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Abstract. Recently, the authors [3] constructed generalized Borcherds products where
modular forms are given as infinite products arising from weight 1/2 harmonic Maass forms.
Here we illustrate the utility of these results in the special case of Ramanujan’s mock theta
function ω(q). We obtain identities and congruences modulo 512 involving the coefficients
of ω(q).

1. Introduction and statement of results

In a recent paper, the authors [3] obtained results concerning generalized Borcherds prod-
ucts. Loosely speaking, these are modular forms which are infinite products whose exponents
are coefficients of weight 1/2 harmonic Maass forms (see [6] for a survey on harmonic Maass
forms in number theory). The authors then employed these results to study the vanishing
of derivatives of modular L-functions.

Here we illustrate the implications of these results for partitions and q-series. We consider
the special case of Ramanujan’s mock theta function ω(q)

(1.1) ω(q) =
∞∑

n=0

aω(n)qn :=
∞∑

n=0

q2n(n+1)

(q; q2)2
n+1

= 1 + 2q + 3q2 + 4q3 + 6q4 + 8q5 + · · · .

As usual, we use the customary notation

(a; q)n := (1− a)(1− aq)(1− aq2) · · · (1− aqn−1).

Thanks to Fine’s identity (see (26.84) of [4])1

(1.2) qω(q) =
∞∑

n=0

qn+1

(q; q2)n+1

=
∞∑

n=1

qn

(1− q1+0)(1− q2+1) · · · (1− qn+(n−1))
,

we find that ω(q) is a generating function for an elegant partition function. The coefficient
aω(n) denotes the number of partitions of n−1 whose summands, apart from one of maximal
size, form pairs of consecutive non-negative integers.
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Example. Here are the partitions of 6:

6, 5 + 1, 4 + 2, 4 + 1 + 1, 3 + 3, 3 + 2 + 1, 3 + 1 + 1 + 1,

2 + 2 + 2, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1.

Eight of these partitions correspond to partitions who summands, apart from one of the
largest summands, occur in pairs of consecutive non-negative integers:

6, 5 + (1 + 0), 4 + (1 + 0) + (1 + 0), 3 + (2 + 1), 3 + (1 + 0) + (1 + 0) + (1 + 0),

2 + (2 + 1) + (1 + 0), 2 + (1 + 0) + (1 + 0) + (1 + 0) + (1 + 0),

1 + (1 + 0) + (1 + 0) + (1 + 0) + (1 + 0) + (1 + 0).

This corresponds to our observation that aω(5) = 8.

Here we investigate the arithmetic properties of the partition function aω(n). We shall
relate this function to the classical divisor functions

(1.3) σν(n) :=
∑
1≤d|n

dν

which play central roles in the theory of modular forms. To this end we define a “strange”
divisor function using the coefficients aω(n), the Legendre symbol

(•
3

)
, and the classical

Jacobi-symbol character χ(m) :=
(−8

m

)
. We define σ̂ω(n) by

(1.4) σ̂ω(n) :=
∑
1≤d|n

(
d

3

)
χ(n/d)d · aω

(
2d2 − 2

3

)
,

and we consider the following two generating functions:

(1.5) Lω(q) :=
∑
n≥1

σ̂ω(n)qn = q − 6q2 + q3 + 116q4 − 506q5 − 6q6 + · · ·

(1.6) L̃ω(q) :=
∑
n≥1

gcd(n,6)=1

σ̂ω(n)qn = q − 506q5 + 9736q7 − 3638260q11 + · · · .

We prove the following curious theorem.

Theorem 1.1. The q-series Lω(q) (resp. L̃ω(q)) is the Fourier expansion of a weight 2
meromorphic modular form on Γ0(6) (resp. Γ0(216)), where q := e2πiz.

An explicit form of this result (see Section 2) gives the following congruences.

Theorem 1.2. The following are true:

(1) We have that

Lω(q) ≡
∞∑

n=0

(
q(2n+1)2 + q3(2n+1)2

)
(mod 2).
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(2) We have that

L̃ω(q) ≡
∑
n≥1

gcd(n,6)=1

σ1(n)qn (mod 512).

In particular, if p ≥ 5 is prime, then

aω

(
2p2 − 2

3

)
≡

{(
p
3

)
(mod 512) if p ≡ 1, 3 (mod 8),(

p
3

)
(1 + 2p255) (mod 512) if p ≡ 5, 7 (mod 8).

Example. If p = 7, then Theorem 1.2 (2) implies that

aω(32) = 1391 ≡ 367 ≡
(

7

3

) (
1 + 2 · 7255

)
(mod 512).

Three Remarks.

(1) It is natural to ask whether there is a combinatorial explanation for the fact that

aω

(
2p2−2

3

)
≡ ±1 (mod 512) for the “half” of the primes which satisfy the congruence p ≡ 1, 3

(mod 8).

(2) The results presented here are examples of a general theory in the case of a single
generalized Borcherds product for ω(q). There are infinitely many such Borcherds products
for ω(q). For any given product, one may obtain congruences modulo arbitrary powers of
infinitely many primes (for example, see [2]). For Lω(q), these are the primes p for which(
−2
p

)
∈ {0,−1}. For these p we have that Lω(q) is a p-adic modular form in the sense of

Serre [7] (for example, see [2]). In the present paper we are content with p = 2 and the
p-power modulus 29 = 512.

(3) More generally, one may construct such generalized Borcherds products for all of Ra-
manujan’s mock theta functions using Theorems 6.1 and 6.2 of [3]. These modular forms
will have twisted Heegner divisors, as well as logarithmic derivatives which are meromorphic
weight 2 modular forms, which for certain primes p will turn out to be p-adic modular forms.

In Section 2 we prove Theorems 1.1 and 1.2 using the results of [3] combined with various
standard arguments from the theory of modular forms.

2. Proofs

Our results follow from a generalized Borcherds product obtained in [3]. Using the coeffi-
cients of ω(q), we define the formal power series

Bω(z) : =
∞∏

m=1

(
1 +

√
−2qm − q2m

1−
√
−2qm − q2m

)−4(m
3 )aω

“
2m2−2

3

”

=

(
1 +

√
−2q − q2

1−
√
−2q − q2

)−4

·
(

1 +
√
−2q2 − q4

1−
√
−2q2 − q4

)12

· · ·

= 1− 8
√
−2q − (64− 24

√
−2)q2 + (384 + 168

√
−2)q3 · · · .

(2.1)
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This formal power series, where q := e2πiz for z ∈ H, is discussed in Example 8.2 of [3].
Thanks to work of Zwegers [8], Theorems 6.1 and 6.2 of [3] implies the following theorem.

Theorem 2.1. The q-series Bω(z) is the Fourier expansion of a weight 0 modular form on
the congruence subgroup Γ0(6).

Proof of Theorem 1.1. That L̃ω(q) is a meromorphic modular form on Γ0(216) will follow
from the assertion that Lω(q) is the Fourier expansion of a weight 2 meromorphic modular
form on Γ0(6). One simply uses the standard U and V operators (for example, see §2.4 of
[5]).

Let Θ := q · q
dq

= 1
2πi

· d
dz

. If f(z) is a meromorphic modular form (for example, see §2.3 of

[5]), it is a standard fact that Θ(f)/f is a weight 2 meromorphic modular form. Therefore,
it follows that

Θ(Bω(z))

Bω(z)
= −8

√
−2q + 48

√
−2q2 − 8

√
−2q3 − 928

√
−2q4 + 4048

√
−2q5 + · · ·

= −8
√
−2

(
q − 6q2 + q3 + 116q4 − 506q5 − 6q6 + 9736q7 − · · ·

)
= −8

√
−2 ·Gω(q)

is a weight 2 meromorphic modular form on Γ0(6). It suffices to prove that Gω(q) = Lω(q).
To prove this assertion, we let

P (X) :=
1 +

√
−2X −X2

1−
√
−2X −X2

.

If m is a positive integer, then a straightforward calculation reveals that

Θ(P (qm))

P (qm)
= 2m

√
−2

∞∑
n=1

χ(n)qmn.

Using this result, it follows that

Θ(Bω(z))

Bω(z)
= −8

√
−2

∞∑
m=1

m
(m

3

)
aω

(
2m2 − 2

3

) ∞∑
n=1

χ(n)qmn.

That Gω(q) = Lω(q) now follows immediately, and so Lω(q) is a meromorphic modular form
on Γ0(6). �

Now we turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. We recall the explicit description of the meromorphic modular form
Bω(z) given in Example 8.2 of [3]. Let j∗6(z) be the usual Hauptmodul for Γ∗0(6), the extension
of Γ0(6) by all the Atkin-Lehner involutions. It is not difficult to verify that

j∗6(z) :=

(
η(z)η(2z)

η(3z)η(6z)

)4

+ 4 + 34

(
η(3z)η(6z)

η(z)η(2z)

)4

= q−1 + 79q + 352q2 + 1431q3 + · · · ,

where η(z) := q1/24
∏∞

n=1(1− qn) is Dedekind’s eta-function. Let α1 and α2 be the Heegner
points

α1 :=
−2 +

√
−2

6
and α2 :=

2 +
√
−2

6
.
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We have that j∗6(α1) = j∗6(α2) = −10. Therefore, it follows that j∗6(z) + 10 is a rational
modular function on X0(6) whose divisor consists of the 4 cusps with multiplicity −1 and
the points α1 and α2 with multiplicity 2.

Let E4(z) = 1 + 240
∑∞

n=1 σ3(n)qn be the standard weight 4 Eisenstein series for SL2(Z),
and let

δ(z) := η(z)2η(2z)2η(3z)2η(6z)2 = q − 2q2 − 3q3 + 4q4 + · · · .

Using E4(z) and δ(z), we define the weight 4 holomorphic Γ0(6)-modular form φ(z) by

450φ(z) : = (3360− 1920
√
−2)δ(z) + (1− 7

√
−2)E4(z)

+ (4− 28
√
−2)E4(2z) + (89 + 7

√
−2)E4(3z) + (356 + 28

√
−2)E4(6z).

It turns out that φ(z) has divisor 4(α1). In terms of φ(z), j∗6(z) and δ(z), it turns out that

Bω(z) =
φ(z)

(j∗6(z) + 10)δ(z)
.

By Theorem 1 of [2], generalized to Γ0(6) and Bω(z) in the obvious way, we have that
−8

√
−2Lω(q) = Θ(Bω(z))/Bω(z) is a 2-adic modular form of weight 2. This then implies

that Lω(z) (mod 2k), for every positive integer k, is the reduction of a holomorphic modular
form.

To obtain Theorem 1.2, we now employ the identity

(2.2) E(z) :=
η(4z)8

η(2z)4
=

∞∑
n=0

σ1(2n + 1)q2n+1 = q + 4q3 + 6q5 + · · · .

Congruence (1) is equivalent to the assertion that

Lω(q) ≡ E(z) + E(3z) (mod 2),

while (2) is equivalent to the assertion that

L̃ω(q) ≡ E(z)− E(z)|U(3)|V (3) (mod 512).

These congruences are easily confirmed using the constructive proof of Theorem 1 of [2],
combined with Sturm’s Theorem (see Theorem 2.58 of [5]). That

aω

(
2p2 − 2

3

)
≡

{(
p
3

)
(mod 512) if p ≡ 1, 3 (mod 8),(

p
3

)
(1 + 2p255) (mod 512) if p ≡ 5, 7 (mod 8)

follows easily from (2), namely that

σ1(p) ≡ σ̂ω(p) (mod 512),

and the definition of σ̂ω(p). �



6 JAN H. BRUINIER AND KEN ONO

References

[1] G. E. Andrews, Partitions, Durfee symbols, and the Atkin-Garvan moments of ranks, Invent. Math.
169 (2007), pages 37-73.

[2] J. H. Bruinier and K. Ono, Arithmetic of Borcherds’s exponents, Math. Ann. 327 (2003), pages
293-303.

[3] J. H. Bruinier and K. Ono, Heegner divisors, L-functions, and Maass forms, Ann. of Math., accepted
for publication.

[4] N. J. Fine, Basic hypergeometric series and applications, Math. Surveys and Monographs 27, Amer.
Math. Soc., Providence, 1988.

[5] K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and q-series, CBMS
Regional Conference Series in Mathematics 102, Amer. Math. Soc., Providence, 2004.

[6] K. Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, Proceedings
of the 2008 Harvard-MIT Current Developments in Mathematics Conference, accepted for publica-
tion.
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