INVARIANT CONDITIONALS AND INDEPENDENCE IN ŁUKASIEWICZ LOGIC

DANIELE MUNDICI

Abstract

By the Kroupa-Panti theorem, states of an MV-algebra A are (in canonical one-one correspondence with) regular probability Borel measures on the maximal spectral space of A. Thus the finite additivity of states completely captures the sigma-additivity of their corresponding probability measures.

Further, states are coherent probability assessments, in the sense of De Finetti, on events described by Łukasiewicz (infinite-valued propositional) logic. Pursuing this line of research, to every consistent finite set Θ of conditions, expressed by formulas (equivalently, by one formula) in Łukasiewicz logic, we attach a map P_Θ assigning to each formula ψ a rational number $P_\Theta(\psi) \in [0, 1]$ that represents "the conditional probability of ψ given Θ". Algebraically speaking, P_Θ yields a state of the Lindenbaum algebra of Θ. The map $\Theta \mapsto P_\Theta$ has the following properties:

(i) (Effectiveness): The value $P_\Theta(\psi)$ is effectively computable from Θ and ψ.

(ii) (Faithfulness): $P_\Theta(\psi) = 1$ iff ψ is a syntactic consequence of Θ, iff ψ is a semantic consequence of Θ.

(iii) (Additivity): For any two formulas ϕ and ψ whose $\&$-conjunction is falsified by Θ, letting χ be their \lor-disjunction we have $P_\Theta(\chi) = P_\Theta(\phi) + P_\Theta(\psi)$.

(iv) (Invariance): Whenever Θ' is a finitely axiomatizable theory and i is an isomorphism between the Lindenbaum algebras of Θ and of Θ', then for any two formulas ψ and ψ' that correspond via i we have $P_\Theta(\psi) = P_{\Theta'}(\psi')$. Invariance generalizes the natural requirement that the probability of ψ given Θ should be the same as the probability of a new variable X given (Θ and $(\psi \leftrightarrow X)$).

Using our conditional $\Theta \mapsto P_\Theta$, we can simply say that event ψ is independent of Θ if the conditional probability of ψ given Θ is the same as the unconditional probability of ψ, i.e., the probability of ψ given the tautology $\psi \leftrightarrow \psi$.

We will survey the wealth of recent results on MV-algebraic states and their applications.

(D.Mundici) DEPARTMENT OF MATHEMATICS "ULISSE DINI", UNIVERSITY OF FLORENCE, VIALE MORAGNI 67/A, I-50134 FLORENCE, ITALY
E-mail address: mundici@math.unifi.it

Date: January 29, 2009.