator formula for the

monster Lie algebra

j(�)� j(z) = p

�1

Y

m>0 and n2Z

(1� p

m

q

n

)

(mn)

;

where the exponents (n) are de�ned as the oeÆients of j

1

=

P

1

n=�1

(n)q

n

.

Here we obtain a new proof of (1.8) and onsider many of its number theoreti onse-

quenes.

Theorem 1. If f =

P

1

n=h

a

f

(n)q

n

is a nonzero weight k meromorphi modular form

on SL

2

(Z) for whih a

f

(h) = 1, then

�(f) =

kE

2

f

12

� ff

�

;

where f

�

is de�ned by

f

�

:=

X

�2F

e

�

ord

�

(f)H

�

(z):

Theorem 1 easily reveals some algebrai information about the j

n

evaluated at the

�nite points of the divisor of any meromorphi modular form. A elebrated result of

Shneider asserts that if � is an algebrai number of degree > 2, then j(�) is transen-

dental. Under ertain onditions, we observe that the values of j at the points in the

divisor of an algebrai modular form are algebrai. Although there are more diret ways

of establishing this result, it follows rather niely from Theorem 1.

Corollary 2. Let f =

P

1

n=h

a

f

(n)q

n

be a meromorphi modular form on SL

2

(Z) for

whih a

f

(h) = 1. If �

0

2 F is a point for whih ord

�

0

(f) 6= 0 and the oeÆients of f are

in a number �eld K, then j(�

0

) is algebrai.

Using Borherds' work on in�nite produt expansions of modular forms, this orollary

generalizes the lassial fat that j(�) is algebrai whenever � is a Heegner point.

We onsider the arithmeti of the Fourier oeÆients of meromorphi modular forms.

If k � 4 is an even integer and p is prime, then let T

k

(p) be the usual Heke operator.
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In partiular, if f =

P

1

n=0

a

f

(n)q

n

2M

k

(1), the spae of holomorphi modular forms of

weight k on SL

2

(Z), then

f j T

k

(p) :=

1

X

n=0

�

a

f

(np) + p

k�1

a

f

(n=p)

�

q

n

: (1.11)

If f 2 S

k

(1), the spae of weight k usp forms on SL

2

(Z), then f j T

k

(p) 2 S

k

(1).

If T

k

(p; x) denotes the harateristi polynomial of T

k

(p) on S

k

, then it is well known

that T

k

(p; x) 2 Z[x℄. There is wide speulation that T

k

(p; x) is irreduible for every

prime p, and has the additional property that the Galois group of its splitting �eld is

the symmetri group S

d

k

, where d

k

denotes the dimension of S

k

(1). Here we express

these polynomials in terms of the values of j

n

at the zeros of the eigenforms in S

k

(1)

(see (1.12)). We begin with the following universal reursion relation for ertain modular

forms.

Theorem 3. For every n � 2 de�ne F

n

(x

1

; : : : ; x

n�1

) 2 Q [x

1

; : : : ; x

n�1

℄ by

F

n

(x

1

; : : : ; x

n�1

) := �

2x

1

�

1

(n� 1)

n� 1

+

X

m

1

;:::;m

n�2

�0;

m

1

+2m

2

+���+(n�2)m

n�2

=n�1

(�1)

m

1

+���+m

n�2

�

(m

1

+ � � �+m

n�2

� 1)!

m

1

! � � �m

n�2

!

� x

m

1

2

� � �x

m

n�2

n�1

:

If f = q +

P

1

n=2

a

f

(n)q

n

is a weight k meromorphi modular form on SL

2

(Z), then for

every integer n � 2 we have

a

f

(n) = F

n

(k; a

f

(2); : : : ; a

f

(n� 1))�

1

n� 1

X

�2F

e

�

ord

�

(f) � j

n�1

(�):

It is simple to modify Theorem 3 for any modular form with leading oeÆient 1.

The �rst few polynomials F

n

are

F

2

(x

1

) := �2x

1

;

F

3

(x

1

; x

2

) := �3x

1

+

x

2

2

2

;

F

4

(x

1

; x

2

; x

3

) := �

8x

1

3

�

x

3

2

3

+ x

2

x

3

;

F

5

(x

1

; x

2

; x

3

; x

4

) := �

7x

1

2

� x

2

2

x

3

+ x

2

x

4

+

x

4

2

4

+

x

2

3

2

:

By arguing indutively with Theorem 3, it turns out that every Fourier oeÆient a

f

(n)

is a Q -rational expression in the weight k and the values of j at the points in the divisor

of f .
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Remark. Theorem 3 inludes a simple reursion for the oeÆients of � =

P

1

n=1

�(n)q

n

.

Sine � has no zeros in F, for every n � 2 we �nd that

�(n) = F

n

(12; �(2); : : : ; �(n� 1)):

As a speial ase of Theorem 3, we obtain the following strange formula.

Corollary 4. If f = q +

P

1

n=2

a

f

(n)q

n

is a meromorphi modular form of weight k on

SL

2

(Z), then

a

f

(2) = 60k � 744�

X

�2F

e

�

ord

�

(f) � j(�):

As an immediate onsequene of Theorem 3, we obtain an expression for T

k

(p; x). If d

k

is the dimension of S

k

(1), then for 1 � s � d

k

let

f

s

= q +

1

X

n=2

a

f

s

(n)q

n

be the normalized Heke eigenforms in S

k

(1). For every prime p, we have

T

k

(p; x) =

d

k

Y

s=1

 

x� F

p

(k; a

f

s

(2); : : : ; a

f

s

(p� 1)) +

1

p� 1

X

�2F

e

�

ord

�

(f

s

) � j

p�1

(�)

!

:

(1.12)

These results are losely related to Borherds' reent work on the in�nite produt

expansions of modular forms. Borherds [B1, B2℄ provided a striking desription for

the exponents in the in�nite produt expansion for those modular forms with a Heegner

divisor. For example, if the integers (n) are de�ned by

E

4

(z) = 1 + 240

1

X

n=1

�

3

(n)q

n

= (1� q)

�240

(1� q

2

)

26760

� � � =

1

Y

n=1

(1� q

n

)

(n)

;

then Borherds' theorem implies that there is a weight 1/2 meromorphi modular form

G(z) =

X

n��3

b(n)q

n

= q

�3

+ 4� 240q + 26760q

4

+ � � � � 4096240q

9

+ : : :

on �

0

(4) with the property that (n) = b(n

2

) for every positive integer n. We obtain

an arithmeti formula for the exponents of the in�nite produt expansion of every mero-

morphi modular form on SL

2

(Z).
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Theorem 5. Suppose that f =

P

1

n=h

a

f

(n)q

n

is a weight k meromorphi modular form

on SL

2

(Z) for whih a

f

(h) = 1, and let (n) denote the omplex numbers for whih

f = q

h

1

Y

n=1

(1� q

n

)

(n)

:

If n is a positive integer, then

X

djn

(d)d = 2k�

1

(n) +

X

�2F

e

�

ord

�

(f) � j

n

(�):

In an important paper [G-Z℄, Gross and Zagier desribed the divisibility properties

of di�erenes of singular moduli. More reently [Z℄, Zagier desribed the arithmeti of

the traes of singular moduli in terms of the Fourier oeÆients of modular forms of half

integral weight. Sine the modular funtions j

n

play an important role, we onsider their

divisibility and ongruene properties. We onsider the arithmeti of the values of j

n

as

we vary n. First we obtain the following theorem for the speial values at � = ! and

� = i.

Theorem 6. If � = !, then let M be a positive integer whih is not divisible by a prime

p � 1 (mod 3). If � = i, then suppose that M is a positive integer whih is not divisible

by a prime p � 1 (mod 4). Then there is a positive real number �(M) for whih

#f1 � n � X : j

n

(�) � 0 (mod M)g = O

�

X

(logX)

�(M)

�

:

In partiular, for almost all n we have j

n

(�) � 0 (mod M).

In addition to results of this type, there are examples of expliit ongruenes. For

example, ongruenes with modulus 2k relating suh values to Borherds exponents follow

immediately from Theorem 5. We highlight two further types of ongruene properties.

Theorem 7. If k � 4 is even, then for every positive integer n we have

X

�2F

e

�

ord

�

(E

k

) � j

n

(�) � �2k�

1

(n) (mod 4

Y

p�1jk

5�p prime

p):

Theorem 8. Let f =

P

1

n=h

a

f

(n)q

n

be a weight k meromorphi modular form on

SL

2

(Z) whose oeÆients are in O

K

, the ring of algebrai integers in a number �eld

K. Suppose that a

f

(h) = 1 and that f has a Heegner divisor whose Heegner points in F
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are �

1

; �

2

; : : : ; �

t

. Furthermore, suppose that p 2 f2; 3; 5; 7g has the property that for all

1 � s � t we have

jd

�

s

j �

8

>

>

>

<

>

>

>

:

3 (mod 8) if p = 2;

1 (mod 3) if p = 3;

2; 3 (mod 5) if p = 5;

1; 2; 4 (mod 7) if p = 7:

If � is a positive integer, then there is a positive real number �(p; �) for whih

#f1 � n � X :

t

X

=1

e

�



ord

�



(f) � j

n

(�



) � 0 (mod p

�

)g = O

�

X

(logX)

�(p;�)

�

:

In partiular, for almost all n we have

P

t

=1

e

�



ord

�



� j

n

(�



) � 0 (mod p

�

).

The p-adi properties of the values of the j

n

are losely related to the arithmeti of

lass numbers of imaginary quadrati �elds. Let H(�D) be the Hurwitz lass number

for the disriminant �D.

Theorem 9. Suppose that �D < �4 is a fundamental disriminant of an imaginary

quadrati �eld, and let � be any Heegner point of disriminant �D. If K = Q (j(�)),

then the following are true:

(1) If D � 3 (mod 8), then as 2-adi numbers we have

H(�D) =

1

24

lim

n!+1

Tr

K=Q

(j

2

n

(�)):

(2) If D � 1 (mod 3), then as 3-adi numbers we have

H(�D) =

1

12

lim

n!+1

Tr

K=Q

(j

3

n

(�)):

(3) If D � 2; 3 (mod 5), then as 5-adi numbers we have

H(�D) =

1

6

lim

n!+1

Tr

K=Q

(j

5

n

(�)):

(4) If D � 1; 2; 4 (mod 7), then as 7-adi numbers we have

H(�D) =

1

4

lim

n!+1

Tr

K=Q

(j

7

n

(�)):
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Remark. Analogs of Theorem 9 hold for �D = �3 (resp. �D = �4). Subjet to

the same ongruene onditions on D, these results simply require replaing j

p

n

(�) by

j

p

n

(!)=3 (resp. j

p

n

(i)=2). Moreover, simple analogs hold for every �D, not just those

whih are fundamental. More generally, there are analogs of Theorem 8 and 9 for primes

p � 11, but these results are more ompliated to state.

If D � 3 (mod 8), it turns out that the 2-adi behavior of these traes, for all j

n

, are

also ontrolled by the lass number H(�D). Using the fat that the Heke algebra for

holomorphi modular forms is loally nilpotent at 2, we obtain the following 2-divisibility

results. Let !(n) denote the number of distint prime fators of n.

Theorem 10. Suppose that �3 6= �D � 5 (mod 8) is a fundamental disriminant of

an imaginary quadrati �eld, and suppose that � is a Heegner point of disriminant �D.

If K = Q (j(�)) and s � 4, then

Tr

K=Q

(j

n

(�)) � 0 (mod 2

s

)

for every positive square-free integer n for whih

!(n) > 2

s�4

H(�D):

Theorem 10 yields theoretial lower bounds for H(�D). To state these results, for

D � 0; 3 (mod 4), let

F (D; z) = q

�H(�D)

1

Y

n=1

(1� q

n

)



D

(n)

(1.13)

be the unique weight zero modular funtion on SL

2

(Z), with leading oeÆient one,

whose divisor onsists of a pole of order H(�D) at z = 1 and a simple zero at eah

Heegner point with disriminant �D. These funtions have integer oeÆients. Consider

the formal power series

�(F (D; z))

F (D; z)

:= �H(�D)�

1

X

n=0

A(D;n)q

n

= �H(�D)�

1

X

n=1

X

djn



D

(d)dq

n

: (1.14)

Corollary 11. Suppose that �3 6= �D � 5 (mod 8) is a fundamental disriminant of

an imaginary quadrati �eld. If s � 4 and there is an odd square-free integer n for whih

ord

2

(A(D;n)) < s, then

H(�D) >

!(n)

2

s�4

s

�

1

3 � 2

s�3

:

It will be extremely interesting to see whether a detailed study of the Heke algebra

modulo powers of 2, perhaps ombined with further 2-adi arguments, an be used to
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transform Corollary 11 into a lower bound like the elebrated bound due to Goldfeld,

Gross and Zagier.

In x2 we prove Theorems 1, 3, and 5, and Corollaries 2 and 4. In x3 we prove Theorems

6, 7, 8 and 9. There we onsider the p-adi behavior of the �-operator under ertain

onditions. In x4 we prove Theorem 10 and Corollary 11 using an analysis of the behavior

of the Heke algebra on modular forms modulo 2.

2. Proof of Theorems 1, 3, and 5 and Corollaries 2 and 4.

For onveniene, we begin by proving Theorem 5 on the in�nite produt expansion of

generi modular forms. Before we prove Theorem 5, we all attention to earlier work of

Eholzer and Skoruppa [E-S℄ whih also onsiders produt expansions of modular forms.

Proposition 2.1. Let f =

P

1

n=h

a

f

(n)q

n

be a meromorphi funtion in a neighborhood

of q = 0, and suppose that a

f

(h) = 1. Then there are uniquely determined omplex

numbers (n) suh that

f = q

h

1

Y

n=1

(1� q

n

)

(n)

;

where the produt onverges in a small neighborhood of q = 0. Moreover, the following

identity is true

�(f)

f

= h�

1

X

n=1

X

djn

(d)dq

n

:

Proof. As usual, we understand that omplex powers are de�ned by the prinipal branh

of the omplex logarithm. If F (q) := f(z), then the funtion qF

0

(q)=F (q) is holomorphi

at q = 0. Write its Taylor expansion as

qF

0

(q)=F (q) = h�

X

n�1

�(n)q

n

(jqj < �) (2.1)

and for n � 1 let

(n) :=

1

n

X

djn

�(d)�(n=d);

where � denotes the M�obius funtion. This implies that

�(n) =

X

djn

(d)d: (2.2)

Obviously, the numbers (n) are uniquely determined by f .



MODULAR FUNCTIONS AND DIVISORS OF MODULAR FORMS 11

For �xed q

0

with jq

0

j < � we have �(n) = O(jq

0

j

�n

) for all n, and this easily implies

that the double series

X

m;n�1

(n)nq

mn

is absolutely onvergent in jqj < jq

0

j, hene in jqj < �.

In the following, suppose that jqj < �. From the above we see that

d

dq

log(F (q)q

�h

) =

F

0

(q)

F (q)

�

h

q

= �

X

n�1

(n)

d

dq

0

�

X

m�1

q

mn

m

1

A

=

d

dq

�

X

n�1

(n) log(1� q

n

)

�

;

the interhange of di�erentiation and summation being justi�ed beause of loal uniform

onvergene as an easily be seen in a similar way as above.

We thus obtain

log(F (q)q

�h

) =

X

n�1

(n) log(1� q

n

):

The values (n) log(1� q

n

) and log(1 � q

n

)

(n)

di�er by integer multiples of 2�i. Sine

(n) log(1 � q

n

) ! 0 (n ! 1) the same is true for log(1 � q

n

)

(n)

, hene we see that

there is an integer N suh that

log(F (q)q

�h

) =

X

n�1

log(1� q

n

)

(n)

+ 2�iN:

Taking the exponential on both sides proves our laim.

�

Proof of Theorem 5. Let

F := fz 2 H : jzj � 1; jRe (z)j �

1

2

g

be the standard fundamental domain for the ation of SL

2

(Z) on H. We ut o� F

by a horizontal line L := fiC � t : �

1

2

� t �

1

2

g where C > 0 is hosen so large

that all poles and zeros of f , apart from those at the usp at in�nity, are ontained in

fz 2 H : Im (z) < Cg.
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For simpliity, suppose that f has no zero or pole on the boundary �F exept possibly

i or ! (if not one has to modify the arguments in the same way as in the lassial proof

of the \

k

12

-identity").

We let  be the losed path with positive orientation onsisting of L and 

1

where 

1

is the part of �F below L modi�ed in the usual way: in a small neighborhood U of !

resp. i resp. �� we replae U \ �F by F \C

!

resp. F \C

i

resp. F \C

�!

where C

!

resp.

C

i

resp. C

�!

are small irles with radius r around ! resp. i resp. �!.

We integrate

1

2�i

f

0

(z)

f(z)

j

n

(z) along . By the residue theorem, taking into aount that

j

n

(z) is holomorphi on H, this integral is equal to

X

�2F�f!;ig

ord

�

(f)j

n

(�):

On the other hand, the integral an be evaluated separately along the di�erent piees of

, in a well-known way. If we let r tend to zero, we then �nd that

X

�2F�f!;ig

ord

�

(f)j

n

(�) = �

1

3

ord

!

(f)j

n

(!)�

1

2

ord

i

(f)j

n

(i)+

1

2�i

Z

�

F

0

(q)

F (q)

J

n

(q)dq (2.3)

�

k

2�i

Z

�

j

n

(z)

z

dz:

Here F (q) = f(z) as before and J

n

(q) := j

n

(z). Furthermore, � is a small irle around

q = 0 with negative orientation and not ontaining any pole or zero of F (q) exept

possibly 0, and � is the part of the unit irle in the upper half-plane that onnets !

and i, with positive orientation.

By Proposition 2.1, for jqj < � we see that

qF

0

(q)

F (q)

=

�(f)

f

= h�

1

X

n=1

X

djn

(d)dq

n

;

where h is the order of F at q = 0. Hene realling that J

n

(q) = q

�n

+O(q) we �nd that

Z

�

F

0

(q)

F (q)

J

n

(q)dq =

X

djn

(d)d: (2.4)

We annot diretly evaluate the last integral on the right-hand side of (2.3). Instead

we proeed as follows. Formula (2.3) in partiular is valid for the funtion f = � of

weight 12. In this ase we have

X

djm

(d)d = 24�

1

(m) (m � 1);



MODULAR FUNCTIONS AND DIVISORS OF MODULAR FORMS 13

by de�nition. Sine � has no zeros on H, we obtain from (2.3) that

1

2�i

Z

�

j

n

(z)

z

dz = 2�

1

(n): (2.5)

Inserting (2.4) and (2.5) into (2.3), we dedue the theorem.

�

Proof of Theorem 1. We begin by proving that if

�(f)

f

=

kE

2

12

� f

�

; (2.6)

then f

�

has the laimed form. If n is a positive integer, then Proposition 2.1 and Theorem

5 imply that the oeÆient of q

n

in �(f)=f is �2k�

1

(n)�

P

�2F

e

�

ord

�

(f) � j

n

(�): Sine

the E

2

is given by

E

2

= 1� 24

1

X

n=1

�

1

(n)q

n

;

(2.6) veri�es the truth Theorem 1 for every oeÆient with the exeption of the onstant

term. The onstant term in �(f)=f is h = ord

1

(f). However, the onstant term of

kE

2

=12 � f

�

is

k

12

�

P

�2F

e

�

ord

�

(f) whih equals h by the lassial \k=12" valene

formula.

�

Proof of Corollary 2. We begin by �xing notation. Let �

1

; �

2

; : : : ; �

t

2 F be the numbers

for whih ord

�

(f) 6= 0. If n is a positive integer, then the oeÆient of q

n

in kE

2

=12 is

the integer �2k�

1

(n). Therefore by Theorem 1, if the Fourier oeÆients of f are in a

�eld K, then the oeÆients of f

�

and 1=f belong to K. Hene if n is a positive integer,

then

t

X

s=1

j

n

(�

s

) =

t

X

s=1

G

n

(j(�

s

)) 2 K: (2.7)

where G

n

2 Z[x℄ is a moni polynomial of degree n. Sine j

1

= j�744, for every positive

integer n we have

t

X

s=1

j(�

s

)

n

2 K:

Therefore, by solving for the elementary symmetri funtions in j(�

1

); : : : ; j(�

t

), we �nd

that

t

Y

s=1

(x� j(�

s

)) 2 K[x℄:
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This proves the orollary.

�

Proof of Theorem 3. By Theorem 1, we have that

X

�2F

e

�

ord

�

(f)

1

X

n=0

j

n

(�)q

n

= �

�(f)

f

+

kE

2

12

:

If n � 2, then Theorem 5 gives

X

�2F

e

�

ord

�

(f)j

n�1

(�) =

X

djn�1

(d)d� 2k�

1

(n� 1);

where

f = q

1

Y

n=1

(1� q

n

)

(n)

:

Therefore, to prove the theorem it suÆes to obtain a losed formula for b(n) :=

P

djn

(d)d in terms of a

f

(n). In partiular, it suÆes to show that if n � 1, then

b(n) = n

X

m

1

;:::;m

n

�0;

m

1

+2m

2

+:::+nm

n

=n

(�1)

m

1

+���+m

n

�

(m

1

+ � � �+m

n

� 1)!

m

1

! � � �m

n

!

a

f

(2)

m

1

� � �a

f

(n+ 1)

m

n

:

(2.8)

To prove (2.8), one observes that

0 = b(n) + b(n� 1)a

f

(2) + b(n� 2)a

f

(3) + � � �+ b(1)a

f

(n) + na

f

(n+ 1);

and uses the well known fat that

0 = s

n

� s

n�1

�

1

+ s

n�2

�

2

� � � �+ (�1)

n�1

s

1

�

n�1

+ (�1)

n

n�

n

:

Here the �

i

are the elementary symmetri funtions in X

1

; : : : ; X

n

and the s

i

are the

power funtions in these variables (i.e. s

i

:= X

i

1

+ � � � + X

i

n

). One now obtains (2.8)

by evaluating these identities at (X

1

; :::; X

n

) = (�(1; n); :::; �(n; n)) where the �(j; n) are

the roots of the polynomial

X

n

+ a

f

(2)X

n�1

+ a

f

(3)X

n�2

+ � � �+ a

f

(n+ 1):
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One requires the fat that

s

i

= i

X

m

1

;:::;m

n

�0;

m

1

+2m

2

+���+nm

n

=i

(�1)

m

2

+m

4

+:::

(m

1

+m

2

+ � � �+m

n

� 1)!

m

1

!m

2

! � � �m

n

!

�

m

1

1

� � ��

m

n

n

:

�

Proof of Corollary 4. Sine j

1

(z) = j(z)� 744 and

P

�2F

e

�

ord

�

(f) =

k

12

� 1, this result

is the n = 2 ase of Theorem 3.

�

3. Proof of Theorems 6, 7 , 8 and 9.

In this setion we prove Theorems 6, 7, 8 and 9 using theorems of Serre on p-adi

modular forms and the divisibility of the Fourier oeÆients of modular forms modulo

M (see [S, S2℄) .

Proof of Theorem 6. By (1.9) and (1.10), it suÆes to prove that the oeÆients of the

Fourier series

H

!

=

E

6

E

4

=

1

X

n=0

j

n

(!)q

n

= 1� 744q + 159768q

2

� 36866976q

3

+ � � � ; (3.1)

H

i

=

E

8

E

6

=

1

X

n=0

j

n

(i)q

n

= 1 + 984q + 574488q

2

+ 307081056q

3

+ � � � (3.2)

satisfy the laim.

Sine z = i (resp. z = !) is �xed by the modular transformation Sz = �1=z (resp.

Az = �(z + 1)=z), the de�nition of a modular form implies that if k � 4 is even, then

k � 2 (mod 4) =) E

k

(i) = 0;

k � 2; 4 (mod 6) =) E

k

(!) = 0:

If p � 5 is prime, then these observations together with the von Staudt-Clausen Theorem

[p. 233, I-R℄ and (1.3) imply that if p 6� 1 (mod 4), then there is an Eisenstein series

E

i;p

for whih

E

i;p

(i) = 0 and E

i;p

� 1 (mod 24p); (3.3)

and if p 6� 1 (mod 3), then there is an Eisenstein series E

!;p

for whih

E

!;p

(!) = 0 and E

!;p

� 1 (mod 24p): (3.4)
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Now observe that if H � 1 (mod `), where ` is prime, then H

`

s

� 1 (mod `

s+1

). If

p

1

6� 1 (mod 4) is prime, then for every positive integer s we have that

E

8

E

6

�

E

8

E

6

� E

p

s

1

i;p

1

(mod p

s+1

1

): (3.5)

Similarly, if p

2

6� 1 (mod 3) is prime, then

E

6

E

4

�

E

6

E

4

� E

p

s

2

!;p

2

(mod p

s+1

2

): (3.6)

Sine E

4

(!) = 0 (resp. E

6

(i) = 0) and E

4

(resp. E

6

) has no other zeros in F, (3.3)

and (3.5) (resp. (3.4) and (3.6)) illustrate that the relevant forms are the redution

modulo p

s+1

i

of holomorphi integer weight modular forms on SL

2

(Z). There are obvious

analogous onstrutions for both forms modulo powers of 2 and 3. The theorem now

follows from a well known theorem of Serre whih asserts that almost all the oeÆients

of a modular form with algebrai integer oeÆients are multiples of any given integer

M [Th. 4.7, S2℄.

�

Proof of Theorem 7. By (1.3) and the von Staudt-Clausen Theorem, if k � 4 is even,

then

E

k

� 1 (mod 4

Y

p�1jk

p prime

p):

This observation and Theorem 1 imply that

0 �

�(E

k

)

E

k

=

kE

2

12

� (E

k

)

�

(mod 4

Y

p�1jk

p prime

p)

The theorem follows from (1.4).

�

Proof of Theorem 8. By [Cor. 3, Br-O℄, �(f)=f is a p-adi modular form of weight 2.

Sine the Eisenstein series E

2

is also a p-adi modular form of weight 2 [S℄, we �nd that

f

�

= �

�(f)

f

+

kE

2

12

=

X

� inf F

e

�

ord

�

(f)

1

X

n=0

j

n

(�)q

n

is a p-adi modular form of weight 2. Therefore, f

�

(mod p

�

) is the redution modulo p

�

of some holomorphi integer weight modular form on SL

2

(Z). The theorem now follows

from [Th. 4.7, S2℄.



MODULAR FUNCTIONS AND DIVISORS OF MODULAR FORMS 17

�

Proof of Theorem 9. If 0 < D � 0; 3 (mod 4), then there is a unique meromorphi

modular form of weight 1/2 on �

0

(4) that is holomorphi on H whose Fourier series has

the form [Lemma 14.2, B℄

f(D; z) = q

�D

+

1

X

n=1

(D;n)q

n

; (3.7)

where (D;n) = 0 for every n � 2; 3 (mod 4). Borherds' theory [B1, B2℄ implies that

F (D; z) = q

�H(�D)

1

Y

n=1

(1� q

n

)

(D;n

2

)

(3.8)

is a weight zero modular funtion on SL

2

(Z) whose divisor onsists of a pole of order

H(�D) at z = 1 and a simple zero at eah Heegner point with disriminant �D. For

eah D we onsider the following formal power series (also de�ned in (1.14))

F(D; q) = �H(�D)�

1

X

n=0

A(D;n)q

n

:= �H(�D)�

1

X

n=1

X

djn

(D; d

2

)dq

n

: (3.9)

If D and p satisfy the hypotheses of the theorem, then [Cor. 3, Br-O℄ implies that

F(D; q) is a p-adi modular form of weight 2. Serre proved [Th. 7, S℄, for ertain p-adi

modular forms, that the onstant term of the Fourier expansion is essentially the p-adi

limit of its Fourier oeÆients at exponents whih are p

th

powers. In these ases we

obtain

H(�D) =

8

>

>

>

<

>

>

>

:

1

24

lim

n!+1

A(D; 2

n

) if D � 3 (mod 8);

1

12

lim

n!+1

A(D; 3

n

) if D � 1 (mod 3);

1

6

lim

n!+1

A(D; 5

n

) if D � 2; 3 (mod 5);

1

4

lim

n!+1

A(D; 7

n

) if D � 1; 2; 4 (mod 7):

(3.10)

Sine F (D; z) has weight zero, for every positive integer n Theorem 5 implies

A(D; p

n

) = j

p

n

(�

1

) + � � �+ j

p

n

(�

H(�D)

);

where �

1

; : : : ; �

H(�D)

2 F are the Heegner points of disriminant �D. Sine the j(�

i

)

are onjugates over Q , the theorem follows from (3.10) and the fat that eah j

n

is an

integral polynomial in j.

�
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4. Proof of Theorem 10 and Corollary 11.

We adopt the notation from the proof of Theorem 9. We begin by realling the

following theorem whih is proved in [Cor. 3, Br-O℄.

Theorem 4.1. If 0 < D � 3 (mod 8), then F(D; q) is a weight two 2-adi modular

form.

Using the loal nilpoteny of the Heke algebra on modular forms of SL

2

(Z) modulo

2, we make the following vital observation.

Theorem 4.2. Suppose that f =

P

1

n=0

a(n)q

n

2 M

k

(1) has integer oeÆients. If s is

a positive integer and t �

ks

12

, then for every set of odd primes p

1

; p

2

; : : : ; p

t

we have

f j T

k

(p

1

) j T

k

(p

2

) j � � � j T

k

(p

t

) � 0 (mod 2

s

):

Proof. Begin by notiing that the Fourier expansion of every Eisenstein series on SL

2

(Z)

is ongruent to 1 modulo 2. Serre [S2℄ observed that the Heke operators at nilpotently

on S

k

(1) (mod 2), the spae of usp forms modulo 2 on SL

2

(Z). If � 2 S

12

(1) is the

unique normalized weight 12 usp form

�(z) = q

1

Y

n=1

(1� q

n

)

24

= q � 24q

2

+ � � � ;

then S

k

(1) (mod 2) has F

2

-basis

f�

i

(mod 2) : 1 � i � bk=12g:

Serre's observation implies that if j is a positive integer, then

�

j

j T

k

(p) �

j�1

X

i=1

�(i)�

i

(mod 2)

where �(i) 2 F

2

, and so we have

f j T

k

(p

1

) j T

k

(p

2

) j � � � j T

k

(p

t

) � 0 (mod 2) (4.1)

whenever t � k=12. One easily obtains the result by suessive division by 2 and iteration

of (4.1).

�

As an immediate orollary, we obtain the following inequality.
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Corollary 4.3. Suppose that f =

P

1

n=1

a(n)q

n

2M

k

(1) has integer oeÆients. If s is

a positive integer, then

maxf!(n) : n odd and square-free with ord

2

(a(n)) < sg <

ks

12

:

Proof. If t � ks=12, then let p

1

; p

2

; : : : ; p

t

be distint odd primes. Let f

0

:= f , and for

1 � i � t let f

i

=

P

1

n=0

a

i

(n)q

n

be the modular forms de�ned indutively by

f

i

:= f

i�1

j T

k

(p

i

): (4.2)

By Theorem 4.2, we have

a

t

(M) � 0 (mod 2

s

)

for every M . In partiular, (4.2) implies that

0 � a

t

(1)

= a

t�1

(p

t

)

= a

t�2

(p

t�1

p

t

)

.

.

.

= a(p

1

p

2

� � � p

t

) (mod 2

s

):

This ompletes the proof.

�

Theorem 4.4. If s � 4 and 0 < D � 3 (mod 8), then F(D; q) (mod 2

s

) is the redution

modulo 2

s

of a modular form with integer oeÆients in M

k(D;s)

(1) where

k(D; s) := 12 � 2

s�4

H(�D) + 2:

Proof. By onstrution [Prop. 2.1, Br-O℄, we have

F(D; q) =

�(F (D; z))

F (D; z)

: (4.3)

We see that F(D; q) is a weight 2 meromorphi modular form on SL

2

(Z) whih is non-

vanishing at in�nity. Moreover, it has a simple zero at eah Heegner point � with dis-

riminant �D and no other singularities.
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It is well known that j(!) = 0. Let �

1

; � � � �

H(�D)

denote the Heegner points of

disriminant �D. For eah 1 � i � H(�D) de�ne E(D; i; z) by

E(D; i; z) := E

3

4

(z) �

�

1�

j(�

i

)

j(z)

�

: (4.4)

Observe that the modular funtion 1 �

j(�

i

)

j(z)

has a simple pole at z = ! and a simple

zero at z = �

i

. Sine E

3

4

(z) has a simple zero at z = !, the modular form E(D; i; z)

is a holomorphi modular form in M

12

(1). Sine E

4

(z) � 1 (mod 16) and j(�

i

) � 0

(mod 2

15

) (see [G-Z℄), we have that

E(D; i; z) � 1 (mod 16):

Hene, if s � 4, then

E(D; i; z)

2

s�4

� 1 (mod 2

s

):

Therefore if s � 4, then

F(D; q) �

�(F (D; z))

F (D; z)

�

H(�D)

Y

i=1

E(D; i; z)

2

s�4

(mod 2

s

): (4.5)

The modular form on the right hand side of (4.5) is holomorphi and has weight

k(D; s) = 12 � 2

s�4

H(�D) + 2:

This ompletes the proof.

�

Proof of Theorem 10 and Corollary 11. By Corollary 4.3 and Theorem 4.4, we have that

if A(D;n) 6� 0 (mod 2

s

), then

!(n) <

k(D; s)s

12

=

(12 � 2

s�4

H(�D) + 2)s

12

= 2

s�4

s �H(�D) + s=6:

Therefore, we �nd that

!(n)

2

s�4

s

�

1

3 � 2

s�3

< H(�D):

This ompletes the proof.

�
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