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Let X be a smooth projective curve defined over Q. When the genus g of X is ≥ 2, Faltings’
Theorem tells us that the number #X(Q) of Q-rational points on X is finite. The following
conjecture is refinement of Falting’s Theorem.

Conjecture (Uniformity). For every g ≥ 2, there is a constant B(g,Q) such that for every smooth
and projective curve over Q of genus g we have:

#X(Q) ≤ B(g,Q) .

The uniformity conjecture would follow from the currently still open Lang-Vojta-conjecture,
which is a higher-dimensional analogue of Faltings’ Theorem. It was considered somewhat
outrageous for a while and was taken as an indication that the Lang-Vojta conjecture was false.

In [KRZB16], however, Katz–Rabinoff–Zureick-Brown succesfully combined techniques
from tropical and non-Archimedean geometry with the method of Coleman-Chabautry in
order to prove the following Theorem, which proves the conjecture for curves whose Jacobian
has rank ≤ g− 3.

Theorem (Katz–Rabinoff–Zureick-Brown, [KRZB16]). Let X be any smooth curve of genus g

defined over Q and write r = rankZ JacX(Q). If r ≤ g− 3, then:

#X(Q) ≤ 84g2 − 98g+ 28 .

The goal of this seminar is to understand the proof of this theorem with a particular focus
on the methods from tropical and non-Archimedean geometry that allow us to extend the
method of Chabauty-Coleman to curves with bad reduction. After covering the background,
we will mostly follow the survey [KRZB18] written by the authors.

List of talks

Talks 1-6 are particularly suitable for Master- and Ph.D.-students, since they require less
background. Talk 5 and 6 do not depend on Talk 1-4. One of the two speakers for Talk 7-8
should know about non-Archimedean uniformization of abelian varieties. Talk 9 is independent
from the talks before and might be a good choice for a young number theorist/arithmetic
geometer. Talk 10-12 require the most technical insight and might be a good choice for more
experienced speakers.

The talks naturally come in the following subgroups: Talk 1-4, Talk 5-6, Talk 7-8 (which
depend on Talk 1-5), and Talk 10-12 (which depend on everything before). The speakers within
these groups should communicate with each other to make sure they know what has already
been covered and what still needs to be done.
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Talk 1: Berkovich analytic spaces (25.4.)

Introduce Berkovich analytic spaces focussing on the topological structure of analytifications,
as e.g. in [Wer13], [Bak08], and [Pay15]. The central points are the following: Recall non-
Archimedean non-Archimedean absolute values as in [Wer13, Section 2], then describe the
general theory, as in [Wer13, Section 5]. Conclude with [Wer13, Section 3 and 4] as an extended
example. The central goal is to understand the picture of the Berkovich analytic line, see
[Bak08, Figure 1].

Talk 2: Skeletons of curves I (25.4)

Recall the notion of an affinoid algebra from Talk 1 and explain the construction of skeletons
of generalized annuli in [BPR13, 2.1-2.7]. Then explain the notion of a semistable vertex set
and of the skeleton associated to such a semistable vertex set, as in [BPR13, 3.1-3.9].

Talk 3: Skeletons of curves II (9.5.)

Recall the construction of the skeleton associated to a semistable vertex set from [BPR13,
Section 3] and then survey [BPR13, Section 4] that explains how semistable vertex sets are
related to semistable models. The central point is the reduction map and Theorem 4.11, which
should be explained in detail. Please state the Stable Reduction Theorem [BPR13, Theorem
4.22] and explain its interpretation in the language developed before.

Talk 4: Metric structures and the slope formula (9.5.)

"Explain" the metric structure on the skeleton. The relevant parts in are: Section [BPR13,
2.8–end], [BPR13, Definition 3.10–end] and [BPR13, Section 5]. Finish with the slope formula
[BPR13, Theorem 5.15] that will be used in Talk 7/8. This can be complemented with the
original (and beautifully written) paper [BPR16] and, in particular, [BPR16, Theorem 5.14.].

Talk 5: Divisor theory on metric graphs (23.5.)

Survey the divisor theory on metric graphs, following e.g. [BJ16, Part 1]. You will have to pick
and choose so that you can fit everything into your talk. The central notions to be covered are:
Divisors on finite and metric graphs, rational equivalence, Jacobians, and Abel-Jacobi maps (as
in [BJ16, Section 2.2, 3.2, and 3.3]). Please state the Abel-Jacobi-Theorem, which will be proved
in Talk 6.

Talk 6: Jacobians of metric graphs (23.5)

Survey the proof of the Abel-Jacobi-Theorem [BF11, Theorem 3.4] for metric graphs. The
original account can be found in [MZ08]. The central ingredients of the proof in [BF11] are
Theorem 2.8, Theorem 2.11, and its refinement, Corollary 3.11. Section 4-6 are interesting, but
can safely be ignored.

Talk 7/8: Skeletons of Jacobians I/II (13.6.)

State and prove the main result of [BR15], Theorem 1.3. It states that the non-Archimedean
skeleton of the Jacobian of a curve X is equal to the Jacobian of the skeleton of X and that the
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retraction to the skeleton naturally commutes with Abel-Jacobi maps. First focus on [BR15,
Section 2], where an overview over the proof is given. Then carefully explain the blackbox
"non-Archimedean uniformization of abelian varieties", as in [BR15, Section 4]. Finally, survey
[BR15, Section 5 and 6] to wrap up the proof. In particular, explain how the slope formula
from Talk 4 is used in the proof of [BR15, Proposition 5.3].

Talk 9: The method of Chabauty-Coleman I: An overview (27.6.)

Give an overview of the method of Chabauty-Coleman following [MP12]. This talk is inde-
pendent from all talks before and is an ideal choice for a young number theorist/arithmetic
geometer. The central parts of [MP12] are Section 4 and 5 as well as a selection of the examples
in Section 8.

Talk 10: The method of Chabauty-Coleman II: Theories of p-adic integration (27.6.)

Survey [KRZB18, Section 4] which explains how the previous tropical and non-Archimedean
story helps us refine the Chabauty-Coleman version of p-adic integration.

Talk 11/12: Uniformity of rational points on curves I and II (11.7.)

Survey the main results and proofs in [KRZB16], as in [KRZB18, Section 1 and 5].
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