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Abstract. We construct a natural family of rational functions Ψ̃m on a Hilbert mod-
ular surface from the classical j-invariant and its Hecke translates. These functions are
obtained by means of a multiplicative analogue of the Doi-Naganuma lifting and can be
viewed as twisted Borcherds products. We then study when the value of Ψ̃m at a CM
point associated to a non-biquadratic quartic CM field generates the ‘CM class field’ of
the reflex field. For the real quadratic field Q(

√
5), we factorize the norm of some of these

CM values to Q(
√

5) numerically.

1. Introduction

In his papers [Bo1] and [Bo2] Borcherds constructed a lifting from certain weakly holo-
morphic elliptic modular forms of weight 1 − n/2 to meromorphic modular forms on the
orthogonal group of a rational quadratic space of signature (2, n). Here we consider a
related construction in the particular case that n = 2.

Let p be a prime congruent to 1 modulo 4 and let F = Q(
√
p). We write OF for the

ring of integers and ∂F for the different of F . Considering the lattice L0 = Z2 ⊕OF in the
rational quadratic space L0 ⊗Q Q of signature (2, 2), one obtains from Borcherds’ result a
lifting from weakly holomorphic elliptic modular forms of weight zero for the group Γ0(p)
with Nebentypus character εp = ( ·

p
) to meromorphic Hilbert modular forms for the Hilbert

modular group Γ = SL2(OF ) [Br1, BB]. This lifting can be viewed as a multiplicative
analogue of the Naganuma lift from holomorphic modular forms of weight k for Γ0(p) with
Nebentypus εp to holomorphic Hilbert modular forms of weight k for Γ [Na, Za1].

There is another lifting from holomorphic elliptic modular forms to Hilbert modular
forms, namely the celebrated Doi-Naganuma lift which maps holomorphic modular forms
of weight k for SL2(Z) to holomorphic Hilbert modular forms of weight k for Γ [DN]. It was
pointed out by Zagier that this lifting should have a multiplicative analogue as well [Za3].
Moreover, Zagier stated several properties of such a multiplicative lifting and suggested
that a proof could probably be given following the argument of [Br1]. One purpose of the
present paper is to work out a proof along these lines.

Let H be the upper complex half plane, and put q = e(τ) = e2πiτ for τ ∈ H. Recall that
a weakly holomorphic modular form for SL2(Z) is a meromorphic modular form for SL2(Z)
which is holomorphic outside the cusp∞. In particular, every weakly holomorphic modular
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form of weight zero for SL2(Z) is a polynomial in the j-function (which we normalize such
that j(τ) = q−1 + 744 + O(q)). In Section 5 we shall prove the following theorem. See
Theorem 5.2 for a more detailed statement.

Theorem 1.1. Let f =
∑

n�−∞ c(n)qn ∈ Z[j] be a weakly holomorphic modular form
of weight 0 for SL2(Z) with integral Fourier coefficients. Then there exists a symmetric
meromorphic Hilbert modular function Ψ(z, f) for Γ (of weight 0, with trivial multiplier
system, defined over F ) such that:

(i) The divisor of Ψ(z, f) is determined by the polar part of f at the cusp ∞. It
equals

∑
n>0 c(−n)T̃n, where T̃n denotes the twisted Hirzebruch-Zagier divisor of

discriminant n defined in Section 3.
(ii) The function Ψ(z, f) has the Borcherds product expansion

Ψ(z, f) =
∏

ν∈∂−1
F

ν>0

∏
b (p)

(
1− e( b

p
+ νz1 + ν ′z2)

)εp(b)c(pνν′)

,

which converges normally for all z = (z1, z2) ∈ H2 with =(z1)=(z2) > Np outside
the set of poles, where N = max{n ∈ Z; c(−n) 6= 0}. In particular, Ψ(z, C) = 1
for any constant C.

(iii) The lifting is multiplicative, i.e., if f, g ∈ Z[j], then Ψ(f + g) = Ψ(f)Ψ(g).

Observe that in spite of the similarities to the ‘untwisted’ Borcherds lift as in [BB]
there are several different and interesting features here. For instance, the presence of the
quadratic character causes the Weyl vector to vanish. This implies the triviality of the
multiplier system by a result of Vaserstein. Moreover, the natural field of definition of
Ψ(z, f) is F rather than Q, leading to serious difficulties in the computational part of the
paper.

We now briefly describe the idea of the proof. For a positive integer m, we define in
Section 3 a certain “twisted Hirzebruch-Zagier divisor” T̃m on the Hilbert modular surface
corresponding to Γ. In Section 4, following [Br1], we construct an automorphic Green
function Φ̃mp2(z, s) for T̃m. We study its main properties and compute its Fourier expansion
(Theorems 4.4 and 4.6). By means of an identity relating certain finite exponential sums
to Kloosterman sums (Lemma 4.3), we find that the Fourier coefficients of Φ̃mp2(z, s)
are closely related to the coefficients of non-holomorphic Poincaré series of weight zero for
SL2(Z) (see Section 2). Using the fact that any weakly holomorphic modular form of weight
zero can be uniquely written as a linear combination of the non-holomorphic Poincaré series,
Theorem 1.1 can be deduced. Here the main point is an identity expressing log |Ψ(z, f)| as
a linear combination of the automorphic Green functions Φ̃mp2(z, 1), see Theorem 5.2 (iv).

An alternative proof could be given by interpreting the lifting as a regularized theta
lifting for the dual pair SL2(R), O(2, 2) as in [Bo2, Br2], and by considering suitable
“twists” of Siegel theta functions as kernel functions. It would actually be very interesting
to describe such twisted Borcherds liftings in greater generality for O(2, n). However,
it seems not quite clear what the right “twists” of Siegel theta functions should be in
general. We have not pursued this approach in the present paper, because the proof using
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automorphic Green functions leads to the result in a direct way. Moreover, the construction
of the Green functions should be of independent interest.

If m is a positive integer, we write Ψ̃m for the symmetric Hilbert modular function
of weight 0 which is the twisted Borcherds lift via Theorem 1.1 of the unique weakly
holomorphic modular form

Jm = q−m +O(q) ∈ Z[j].

In this way we obtain a ‘canonical’ family of rational functions on the Hilbert modular
surface associated to Γ. It seems natural to ask for their arithmetic properties. For instance,
one can ask whether Ψ̃1, the lifting of the j-function, has a nice moduli interpretation as
an invariant of abelian surfaces with OF -multiplication and ∂−1

F -polarization.

It is a well-known and beautiful fact that j(D+
√
−D

2
) generates the Hilbert class field of the

imaginary quadratic field Q(
√
−D). In Section 6, we study when the value of Ψ̃m at a CM

point z associated to a quartic CM number field K with totally real subfield F generates
the ‘CM class field’ HK̃ of the reflex field K̃ (see Section 6 for precise definitions). In

particular, we show that it generates this CM class field when the CM value Ψ̃m(CM(K)),
the evaluation of Ψ̃m at the CM cycle CM(K) corresponding to K, is not an odd power
in F (Corollary 6.3). We also prove the following theorem (see Theorem 6.6 for details).

Theorem 1.2. Let F = Q(
√
p) be a fixed real quadratic field with p ≡ 1 mod 4 prime.

Then there is a constant d > 0 such that for any CM quartic field K of discriminant
dK = p2q with q ≡ 1 mod 4 prime, and a CM point z in the Hilbert modular surface
X = SL2(OF )\H2 of CM type (K,Φ) by OK, one has:

(i) M(Ψ̃1(z), Ψ̃2(z)) is an unramified abelian extension of M , where M is the smallest
Galois extension of Q containing K.

(ii) Let HK̃ be the ‘CM class field’ of the reflex field K̃, and let LK = MHK̃. Then

M(Ψ̃1(z), Ψ̃2(z)) is a subfield of LK with bounded index [LK : M(Ψ̃1(z), Ψ̃2(z))] ≤ d.

(iii) One has limq→∞
log[M(Ψ̃1(z),Ψ̃2(z)):M ]

log
√

q
= 1.

In [BY] the authors derived a formula for the values of (untwisted) Borcherds products
(in the sense of [BB]) at CM cycles CM(K). It would be very interesting to obtain an
analogous formula for the CM values of the twisted Borcherds products of Theorem 1.1. In
fact one can ask if it is possible to modify the proof of [BY] to give such a result. One key
ingredient of the proof – the relation between Borcherds products and automorphic Green
functions – is already worked out in the present paper. However, in the second main step
of the argument it is not clear at all how the function ψ on the lattice L0 defined in (3.5)
translates to some natural function on the reflex field K̃.

In Section 7 we study some examples in the special case that F = Q(
√

5). We write
Ψ̃1 and Ψ̃2 in terms of the generators of the ring of symmetric Hilbert modular forms of
even weight given by Gundlach [Gu]. This can be used to compute the Fourier expansions
explicitly, which in turn can be employed to compute some CM values (mainly) numerically.
For instance, for the CM point z0 = (ζ5, ζ

2
5 ) (where ζ5 = e2πi/5) corresponding to the cyclic
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CM extension K = Q(ζ5) of F = Q(
√

5) we find that

Ψ̃1(z0) =
156973921227 + 70200871784

√
5

156973921227− 70200871784
√

5
=
ω27 · (4 + ω′)5 · (5 + ω′)5

ω′27 · (4 + ω)5 · (5 + ω)5
,

where ω = 1+
√

5
2

. By means of the results of [BY] we derive a heuristic how the CM values
of twisted Borcherds products should look like. In particular, we obtain a conjecture on
the prime ideals l ⊂ OF at which the CM value of a twisted Borcherds product can have
non-zero order (see Conjecture 7.1). The same phenomenon as in [GZ] and [BY] should
happen: Such prime ideals should be of small norm.

Finally, in Section 8, we list some open problems for further research. For instance, in
all the examples we computed it turned out that Ψ̃1(CM(K,Φ,OF )) belongs to the field
F . Moreover, if K/Q is non-Galois then Ψ̃1(CM(K,Φ,OF )) is square-free. According to
Corollary 6.3, this implies that for z ∈ CM(K,Φ,OF ) the CM value Ψ̃1(z) generates the
class field LK over M . It is an interesting question whether this is a general phenomenon.

We mention that J. Rouse has used Theorem 1.1 to determine the Fourier coefficients of
modular functions f ∈ Z[j] in terms of traces of singular moduli [Ro].

We thank Heike Hippauf and Sebastian Mayer for their valuable help with the compu-
tations in Section 7. Moreover, we thank Lev Borisov, Bas Edixhoven, and Don Zagier for
interesting and useful discussions, and thank Shou-Wu Zhang for bringing to our attention
his equidistribution theorem, which is needed in the proof of Theorem 6.6.

2. Non-holomorphic Poincaré series

Here we consider non-holomorphic Poincare series of weight 0. The results of this section
are known. We state them for completeness and to fix the notation. For details we refer
to [He], [Ni], [Br2].

Let Iν(z) and Kν(z) be the usual modified Bessel functions as in [AbSt] §10. For conve-
nience we put for s ∈ C and y ∈ R \ {0}:

Is(y) =

√
π|y|
2
Is−1/2(|y|),(2.1)

Ks(y) =

√
2|y|
π
Ks−1/2(|y|).(2.2)

The functions Is(y) and Ks(y) are holomorphic in s. At s = 1 they have the special values

I1(y) = sinh(|y|),(2.3)

K1(y) = e−|y|,(2.4)

2I1(y) +K1(y) = e|y|.(2.5)

The full elliptic modular group Γ′ = SL2(Z) acts on the upper complex half plane H =
{τ ∈ C; =(τ) > 0} by linear fractional transformations. We write Γ′∞ = {( 1 n

0 1 ) ; n ∈ Z}.
As usual we abbreviate e(x) = e2πix.
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For a positive integer m we define the Poincaré series of weight 0 and index m by

(2.6) Fm(τ, s) =
∑

γ∈Γ′∞\Γ′
Is

(
2πm=(γτ)

)
e
(
−m<(γτ)

)
,

where τ = x + iy ∈ H and s ∈ C with <(s) > 1. It converges normally for <(s) > 1 and
defines a Γ′-invariant function on H. It is an eigenfunction of the hyperbolic Laplacian
with eigenvalue s(s− 1).

Theorem 2.1. The Poincaré series Fm(τ, s) has the Fourier expansion

Fm(τ, s) = (2Is(2πmy) +Ks(2πmy)) e(−mx)

+ bm(0, s)y1−s +
∑

n∈Z\{0}

bm(n, s)Ks(2πny)e(nx),

where

bm(n, s) =



2π
∣∣∣m
n

∣∣∣1/2
∞∑

c=1

Hc(m,n)I2s−1

(
4π

c

√
|mn|

)
, n > 0,

4π1+sms

(2s− 1)Γ(s)

∞∑
c=1

c1−2sHc(m, 0), n = 0,

−δ−m,n + 2π
∣∣∣m
n

∣∣∣1/2
∞∑

c=1

Hc(m,n)J2s−1

(
4π

c

√
|mn|

)
, n < 0.

Here Hc(m,n) denotes the Kloosterman sum

(2.7) Hc(m,n) =
1

c

∑
d(c)∗

e

(
nd−md̄

c

)
,

where the sum runs through the multiplicative group (Z/cZ)∗ and d̄ denotes the multiplica-
tive inverse of d. Moreover, Jν(z) and Iν(z) are the usual Bessel functions as defined in
[AbSt] §9.

Proof. This is a special case of [Br2] Theorem 1.9. See also [Ni] or [He]. �

Notice that Hc(m,n) = Hc(n,m).

Proposition 2.2. The constant term of Fm(τ, s) is equal to

bm(0, s) =
4π

(2s− 1)

σm(2s− 1)

π−sΓ(s)ζ(2s)
.

Here ζ(s) denotes the Riemann zeta function and σm(s) the divisor sum

σm(s) = m(1−s)/2
∑
d|m

ds.
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Proof. By Theorem 2.1 we have

bm(0, s) =
4π1+sms

(2s− 1)Γ(s)

∞∑
c=1

c−2s
∑
d (c)∗

e

(
md

c

)
.

If we insert the formula for the Ramanujan sum (see [Ap] Chapter 8.3),∑
d (c)∗

e

(
md

c

)
=
∑

a|(c,m)

µ(c/a)a,

where µ is the Moebius function, we obtain

bm(0, s) =
4π1+sms

(2s− 1)Γ(s)

∑
a|m

∞∑
c=1
a|c

c−2sµ(c/a)a

=
4π1+s

(2s− 1)Γ(s)ζ(2s)
ms
∑
a|m

a1−2s

=
4π1+sσm(2s− 1)

(2s− 1)Γ(s)ζ(2s)
.

This proves the Proposition. �

Recall that a weakly holomorphic modular form for Γ′ is a meromorphic modular form for
Γ′ which is holomorphic outside the cusp∞. In particular, the space of weakly holomorphic
modular forms for Γ′ of weight 0 is C[j], the polynomial ring in the j-function.

Theorem 2.3. The special value Fm(τ, 1) has the Fourier expansion

Fm(τ, 1) = q−m +
∑
n≥0

bm(n, 1)qn,

where q = e2πiτ as usual. In particular, Fm(τ, 1) is the unique weakly holomorphic modular
form of weight 0 for Γ′ whose Fourier expansion starts q−m + bm(0, 1) +O(q).

Proof. If we insert the special values (2.3) and (2.4) in the Fourier expansion given in
Theorem 2.3, we find

Fm(τ, 1) = q−m +
∑
n≥0

bm(n, 1)qn +
∑
n<0

bm(n, 1)e(nτ̄).

This implies that
∂
∂τ̄
Fm(τ, 1) = −2πi

∑
n<0

bm(n, 1)ne(−nτ)

is a holomorphic modular form of weight 2 for Γ′ and therefore has to vanish identically.
We obtain the assertion. �

Remark 2.4. We have bm(0, 1) = 24σm(1).
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3. Hilbert modular surfaces and Hirzebruch-Zagier divisors

Let p ≡ 1 (mod 4) be a prime and consider the real quadratic field F = Q(
√
p). We

write OF for the ring of integers in F and ∂F = (
√
p) for the different ideal. Moreover, we

write εp(x) = (x
p
) for the quadratic character of F . The conjugation in F is denoted by

x 7→ x′ and the norm of x ∈ F by N(x) = xx′.
The Hilbert modular group Γ = SL2(OF ) acts on H2 in the usual way. We denote by

X = Γ\H2 the Hilbert modular surface associated to F . We will use z = (z1, z2) as a
standard variable on H2 and write z1 = x1 + iy1, z2 = x2 + iy2 for the decomposition in real
and imaginary parts. Recall that a Hilbert modular form H(z1, z2) is called symmetric if
H(z1, z2) = H(z2, z1). It is called skew-symmetric if H(z1, z2) = −H(z2, z1).

It is well known that the Hilbert modular group can also be viewed as a discrete subgroup
of the orthogonal group of the rational quadratic space

(3.1) V = {M ∈ Mat2(F ); tM = M ′} = {
(

a λ
λ′ b

)
; a, b ∈ Q, λ ∈ F},

equipped with the quadratic form M 7→ det(M). Here tM is the transpose of M . The
group SL2(F ) acts on V via

(3.2) γ.M = γ′M tγ

leaving the quadratic form invariant. The lattice

L = {
(

a λ
λ′ b

)
∈ V ; a, b ∈ Z, λ ∈ ∂−1

F }(3.3)

is stable under the action of Γ. Recall that M ∈ L is called primitive, if 1
d
M /∈ L for every

integer d > 1.
If M =

(
a λ
λ′ b

)
is a vector in L, we let

M⊥ = {(z1, z2) ∈ H2; az1z2 + λz1 + λ′z2 + b = 0}

be the corresponding analytic divisor on H2. If m is a positive integer, then

Fm =
∑

M ∈ L/{±1} primitive
det(M)=m/p

M⊥(3.4)

is a Γ-invariant divisor on H2, which descends to an algebraic divisor on X, also denoted
by Fm. It is well known that the Hirzebruch-Zagier divisors Tm on X can be written as
Tm =

∑
d2|m Fm/d2 (see [Ge], [HZ]).

The divisor Fm on X is irreducible if and only if p2 - m. If p2|m then it decomposes into
two irreducible components Fm = F+

m + F−
m . To distinguish these components we define a

function on lattice vectors M =
(

a λ
λ′ b

)
∈ L of norm ab− λλ′ ∈ pZ divisible by p by

ψ(M) =


(a

p
), if p - a,

( b
p
), if p - b,

0, if p | (a, b).
(3.5)

The following lemma shows that ψ is well defined.
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Lemma 3.1. Let M =
(

a λ
λ′ b

)
∈ L be a p-primitive vector (i.e. 1

p
M /∈ L) and assume that

ab− λλ′ = np for some n ∈ Z. Then (a
p
) + ( b

p
) 6= 0.

Proof. First we notice that the hypothesis implies p - (a, b). This immediately yields the
assertion if p | a, or p | b, respectively. So we may assume that p - a and p - b. We have to
show that (a

p
) = ( b

p
). If we write λ = 1

2
(c+ d

√
p) with c, d ∈ Z we find that

4ab = c2 − pd2 + 4np ≡ α2 (mod p).

This implies the assertion. �

The function ψ has the following genus character interpretation. Assume that M =(
a λ
λ′ b

)
∈ L and ab − λλ′ ∈ pZ. Then λ actually belongs to OF and we may write λ =

1
2
(c+ d

√
p) with c, d ∈ Z. We have(

a λ
λ′ b

)
≡
(
a c/2
c/2 b

)
(mod ∂F )(3.6)

and the latter matrix defines a binary integral quadratic form Q = [a, c, b] of discriminant
c2 − 4ab divisible by p. Recall that on binary integral quadratic forms of discriminant
divisible by p we have a genus character χp which is defined as follows:

χp(Q) =

{
(n

p
), if p - Q and (n, p) = 1 and Q represents n,

0, if p | Q.

This definition does not depend on the choice of n. If the quadratic form Q corresponds
to M as in (3.6), then ψ(M) = χp(Q).

One easily verifies that the value of ψ(M) only depends on the Γ-orbit of M . In fact, it
is well known that the components of Fmp2 are distinguished by the values of the function
ψ (see [Za2], [Ge] Chapter V.3).

Definition 3.2. For a positive integer m we define the twisted Hirzebruch-Zagier divisor
of index m by

T̃m =
∑

M∈L/{±1}
det(M)=mp

ψ(M) ·M⊥.(3.7)

For instance, if m is square-free then T̃m = F+
mp2 − F−

mp2 .

4. Automorphic Green functions

Let m be a positive integer. Following [Br1] we define the automorphic Green function
corresponding to T̃m by

Φ̃mp2(z1, z2, s) =
∑

“
a λ
λ′ b

”
∈L

ab−N(λ)=mp

ψ
(

a λ
λ′ b

)
Qs−1

(
1 +

|az1z2 + λz1 + λ′z2 + b|2

2y1y2mp

)
,(4.1)
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where Qs−1(t) is the Legendre function of the second kind defined by (cf. [AbSt] §8)

Qs−1(t) =

∫ ∞

0

(t+
√
t2 − 1 cosh v)−sdv (t > 1, <(s) > 0).

The sum converges normally for (z1, z2) ∈ H2 \ T̃m and s ∈ C with <(s) > 1. We will
continue it to a neighborhood of s = 1 by computing the Fourier expansion. To this end
we write

Φ̃mp2(z1, z2, s) = Φ̃0
mp2(z1, z2, s) + 2

∞∑
a=1

Φ̃a
mp2(z1, z2, s)(4.2)

with

Φ̃a
mp2(z1, z2, s) =

∑
b∈Z

λ∈∂−1
F

ab−N(λ)=mp

ψ
(

a λ
λ′ b

)
Qs−1

(
1 +

|az1z2 + λz1 + λ′z2 + b|2

2y1y2mp

)
.(4.3)

Note that the partial sums Φ̃a
mp2(z1, z2, s) converge normally for <(s) > 1/2.

For a = 0 we have

Φ̃0
mp2(z1, z2, s) =

∑
b∈Z

λ∈∂−1
F

N(λ)=−mp

εp(b)Qs−1

(
1 +

|λz1 + λ′z2 + b|2

2y1y2mp

)
.

If a is a positive integer coprime to p, then

Φ̃a
mp2(z1, z2, s) = εp(a)

∑
b∈Z

λ∈∂−1
F

ab−N(λ)=mp

Qs−1

(
1 +

|az1z2 + λz1 + λ′z2 + b|2

2y1y2mp

)

= εp(a)Φ
a
mp2(z1, z2, s),

where Φa
mp2(z1, z2, s) is the function defined in [Br1] (see §3 equation (16)). If a is divisible

by p, then

Φ̃a
mp2(z1, z2, s) =

∑
b∈Z

λ∈∂−1
F

ab−N(λ)=mp

εp(b)Qs−1

(
1 +

|az1z2 + λz1 + λ′z2 + b|2

2y1y2mp

)
.

We compute the Fourier expansion of Φ̃a
mp2(z1, z2, s) in these three cases. We put for a

positive real number A,

(4.4) HA
s (z1, z2) =

∑
θ∈O

Qs−1

(
1 +

|(z1 + θ)(z2 + θ′) + A|2

2y1y2A

)
,
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and denote (for y1y2 > A) the Fourier expansion by

HA
s (z1, z2) =

∑
ν∈d−1

bAs (ν, y1, y2)e(νx1 + ν ′x2).

Moreover, we let R(mp2) be a set of representatives for

{λ ∈ ∂−1
F /aOF ; N(λ

√
p) ≡ mp2 (mod ap)}

= {λ ∈ OF/aOF ; N(λ) ≡ −mp (mod a)}.

We start with the case that a is positive and coprime to p. Here we can argue as in
[Br1]. We may write

Φ̃a
mp2(z1, z2, s) = εp(a)

∑
λ∈R(mp2)

∑
θ∈O

Qs−1

(
1 +

|(z1 + θ + λ′

a
)(z2 + θ′ + λ

a
) + mp

a2 |2

2y1y2mp/a2

)

=
∑

ν∈∂−1
F

εp(a)
∑

λ∈R(mp2)

e

(
tr(νλ)

a

)
bmp/a2

s (ν, y1, y2)e(νz1 + ν ′z2).

When a is positive and divisible by p, one finds in a similar way that

Φ̃a
mp2(z1, z2, s) =

∑
λ∈R(mp2)

∑
θ∈O

εp(
λλ′+mp

a
)Qs−1

(
1 +

|(z1 + θ + λ′

a
)(z2 + θ′ + λ

a
) + mp

a2 |2

2y1y2mp/a2

)

=
∑

ν∈∂−1
F

∑
λ∈R(mp2)

εp(
λλ′+mp

a
)e

(
tr(νλ)

a

)
bmp/a2

s (ν, y1, y2)e(νz1 + ν ′z2).

If we define

(4.5) G̃a(mp
2, ν) =

εp(a)
∑

λ∈R(mp2) e
(

tr(νλ)
a

)
, if p - a,∑

λ∈R(mp2) εp(
λλ′+mp

a
)e
(

tr(νλ)
a

)
, if p | a,

we may finally write
(4.6)

Φ̃mp2(z1, z2, s) = Φ̃0
mp2(z1, z2, s) + 2

∑
ν∈∂−1

F

[
∞∑

a=1

G̃a(mp
2, ν)bmp/a2

s (ν, y1, y2)

]
e(νx1 + ν ′x2).

For r1, r2 ∈ R we briefly write

α(r1, r2) := max(|r1|, |r2|),
β(r1, r2) := min(|r1|, |r2|).
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Lemma 4.1. The function Φ̃0
mp2(z1, z2, s) has the Fourier expansion

(4.7) Φ̃0
mp2(z1, z2, s) = 2

√
p

∑
λ∈∂−1

F
N(λ)=−m/p

∑
n≥1

εp(n)

n
Is(2πnβ(λy1, λ

′y2))

×Ks(2πnα(λy1, λ
′y2))e(nλx1 + nλ′x2).

Proof. By definition we have

Φ̃0
mp2(z1, z2, s) =

∑
b∈Z, λ∈∂F
λλ′=−mp

εp(b)Qs−1

(
1 +

|λz1 + λ′z2 + b|2

2y1y2mp

)

=
∑

b (p), λ∈∂−1
F

λλ′=−m/p

εp(b)
∑
b′∈Z

Qs−1

(
1 +

|λz1 + λ′z2 + b′ + b/p|2

2y1y2m/p

)
.

We find that

Φ̃0
mp2(z1, z2, s) =

∑
b (p)

∑
λ∈∂−1

F
λλ′=−m/p

εp(b)hα(λy1,λ′y2),β(λy1,λ′y2)(λx1 + λ′x2 + b/p),(4.8)

where

hα,β(x) =
∑
b∈Z

Qs−1

(
(x+ b)2 + α2 + β2

2αβ

)
.

By [Br1] Lemma 1, for α > β > 0, the function hα,β(x) has the Fourier expansion

hα,β(x) =
2π

2s− 1
α1−sβs +

∑
n∈Z−{0}

1

|n|
Is(2πnβ)Ks(2πnα)e(nx).

Inserting this into (4.8), we obtain the assertion. �

We recall the following lemma from [Br1]:

Lemma 4.2. Let y1y2 > A > 0. The function HA
s (z1, z2) defined by (4.4) has the Fourier

expansion

HA
s (z1, z2) =

∑
ν∈∂−1

F

bAs (ν, y1, y2)e(νx1 + ν ′x2)

with

bAs (0, y1, y2) =
πΓ(s− 1/2)2

2
√
pΓ(2s)

(4A)s(y1y2)
1−s,

bAs (ν, y1, y2) = π

√
A

p|νν ′|
I2s−1(4π

√
A|νν ′|)Ks(2π|ν|y1)Ks(2π|ν ′|y2), νν ′ > 0,

bAs (ν, y1, y2) = π

√
A

p|νν ′|
J2s−1(4π

√
A|νν ′|)Ks(2π|ν|y1)Ks(2π|ν ′|y2), νν ′ < 0.
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The following identity of finite exponential sums is crucial for the main result of the
present paper.

Lemma 4.3. Let a ∈ N, m ∈ Z, and ν ∈ ∂−1
F . Then

(4.9)
1

a
G̃a(mp

2, ν) =
∑
r|ν
r|a

εp(r)Ha/r

(
pνν ′

r2
,m

)
,

where the finite exponential sums G̃a(m, ν) resp. Hb(m,n) are defined by (4.5) resp. (2.7).

Proof. We follow the proof of the Proposition in [Za1] §4. Both sides in (4.9) are clearly
periodic in m with period a. Therefore it suffices to show that the finite Fourier transforms
are equal, i.e., that for every h (mod a) we have

1

a

∑
m (a)

e

(
−hm

a

)
G̃a(mp

2, ν) =
∑
m (a)

e

(
−hm

a

)∑
r|ν
r|a

εp(r)Ha/r

(
pνν ′

r2
,m

)
.(4.10)

Inserting the definition of Hc (n,m) we find that the right hand side equals∑
r|ν
r|a

εp(r)
r

a

∑
d (a/r)∗

e

(
dpνν ′/r2

a/r

)∑
m (a)

e

(
−md̄r + h

a

)
.

The sum over m (a) vanishes unless d̄r + h ≡ 0 (mod a) in which case it equals a. But
d̄r + h ≡ 0 (mod a) implies that h ≡ 0 (mod r) and d̄ + h/r ≡ 0 (mod a/r). Since d̄ is
coprime to a/r we find that h/r must also be coprime to a/r and consequently r = (h, a).

Thus, denoting r = (h, a) and by h̄1 a multiplicative inverse of h/r modulo a/r we obtain
that the right hand side of (4.10) equals

εp(r)r · e
(
− h̄1pνν

′/r2

a/r

)
.(4.11)

We now consider the left hand side of (4.10). We first assume that (p, a) = 1. In this
case it is equal to

εp(a)

a

∑
m (a)

∑
λ∈OF /aOF

λλ′=−mp (a)

e

(
tr(λν)− hm

a

)

=
εp(a)

a

∑
λ∈OF /aOF

e

(
tr(λν) + hp̄λλ′

a

)
.

Here p̄ denotes a multiplicative inverse of p modulo a. We first observe that the sum
vanishes unless r = (h, a) divides ν. This is easily seen by replacing λ 7→ λ+ a

r
τ for τ ∈ OF

in the sum. Therefore, put r = (h, a) and write h = h1r, a = a1r, and ν = ν1r. Then the
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sum becomes

εp(a)

a

∑
λ∈OF /aOF

e

(
tr(λν1) + h1p̄λλ

′

a1

)

=
εp(a)

a
r2e

(
−ph̄1ν1ν

′
1

a1

) ∑
λ∈OF /a1OF

e

(
h1p̄(λ+ ph̄1ν

′
1)(λ

′ + ph̄1ν1)

a1

)

=
εp(a)

a1

re

(
−ph̄1ν1ν

′
1

a1

) ∑
λ∈OF /a1OF

e

(
h1p̄λλ

′

a1

)
.

The latter sum is computed in [Za1] §4 Lemma 2. Inserting its value

1

a1

∑
λ∈OF /a1OF

e

(
h1p̄λλ

′

a1

)
= εp(a1)

we finally find that the left hand side of (4.10) is equal to

εp(r)r · e
(
−ph̄1νν

′/r2

a/r

)
.

Let us now consider the left hand side of (4.10) in the case that p | a. Then it is given
by

1

a

∑
m (a)

∑
λ∈OF /aOF

λλ′≡−mp (a)

εp

(
λλ′ +mp

a

)
e

(
tr(νλ)−mh

a

)
.

We substitute m = m1 +m2a/p, where m1 runs modulo a/p and m2 modulo p. Moreover,
we notice that in the sum over λ, we actually only sum over λ ∈ ∂F/aOF , since p | a.
Substituting λ 7→ √

pλ, we obtain

1

a

∑
m1 (a/p)
m2 (p)

∑
λ∈OF /a∂−1

F
λλ′≡m1 (a/p)

εp

(
−λλ′ +m1

a/p
+m2

)
e

(
tr(
√
pλν)−m1h

a

)
e

(
−hm2

p

)

=
1

ap

∑
m2 (p)

∑
λ∈OF /aOF

e

(
tr(
√
pλν)− hλλ′

a

)
εp (m2) e

(
−hm2

p

)

=
1

a
√
p
εp(h)

∑
λ∈OF /aOF

e

(
tr(
√
pλν)− hλλ′

a

)
.

Here, in the last line we have inserted the value of the Gauss sum. In particular we see
that the latter quantity vanishes if p | h. If p - (h, a) we see by replacing λ 7→ λ + a

r
τ for

τ ∈ OF that the latter quantity actually vanishes unless (h, a) divides ν. Therefore, as
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above, we put r = (h, a) and write h = h1r, a = a1r, and ν = ν1r. Then the sum becomes

r2

a
√
p
εp(h)

∑
λ∈OF /a1OF

e

(
tr(
√
pλν1)− h1λλ

′

a1

)

=
r

a1
√
p
εp(h)e

(
− h̄1pν1ν

′
1

a1

) ∑
λ∈OF /a1OF

e

(
−
h1(λ− (h̄1

√
pν1)

′)(λ′ − (h̄1
√
pν1)

′)′

a1

)

=
r

a1
√
p
εp(h)e

(
− h̄1pνν

′/r2

a/r

) ∑
λ∈OF /a1OF

e

(
−h1λλ

′

a1

)
.

By [Za1] §4 Lemma 2 (noting that p - r implies p | a1) we have

1

a1

∑
λ∈OF /a1OF

e

(
−h1λλ

′

a1

)
= εp(h1)

√
p.

We finally find that left hand side of (4.10) is equal to

εp(r)r · e
(
−ph̄1νν

′/r2

a/r

)
.

This concludes the proof of the Lemma. �

We are now ready to compute the Fourier expansion of Φ̃mp2(z1, z2, s) in terms of the
coefficients of the Poincaré series Fm(τ, s).

Theorem 4.4. The automorphic Green function Φ̃mp2(z1, z2, s) associated to T̃m has the
Fourier expansion

Φ̃mp2(z1, z2, s)

=
( p
π

)s−1/2

Γ(s− 1/2)L(2s− 1, εp)bm(0, s)(y1y2)
1−s

+
√
p
∑

ν∈∂−1
F

νν′ 6=0

∑
n≥1

εp(n)

n
bm(pνν ′, s)Ks(2πnνy1)Ks(2πnν

′y2)e(νnx1 + ν ′nx2)

+
√
p

∑
λ∈∂−1

F
N(λ)=−m/p

∑
n≥1

εp(n)

n

(
2Is(2πnβ(λy1, λ

′y2)) +Ks(2πnβ(λy1, λ
′y2))

)
×Ks(2πnα(λy1, λ

′y2))e(nλx1 + nλ′x2).

If converges normally for y1y2 > mp. Here bm(n, s) denote the Fourier coefficients of the
Poincaré series Fm(τ, s), and L(s, εp) the Dirichlet L-function corresponding to εp.
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Proof. We use (4.6), Lemma 4.1, and Lemma 4.2 to compute the Fourier expansion. The
constant term is given by

2
∞∑

a=1

G̃a(mp
2, 0)bmp/a2

s (0, y1, y2)

=
πΓ(s− 1/2)2

√
pΓ(2s)

(4mp)s(y1y2)
1−s

∞∑
a=1

G̃a(mp
2, 0)a−2s.

In view of Lemma 4.3 this is equal to

πΓ(s− 1/2)2

√
pΓ(2s)

(4mp)s(y1y2)
1−s

∞∑
a=1

∑
r|a

εp(r)Ha/r (m, 0) a1−2s

=
πΓ(s− 1/2)2

√
pΓ(2s)

(4mp)s(y1y2)
1−s

∞∑
c=1

∞∑
r=1

εp(r)Hc (m, 0) (cr)1−2s

=
πΓ(s− 1/2)2

√
pΓ(2s)

(4mp)s(y1y2)
1−sL(2s− 1, εp)

∞∑
c=1

Hc (m, 0) c1−2s.(4.12)

By means of the formula for the constant coefficient bm(0, s) of Fm(τ, s) and the duplication
formula Γ(s)Γ(s+ 1

2
) = 21−2s

√
πΓ(2s) we see that the constant term equals:( p

π

)s−1/2

Γ(s− 1/2)L(2s− 1, εp)bm(0, s)(y1y2)
1−s.

We now consider the ν-th Fourier coefficient of Φ̃mp2(z1, z2, s) for ν ∈ ∂F with νν ′ > 0.
It is given by

2
∞∑

a=1

G̃a(mp
2, ν)bmp/a2

s (ν, y1, y2)

= 2π
∞∑

a=1

1

a
G̃a(mp

2, ν)

√
m

νν ′
I2s−1

(
4π

a

√
mp|νν ′|

)
Ks(2πνy1)Ks(2πν

′y2).

In view of Lemma 4.3 this is equal to:

2π
∞∑

a=1

∑
r|ν
r|a

εp(r)Ha/r

(
m,

pνν ′

r2

)√
m

νν ′
I2s−1

(
4π

a

√
mp|νν ′|

)
Ks(2πνy1)Ks(2πν

′y2)

= 2π
√
p
∑
r|ν

εp(r)

r

√
mr2

pνν ′

∞∑
c=1

Hc

(
m,

pνν ′

r2

)
I2s−1

(
4π

cr

√
mp|νν ′|

)
Ks(2πνy1)Ks(2πν

′y2).

By Theorem 2.1 we finally find for the ν-th coefficient:

√
p
∑
r|ν

εp(r)

r
bm(pνν ′/r2, s)Ks(2πνy1)Ks(2πν

′y2).



16 JAN H. BRUINIER AND TONGHAI YANG

In the same way one can show that for ν ∈ ∂−1
F with νν ′ < 0 the ν-th coefficient of

Φ̃mp2(z1, z2, s)− Φ̃0
mp2(z1, z2, s) is equal to

√
p
∑
r|ν

εp(r)

r
bm(pνν ′/r2, s)Ks(2πνy1)Ks(2πν

′y2)

+
√
p
∑
r|ν

εp(r)

r
δ−m,pνν′/r2Ks(2πνy1)Ks(2πν

′y2).

Here the extra contribution with the Kronecker delta comes from the Kronecker delta δ−m,n

in the formula for bm(n, s) with n < 0.
If we put the above contributions together, and use in addition the formula for Φ̃0

mp2 of
Lemma 4.1, we find

Φ̃mp2(z1, z2, s)

=
( p
π

)s−1/2

Γ(s− 1/2)L(2s− 1, εp)bm(0, s)(y1y2)
1−s

+
√
p
∑

ν∈∂−1
F

νν′ 6=0

∑
r|ν

εp(r)

r
bm(pνν ′/r2, s)Ks(2πνy1)Ks(2πν

′y2)e(νx1 + ν ′x2)

+
√
p
∑

ν∈∂−1
F

νν′<0

∑
r|ν

εp(r)

r
δ−m,pνν′/r2Ks(2πνy1)Ks(2πν

′y2)e(νx1 + ν ′x2)

+ 2
√
p

∑
λ∈∂−1

F
N(λ)=−m/p

∑
n≥1

εp(n)

n
Is(2πnβ(λy1, λ

′y2))Ks(2πnα(λy1, λ
′y2))e(nλx1 + nλ′x2).

By rearranging the sums one deduces the stated formula. �

Now it can be proved as in [Br1] that Φ̃mp2(z1, z2, s) has a meromorphic continuation in s
to a neighborhood of s = 1. The continuation turns out to be holomorphic at s = 1, whereas
there always was a simple pole in [Br1]. This follows from the presence of L(2s − 1, εp)
in the constant term of the Fourier expansion given in Theorem 4.4, while there appeared
ζ(2s− 1) in [Br1] Theorem 1.

Definition 4.5. We define the regularized Green function Φ̃mp2(z1, z2) for T̃m as the value

of Φ̃mp2(z1, z2, s) at s = 1.

One finds that Φ̃mp2(z1, z2) is a harmonic function on H2 \ T̃m with a logarithmic singu-

larity along −2T̃m.
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Theorem 4.6. The Green function Φ̃mp2(z1, z2) associated to T̃m has the Fourier expansion

Φ̃mp2(z1, z2)

=
√
pL(1, εp)bm(0, 1)

+
√
p
∑

ν∈∂−1
F

νν′>0

∑
n≥1

εp(n)

n
bm(pνν ′, 1)e(−2πn|νy1 + ν ′y2|)e(νnx1 + ν ′nx2)

+
√
p

∑
λ∈∂−1

F
N(λ)=−m/p

∑
n≥1

εp(n)

n
e
(
− 2πn|λy1 + λ′y2|

)
e(nλx1 + nλ′x2).

It converges normally on y1y2 > mp outside the polar part of T̃m.

Proof. This follows immediately from Theorem 4.4, (2.3), and (2.4), noting that bm(n, 1) =
0 when n < 0, and that α(r1, r2)− β(r1, r2) = |r1 + r2| for r1, r2 ∈ R with r1r2 < 0. �

Remark 4.7. We have
√
pL(1, εp) = hF log(ε0), where hF denotes the class number of F

and ε0 > 1 the fundamental unit.

5. Twisted Borcherds products

As an application of Theorem 4.6 of the previous section we obtain a variant of the
Borcherds lift for Hilbert modular surfaces (see [Bo2], [Br1], [BB]). It can be viewed as a
multiplicative analogue of the Doi-Naganuma lift [DN] from holomorphic modular forms
of weight k for Γ′ to Hilbert modular forms of weight k for Γ. Its existence was suggested
by Zagier in [Za3].

Following [Za3] §7, we define

Rp(t) =
∏
b (p)

(1− e(b/p)t)εp(b).(5.1)

It is a rational function of t with coefficients in F .

Lemma 5.1. The function Rp(t) ∈ F (t) has the following properties:

(i) Rp(t)
′ = Rp(t)

−1.
(ii) Rp(t

−1) = Rp(t).
(iii) log(Rp(t)) = −√p

∑
n≥1

1
n
εp(n)tn.

Proof. The first two properties are verified by direct computation. The third property
follows from the identity

∑
b (p) εp(b)e(bn/p) =

√
pεp(n). �

Theorem 5.2. Let f =
∑

n�−∞ c(n)qn ∈ Z[j] be a weakly holomorphic modular form of
weight 0 for Γ′ with integral Fourier coefficients. Then there exists a symmetric meromor-
phic Hilbert modular function Ψ(z, f) for Γ (of weight 0, with trivial multiplier system,
defined over F ) such that:
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(i) The divisor of Ψ(z, f) is given by

div(Ψ(z, f)) =
∑
n>0

c(−n)T̃n.

(ii) The function Ψ(z, f) has the Borcherds product expansion

Ψ(z, f) =
∏

ν∈∂−1
F

ν>0

∏
b (p)

(
1− e( b

p
+ νz1 + ν ′z2)

)εp(b)c(pνν′)

=
∏

ν∈∂−1
F

ν>0

Rp

(
e(νz1 + ν ′z2)

)c(pνν′)
,

which converges normally for all (z1, z2) with y1y2 > Np outside the set of poles,
where N = max{n ∈ Z; c(−n) 6= 0}.

(iii) The lifting is multiplicative, i.e., if f, g ∈ Z[j], then Ψ(f + g) = Ψ(f)Ψ(g).
(iv) We have

log |Ψ(z, f)| = −1

2

∑
n>0

c(−n)
(
Φ̃np2(z)−√pL(1, εp)bn(0, 1)

)
.

Proof. Let us first assume that f = q−m + O(1), as q → 0, for some positive integer m.
Then, according to Theorem 2.3, f(τ) = Fm(τ, 1) + C for some constant C ∈ Z. We
define the function Ψ(z, f) by the product expansion in (ii). In view of Theorem 4.6 and
Lemma 5.1 (ii), (iii) we have

log |Ψ(z, f)| = −1

2

(
Φ̃mp2(z)−√pL(1, εp)bm(0, 1)

)
.(5.2)

In particular, the normal convergence of the Fourier expansion of Φ̃mp2(z) on y1y2 > mp
implies the normal convergence of the infinite product Ψ(z, f). Therefore (ii) and (iv) hold.

In the same way as in [Br1], Theorem 4, one can show that Ψ(z, f) has a meromorphic
continuation to all of H2 and that div(Ψ(z, f)) = T̃m: This follows from (5.2) and the fact
that Φ̃mp2(z) is a pluriharmonic function on H2 \ T̃m with a logarithmic singularity along

the divisor −2T̃m.
Moreover, (5.2) implies that |Ψ(z, f)| is invariant under the group Γ. The matrix S =

( 0 −1
1 0 ) ∈ Γ satisfies the relation S2 = −1. Consequently,

Ψ(Sz, f) = ±Ψ(z, f).(5.3)

On the other hand, it follows from the product expansion that Ψ(z, f) is invariant under
translations

(
1 µ
0 1

)
where µ ∈ OK . Using the relation (S ( 1 1

0 1 ))3 = −1 in Γ, we may conclude

that the sign in (5.3) must be +1. But, by a theorem of Vaserstein, the translations
(

1 µ
0 1

)
and the matrix S = ( 0 −1

1 0 ) generate the group Γ. Hence Ψ(z, f) is invariant under Γ.
Moreover, the product expansion implies that Ψ(z, f) can be written as the quotient

of two holomorphic Hilbert modular forms with Fourier coefficients in F . Hence, by the
q-expansion principle, Ψ(z, f) is defined over F .

Finally, the multiplicativity (iii) also follows from the infinite product expansion. �



TWISTED BORCHERDS PRODUCTS ON HILBERT MODULAR SURFACES 19

The condition ν > 0 under the product replaces the Weyl-chamber condition occurring
for the untwisted Borcherds products [BB]. It has this easy form because of the presence
of the character εp(b) which causes some cancellations. Because of Lemma 5.1 (ii) the
product is actually over O×

F /{±1}.
For the rest of this paper we write Ψ̃m (m ∈ Z>0) for the twisted Borcherds lift in the

sense of Theorem 5.2 of the unique weakly holomorphic modular form

Jm = q−m +O(q) ∈ Z[j].

Remark 5.3. In view of Lemma 5.1 (i), the conjugation in F maps Ψ(z, f) to Ψ(z, f)−1.

6. Class Fields

Let F = Q(
√
p) be a real quadratic field as before. LetK = F (

√
∆) be a non-biquadratic

totally imaginary quadratic extension of F . We view both K and F (
√

∆′) as subfields of C
with

√
∆,
√

∆′ ∈ H. Then M = F (
√

∆,
√

∆′) is Galois over Q and has an automorphism σ

of order 4 such that σ(
√

∆) =
√

∆′ and σ(
√

∆′) = −
√

∆. The field K has four CM types:
Φ = {1, σ}, σΦ = {σ, σ2}, σ2Φ, and σ3Φ. We assume that the relative discriminant dK/F

of K/F satisfies the technical condition

(6.1) dK/F ∩ Z = qZ, NF/Q dK/F = q,

for a prime number q ≡ 1 (mod 4).
Recall that the Hilbert modular surface X corresponding to Γ = SL2(OF ) parameter-

izes isomorphism classes of triples (A, ı,m), where (A, ı) is an abelian surface with real
multiplication ı : OF ↪→ End(A), and

m : (MA,M
+
A) −→

(
∂−1

F , ∂−1,+
F

)
is an OF -isomorphism between the polarization module MA of A and ∂−1

F , taking the
subset of polarizations to totally positive elements of ∂−1

F (see e.g. [Go], Theorem 2.17 and
[BY] Section 3).

Let CM(K,Φ,OF ) be the CM 0-cycle in X of CM abelian surfaces of CM type (K,Φ),
i.e., the points on X with an OK-action via Φ (see [BY] Section 3 for details). The field of
moduli for the CM cycle CM(K) := CM(K,Φ,OF ) + CM(K, σ3Φ,OF ) is Q.

Let (K̃, Φ̃) be the reflex of (K,Φ) with maximal totally real subfield F̃ = Q(
√

∆∆′).
Let I(K) be the group of all fractional ideals of K, and let H(K) be the subgroup of I(K)
of ideals a such that

(6.2) NΦa = µOK̃ , Na = µµ̄ for some µ ∈ K̃∗.

Here Na = #OK/a, and NΦ is the type norm from I(K) to I(K̃) given by, in this case,

NΦ(a) = NM/K̃(aOM).

We call the quotient CC(K) = CC(K,Φ) = I(K)/H(K) the CM ideal class group of K.
According to [Sh], page 112, Main Theorem 1, the class field HK̃ of K̃ associated to the

CM ideal class group CC(K̃, Φ̃) is the composite of K̃ with the field of the moduli of any
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polarized CM abelian variety of type (K,Φ) by OK . Recall that CC(K̃, Φ̃) = Gal(HK̃/K̃)
acts on CM(K,Φ,OF ) via [BY], (3.7).

Inspired by the classical result that j(−D+
√
−D

2
) generates the Hilbert class field of the

imaginary quadratic field Q(
√
−D), we consider whether HK̃ has a ‘canonical’ generator

over K̃. Since F is in general not contained in K̃, it seems more natural to consider the
field LK = KHK̃ = MHK̃ = FHK̃ over either M or F , where M = KK̃ is the smallest

Galois extension of Q containing K and/or K̃. For example, a natural question is whether
LK = M(Ψ̃m(z)) for some m and some CM point z ∈ CM(K,Φ,OF )?

Lemma 6.1. Assume that dK = p2q with p ≡ q ≡ 1 mod 4 being odd primes. Then
CC(K̃, Φ̃) acts on CM(K,Φ,OF ) simply transitively. In particular, CM(K,Φ,OF ) is a
single Galois orbit of a CM point.

Proof. Let CL0(K) be the subgroup of CL(K) generated by ideal classes [a] such that

NK/F a = µOF , µ� 0 (totally positive).

Then [BY] Lemma 5.3 asserts that the type norm NΦ̃ gives an isomorphism between

CL0(K̃) and CL0(K). It is clear by definition that NΦ̃ maps I(K̃) to CL0(K), so it is

surjective. It is easy to check that the kernel is exactly H(K̃). Indeed, if [a] ∈ kerNΦ̃, then

NΦ̃a = µOK .

This implies
NaOF = NK/FNΦ̃a = µµ̄OF ,

and thus
Na = µµ̄ε

for some unit ε. Clearly ε is totally positive and thus a square ε21 since F = Q(
√
p).

Replacing µ by µε1, one sees that a ∈ H(K̃). So

CC(K̃) ∼= CL0(K),

and [LK : M ] = [HK̃ : K̃] = # CL0(K). On the other hand, according to the remark after
[BY], Lemma 3.3, The forgetful map

CM(K,Φ,OF ) → CL0(K), (C2/Φ(a), ı,m) → a

is a bijection. So CC(K̃) acts on CM(K,Φ,OF ) simply transitively. �

Corollary 6.2. Let the assumption be as in Lemma 6.1. Let z = (A, ı,m) ∈ CM(K,Φ,OF )
and let kz be the field of definition of z containing F̃ . Then

Ψ̃m(CM(K,Φ,OF )) = NMz/M+Ψ̃m(z).

Here Mz = Fkz = M+kz, and M+ = FF̃ is the maximal totally real subfield of M .

Proof. Recall that kz is the field of moduli of (A, ı,m) and that HK̃ = K̃kz. Lemma 3.4(1)

of [BY] asserts that CM(K,Φ,OF ) is defined over F̃ . So the lemma above implies that kz

does not contain K̃ and [kz : F̃ ] = #CC(K̃), and different embeddings of kz into C fixing F̃
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map z into different CM points in CM(K,Φ,OF ). Since Ψ̃m is defined over F , we obtain
the corollary. �

Corollary 6.3. Let the assumption be as in Lemma 6.1. If Ψ̃m(CM(K)) is not a k-power
in F for any odd integer k > 1, then Ψ̃m(z) generates LK over M .

Proof. Recall that CM(K) = CM(K,Φ,OF ) + CM(K, σ3Φ,OF ). If Ψ̃m(z) does not gen-
erate LK over M , then it does not generate M+kz over M+. Let L be the subfield of M+kz

generated by Ψ̃m(z) over M+. Then the above corollary implies that

Ψ̃m(CM(K,Φ,OF )) =
(
NL/M+(Ψ̃m(z))

)[M+kz :L]

is a k-th power with k = [M+kz : L] > 1. Therefore

Ψ̃m(CM(K)) = NM+/F Ψ̃m(CM(K,Φ,OF )) =
(
NL/F (Ψ̃m(z))

)k

.

Finally, the condition dK = p2q implies that dK̃ = q2p is an odd number and thus its class

number h(K̃) is odd [CH]. In particular, k|#CC(K̃)|h(K̃) is odd. �

Remark 6.4. Let the notation be as above, and let c = Ψ̃m(CM(K,Φ,OF )) ∈ M+. The
above proof implies

NM+/F c = Ψ̃m(CM(K)).

On the other hand, it follows from Remark 5.3 that

NM+/F̃ c = 1.

The numerical examples in Section 7 suggest that Ψ̃m(CM(K)) is a square and that c ∈ F ,
that is,

(6.3) Ψ̃m(CM(K,Φ,OF )) = Ψ̃m(CM(K, σ3Φ,OF )).

We will try to compute Ψ̃m(CM(K)) in the next section.

Proposition 6.5. Assume that dK = p2q with p ≡ q ≡ 1 mod 4 being odd primes, and
let B be a set of positive integers. Then LK = M(Ψ̃m(z),m ∈ B) for a z ∈ CM(K,Φ,OF )
if and only if the functions Ψ̃m (m ∈ B) separate the points in CM(K,Φ,OF ).

Proof. First assume that the Ψ̃m (m ∈ B) separate the points in CM(K,Φ,OF ). Clearly
LK ⊃ M(Ψ̃m(z),m ∈ B). Suppose that α ∈ Gal(LK/M) = Gal(HK̃/K̃) fixes the field

M(Ψ̃m(z),m ∈ B). Then

Ψ̃m(α(z)) = α(Ψ̃m(z)) = Ψ̃m(z)

for every m ∈ B, and so α(z) = z. This implies that α = 1, and LK = M(Ψ̃m(z),m ∈ B).
Conversely, if there are z1 6= z2 ∈ CM(K,Φ,OF ) such that Ψ̃m(z1) = Ψ̃m(z2) for every

m ∈ B, let 1 6= α ∈ Gal(LK/M) such that α(z1) = z2, which exists by Lemma 6.1. Then

α(Ψ̃m(z1)) = Ψ̃m(z2) = Ψ̃m(z1)

for everym ∈ B and thusM(Ψ̃m(z),m ∈ B) is fixed by α. So LK 6= M(Ψ̃m(z),m ∈ B). �
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For two positive integers m and n such that mn is not a square, it is known that T̃m and
T̃n has no common component [HZ]. This implies that the rational map

(6.4) φm,n : X → P1 × P1, z 7→ (Ψ̃m(z), Ψ̃n(z))

is generically finite, i.e., [C(X) : C(Ψ̃m(z), Ψ̃n(z))] is finite.

Theorem 6.6. Let F = Q(
√
p) be a fixed real quadratic field. Let K be a non-biquadratic

CM quartic field with maximal totally real subfield F and discriminant dK = p2q with
p ≡ q ≡ 1 mod 4 primes. Let z ∈ CM(K,Φ,OF ) and Lm,n(K) = M(Ψ̃m(z), Ψ̃n(z)) be

the unramified abelian extension of M generated by Ψ̃m(z) and Ψ̃n(z). Then there is a
constant d > 0 depending on F , m, and n, but independent of K, such that

(i) [LK : Lm,n(K)] ≤ d.

(ii) limq→∞
log[Lm,n(K):M ]

log
√

q
= 1.

Proof. Lemma 6.1 implies that Gal(LK/M) acts on CM(K,Φ,OF ) simply transitively, so

CM(K,Φ,OF ) = {σ(z); σ ∈ Gal(LK/M)}.
Here z is a fixed CM point in CM(K,Φ,OF ). Set

A = {z′ ∈ CM(K,Φ,OF ); Ψ̃i(z
′) = Ψ̃i(z), i = m,n}

= {σ(z); σ ∈ Gal(LK/M), Ψ̃i(σ(z)) = Ψ̃i(z), i = m,n}.
Since

σ(Ψ̃m(z)) = Ψ̃m(σ(z)),

one has that σ(z) ∈ A if and only is σ ∈ Gal(LK/Lm,n(K)). So

[LK : Lm,n(K)] = #A ≤ deg φm,n

generically, that is, if φm,n(z) /∈ B = {(a, b); φ−1
m,n(a, b) is infinite}. Notice that B is a finite

set. Since φm,n is defined over F , φm,n(z) ∈ B for some z ∈ CM(K,Φ,OF ) implies that
φm,n(σ(z)) ∈ B for all σ(z) ∈ CM(K,Φ,OF ), i.e.,

CM(K,Φ,OF ) ⊂ φ−1
m,n(B) or CM(K,Φ,OF ) ∩ φ−1

m,n(B) = ∅.
According to the equidistribution theorem of CM points on a Hilbert modular variety
recently proved by Zhang (cf. [Zh], Theorem 2.1), which extends a well-known theorem of
W. Duke on modular curves [Du], {CM(K,Φ,OF ); dK = p2q} is equidistributed on X.
On the other hand, φ−1

m,n(B) is just a divisor of X, so there is q0 > 0 such that q > q0
implies that CM(K,Φ,OF ) ∩ φ−1

m,n(B) is empty. Let

d0 = max{[LK : Lm,n(K)]; q ≤ q0}, and d = max{deg φm,n, d0}.
Then we always find

[LK : Lm,n(K)] ≤ d.

This proves (i).
For (ii), one has

[LK : M ] = #CM(K,Φ,OF ) = # CL0(K) = c
hKRK

hFRF

.
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Here hF and hK are the class numbers of F and K respectively, RF and RK are the
regulators of F and K respectively, and 1

2
≤ c ≤ 2. Indeed,

RF

RK

≤ c = [CL(F ) : NK/F CL(K)]
RF

RK

≤ [CL(F ) : NK/F CL(K)].

Since F is fixed, one sees from the Brauer-Siegel theorem (cf. [La], Chapter XVI, Lemma 2
and Theorem 5) that

(6.5) lim
q→∞

log[LK : M ]

log
√
q

= 1.

Now (ii) follows from (i). �

Bas Edixhoven gave a very nice lower bound for the size of the Galois orbit of a CM
point on a Hilbert modular surface in general (cf. [Ed], Section 6). In particular, (6.5) is
implicitly given in his proof of [Ed], Theorems 6.2 and 6.4. He also pointed out that using
a result of Stark (instead of the Brauer-Siegel theorem) [St], one gets an effective lower

bound [Lm,n(K) : M ] � q
1
4 .

Proposition 6.7. The field LK is Galois over F .

Proof. By [Sh], page 112, Main Theorem 1, HK̃ is the field of moduli of a CM abelian

variety z = (A, ı,m) ∈ CM(K,Φ,OF ) over K̃. So LK is the field of moduli of a CM
abelian variety z ∈ CM(K,Φ,OF ) over M . Let α be an embedding of LK into F̄ fixing F ,
and α|K is either the identity or the complex conjugation. So (Aα, iα,mα) ∈ CM(K,Φ,OF )
or CM(K, Φ̄,OF ). Clearly, (K,Φ,OF ) and (K, Φ̄,OF ) have the same reflex field K̃, and
the associated CM ideal class groups of K̃ are the same. This implies α(LK) = LK , i.e.,
LK is Galois over F . �

In general, LK is not abelian over F . Let LF be the composite of all LK with K running
through non-biquadratic CM quadratic extensions of F . Then one has an exact sequence

1 → A→ Gal(LF/F ) → (Z/2)(N) → 0

for some abelian group A. It might be interesting to study the Galois group Gal(LF/F ).
We end this section with the following question.

Question 6.8. Is LK independent of the choice of the CM types of K? This is equivalent
to the question whether LK is Galois over Q.

7. Examples

It would be very interesting to obtain closed formulas for the values of twisted Borcherds
products at the CM cycles considered in the previous section in analogy to [BY]. However,
since the twisted Borcherds products are in general only defined over F (in contrast to the
untwisted Borcherds products, which are essentially defined over Q), their CM values will
lie in F . This makes computations more difficult. Moreover, taking the norm to Q does
not provide any insight, since Ψ(z, f) · Ψ(z, f)′ = 1 because of Remark 5.3. Note that for
numeric computations, in the same way as in [BY], the problem arises that the product
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expansion of Theorem 5.2 only converges near the cusps. The CM points usually do not
lie in the domain of convergence. Therefore one has to find an alternative expression for
the twisted Borcherds products one wants to evaluate.

Here we discuss some examples in the special case p = 5 where F = Q(
√

5). The funda-

mental unit of OF is equal to ω = 1+
√

5
2

. The structure of the graded ring of holomorphic
Hilbert modular forms for the group Γ = SL2(OF ) was determined by Gundlach [Gu],
see also [Mü]. In particular, it turns out that the graded ring M sym

2∗ (Γ) of holomorphic
symmetric Hilbert modular forms of even weight for Γ is the polynomial ring C[g2, g6, g10],
where gk denotes the Eisenstein series (in the cusp ∞ for Γ) of weight k normalized such
that the constant term is 1. Often it is more convenient to replace the generators g6 and
g10 by the cusp forms

s6 = 67 · (25 · 33 · 52)−1 · (g3
2 − g6),

s10 = (210 · 35 · 55 · 7)−1 · (22 · 3 · 7 · 4231 · g5
2 − 5 · 67 · 2293 · g2

2 · g6 + 412751 · g10).

We have

M sym
2∗ (Γ) = C[g2, s6, s10].

Notice that g2, s6, s10 all have rational integral and coprime Fourier coefficients. The cusp
form s10 is equal to the (untwisted) Borcherds lift Ψ2

1 in the sense of [BB].
Recall from Section 5 that Ψ̃m is the symmetric Hilbert modular function of weight

0 which is the twisted Borcherds lift in the sense of Theorem 5.2 of the unique weakly
holomorphic modular form Jm = q−m + O(q) ∈ Z[j]. By Gundlach’s theorem, Ψ̃m must
be a rational function in g2, s6, s10 with coefficients in F . We now discuss how it can be
computed.

For simplicity, we assume that m is a square-free positive integer. Then the Hirzebruch-
Zagier divisor Tmp2 decomposes into irreducible components Tmp2 = Tm + F+

mp2 + F−
mp2 .

Recall that div(Ψ̃m) = F+
mp2 − F−

mp2 . On the other hand we can construct a symmetric

holomorphic Hilbert modular form with divisor F+
mp2 +F−

mp2 of weight km > 0 by taking the

(untwisted) Borcherds liftHm = Ψmp2/Ψm in the sense of [BB] Theorem 9. For instance, for
m = 1 we have k1 = 60, and H1 it is obtained as the lift of the unique weakly holomorphic
modular form h ∈ W+

0 (p, εp) whose Fourier expansion has the form

h =
1

2
q−25 − q−1 + 60 + 438864q + 45271325304q4 + . . . .

The product Ψ̃m ·Hm is also a symmetric holomorphic Hilbert modular form of weight km.
Its divisor is equal to 2F+

mp2 . Hence there exist holomorphic Hilbert modular forms Ψ+
m

and Ψ−
m of weight km/2 for Γ such that (Ψ+

m)2 = Hm · Ψ̃m and (Ψ−
m)2 = Hm/Ψ̃m.

The function Ψ±
m must also be symmetric, because any skew-symmetric Hilbert modular

form automatically vanishes on F1, contradicting div(Ψ±
m) = F±

mp2 . Moreover, Ψ±
m is defined
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over F and

(Ψ+
m)′ = Ψ−

m,(7.1)

Ψ̃m = Ψ+
m/Ψ

−
m,(7.2)

Hm = Ψ+
m ·Ψ−

m.(7.3)

By Gundlach’s theorem, Ψ±
m is a homogeneous polynomial in g2, s6, s10 with coefficients in

F . Using the infinite product expansions, this polynomial can be determined explicitly. Its
degree depends on the weight km. Unfortunately, it turns out that the km are rather large
which makes computations difficult. The smallest weights that occur are k1 = k2 = 60.
For all m the weight km is divisible by 60, and if m > 2 then km ≥ 120.

A computation with Maple shows that

16Ψ+
1 = (6 + 2

√
5)g10

2 s10 + (10− 2
√

5)g9
2s

2
6 + (−2308750− 1031750

√
5)g7

2s10s6

+ (−1220450− 543450
√

5)g6
2s

3
6 + (856853809375 + 383196837500

√
5)g5

2s
2
10

+ (−133751887500− 59814018750
√

5)g4
2s10s

2
6

+ (−309550426875− 138434703750
√

5)g3
2s

4
6

+ (23003309053125000 + 10287392475000000
√

5)g2
2s

2
10s6

+ (−18093694595625000− 8091745695000000
√

5)g2s10s
3
6

+ (−16048066250700000− 7176913583400000
√

5)s5
6

+ (24527175191718750000 + 10968886216250000000
√

5)s3
10.

Moreover,

Ψ+
2 =−g15

2 +(48072800+21493760
√

5)g12
2 s6

+(−12166677513088000−5441103582617600
√

5)g10
2 s10

+(4809336551424000
√

5+10754003449472000)g9
2s2

6

+(−343213552017810432000000−153489766622216192000000
√

5)g7
2s10s6

+(356570717554737254400000+159463272647655096320000
√

5)g6
2s3

6

+(−1295691015382296818073600000000−579450637646108270264320000000
√

5)g5
2s2

10

+(773852433537584819077120000000
√

5+1730386645943677691904000000000)g4
2s10s2

6

+(−463842956129634468495360000000−207436876158063085617152000000
√

5)g3
2s4

6

+(26896303882903769962250240000000000
√

5+60141963825664373337292800000000000)g2
2s2

10s6

+(−89933914258012151985733632000000000
√

5−201098345763552732433612800000000000)g2s10s3
6

+(66189203273169170168775966720000000
√

5+148003557895357846527777177600000000)s5
6

+(−17950573674763054301052928000000000000
√

5−40138702971888390552944640000000000000)s3
10.

These polynomial representations can be used to calculate the Fourier expansions, which
in turn can be employed to compute the values of Ψ̃1 and Ψ̃2 at CM points.
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A pleasant example is the CM point z0 = (ζ5, ζ
2
5 ) (where ζ5 = e2πi/5) corresponding to

the cyclic CM extension K = Q(ζ5) of F . It is known that z0 is an elliptic fixed point of
Γ of order 5. The stabilizer of z0 in Γ is the cyclic subgroup generated by

(
ω′ 1
−1 0

)
. This

implies that every Hilbert modular form for Γ of weight coprime to 5 vanishes at z0. In
particular g2(z0) = s6(z0) = 0. Consequently, only the term involving s3

10 contributes to
the value at z0. We find that

Ψ̃1(z0) = Ψ+
1 (z0)/Ψ

−
1 (z0)

=
24527175191718750000 + 10968886216250000000

√
5

24527175191718750000− 10968886216250000000
√

5

=
156973921227 + 70200871784

√
5

156973921227− 70200871784
√

5

=
( ω
ω′

)27

· (4 + ω′)5 · (5 + ω′)5

(4 + ω)5 · (5 + ω)5
.

Moreover,

Ψ̃2(z0) = Ψ+
2 (z0)/Ψ

−
2 (z0)

= −68476004313518731312 + 30623400094519340937
√

5

68476004313518731312− 30623400094519340937
√

5

=
( ω
ω′

)51

· (9 + ω′)5 · (10 + ω′)5

(9 + ω)5 · (10 + ω)5
.

Notice that 4 + ω, 5 + ω, 9 + ω, 10 + ω are prime elements of OF above 19, 29, 89, 109,
respectively. In particular the same phenomenon as in [BY] happens: the prime factors of
the CM values are small.

We would like to evaluate Ψ̃m at other CM cycles as well, say, corresponding to CM
extensions K/F such that K/Q is non-Galois (and satisfies the assumptions of Section 6).
Here it is rather difficult to compute the value exactly. To get a feeling for the problem,
one can try to do some numerical computations. However, this is not so easy either, since
the CM values will be large (or small) algebraic numbers in F . So from the floating point
evaluation one cannot get the exact value. However, using the result of [BY] one obtains
a convincing heuristic how the values should look like. With this extra information, the
problem becomes accessible. For simplicity let us assume that m is square-free and that
p = 5 as before. (For p = 13, 17 the same argument applies.)

The value of the Petersson metric of Hm at CM(K) can be computed by means of the
formula of [BY]. Let l ⊂ OF be a prime ideal above a prime l ∈ Z. Using the notation of
[BY], to m and l we can associate the quantity

hm(l) =
WK̃

4
(bmp2(l)− bm(l)).(7.4)

As explained in [BY] (1.10) it should have a geometric interpretation as the intersection
number of suitable models of div(Hm) and CM(K) in the fiber above l of the moduli space
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of abelian surfaces with OF -action and ∂−1
F -polarization. In the same way, over OF , we

could associate to m and l the intersection number hm(l) in the fiber above l. We should
have

hm(l) =


2hm(l), if l is ramified in OF ,

hm(l), if l is inert in OF ,

hm(l) + hm(l′), if l is split in OF .

According to (7.3), one should be able to write hm(l) = h+
m(l)+h−m(l), where h±m(l) denotes

the intersection of div(Ψ±
m) and CM(K) in the fiber above l. Since (Ψ+

m)′ = Ψ−
m, we would

have

h+
m(l) = h−m(l′).

In view of (7.2) the intersection number of div(Ψ̃m) and CM(K) in the fiber above l, would
be given by

(7.5) h+
m(l)− h−m(l) = h+

m(l)− h+
m(l′).

But since Ψ̃m has weight 0, this quantity would be equal to ordl(Ψ̃m(CM(K))). Conse-
quently,

| ordl(Ψ̃m(CM(K)))| ≤

{
0, if l is ramified or inert in OF ,

hm(l), if l is split in OF .
(7.6)

The quantities hm(l) can be computed by means of the formula of [BY]. In that way there
are only finitely many possibilities left for the prime ideal factorization of Ψ̃m(CM(K)).
Using a computer algebra system one can now compute the CM value if the Fourier ex-
pansion of Ψ̃m is known.

In the special cases p = 5 and m = 1, 2 considered before, we computed a few CM values
corresponding to non-biquadratic CM fields K. We listed some data on a few CM fields in
Table 3, including the class number hK , and a system of representatives for the ideal class
group of K. The corresponding CM values are given in Tables 1 and 2.

Combining the above considerations with Corollary 1.3 of [BY] we are lead to the fol-
lowing conjecture.

Conjecture 7.1. Let m be a positive integer, and let l ⊂ OF be a prime ideal above a
prime l ∈ Z such that ordl(Ψ̃m(CM(K))) 6= 0. Then l′ 6= l and 4l|m2p2q − r2 for some
r ∈ Z with |r| < mp

√
q.

8. Further remarks and open problems

1. Is there a nice moduli interpretation of Ψ̃1 as an invariant of abelian surfaces with
OF -multiplication and ∂−1

F -polarization?
2. In the numerical calculations it always happened that

Ψ̃m(CM(K,Φ,OF )) = Ψ̃m(CM(K, σ3Φ,OF )).

This explains that the CM values in Tables 1 and 2 are squares. Is it possible to prove
this in general? (See also Remark 6.4.) Moreover, it is striking that the CM values
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Table 1. CM values of Ψ̃1 for Q(
√

5)

q
∏

l l
h1(l) Ψ̃1(CM(K))

5 540 · 1910 · 2910
(

ω
ω′

)54 (4+ω′)10·(5+ω′)10

(4+ω)10·(5+ω)10

41 216 · 542 · 234 · 314 · 372 · 614 · 1072 · 1272
(

ω
ω′

)32 (5+2ω)2·(7+3ω′)2

(5+2ω′)2·(7+3ω)2

61 312 ·542 ·134 ·414 ·832 ·1032 ·1092 ·1132 ·1992 ·3792
(

ω
ω′

)24 (6+ω)2·(10+ω′)2·(13+3ω)2·(19+ω′)2

(6+ω′)2·(10+ω)2·(13+3ω′)2·(19+ω)2

109 312·540·76·432·614·714·732·972·1132·2232·4092·4992
(

ω
ω′

)12 (7+3ω)2·(8+ω)2·(19+3ω)2·(20+9ω)2

(7+3ω′)2·(8+ω′)2·(19+3ω′)2·(20+9ω′)2

241 250 ·336 ·5126 ·2914 ·476 ·536 ·618 ·672 ·832 ·976 ·2294 ·
2572 ·3314 ·3472 ·6172

(
ω
ω′

)84 (5+ω′)2·(17+3ω′)2

(5+ω)2·(17+3ω)2

281 244·5128·722·1712·436·536·596·1014·1096·1372·1914·
3172 ·4214 ·6472 ·7872 ·8572 ·8772

(
ω
ω′

)72 (7+2ω)2·(10+ω)2·(13+2ω)2·(19+4ω)2

(7+2ω′)2·(10+ω′)2·(13+2ω′)2·(19+4ω′)2

409 248 ·342 ·5120 ·1712 ·2314 ·5310 ·834 ·1036 ·1096 ·1672 ·
1794 ·1972 ·2394 ·3494 ·5714 ·11872 ·12772

(
ω
ω′

)72 (10+ω)2·(23+2ω)2

(10+ω′)2·(23+2ω′)2

Table 2. CM values of Ψ̃2 for Q(
√

5)

q
∏

l l
h2(l) Ψ̃2(CM(K))

5 2120 · 550 · 8910 · 10910
(

ω
ω′

)102 (9+ω′)10·(10+ω′)10

(9+ω)10·(10+ω)10

41 2104 ·548 ·234 ·372 ·412 ·432 ·732 ·832 ·
1132 ·3492 ·4492 ·7692 ·8292 ·10092

(
ω
ω′

)84 (6+ω)2·(17+5ω)2·(19+8ω)2·(25+9ω′)2·(26+9ω′)2·(29+8ω)2

(6+ω′)2·(17+5ω′)2·(19+8ω′)2·(25+9ω)2·(26+9ω)2·(29+8ω′)2

61 2120 ·314 ·548 ·132 ·414 ·474 ·612 ·732 ·
2292 ·2832 ·4432 ·5032 ·14892

(
ω
ω′

)80 (6+ω′)2·(7+3ω)2·(14+3ω′)2·(35+11ω)2

(6+ω)2·(7+3ω′)2·(14+3ω)2·(35+11ω′)2

109 2120·312·550·712·432·2632·2814·3072·
5232 ·6832 ·8232 ·14292 ·26892

(
ω
ω′

)66 (15+7ω)2·(34+13ω′)2·(47+15ω)2

(15+7ω′)2·(34+13ω)2·(47+15ω′)2

Ψ̃1(CM(K,Φ,OF )) corresponding to non-Galois CM fields are actually square-free ele-
ments of F . Is this a coincidence or a general phenomenon? Notice that by Corollary 6.3
this would imply that Ψ̃1(z) generates the class field LK . This is the case with the examples
computed above.

3. Is there a (finite) subset B of the positive integers such that the functions Ψ̃m (m ∈ B)
generate the function field of the symmetric Hilbert modular surface corresponding to
SL2(OF )?

4. In terms of the generators g2, s6, s10 of the ring of symmetric Hilbert modular forms
of even weight for Q(

√
5) the functions Ψ̃1 and Ψ̃2 look rather complicated. Are there

other generators which yield a nicer description (possibly of all Ψ̃m)?
5. Describe how the correspondence of Theorem 5.2 behaves under the action of the

corresponding Hecke algebras. It should be Hecke equivariant, where the Hecke action on
the image is multiplicative (see also [Bo2] Problem 16.5).
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Table 3. CM extensions of Q(
√

5)

q K = F (
√

∆) hK CL(K)

5 ∆ = −5+
√

5
2

1 OK = OF +
√

∆OF

41 ∆ = −13+
√

5
2

1 OK = OF + 1
2
(
√

∆ + 3+
√

5
2

)OF

61 ∆ = −(9 + 2
√

5) 1 OK = OF + 1
2
(
√

∆ + 1)OF

109 ∆ = −21+
√

5
2

1 OK = OF + 1
2
(
√

∆ + 3+
√

5
2

)OF

241 ∆ = −33+5
√

5
2

3 OK = OF + 1
2
(
√

∆ + 3+
√

5
2

)OF ,

A = 2OF + 1
2
(
√

∆ + 9+3
√

5
2

)OF ,

B = 4OF + 1
2
(
√

∆ + 9+3
√

5
2

)OF

281 ∆ = −37+7
√

5
2

3 OK = OF + 1
2
(
√

∆ + 1+
√

5
2

)OF ,

A = 2OF + 1
2
(
√

∆ + 1+
√

5
2

)OF ,

B = 4OF + 1
2
(
√

∆ + 9+
√

5
2

)OF

409 ∆ = −41+3
√

5
2

3 OK = OF + 1
2
(
√

∆ + 1+
√

5
2

)OF ,

A = 2OF + 1
2
(
√

∆ + 7+3
√

5
2

)OF ,

B = 4OF + 1
2
(
√

∆ + −1+3
√

5
2

)OF

6. Generalize the results of the present paper to Hilbert modular surfaces of arbitrary
discriminant.
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E-mail address: bruinier@math.uni-koeln.de

Department of Mathematics, University of Wisconsin Madison, Van Vleck Hall, Madi-
son, WI 53706, USA

E-mail address: thyang@math.wisc.edu


