THE ARITHMETIC OF BORCHERDS’ EXPONENTS

JAN H. BRUINIER AND KEN ONO

1. INTRODUCTION AND STATEMENT OF RESULTS.

Recently, Borcherds [B] provided a striking description for the exponents in the naive
infinite product expansion of many modular forms. For example, if F(z) denotes the usual
normalized weight k& Eisenstein series, let ¢(n) denote the integer exponents one obtains by
expressing F4(z) as an infinite product:

(1.1)  Ea(z2)=14240) > d%" = (1-¢q)7*(1 = ¢*)*™ . = [T (1 - ¢")*™
n=1 d|n n=1

(q := €2>™* throughout). Although one might not suspect that there is a precise description
or formula for the exponents ¢(n), Borcherds provided one. He proved that there is a weight
1/2 meromorphic modular form

G(2) = Y b(n)q" = q % +4—240q + 26760¢" + - - - — 4096240¢° + ...
n>-—3

with the property that c(n) = b(n?) for every positive integer n.

It is natural to examine other methods for studying such exponents. Here we point out a
p-adic method which is based on the fact that the logarithmic derivative of a meromorphic
modular form is often a weight two p-adic modular form. To illustrate our result, use (1.1)
to define the series C'(q)

(1.2) Clg) =6 > c(d)dg™ = —1440q + 319680¢> — 73733760¢° + - - -

n=1 d|n
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If n(2) = ¢"/?4 T[22, (1 — ¢") denotes Dedekind’s eta-function, then it turns out that
C(q) =q+9¢°> +10¢% +2¢* + ¢° +--- = n?(2)n*(112) (mod 11).

Therefore, if p # 11 is prime, then ag(p) = 1 + 6¢(p)p (mod 11), where ag(p) is the trace
of the pth Frobenius endomorphism on X(11). This example illustrates our general result.

Let K be a number field and let O, be the completion of its ring of integers at a finite
place v with residue characteristic p. Moreover, let A be a uniformizer for O,. Following
Serre [S2], we say that a formal power series

NE

f=2_an)q" € O[[q]]

n=0

is a p-adic modular form of weight k if there is a sequence f; € O,][¢]] of holomorphic modular
forms on SLo(7Z), with weights k;, for which ord,(f; — f) — +o0 and ordy(k — k;) — +oo.

Theorem 1. Let F(z) =¢" (1+ >0, a(n)q™) € Ok|[q]] be a meromorphic modular form
on SLy(7Z), where Ok is the ring of integers in a number field K. Moreover, let ¢(n) denote
the numbers defined by the formal infinite product

F(z)=q¢" [T q™)™.

If p is prime and F(z) is good al p (see §3 for the definition), then the formal power series

B=h-Y_> c(d)dg"

n=1 d|n
is a weight two p-adic modular form.

Here we present cases where F'(2) is good at p. As usual, let j(z) be the modular function
j(2) = ¢ + 744 + 196884q + 21493760¢° + - - - .

Let H be the upper half of the complex plane. We shall refer to any complex number 7 € H
of the form 7 = =ty b —dac V;i_‘mc with a,b,c € Z, ged(a,b,¢) = 1 and b? — 4ac < 0 as a Heegner
point. Moreover, we let d, := b?> — 4ac be its discriminant. The values of j at such points
are known as singular moduli, and it is well known that these values are algebraic integers.
A meromorphic modular form F(z) on SL2(Z) has a Heegner divisor if its zeros and poles
are supported at the cusp at infinity and Heegner points.

Although we shall emphasize those forms F(z) which have Heegner divisors, we stress
that Theorem 1 holds for many forms which do not have a Borcherds product. For example,
E,_1(z) is good at p for every prime p > 5. The next result describes some forms with
Heegner divisors which are good at a prime p.
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Theorem 2. Let F(z) =q" (1+ 377, a(n)q") € Z[[q]] be a meromorphic modular form on
SLo(Z) with a Heegner divisor whose Heegner points Ty,7a,--- ,7s € H/SLs(Z) have fized
discriminant d. The following are true.

(1) If p > 5 is a prime for which (%) € {0,—1} and

Hj(n)(j(n) —1728) £0 (mod p),

then F(z) is good at p.

(2) If s=1 and 71 = (=1 4+ /—=3)/2 (resp. 71 = i), then F(z) is good at every prime
p=2,3,511 (mod 12) (resp. p=2,3,7,11 (mod 12)).

(3) If p=2 (resp. p=3) and |d| = 3 (mod 8) (resp. |d| =1 (mod 3)), then F(z) is
good at p.

(4) Suppose that 5 < p =2 (mod 3) is a prime for which (%) € {0,—1} and

S

Hj(n) =0 (mod p).

=1

If Q(Vd) # Q(v/=3) or (%) = —1, then F(z) is good at p.
(5) Suppose that 5 < p =3 (mod 4) is a prime for which (%) € {0,—1} and

S

[JG(m) —1728) =0 (mod p).

i=1
If Q(Vd) # Qi) or (%) = —1, then F(z) is good at p.

Remarks.

(1) Since j(i) = 1728 (resp. j((—1+ +/=3)/2) = 0), Theorem 2 (2) applies to the modular
form j(z) — 1728 (resp. j(2)), as well as the Eisenstein series Eg(2) (resp. Fy(2)).

(2) By the theory of complex multiplication, the singular moduli j(7y), ..., j(7s), associated
to the points in Theorem 2, form a complete set of Galois conjugates over QQ, and the
multiplicities of each 7; is fixed in the divisor of F(z).

(3) For fundamental discriminants d, the work of Gross and Zagier [G-Z] provides a simple
description of those primes p which do not satisfy the condition in Theorem 2 (1).

(4) Theorem 2 admits a generalization to those forms with algebraic integer coefficients
and Heegner divisors. In particular, it can be modified to cover such forms where the
multiplicities of the 7; in the divisor of F'(z) are not all equal.
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Theorem 2 has interesting consequences regarding class numbers of imaginary quadratic
fields. If 0 < D = 0,3 (mod 4), then let H(—D) be the Hurwitz class number for the
discriminant —D. For each such D there is a unique meromorphic modular form of weight
1/2 on T'y(4), which is holomorphic on the upper half complex plane, whose Fourier expansion
has the form [Lemma 14.2, B]

(1.3) f(D;z) =q P+ > cp(n)q" € Z[[q]).

1<n=0,1 (mod 4)

Borcherds’ theory implies that

(1.4) F(D;z)=q HED) H nyen (n?)

n=1

is a weight zero modular function on SLy(Z) whose divisor is a Heegner divisor consisting of
a pole of order H(—D) at z = co and a simple zero at each Heegner point with discriminant
—D. At face value, to compute this correspondence one needs the coefficients of f(D;z) and
the class number H(—D). Here we obtain, in many cases, a p-adic class number formula for
H(—D) in terms of the coefficients of f(D;z). Therefore, in these cases the correspondence
is uniquely determined by the coefficients of f(D; z).

Corollary 3. If0 < D =0,3 (mod 4) and —D is fundamental, then the following are true.
(1) If D =3 (mod 8), then as 2-adic numbers we have

1 n n
D)= 5 D enla)
(2) If D=1 (mod 3), then as 3-adic numbers we have
H(-D)= 53" ep(67)3
T2

(3) If D=0,2,3 (mod 5), then as 5-adic numbers we have

1 (o)
=5 > ep(25™)5
n=0

(4) If D=0,1,2,4 (mod 7), then as 7-adic numbers we have

1 — .
_an_:o p(49™)
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2. PRELIMINARIES

We recall essential facts regarding meromorphic modular forms on SLy(Z) and the arith-
metic of infinite products. If F(q) = > a(n)q™, then let © be the standard differential
operator on formal ¢-series defined by

(2.1) O(F(q)) = Y na(n)q™.

n>ngp

n>ng

Throughout, let F'(q) be a formal power series of the form

(2.2) F(g)=¢" (1 + i a(ﬂ)fl”) ,
n=1
and let the ¢(n) be the numbers for which
(2.3) F(g)=q" ﬁ (1—q")™.
n=1
Proposition 2.1. If F(q) and the numbers c(n) are as in (2.2) and (2.3), then

LF(‘;” = h— i Y c(d)dq".

F(q n=1 d|n
Proof. For convenience, let H(q) be the series defined by

(2.4) H(g) ==Y c(n)q".

n=1

As formal power series, we have

log(F(a)) = los(¢") + > e(n)log(1 — ¢") = log(g") ~ 3 e(m) > T
=log(¢") — ) H(:lm).
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By logarithmic differentiation, with respect to g, we obtain

gF'(q) _ O(F(@) _, ~= pprimym g NN .
F(g)  Flg) _h_mz::lH(q Ja" =h=_ > clnng™".

m=1n=1

0]
Following Ramanujan, let P(z) denote the nearly modular Eisenstein series

(2.5) P(z)=1-24 i > dg".

n=1 d|n

Lemma 2.2. Let F(z) = F(q) be a weight k meromorphic modular form on SLo(Z) satis-
fying (2.2). If the numbers c(n) are as in (2.3), then there is a weight k + 2 meromorphic
modular form F(z) on SLa(Z) for which

% (% + kP(z)) =h—Y > c(d)dg".

n=1 d|n

If F(z) is a holomorphic modular (resp. cusp) form, then F(z) is a holomorphic modular
(resp. cusp) form. Moreover, the poles of F(z) are supported at the poles of F(z).

Proof. Tt is well known [p. 17, O] that the function F(z) defined by
F(z) := 120(F(2)) — kP(2)F(z)

is a meromorphic modular form of weight £+2 on SLy(Z). Moreover, if F'(z) is a holomorphic
modular (resp. cusp) form, then F'(z) is a holomorphic modular (resp. cusp) form. The
result now follows immediately from Proposition 2.1.

O
The remaining results in this section are useful for computing explicit examples of The-
orem 1, and for proving Theorems 2 and 3. As usual, if £ > 4 is an even integer, then let
Ej(z) denote the Eisenstein series

(2.6) Er(z):=1- 2k > or-1(n)g™

Throughout, let w be the cube root of unity

~1+/-3
wi= ——.

(2.7) -
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Lemma 2.3. Suppose that k > 4 is even.
(1) We have E(z) =1 (mod 24).
(2) If p > 5 is prime and (p — 1) | k, then Ex(z) =1 (mod p).
(3) If k # 0 (mod 3), then Ex(w)=0.
(4) If k =2 (mod 4), then FEy(i) = 0.
Proof. Since z =i (resp. z = w) is fixed by the modular transformation Sz = —1/z (resp.
Az = —(z+1)/z), the definition of a modular form implies that Fy(i) = 0 whenever k = 2
(mod 4), and Ej(w) = 0 whenever k Z 0 (mod 3). The claimed congruences follows imme-
diately from (2.6) and the von Staudt-Clausen theorem on the divisibility of denominators
of Bernoulli numbers [p. 233, I-R].

O

3. PROOFS OF THE MAIN RESULTS
We begin by defining what it means for a modular form to be “good at p”.

Definition 3.1. Let F(z) = ¢" (1+ Y., a(n)q") € Oxk{[q]] be a meromorphic modular
form on SLo(Z) whose zeros and poles, away from z = oo, are at the points z1,z9, - - - 2s.
We say that F(z) is good at p if there is a holomorphic modular form E(z) with p-integral
algebraic coefficients for which the following are true:

(1) We have the congruence £(z) =1 (mod p).
(2) For each 1 <i <s we have £(z;) = 0.

Proof of Theorem 1. By Lemma 2.2, there is a weight k£ + 2 meromorphic modular form

F(2) on SLy(Z), whose poles are supported at the poles of F'(z), for which

]%<§zg+m%@>:h—§:§:d@@w

n=1 d|n

Since Serre [S2] proved that P(z) is a weight two p-adic modular form, it suffices to prove
that F'(z)/F(z) is a weight 2 p-adic modular form. For every j > 0, we have
(3.1) E(z) =1 (mod pith).
Since F(z)/F(z) has weight two, it follows that &£(2)P’ F(z)/F(z), for sufficiently large
j, is a holomorphic modular form of weight p’b + 2, where b is the weight of £(2). If

E(2)P F(z)/F(z) does not have algebraic integer coefficients, then multiply it by a suitable
integer ;41 = 1 (mod pj“)lso that the resulting series does. Therefore by (3.1), the se-

quence §j11(2) := t;11£(2)” F(2)/F(2) defines a sequence of holomorphic modular forms
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which p-adically converges to F(z)/F(z) with weights which converge p-adically to 2. In
other words, F(z)/F(z) is a p-adic modular form of weight 2.

O

Proof of Theorem 2. In view of Definition 3.1, it suffices to produce a holomorphic modular
form £(z) on SLy(Z) with algebraic p-integral coefficients for which £(r;) = 0, for each
1 <1 < s, which satisfies the congruence

E(z)=1 (mod p).
First we prove (1). For each 1 < i < s, let A; be the elliptic curve
(3.2) Ai: y?=2%—1085(r:) (4 (1) — 1728)x — 4325 (13) (j () — 1728)2.

Each A; is defined over the number field Q(j(7;)) with j-invariant j(7;). A simple calculation
reveals that if p is a prime ideal above a prime p > 5 in the integer ring of Q(j(7;)) for which

(3-3) J(7i)(j(7:) = 1728) # 0 (mod p),

then A; has good reduction at p. Suppose that p > 5 is a prime which is inert or rami-
fied in Q(v/d) satisfying (3.3) for every prime ideal p above p. By the theory of complex
multiplication [p. 182, 1], it follows that j(7;) is a supersingular j-invariant in F,,.

A famous observation of Deligne (see, for example [S1], [Th. 1, K-Z]) implies that every
supersingular j-invariant in characteristic p is the reduction of j(Q) modulo p for some point
() which is a zero of E,,_1(z). Therefore, there are points Q1,Qa, ..., Qs in the fundamental
domain of the action of SLy(Z) (not necessarily distinct) for which E,_1(Q;) = 0, for all
1 <1 < s, with the additional property that

S S

(3.4) [[x @) =]](X-i() (modp)

i=1 i=1
in F,[X]. Now define £(z) by

S

(3.5) E(z) = ]:[1 <Ep—1(z) : %) :

By Lemma 2.3 (2), (3.4) and (3.5), it follows that £(r;) = 0 for each 1 < i < s, and also
satisfies the congruence £(z) =1 (mod p). Moreover, £(z) is clearly a holomorphic modular
form, and so F'(z) is good at p. This proves (1).

Since j(i) = 1728 (resp. j(w) = 0), Lemma 2.3 shows that F'(z) is good at every prime
p=2,3,7,11 (mod 12) (resp. p =2,3,5,11 (mod 12)). This proves (2).
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To prove (3), one argues as in the proof of (1) and (2) using Lemma 2.3 (1, 3, 4), and the
Gross and Zagier congruences [Cor. 2.5, G-Z]

ld|=3 (mod 8) == 4(;) =0 (mod 2'%),
ld|=1 (mod 3) = j(r;) = 1728 (mod 3°).

In view of (2), to prove (4) and (5) we may assume that

Hi(n)(j(n) — 1728) # 0.

We use a classical theorem of Deuring on the reduction of differences of singular moduli mod-

ulo prime ideals p. In particular, if Q(v/d) ¢ {Q(i), Q(+/—3)}, then since {j(11),..-,5(7s)}
forms a complete set of Galois conjugates over QQ, Deuring’s result implies that (see [Th.

13.21, CJ, [D])

S

(3.6) HJ(T,) =0 (mod p) = p=2 (mod 3),
(3.7) H(j(Ti) —1728) =0 (mod p) = p=3 (mod 4).

The same conclusion in (3.6) (resp. (3.7)) holds if Q(v'd) = Q(v/=3) (resp. Q(v/d) = Q(4))
provided that p 1 d. A straightforward modification of the proof of (1), using Lemma 2.3 (2,
3, 4), now proves that F(z) is good at p.

OJ

Proof of Corollary 3. Since —D is fundamental, Theorem 2 shows that F(D;z) is good at
the primes p as dicated by the statement of Corollary 3. Define integers Ap(n) by

(3.8) ZAD(n)q” = ZZCD(dz)dq".

n=1 d|n

Therefore, by the conclusion of Theorem 1 it follows that

(3.9) ~H(-D) - ) Ap(n)q"

is a weight two p-adic modular form for the relevant primes p < 7.
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Serre proved [Th. 7, S2], for certain p-adic modular forms, that the constant term of the
Fourier expansion is essentially the p-adic limit of its Fourier coefficients at exponents which
are pt" powers. In these cases we obtain

2—14 lim,, s 100 Ap(2™) if D =3 (mod 8),
¢ limy, 4o Ap if D=0,2,3 (mod 5),
1 limy, 4 oo Ap(7T7) if D=0,1,2,4 (mod 7).

4. SOME EXAMPLES

Example 4.1. Let f(7;2) = > o2 .cz(n)g™ be the weight 1/2 modular form on I'y(4)
defined in (1.3). Its g-expansion begins with the terms

f(z) = q77 — 4119q + 82882564* — 52756480¢° + - - - .

By the Borcherds isomorphism [Th. 14.1, B], there is a modular form of weight 0 on SLy(Z)
with a simple pole at oo and a simple zero at z = (1 ++/—7)/2 with the Fourier expansion

- 1
F(Tz)=q¢ '] - g ") = p + 4119 4 196884q + 21493760¢> + 864299970¢> + - - -
n=1

Since j((1++/=T7)/2) = =153 = 0 (mod 5), by the proof of Theorem 2 (4), there is a weight
6 holomorphic modular form on SLy(Z) which is congruent to

oo

-1- Z 207(d2)dq" =4+49+2¢°+¢*+--- (mod5).
n=1 d|n
This is 4E¢(z) (mod 5), and so c7(n?) =1 (mod 5) if n 2 0 (mod 5).

Example 4.2. Here we illustrate the class number formulas stated in Corollary 3. If
D =59, then we have that

F(59:2) = g7+ eso(n)g™ = g~ — 30197680312¢ + 455950044005404355712¢" + - - - .

n=1
By Corollary 3 (1), we have

oo

H(-59)=3=—) cp(4™)2".

One easily checks that the first two terms satisfy

1
H(=59) = 3 = 5 (~30197680312 + 455050044005404355712 - 2)  (mod 2°).
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