
THE ARITHMETIC OF BORCHERDS' EXPONENTS

Jan H. Bruinier and Ken Ono

1. Introdu
tion and Statement of Results.

Re
ently, Bor
herds [B℄ provided a striking des
ription for the exponents in the naive

in�nite produ
t expansion of many modular forms. For example, if E

k

(z) denotes the usual

normalized weight k Eisenstein series, let 
(n) denote the integer exponents one obtains by

expressing E

4

(z) as an in�nite produ
t:

(1.1) E

4

(z) = 1 + 240

1

X

n=1

X

djn

d

3

q

n

= (1� q)

�240

(1� q

2

)

26760

� � � =

1

Y

n=1

(1� q

n

)


(n)

(q := e

2�iz

throughout). Although one might not suspe
t that there is a pre
ise des
ription

or formula for the exponents 
(n), Bor
herds provided one. He proved that there is a weight

1/2 meromorphi
 modular form

G(z) =

X

n��3

b(n)q

n

= q

�3

+ 4� 240q + 26760q

4

+ � � � � 4096240q

9

+ : : :

with the property that 
(n) = b(n

2

) for every positive integer n.

It is natural to examine other methods for studying su
h exponents. Here we point out a

p-adi
 method whi
h is based on the fa
t that the logarithmi
 derivative of a meromorphi


modular form is often a weight two p-adi
 modular form. To illustrate our result, use (1.1)

to de�ne the series C(q)

(1.2) C(q) = 6

1

X

n=1

X

djn


(d)dq

n

= �1440q + 319680q

2

� 73733760q

3

+ � � �
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2 JAN H. BRUINIER AND KEN ONO

If �(z) = q

1=24

Q

1

n=1

(1� q

n

) denotes Dedekind's eta-fun
tion, then it turns out that

C(q) � q + 9q

2

+ 10q

3

+ 2q

4

+ q

5

+ � � � � �

2

(z)�

2

(11z) (mod 11):

Therefore, if p 6= 11 is prime, then a

E

(p) � 1 + 6
(p)p (mod 11), where a

E

(p) is the tra
e

of the pth Frobenius endomorphism on X

0

(11). This example illustrates our general result.

Let K be a number �eld and let O

v

be the 
ompletion of its ring of integers at a �nite

pla
e v with residue 
hara
teristi
 p. Moreover, let � be a uniformizer for O

v

. Following

Serre [S2℄, we say that a formal power series

f =

1

X

n=0

a(n)q

n

2 O

v

[[q℄℄

is a p-adi
 modular form of weight k if there is a sequen
e f

i

2 O

v

[[q℄℄ of holomorphi
 modular

forms on SL

2

(Z), with weights k

i

, for whi
h ord

�

(f

i

� f)! +1 and ord

�

(k � k

i

)! +1.

Theorem 1. Let F (z) = q

h

(1 +

P

1

n=1

a(n)q

n

) 2 O

K

[[q℄℄ be a meromorphi
 modular form

on SL

2

(Z), where O

K

is the ring of integers in a number �eld K. Moreover, let 
(n) denote

the numbers de�ned by the formal in�nite produ
t

F (z) = q

h

1

Y

n=1

(1� q

n

)


(n)

:

If p is prime and F (z) is good at p (see x3 for the de�nition), then the formal power series

B = h�

1

X

n=1

X

djn


(d)dq

n

is a weight two p-adi
 modular form.

Here we present 
ases where F (z) is good at p. As usual, let j(z) be the modular fun
tion

j(z) = q

�1

+ 744 + 196884q + 21493760q

2

+ � � � :

Let H be the upper half of the 
omplex plane. We shall refer to any 
omplex number � 2 H

of the form � =

�b+

p

b

2

�4a


2a

with a; b; 
 2 Z, g
d(a; b; 
) = 1 and b

2

� 4a
 < 0 as a Heegner

point. Moreover, we let d

�

:= b

2

� 4a
 be its dis
riminant. The values of j at su
h points

are known as singular moduli, and it is well known that these values are algebrai
 integers.

A meromorphi
 modular form F (z) on SL

2

(Z) has a Heegner divisor if its zeros and poles

are supported at the 
usp at in�nity and Heegner points.

Although we shall emphasize those forms F (z) whi
h have Heegner divisors, we stress

that Theorem 1 holds for many forms whi
h do not have a Bor
herds produ
t. For example,

E

p�1

(z) is good at p for every prime p � 5. The next result des
ribes some forms with

Heegner divisors whi
h are good at a prime p.
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Theorem 2. Let F (z) = q

h

(1 +

P

1

n=1

a(n)q

n

) 2 Z[[q℄℄ be a meromorphi
 modular form on

SL

2

(Z) with a Heegner divisor whose Heegner points �

1

; �

2

; � � � ; �

s

2 H =SL

2

(Z) have �xed

dis
riminant d. The following are true.

(1) If p � 5 is a prime for whi
h

�

d

p

�

2 f0;�1g and

s

Y

i=1

j(�

i

)(j(�

i

)� 1728) 6� 0 (mod p);

then F (z) is good at p.

(2) If s = 1 and �

1

= (�1 +

p

�3)=2 (resp. �

1

= i), then F (z) is good at every prime

p � 2; 3; 5; 11 (mod 12) (resp. p � 2; 3; 7; 11 (mod 12)).

(3) If p = 2 (resp. p = 3) and jdj � 3 (mod 8) (resp. jdj � 1 (mod 3)), then F (z) is

good at p.

(4) Suppose that 5 � p � 2 (mod 3) is a prime for whi
h

�

d

p

�

2 f0;�1g and

s

Y

i=1

j(�

i

) � 0 (mod p):

If Q (

p

d) 6= Q (

p

�3) or

�

d

p

�

= �1, then F (z) is good at p.

(5) Suppose that 5 � p � 3 (mod 4) is a prime for whi
h

�

d

p

�

2 f0;�1g and

s

Y

i=1

(j(�

i

)� 1728) � 0 (mod p):

If Q (

p

d) 6= Q (i) or

�

d

p

�

= �1, then F (z) is good at p.

Remarks.

(1) Sin
e j(i) = 1728 (resp. j((�1 +

p

�3)=2) = 0), Theorem 2 (2) applies to the modular

form j(z)� 1728 (resp. j(z)), as well as the Eisenstein series E

6

(z) (resp. E

4

(z)).

(2) By the theory of 
omplex multipli
ation, the singular moduli j(�

1

); : : : ; j(�

s

), asso
iated

to the points in Theorem 2, form a 
omplete set of Galois 
onjugates over Q , and the

multipli
ities of ea
h �

i

is �xed in the divisor of F (z).

(3) For fundamental dis
riminants d, the work of Gross and Zagier [G-Z℄ provides a simple

des
ription of those primes p whi
h do not satisfy the 
ondition in Theorem 2 (1).

(4) Theorem 2 admits a generalization to those forms with algebrai
 integer 
oeÆ
ients

and Heegner divisors. In parti
ular, it 
an be modi�ed to 
over su
h forms where the

multipli
ities of the �

i

in the divisor of F (z) are not all equal.
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Theorem 2 has interesting 
onsequen
es regarding 
lass numbers of imaginary quadrati


�elds. If 0 < D � 0; 3 (mod 4), then let H(�D) be the Hurwitz 
lass number for the

dis
riminant �D. For ea
h su
h D there is a unique meromorphi
 modular form of weight

1/2 on �

0

(4), whi
h is holomorphi
 on the upper half 
omplex plane, whose Fourier expansion

has the form [Lemma 14.2, B℄

(1.3) f(D; z) = q

�D

+

X

1�n�0;1 (mod 4)




D

(n)q

n

2 Z[[q℄℄:

Bor
herds' theory implies that

(1.4) F (D; z) = q

�H(�D)

1

Y

n=1

(1� q

n

)




D

(n

2

)

is a weight zero modular fun
tion on SL

2

(Z) whose divisor is a Heegner divisor 
onsisting of

a pole of order H(�D) at z =1 and a simple zero at ea
h Heegner point with dis
riminant

�D. At fa
e value, to 
ompute this 
orresponden
e one needs the 
oeÆ
ients of f(D; z) and

the 
lass number H(�D). Here we obtain, in many 
ases, a p-adi
 
lass number formula for

H(�D) in terms of the 
oeÆ
ients of f(D; z). Therefore, in these 
ases the 
orresponden
e

is uniquely determined by the 
oeÆ
ients of f(D; z).

Corollary 3. If 0 < D � 0; 3 (mod 4) and �D is fundamental, then the following are true.

(1) If D � 3 (mod 8), then as 2-adi
 numbers we have

H(�D) =

1

24

1

X

n=0




D

(4

n

)2

n

:

(2) If D � 1 (mod 3), then as 3-adi
 numbers we have

H(�D) =

1

12

1

X

n=0




D

(9

n

)3

n

:

(3) If D � 0; 2; 3 (mod 5), then as 5-adi
 numbers we have

H(�D) =

1

6

1

X

n=0




D

(25

n

)5

n

:

(4) If D � 0; 1; 2; 4 (mod 7), then as 7-adi
 numbers we have

H(�D) =

1

4

1

X

n=0




D

(49

n

)7

n

:
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2. Preliminaries

We re
all essential fa
ts regarding meromorphi
 modular forms on SL

2

(Z) and the arith-

meti
 of in�nite produ
ts. If F (q) =

P

n�n

0

a(n)q

n

, then let � be the standard di�erential

operator on formal q-series de�ned by

(2.1) �(F (q)) =

X

n�n

0

na(n)q

n

:

Throughout, let F (q) be a formal power series of the form

(2.2) F (q) = q

h

 

1 +

1

X

n=1

a(n)q

n

!

;

and let the 
(n) be the numbers for whi
h

(2.3) F (q) = q

h

1

Y

n=1

(1� q

n

)


(n)

:

Proposition 2.1. If F (q) and the numbers 
(n) are as in (2.2) and (2.3), then

�(F (q))

F (q)

= h�

1

X

n=1

X

djn


(d)dq

n

:

Proof. For 
onvenien
e, let H(q) be the series de�ned by

(2.4) H(q) = �

1

X

n=1


(n)q

n

:

As formal power series, we have

log(F (q)) = log(q

h

) +

1

X

n=1


(n) log(1� q

n

) = log(q

h

)�

1

X

n=1


(n)

1

X

m=1

q

mn

m

= log(q

h

)�

1

X

m=1

H(q

m

)

m

:
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By logarithmi
 di�erentiation, with respe
t to q, we obtain

qF

0

(q)

F (q)

=

�(F (q))

F (q)

= h�

1

X

m=1

H

0

(q

m

)q

m

= h�

1

X

m=1

1

X

n=1


(n)nq

mn

:

�

Following Ramanujan, let P (z) denote the nearly modular Eisenstein series

(2.5) P (z) = 1� 24

1

X

n=1

X

djn

dq

n

:

Lemma 2.2. Let F (z) = F (q) be a weight k meromorphi
 modular form on SL

2

(Z) satis-

fying (2.2). If the numbers 
(n) are as in (2.3), then there is a weight k + 2 meromorphi


modular form

~

F (z) on SL

2

(Z) for whi
h

1

12

 

~

F (z)

F (z)

+ kP (z)

!

= h�

1

X

n=1

X

djn


(d)dq

n

:

If F (z) is a holomorphi
 modular (resp. 
usp) form, then

~

F (z) is a holomorphi
 modular

(resp. 
usp) form. Moreover, the poles of

~

F (z) are supported at the poles of F (z).

Proof. It is well known [p. 17, O℄ that the fun
tion

~

F (z) de�ned by

~

F (z) := 12�(F (z))� kP (z)F (z)

is a meromorphi
 modular form of weight k+2 on SL

2

(Z). Moreover, if F (z) is a holomorphi


modular (resp. 
usp) form, then

~

F (z) is a holomorphi
 modular (resp. 
usp) form. The

result now follows immediately from Proposition 2.1.

�

The remaining results in this se
tion are useful for 
omputing expli
it examples of The-

orem 1, and for proving Theorems 2 and 3. As usual, if k � 4 is an even integer, then let

E

k

(z) denote the Eisenstein series

(2.6) E

k

(z) := 1�

2k

B

k

1

X

n=1

�

k�1

(n)q

n

:

Throughout, let ! be the 
ube root of unity

(2.7) ! :=

�1 +

p

�3

2

:
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Lemma 2.3. Suppose that k � 4 is even.

(1) We have E

k

(z) � 1 (mod 24).

(2) If p � 5 is prime and (p� 1) j k, then E

k

(z) � 1 (mod p).

(3) If k 6� 0 (mod 3), then E

k

(!) = 0.

(4) If k � 2 (mod 4), then E

k

(i) = 0.

Proof. Sin
e z = i (resp. z = !) is �xed by the modular transformation Sz = �1=z (resp.

Az = �(z + 1)=z), the de�nition of a modular form implies that E

k

(i) = 0 whenever k � 2

(mod 4), and E

k

(!) = 0 whenever k 6� 0 (mod 3). The 
laimed 
ongruen
es follows imme-

diately from (2.6) and the von Staudt-Clausen theorem on the divisibility of denominators

of Bernoulli numbers [p. 233, I-R℄.

�

3. Proofs of the main results

We begin by de�ning what it means for a modular form to be \good at p".

De�nition 3.1. Let F (z) = q

h

(1 +

P

1

n=1

a(n)q

n

) 2 O

K

[[q℄℄ be a meromorphi
 modular

form on SL

2

(Z) whose zeros and poles, away from z = 1, are at the points z

1

; z

2

; � � � z

s

.

We say that F (z) is good at p if there is a holomorphi
 modular form E(z) with p-integral

algebrai
 
oeÆ
ients for whi
h the following are true:

(1) We have the 
ongruen
e E(z) � 1 (mod p).

(2) For ea
h 1 � i � s we have E(z

i

) = 0.

Proof of Theorem 1. By Lemma 2.2, there is a weight k + 2 meromorphi
 modular form

~

F (z) on SL

2

(Z), whose poles are supported at the poles of F (z), for whi
h

1

12

 

~

F (z)

F (z)

+ kP (z)

!

= h�

1

X

n=1

X

djn


(d)dq

n

:

Sin
e Serre [S2℄ proved that P (z) is a weight two p-adi
 modular form, it suÆ
es to prove

that

~

F (z)=F (z) is a weight 2 p-adi
 modular form. For every j � 0, we have

(3.1) E(z)

p

j

� 1 (mod p

j+1

):

Sin
e

~

F (z)=F (z) has weight two, it follows that E(z)

p

j

~

F (z)=F (z), for suÆ
iently large

j, is a holomorphi
 modular form of weight p

j

b + 2, where b is the weight of E(z). If

E(z)

p

j

~

F (z)=F (z) does not have algebrai
 integer 
oeÆ
ients, then multiply it by a suitable

integer t

j+1

� 1 (mod p

j+1

) so that the resulting series does. Therefore by (3.1), the se-

quen
e F

j+1

(z) := t

j+1

E(z)

p

j

~

F (z)=F (z) de�nes a sequen
e of holomorphi
 modular forms
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whi
h p-adi
ally 
onverges to

~

F (z)=F (z) with weights whi
h 
onverge p-adi
ally to 2. In

other words,

~

F (z)=F (z) is a p-adi
 modular form of weight 2.

�

Proof of Theorem 2. In view of De�nition 3.1, it suÆ
es to produ
e a holomorphi
 modular

form E(z) on SL

2

(Z) with algebrai
 p-integral 
oeÆ
ients for whi
h E(�

i

) = 0, for ea
h

1 � i � s, whi
h satis�es the 
ongruen
e

E(z) � 1 (mod p):

First we prove (1). For ea
h 1 � i � s, let A

i

be the ellipti
 
urve

(3.2) A

i

: y

2

= x

3

� 108j(�

i

)(j(�

i

)� 1728)x� 432j(�

i

)(j(�

i

)� 1728)

2

:

Ea
h A

i

is de�ned over the number �eld Q(j(�

i

)) with j-invariant j(�

i

). A simple 
al
ulation

reveals that if p is a prime ideal above a prime p � 5 in the integer ring of Q (j(�

i

)) for whi
h

(3.3) j(�

i

)(j(�

i

)� 1728) 6� 0 (mod p);

then A

i

has good redu
tion at p. Suppose that p � 5 is a prime whi
h is inert or rami-

�ed in Q (

p

d) satisfying (3.3) for every prime ideal p above p. By the theory of 
omplex

multipli
ation [p. 182, L℄, it follows that j(�

i

) is a supersingular j-invariant in F

p

.

A famous observation of Deligne (see, for example [S1℄, [Th. 1, K-Z℄) implies that every

supersingular j-invariant in 
hara
teristi
 p is the redu
tion of j(Q) modulo p for some point

Q whi
h is a zero of E

p�1

(z). Therefore, there are points Q

1

; Q

2

; : : : ; Q

s

in the fundamental

domain of the a
tion of SL

2

(Z) (not ne
essarily distin
t) for whi
h E

p�1

(Q

i

) = 0, for all

1 � i � s, with the additional property that

(3.4)

s

Y

i=1

(X � j(Q

i

)) �

s

Y

i=1

(X � j(�

i

)) (mod p)

in F

p

[X℄: Now de�ne E(z) by

(3.5) E(z) :=

s

Y

i=1

�

E

p�1

(z) �

j(z)� j(�

i

)

j(z)� j(Q

i

)

�

:

By Lemma 2.3 (2), (3.4) and (3.5), it follows that E(�

i

) = 0 for ea
h 1 � i � s, and also

satis�es the 
ongruen
e E(z) � 1 (mod p). Moreover, E(z) is 
learly a holomorphi
 modular

form, and so F (z) is good at p. This proves (1).

Sin
e j(i) = 1728 (resp. j(!) = 0), Lemma 2.3 shows that F (z) is good at every prime

p � 2; 3; 7; 11 (mod 12) (resp. p � 2; 3; 5; 11 (mod 12)). This proves (2).
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To prove (3), one argues as in the proof of (1) and (2) using Lemma 2.3 (1, 3, 4), and the

Gross and Zagier 
ongruen
es [Cor. 2.5, G-Z℄

jdj � 3 (mod 8) =) j(�

i

) � 0 (mod 2

15

);

jdj � 1 (mod 3) =) j(�

i

) � 1728 (mod 3

6

):

In view of (2), to prove (4) and (5) we may assume that

s

Y

i=1

j(�

i

)(j(�

i

)� 1728) 6= 0:

We use a 
lassi
al theorem of Deuring on the redu
tion of di�eren
es of singular moduli mod-

ulo prime ideals p. In parti
ular, if Q(

p

d) 62 fQ(i);Q (

p

�3)g, then sin
e fj(�

1

); : : : ; j(�

s

)g

forms a 
omplete set of Galois 
onjugates over Q , Deuring's result implies that (see [Th.

13.21, C℄, [D℄)

s

Y

i=1

j(�

i

) � 0 (mod p) =) p � 2 (mod 3);(3.6)

s

Y

i=1

(j(�

i

)� 1728) � 0 (mod p) =) p � 3 (mod 4):(3.7)

The same 
on
lusion in (3.6) (resp. (3.7)) holds if Q(

p

d) = Q(

p

�3) (resp. Q(

p

d) = Q (i))

provided that p - d. A straightforward modi�
ation of the proof of (1), using Lemma 2.3 (2,

3, 4), now proves that F (z) is good at p.

�

Proof of Corollary 3. Sin
e �D is fundamental, Theorem 2 shows that F (D; z) is good at

the primes p as di
ated by the statement of Corollary 3. De�ne integers A

D

(n) by

(3.8)

1

X

n=1

A

D

(n)q

n

:=

1

X

n=1

X

djn




D

(d

2

)dq

n

:

Therefore, by the 
on
lusion of Theorem 1 it follows that

(3.9) �H(�D)�

1

X

n=1

A

D

(n)q

n

is a weight two p-adi
 modular form for the relevant primes p � 7.
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Serre proved [Th. 7, S2℄, for 
ertain p-adi
 modular forms, that the 
onstant term of the

Fourier expansion is essentially the p-adi
 limit of its Fourier 
oeÆ
ients at exponents whi
h

are p

th

powers. In these 
ases we obtain

H(�D) =

8

>

>

>

<

>

>

>

:

1

24

lim

n!+1

A

D

(2

n

) if D � 3 (mod 8);

1

12

lim

n!+1

A

D

(3

n

) if D � 1 (mod 3);

1

6

lim

n!+1

A

D

(5

n

) if D � 0; 2; 3 (mod 5);

1

4

lim

n!+1

A

D

(7

n

) if D � 0; 1; 2; 4 (mod 7):

�

4. Some examples

Example 4.1. Let f(7; z) =

P

1

n=�7




7

(n)q

n

be the weight 1/2 modular form on �

0

(4)

de�ned in (1.3). Its q-expansion begins with the terms

f(z) = q

�7

� 4119q + 8288256q

4

� 52756480q

5

+ � � � :

By the Bor
herds isomorphism [Th. 14.1, B℄, there is a modular form of weight 0 on SL

2

(Z)

with a simple pole at 1 and a simple zero at z = (1 +

p

�7)=2 with the Fourier expansion

F (7; z) = q

�1

1

Y

n=1

(1� q

n

)




7

(n

2

)

=

1

q

+ 4119 + 196884q + 21493760q

2

+ 864299970q

3

+ � � �

Sin
e j((1+

p

�7)=2) = �15

3

� 0 (mod 5), by the proof of Theorem 2 (4), there is a weight

6 holomorphi
 modular form on SL

2

(Z) whi
h is 
ongruent to

�1�

1

X

n=1

X

djn




7

(d

2

)dq

n

� 4 + 4q + 2q

2

+ q

3

+ � � � (mod 5):

This is 4E

6

(z) (mod 5), and so 


7

(n

2

) � 1 (mod 5) if n 6� 0 (mod 5).

Example 4.2. Here we illustrate the 
lass number formulas stated in Corollary 3. If

D = 59, then we have that

f(59; z) = q

�59

+

1

X

n=1




59

(n)q

n

= q

�59

� 30197680312q + 455950044005404355712q

4

+ � � � :

By Corollary 3 (1), we have

H(�59) = 3 =

1

24

1

X

n=0




D

(4

n

)2

n

:

One easily 
he
ks that the �rst two terms satisfy

H(�59) = 3 �

1

24

(�30197680312 + 455950044005404355712 � 2) (mod 2

9

):
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tions zêta p-adiques, Springer Le
t. Notes in Math. 350

(1973), 191-268.

[Sh℄ G. Shimura, Introdu
tion to the arithmeti
 of automorphi
 forms, Iwanawi Shoten and Prin
e-

ton Univ. Press, 1971.

Department of Mathemati
s, University of Wis
onsin, Madison, Wis
onsin 53706

E-mail address: bruinier�math.wis
.edu

Department of Mathemati
s, University of Wis
onsin, Madison, Wis
onsin 53706

E-mail address: ono�math.wis
.edu


