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1 Introduction

1.1 Motivation

The starting point for the ideas presented in this thesis was that I wanted to get a better
understanding of the various functors and geometric morphisms that arise in the context
of different realisability constructions.

Let P be a tripos over Set. Then we may construct the topos Set[P]. There are two
functors that we may construct for each such topos, namely the global sections functor

Γ : Set[P] // Set

and the ‘constant objects’ functor

∆ : Set // Set[P].

For localic toposes, we have ∆ a Γ, but for realisability toposes ∆ and Γ mysteriously
exchange places and we have Γ a ∆. In relative realisability, Γ has a right adjoint and ∆
has a left adjoint, but they do not pair any more. In modified realisability, Γ has a right
adjoint, but ∆ has no adjoint at all. Moreover, the different realisability constructions
are related through geometric morphisms.

It turns out that all these functors are induced by mappings between the underlying
triposes and these are much easier to analyse. But in order to systematically reduce
questions about functors between tripos-induced toposes to questions about mappings
between triposes it is desirable to have an abstract characterisation of the construction
which maps triposes to toposes and maps between triposes to functors between toposes.
The present work intends to give such a characterisation.

The most important problem is to find the right framework for this characterisa-
tion. We want the tripos-to-topos construction to be functorial, but between which
(2-)categories? The traditional approach to consider geometric morphisms as the ‘right’
class of maps between toposes as well as triposes seems not satisfactory, because

1. the constant objects functor, which seems to be the only construction that works
for every tripos, does not come as a geometric morphism in a canonical way, and

2. already in [4], it is remarked that the construction that transforms maps of triposes
to functors already works if the tripos morphism (which is really a natural trans-
formation between presheaves of Heyting algebras) preserves only finite meets.

In order to capture the construction in its greatest possible generality, we will therefore
consider finite meet preserving tripos-morphisms and finite limit preserving functors as
arrows between triposes and toposes respectively1. However, we have to pay a price for
this generality: On cartesian tripos-morphisms, the tripos-to-topos construction does

1Conforming with contemporary literature, we will use the adjective cartesian to say that something
has or preserves finite limits or meets
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not act pseudofunctorial, but merely oplax functorial. To see this we do not even have
to use complicated realisability-constructions, finite locales suffice.

Let B = {true, false} be the locale of booleans, with false ≤ true. Then Set(−,B) and
Set(−,B×B) are triposes, and the induced toposes are equivalent to Set and Set×Set,
respectively. Between the locales we consider the meet-preserving maps

δ = 〈id, id〉 : B // B× B and ∧ : B× B // B

These maps give rise to cartesian tripos-morphisms, which in turn give rise to functors
and the reader may believe me for the moment that these are just the familiar

∆ = 〈id, id〉 : Set // Set× Set and (−×−) : Set× Set // Set.

Forming the composition of the maps, we get ∧ ◦ δ = idB and this gives rise to the
identity functor. Therefore we obtain a noninvertible constraint cell

Set

Set× Set

∆

��?????????????Set Setid // Set

Set× Set

??

×

�������������

η
��

where ηI = δI : I // I × I is the unit of the adjunction ∆ a (−×−).
Hence, the tripos-to-topos construction is generally only oplax. However, we are deal-

ing with a pretty well-behaved form of oplaxness. In particular the constraint cells for
the identities are always invertible and the constraint cells for the composition are in-
vertible whenever the second arrow is regular, by which we mean that a tripos-morphism
commutes with existential quantification.

So far, we have given an outline of the behaviour of the tripos-to-topos construction,
but our original goal was to give an abstract characterisation. This characterisation
comes in the form of a (generalised) biadjunction. More precisely, we want to justify
the tripos-to-topos construction by showing that it is adjoint to some ‘forgetful’ functor.
This functor has to forget from toposes to triposes and the obvious way to do so is to
assign to each topos its subobject fibration. This deliberation also suggests an answer to
another design question that we have not even posed yet: The forgetful functor is only
definable if we do not consider triposes over a fixed base category, but put the triposes
over all bases in one big 2-category. The right notion of arrow between triposes over
different bases is then the concept of fibred functor over a functor between the bases.
This is presented e.g. in [11].

Having sketched what the involved 2-categories look like, we can now give them names.
The 2-category of triposes is called Tripc and the 2-category of toposes (with finite-limit
preserving functors) is called Topc. We have already described the object part of the
forgetful functor S : Topc

//Tripc, the morphism part is straightforward. The tripos-
to-topos construction will be denoted by T : Tripc

// Topc.
We also have something that looks like a unit for the adjunction: for a given fibration

P over C, this is a fibred functor over the constant objects functor, which assigns to
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every predicate over I the canonical subobject of ∆I. Naturality constraint cells exist,
but they are only invertible if the involved tripos morphism is regular.

STP STQ//

P

STP
��

P Q// Q

STQ
��

{� ����

For any topos E , we have E ' TSE and this settles the question about the counit.
Hence, we have all the data that are necessary for an adjunction and it turns out

that the triangle equalities also hold up to equivalence. But unfortunately, this is not
a biadjunction. The concept of biadjunction is only defined for pseudofunctors, and in
general, if we try to generalise bicategorical concepts and try to find lax/oplax versions,
we get huge problems. For example, the horizontal composition F ◦ η of a natural
transformation with a lax functor is not even definable in general. In our case, all
composites in the triangle equalities are well defined, but we can not infer the uniqueness
of the adjoint anymore in the usual way.

We provide two ways to get a ‘good’ biadjunction after all.

1. If we restrict our attention to regular tripos morphisms and regular functors be-
tween toposes, then all constraint cells become invertible, we get ordinary pseud-
ofunctors and pseudo-natural transformations and all works out. At first, this
is surprising2, because the constant objects functor seems not to be regular in
general (although I do not know a counterexample). But this is not a problem,
because in the construction, the constant objects functor only appears as base part
of P //STP and the regularity requirement just concerns the fibred part of the
tripos morphism.

In this way, we obtain a universal characterisation of the topos TP for a given
tripos P, but the approach is not entirely satisfactory, as it does not capture
the ‘full spirit’ of the tripos-to-topos construction. This approach is presented in
section 3.

2. As mentioned above, if we include cartesian tripos morphisms and functors, we
obtain something that looks like an adjunction but is not really one, because the
occurring functors and natural transformations are partly oplax. Just as I wanted
to give up investigating this any further, Thomas Streicher gave me the important
hint that Peter Johnstone used an adjunction-like concept with similar features in
his paper [6] to give a definition of fibration that works in arbitrary 2-categories:
the semi-lax adjunction. Most importantly, Johnstone describes a way to sustain
the desired uniqueness of adjoints (up to equivalence) by postulating additional
data. The basic idea is that we introduce a class of ‘good’ arrows, which is a
subclass of the class of all 1-cells and add axioms that ensure that all lax data is
actually pseudo on the good arrows.

2and I did not notice it myself, Thomas Streicher had to point it out to me
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I had to generalise Johnstone’s concept to adapt it to the situation of the tripos-
to-topos construction. These ideas are developed in section 6, culminating in an
‘adjointability style’ characterisation of those functors that allow a semi-lax left
adjoint. The tripos theoretical main result of this thesis can then be phrased
as ‘the forgetful functor from toposes to triposes is left semi-lax adjointable’. We
decided to present the concrete case first, therefore this result can be found already
in section 5, of course not in abstract form but spelled out elementary.

1.2 Conventions and Notation

In the previous section I stated that triposes are presheaves of pre-Heyting algebras, but
from now on, we shall view them as fibrations and not as indexed categories. Apart
from philosophical/foundational considerations, this has a practical advantage: from
the fibrational point of view, a tripos morphism is a single functor and not a family of
functors, and this helps us to save lots of indizes.

Also concerning fibrations, we use the traditional names cartesian arrow and co-
cartesian arrow, but we use fibred functor and fibred natural transformation instead of
cartesian functor and cartesian natural transformation to avoid naming conflicts with
finite limit related concepts.

In diagrams, we draw cartesian arrows in the form ///o/o/o .

A cartesian category is a category with finite limits and a cartesian functor is a functor
between cartesian categories that preserves finite limits.

When composing functors and natural transformations in various ways, or in general
2-categorical reasoning we use the convention from [7] to denote composition of 1-cells
and the vertical composition of 2-cells by juxtaposition and horizontal composition of
2-cells by ◦.

Instead of the 2-category of toposes and geometric morphisms, which is the primary
2-category of toposes e.g. in [7], we consider two 2-categories of toposes:

• Topc is the 2-category of toposes, cartesian functors and natural transformations.

• Topr is the 2-category of toposes, regular (i.e. cartesian and epi-preserving) func-
tors and natural transformations.

Finally, we have to depart from traditional tripos theoretical notation in two points.
Firstly, although we used ∆ for the constant objects functor in the introduction, we
will denote it by D from now on, because we want to reserve greek capital letters for
the ‘fibred functor’-part of tripos morphisms. Secondly, we will write TP instead of the
traditional C[P] to emphasise the functorial nature of the tripos-to-topos construction,
and we will generally use capital boldface letters for functors between 2-categories.
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2 Triposes

Triposes were introduced in [4]. They give a class of models for constructive higher order
logic that is even more general than toposes. Using fibrational language3, we can define
them concisely as follows.

Definition 2.1 1. Let C be a cartesian category, and P a fibration over C. We say
that P has power objects4 if for each object I ∈ Obj(C) there exists an object
P(I) ∈ Obj(C) and an object (3I) ∈ PP(I)×I such that for all J ∈ Obj(C) and all
ϕ ∈ PJ×I , there exists an arrow {ϕ} : J //P(I) such that ϕ ∼= ({ϕ} × I)∗(3I).

J × I P(I)× I
{ϕ}×I

//

ϕ

J × I

ϕ 3I///o/o/o/o/o/o/o/o/o/o/o 3I

P(I)× I

2. A posetal hyperdoctrine is a fibration of pre-Heyting algebras (pHa’s) over a carte-
sian category that has internal sums and products.

3. A tripos is a posetal hyperdoctrine that has power objects.

Most triposes that we will encounter are in fact based on toposes and the following
lemma shows how the requirement to have power objects can be simplified in this case.

Lemma 2.2 A fibration over a properly5 cartesian closed category C has power objects
iff it has a generic predicate, i.e. there exists an object Prop in C and a predicate
tr over Prop such that for all objects I of C and all predicates ϕ over I there exists
pϕq : I // Prop with

I Prop
pϕq

//

ϕ

I

ϕ tr///o/o/o/o/o/o/o tr

Prop

Proof. The necessity of the condition is clear because for each tripos, 31 is a generic
predicate.

For the converse direction, choose P(J) = PropJ and 3J= eval∗Proptr, where evalProp :

PropJ × J // Prop is the counit of the adjunction (−)× J a (−)J : C // C at Prop.�

3The author’s primary reference on fibrations is [11], everything that is not defined here can be looked
up there.

4These should be more precisely called weak power objects, because the arrow {ϕ} is not required to
be unique.

5in the sense of Johnstone, i.e. cartesian closed with all finite limits
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2.1 The internal language of a tripos

Triposes are models for higher order logic. More precisely, for any tripos there is a canon-
ical way to interpret in it full predicate logic with equality, supplemented by product-
and power types. The interpretation of predicate logic is fairly standard, therefore we
will only explain equality and power types.

Let P be a tripos over C, A ∈ Obj(C). Then the equality predicate on A is given by
∃δ(>), where δ = 〈id, id〉 : A // A× A and > ∈ PA is a greatest element of PA. This
interpretation is not new, it goes back to Lawvere and it validates the usual equality
axioms (a | ` a = a) and (a, b | ϕ(a), a = b ` ϕ(b)). We only mention it here, since in
the standard references [4, 10], triposes are presented as models for higher order logic
without equality.

The power types come syntactically with the following rules.

Γ, x:A | φ(x)

Γ | {x:A |φ(x)} : PA

Γ | t : A Γ | M : PA

Γ | t ∈M

They are interpreted by the power objects and the interpretation validates

Γ | ` t ∈ {x:A |ϕ(x)} ↔ ϕ(t)

However, the schema

m,n : PA | ∀x:A . x ∈ m↔ x ∈ n ` m = n

is only validated in rare cases (for example if the tripos is in fact the subobject fibration
of a topos or the fibration of j-stable predicates for some local operator j on a topos).

The internal language of a tripos P : dom(P) //C is a language of higher order logic
in the above sense where the symbols for base types are the objects of C, all morphisms
f : A // B of C serve as function symbols of the corresponding signature, and the
predicate symbols are the objects of dom(P) where each ϕ ∈ Obj(C) expects a single
argument of type P(ϕ).

The semantics that we always have in mind when using the internal language is given
as usual by interpreting all type, function, and predicate symbols by themselves.

2.2 Examples of triposes

1. Let C be a category, and let MC be the full subcategory of C↓C on the monic
arrows. The codomain projection ∂1 : MC // C is a fibration iff in C, pullbacks
of monos along arbitrary morphisms exist.

We call this fibration the subobject fibration of C and denote it by SC. A sufficient
condition for SC to be a tripos is that C is a topos, and this claim is most easily
verified in the internal logic of C (hint: idΩ is the generic predicate). However,
there are also other categories aside from toposes whose subobject fibrations are
triposes, for example the category Asm(A) for a partial combinatory algebra A
(See [13]).
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2. Let E be a topos and (A, (≤) // // A × A) an internal locale (complete Heyting
algebra). We view A as an internal category and construct its externalisation [A]6.
Spelled out, this looks as follows.

The objects of dom([A]) are maps ϕ : I //A and morphisms from ϕ : I //A to
ψ : J //A are maps u : I // J with the property that 〈ϕ, ψu〉 factors through
(≤), or in other words the judgement (i | ` ϕ(i) ≤ ψ(ui)) holds in E . The functor
part is given by the obvious projection.

The ensuing fibration is a tripos with generic predicate idA.

Of course, when we take (Ω,⇒) as our locale, we obtain a fibration that is equiv-
alent to the subobject fibration as in Example 1.

3. A special case of 2 that is a bit more general than 1 is the following. Let E be
a topos, and let j : Ω // Ω be a local operator (see e.g. [7]; local operators are
traditionally called Lawvere-Tierney topologies). We denote by Ωj the image of j
as a subobject of Ω. It is an internal locale with respect to the ordering induced
by Ω. The induced tripos consists of the j-stable predicates.

4. Let E be a topos and (A, (− ·−) : A × A ⇀ A) an internal partial combinatory
algebra (pca) in the sense of [1].

The total category of the realisability tripos rt(A) has arrows ϕ : I // ΩA as
objects and given two such objects ϕ : I // ΩA and ψ : J // ΩA a morphism
from ϕ to ψ is an arrow u : I // J such that the topos validates

` ∃e:A ∀i ∀r:A . r ∈ ϕ(i)⇒ e·r ∈ ψ(ui) (2.1)

and again the functor is the obvious projection.

To see that this is a fibration of pHa’s, we have to find corresponding constructions
for all connectives of predicate calculus. This is presented e.g. in [13]. A generic
predicate is given by idΩA

5. Let E be a topos and A#
// //A an inclusion of pca’s in E ; that is a pca A together

with a subobject A# that is closed under application and contains two elements
that serve as k and s for A.

The total category of the relative realisability tripos rtr(A#,A) is the lluf subcat-
egory of dom(rt(A)) on the arrows for which the strengthening

` ∃e:A# ∀i ∀r:A . r ∈ ϕ(i)⇒ e·r ∈ ψ(ui)

of (2.1) holds in E , the functor part is again given by projection.

The first order structure and the generic predicate are given in the same way as
for rt(A), so the only thing that distinguishes rt(A) and rt(A#,A) is that for the
latter one the entailment relation in the fibres is sparser.

6The notation is from [5] with the difference that they use [A] not for the functor, but for the total
category.
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6. Let A be a pca in E . The modified realisability tripos rtm(A) is given as follows.
Objects of the total category are pairs ϕ = (ϕa, ϕp) of maps with ϕa, ϕp : I //ΩA

such that

a) ∀i . ϕa(i) ⊂ ϕp(i), and

b)
⋂
i∈I ϕp(i) is inhabited.

A morphism from ϕ to ψ is a morphism u : I // J such that

` ∃e:A ∀i ∀r:A . (r ∈ ϕa(i)⇒ e·r ∈ ψa(ui)) ∧ (r ∈ ϕp(i)⇒ e·r ∈ ψp(ui))

The functor part is as above. A generic predicate can be defined as follows.

Prop = {(M,N) ∈ ΩA × ΩA | M ⊂ N, k ∈ N}
tra(M,N) = M

trp(M,N) = N

This tripos and the corresponding topos were first examined by van Oosten in [14].

2.3 Tripos morphisms

Fibrations form 2-categories in a natural way, the 1– and 2–cells being the fibred functors
and fibred natural transformations. For triposes, we only consider fibred functors that
are compatible with a part of the logical structure.

Definition 2.3 Let P : dom(P) // C and Q : dom(Q) //D be two triposes.

• A (cartesian) tripos morphism is a pair of functors (F,Φ) with F : C // D and
Φ : dom(P) // dom(Q) such that

1. F preserves finite limits,

2. the square

C D
F

//

dom(P)

C

P

��

dom(P) dom(Q)Φ // dom(Q)

D

Q

��

commutes (on the nose),

3. Φ maps cartesian arrows to cartesian arrows, and

4. For each A ∈ Obj(C), the restricted functor ΦA : PA //QFA preserves finite
meets.

• A tripos morphism (F,Φ) is called regular if Φ maps cocartesian arrows to co-
cartesian arrows.
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Conditions 2 and 3 in the definition of cartesian tripos morphism say that Φ is a fibred
functor over F . The others are compatibility postulates. Their effect is best understood
in terms of the internal logic.

If (F,Φ) is an arbitrary fibred functor, then we can infer

x:A | ϕ(x) ` ψ(x)

x:FA | Φϕ(x) ` Φψ(x)

If F is cartesian, then we can use several variables:

x1:A1 . . . xn:An | ϕ(x1 . . . xn) ` ψ(x1 . . . xn)

x1:FA1 . . . xn:FAn | Φϕ(x1 . . . xn) ` Φψ(x1 . . . xn)

Moreover, cartesianness makes the translation commute with the interpretation of terms.
If Φ satisfies 4., the translation along (F,Φ) is compatible with interpretation of Horn

clauses.
Γ | ϕ1 . . . ϕn ` ψ

ΦΓ | Φϕ1 . . .Φϕn ` Φψ

Clearly, this scheme can be extended, e.g. interpretation of formulas of regular logic
commutes with translation along regular tripos morphisms. However, it will turn out
later that plain Horn logic takes us surprisingly far.

Examples of tripos morphisms

It turns out that the most convenient and natural way to define tripos morphisms is to
pretend that the triposes were not fibred, but indexed posets; i.e. instead of defining a
fibred functor between the triposes we define a pseudo-natural transformation between
the associated presheaves of pHa’s. Thus, if we want to define a tripos morphism
between two triposes P : dom(P) //C,Q : dom(Q) //D, we have to provide a cartesian
functor F : C //D and for each A ∈ Obj(C) a monotone map ΦA : PA // QFA such
that

• Naturality: For all f : A //B in C and all ψ ∈ Obj(PB) we have

(Ff)∗(ΦBψ) a` ΦA(f ∗ψ)

• Meet-stability: All ΦA preserve finite meets.

Existential quantification appears in the indexed setting in the form of left adjoints to
the reindexing maps, and a tripos morphism is regular iff we have

• Regularity: For all f : A //B in C and all ψ ∈ Obj(PA) we have

∃Ff (ΦAψ) a` ΦB(∃fψ)

12



Consider a tripos P over a topos E . There is a cartesian tripos morphism (idE ,∆) :
SE // P with constant base, defined by

∆A(m : U // // A) = (a | ∃u . m(u) = a),

where the right hand formula has to be interpreted in P.

Lemma 2.4 Let P be a tripos over a topos E. The following are equivalent.

1. P recognises epis; i.e. for each epimorphism e : A // //Q in E,

q:Q | ` ∃a . e(a) = q

holds in P.

2. For each epimorphism e : A // //Q in E, the predicate ∃e> is maximal in PQ.

3. The tripos morphism (idE ,∆) defined above is regular.

4. P has fibrewise quantification in the sense of Pitts [10].

Proof. The equivalence of 1–3 is straightforward, and the equivalence of 2. and 4. is
proved in [10]. �

Just as Set has a special status among categories, Set-based triposes have special
status among triposes. This can be seen from the following construction that only works
for Set-based triposes.

Let P be a tripos over Set. The tripos morphism (idSet,Γ) : P // S(Set) is given
by

ΓI(ϕ) = {i | >1 `1 ϕ(i)}

Γ is sometimes regular (e.g. for realisability triposes) and sometimes not (e.g. for locale-
induced triposes for locales where > is a non-trivial join. Now, the natural question to
ask is: ‘Is this Γ the same as comprehension7 in the sense of Lawvere?’ — It is, whenever
P has comprehension, and this is the case if and only if P comes from a locale (without
proof).

Another natural source for tripos morphisms are meet preserving maps between lo-
cales. Indeed, given two locales A,B in the same topos E and a map f : A // B that
preserves finite meets, we can define a cartesian tripos morphism (idE , [f ]) : [A] // [B]
by letting

[f ]I(ϕ : I // A) = f ◦ ϕ.

This tripos morphism is regular iff f preserves all joins.

Finally, we give a somehow peculiar example from realisability that we will need later.
Consider the modified realisability tripos rtm(A) for a pca A over Set. Although this
tripos is 2-valued in the sense that the only predicates in the fibre over the terminal

7If you do not know comprehension, just ignore this paragraph
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object are true and false, the tripos morphism (id,∆) : S(Set) // rtm(A) is not
the only nontrivial embedding of the classical predicates into the modified realisability
tripos. The reason for this is that the predicates of the form ∆U in rtm(A) are in general
not ¬¬-stable. If we postcompose (id,∆) with double negation, we obtain the tripos
transformation (id,∇) with

(∇A U)a(x) = {r ∈ A | x ∈ U} and

(∇A U)p(x) = A

for U ⊂ A and x ∈ A. This tripos morphism commutes with existential quantification
only along epimorphisms. In particular, it does not commute with equality.

2.4 Tripos transformations and 2-categories of triposes

We will consider two 2-categories of triposes. The first has the cartesian tripos mor-
phisms as 1-cells and the second contains just the regular tripos morphisms. The 2-cells
will be the fibred natural transformations (we will simply call them transformations),
that we will now define.

Definition 2.5 Let P : dom(P) // C and Q : dom(Q) // D be two triposes and
consider two cartesian tripos morphisms (F,Φ), (G,Γ) : P // Q. A transformation
from (F,Φ) to (G,Γ) is a natural transformation η : F +3G with the property that for
all A ∈ Obj(C) and all ψ ∈ Obj(PA), we have

a:FA | Φψ(a) ` Γψ(ηA(a)),

or diagrammatically

A

ψ

FA GA
ηA //

Φψ Γψ//

The 2-categories of triposes are then defined as follows.

Definition 2.6 • Tripc is the 2-category of triposes, cartesian tripos morphisms and
transformations.

• Tripr is the 2-category of triposes, regular tripos morphisms and transformations.

Observe how these 2-categories correspond to the 2-categories Topc and Topr defined in
section 1.2.

To conclude this section, we define the forgetful 2-functor from Topc to Tripc that we
want to left adjoin later.

Definition 2.7 The 2-functor S : Topc
// Tripc is defined by

14



E � // SE
(F : E // F) � // (F,M (F ))
(η : F //G) � // η

where M (F ) : M (E) //M(F) maps m : U // // A to Fm : FU // // FA which is a
mono again, because F preserves finite limits.

It is straightforward to see that S restricts to a pseudofunctor of type Topr
//Tripr

which we also denote by S. In the next section, we will show that this restricted S is
left biadjointable.

15



3 The tripos-to-topos construction

In this section, we want to show that the 2-functor S : Topr
// Tripr has a left

biadjoint T : Tripr
// Topr. To achieve this, we have to show that for a given tripos,

the presheaf Tripr(P,S−) of categories is representable, what means that we have to find
a topos TP and an object (D,Ξ) of Tripr(P,STP) such that the induced pseudo-natural
transformation Topr(TP,−) // Tripr(P,S−) is an equivalence.

Fortunately, to show that a pseudo-natural transformation is an equivalence it suffices
to show that it is a fibrewise equivalence, whence it remains to show that for a given
topos E , the functor

Topr(TP, E) // Tripr(P,SE)
F � // (FD,M (F )Ξ)
η � // η ◦D

is full, faithful and essentially surjective.
Having sketched our general strategy, we start by defining TP for a tripos P based on

some cartesian category C. TP is of course the same as the familiar C[P] known from
[4, 10].

Definition 3.1 Let P be a tripos over a cartesian category C. The category TP is given
by the following data:

• Objects:
Objects of TP are objects of C together with partial equivalence relations in P;
more precisely, objects of TP are pairs (A, ρ) with A ∈ Obj(C) and ρ ∈ PA×A such
that the following judgements hold in P.

(trans) ρ(a, b) ∧ ρ(b, c) ` ρ(a, c)
(symm) ρ(a, b) ` ρ(b, a)

• Morphisms:
Arrows are given as functional relations (again in P): A morphism from (A, ρ) to
(B, σ) is a (a`)-equivalence class of predicates over A×B such that for some (or
equivalently any) representative γ the following judgements hold.

(strict) γ(a, b) ` ρ(a) ∧ σ(b)
(cong) γ(a, b) ∧ ρ(a, a′) ∧ σ(b, b′) ` γ(a′, b′)
(singval) γ(a, b) ∧ γ(a, b′) ` σ(b, b′)
(tot) ρ(a) ` ∃b . γ(a, b)

Here, we use ρ(a) as abbreviation for ρ(a, a) for partial equivalence relations ρ.

Given a functional relation φ, we write [φ] for the equivalence class, i.e. the corre-
sponding morphism in TP. We use the same notation also for externalisations of
internal categories (see example 2 in subsection 2.2), but this will not lead to any
confusion.

16



• Composition:

Given a pair A
[φ] //B

[γ] // C, we define [γ][φ] = [γφ], where

γφ = (a, c | ∃b . φ(a, b) ∧ γ(b, c))

• Identity:
The identity morphism of (A, ρ) is [ρ].

It is not difficult to see that TP is actually a category.
As a side note, the reader may have noticed that we do not need all the structure of

the tripos for the construction, but only finite meets and existential quantification. So,
can we do the same construction for arbitrary posetal fibrations with finite meets and
existential quantification? There is one obstacle: Natural deduction is not conservative
over its (∧,∃)-fragment, and in particular we can not prove the composition to be as-
sociative in the weaker fragment. However, it all works out if we add as an additional
axiom the Frobenius law.

ϕ(x) ∧ ∃y . ψ(x, y) ` ∃y . ϕ(x) ∧ ψ(x, y) Frobenius law

This axiom can be appropriately reformulated for fibrations and indeed for posetal fi-
brations that have finite limits, existential quantification and validate Frobenius, the
above construction works.

What we gain when starting with a tripos and not with some fibration with less
structure, is that the ensuing category is a topos.

Theorem 3.2 For any tripos P, TP is a topos.

Proof. A detailed proof is given in [10]. We recall the basic steps for reference.
We start with the observation that a morphism [φ] : (A, ρ) //(B, σ) in TP is a mono

iff the tripos validates (a, a′, b | φ(a, b), φ(a′, b) ` ρ(a, a′)). From this we deduce that the
subobjects of a given object (A, ρ) can be represented by strict predicates in the following
sense: A predicate ϕ on A is called strict (with respect to ρ) if (a | ϕ(a) ` ρ(a)) and
(a, a′ | ϕ(a), ρ(a, a′) ` ϕ(a′)) hold. Such a ϕ induces a mono [ρ|ϕ] : (A, ρ|ϕ) // // (A, ρ),
where ρ|ϕ = (a, a′ | ϕ(a) ∧ ρ(a, a′)).

Now we show that TP has finite limits and power objects.

• Terminal object: Given by (1,>1).

• Binary products: A product of (A, ρ) and (B, σ) is given by (A×B, (a, b, a′, b′ |
ρ(a, a′) ∧ σ(b, b′))). (a, b, a′ | ρ(a, a′) ∧ σ(b)) gives a representative of the first
projection, the second projection is given analogously.

• Equalisers: An equaliser of [φ], [γ] : (A, ρ) // (B, σ) is induced by the strict
predicate (a | ∃b . φ(a, b) ∧ γ(a, b)).
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• Power objects: A power object of (A, ρ) is given by (PA,Pρ), where

Pρ = (m,n | (∀a . a ∈ m→ ρ(a))

∧(∀a, a′ . a ∈ m ∧ ρ(a, a′)→ a′ ∈ m)

∧(∀a . a ∈ m↔ a ∈ n))

and the subobject of A × PA giving the element relation is induced by (a,m |
Pρ(m) ∧ a ∈ m). �

Next, we have to define the tentative unit (D,Ξ) : P // STP.

Definition 3.3 (The constant objects functor) D : C // TP is defined by

A � // (A, (a, a′ | a = a′))
(f : A→ B) � // (a, b | f(a) = b)

Lemma 3.4 1. D preserves finite limits.

2. Every object of TP is a subquotient of some DA.

Proof. Ad 1. We show that D preserves the terminal object and pullbacks.
The image of the terminal object is (1,>) and the unique arrow from (A, ρ) to (1,>)

is given by [(a, ∗ | ρ(a))].
For the pullbacks, first of all observe that a square

(B, σ) (C, γ)
[γ]
//

(P, υ)

(B, σ)

[π]

��

(P, υ) (A, ρ)
[o] // (A, ρ)

(C, γ)

[φ]

��

is a pullback iff the judgements

a, b, c |φ(a, c), γ(b, c) ` ∃p . o(p, a) ∧ π(p, b)

p, p′, a, b | o(p, a), o(p′, a), π(p, b), π(p′, b) ` υ(p, p′)

hold in P and then verify that this is the case for the image of a pullback in C under D.
Ad 2. For an object (A, ρ) of TP, the canonical mono-epi pair is given by

DA oo
[supp(ρ)] oo (A, supp(ρ))

[ρ] // // (A, ρ),

where
supp(ρ) = (a, a′ | ρ(a) ∧ a = a′) �

The next lemma anticipates the counit of the biadjunction.
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Lemma 3.5 If P is the subobject fibration of a topos, then D is an equivalence. Hence
E ' TSE for any topos E. �

In the proof of 3.2, we remarked that the subobjects of a given object (A, ρ) of TP

correspond to the predicates on A that are strict with respect to ρ. As all predicates
on A are strict with respect to the equality, the subobjects of DA correspond precisely
to the predicates on A. These subobjects occur so often, that we introduce a special
notation: We write ‖ψ‖ for the canonical subobject of DA that is induced by ψ ∈ PA.

Lemma 3.6 The assignment

A DA

ψ

A

ψ ‖ψ‖‖ψ‖

DA

��

��

� //

defines a fibred functor Ξ : dom(P) //M(TP) over D that is a fibrewise equivalence
in the sense that all ΞA’s are equivalences.

Because Ξ is a fibrewise equivalence, (D,Ξ) is a tripos morphism that preserves all
first order logical structure and thus is in particular regular. �

Having defined the candidate for the unit of the adjunction, we are now ready to prove
the main theorem.

Theorem 3.7 For any topos E, the functor

(−̌) : Topr(TP, E) // Tripr(P,SE)
F̌ = SF ◦ (D,Ξ)
η̌ = η ◦D

is full, faithful and essentially surjective.

Proof. We first show that (−̌) is faithful. Consider two natural transformations

η, θ : F //G : TP // E

such that η ◦D = θ ◦D. Let X ∈ Obj(TP) and represent X as as a subquotient

DA Qoo oo Q X// //

The diagram

GDA GQoo oo

FDA

GDA

ηDA=θDA

��

FDA FQoo oo FQ

GQ
���
�
�
�
�

GQ GX// //

FQ

GQ

FQ FX// // FX

GX
���
�
�
�
�
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has at most one pair of mediating arrows, but because of naturality, ηQ, ηX as well as
θQ, θX mediate. Therefore ηX = θX .

The proof that (−̌) is full is more interesting. Consider a transformation

ζ : (FD,MF Ξ) // (GD,MG Ξ) : P // SE ,

i.e., a natural transformation from FD to GD such that for all A ∈ Obj(C) and (because
Ξ is fibrewise essentially surjective) for all ψ ∈ (STP)DA we have

a | Fψ(a) ` Gψ(ζA(a)).

We have to construct a natural transformation ζ̃ : F // G such that ζ̃ ◦ D = ζ.
To construct ζ̃X for some X ∈ Obj(TP), we first choose a subquotient representation

DA oo m oo Q e // //X with corresponding partial equivalence relation ρ // //DA×DA ∼=
D(A× A). Since we have

Fρ(a, a′) ` Gρ(ζA(a), ζA(a′)),

there is a unique pair of mediating arrows in

GDA GQoo oo

FDA

GDA

ζA

��

FDA FQoo oo FQ

GQ
���
�
�
�
�

GQ GX// //

FQ

GQ

FQ FX// // FX

GX
���
�
�
�
�

(Lemma A.1), and the right hand vertical arrow gives us ζ̃X .
To see that this really gives a natural transformation, we still have to check the natu-

rality condition. Let X ′ ∈ Obj(TP) be a second object, with subquotient representation

DA′ oo
m′ oo Q′

e′ // //X ′ and corresponding partial equivalence relation ψ′ // //D(A′×A′),
and consider a morphism f : X //X ′. We define a predicate on DA×DA′ ∼= D(A×A′)
by

θ = (a, a′ | ∃q, q′ . m(q) = a ∧m′(q′) = a′ ∧ f(e(q)) = e′(q′)).

Again, as ζ is a tripos transformation, we have

a, a′ | Fθ(a, a′) ` Gθ(ζA(a), ζA′(a
′)),

but because θ is built up completely from regular logic which is stable under F and G,
this can be rephrased as

∃q, q′ . Fm(q) = a ∧ Fm′(q′) = a′ ∧ F (fe)(q) = Fe′(q′)

` ∃q, q′ . Gm(q) = ζA(a) ∧Gm′(q′) = ζA′(a
′) ∧G(fe)(q) = Ge′(q′).

From this, we can deduce

x:FX | ` ζX′(Ff(x)) = Gf(ζX(x)).
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Hint: Look at the diagram

FDA FUoo oo FU FX// //

DA Uoo m ooDA

FDA

U X
e // //U

FU

X

FX

GDA GUoo oo GU GX// //

FDA

GDA

ζA

��

FU

GU
��

FX

GX

ζ̃X

��

FX ′ FU ′oooo FU ′ FDA′// //

X ′ U ′oooo e′
X ′

FX ′

U ′ DA′// m′ //U ′

FU ′

DA′

FDA′

GX ′ GU ′oooo GU ′ GDA′// //

FX ′

GX ′

ζ̃X′

��

FU ′

GU ′
��

FDA′

GDA′

ζA′

��

X X ′
f //

FX FX ′//

GX GX ′//

?

and think in terms of relations. θ, for example, is given as relational composition of
the top row. Monomorphisms and epimorphisms can be neatly characterised in terms
of relational composition. A morphism f is monic iff f ◦ ◦ f = id and epic iff f ◦ f ◦ = id
((−)◦ denotes the opposite of a relation). Using these principles, the verification of the
claimed equality is straightforward.

It remains to show that (−̌) is essentially surjective. Consider a regular tripos trans-
formation

(F,Φ) : P // SE .

We have to construct a regular functor G = (̂F,Φ) : TP // E such that

(F,Φ) ∼= (GD, (MG)Ξ). (3.1)

Because E ' TSE by Lemma 3.5, we may construct a functor of type TP // TSE
instead, and this can be done simply by letting

(A, ρ) � // (FA,Φρ)
[φ] � // [Φφ].

It is easy to deduce from the regularity of (F,Φ) that this is well defined and functorial.
Limiting cones can be characterised completely in regular logic (as exemplified for pull-
backs in the proof of Lemma 3.4) and are therefore also stable under the construction.

Finally, a morphism (A, ρ)
[ε] // (B, σ) in TP is epic iff (σ(b) ` ∃a . ε(a, b)) and this is

stable under (F,Φ) as well. The verification of (3.1) is then straightforward. �

21



4 Weakly complete objects

When one first encounters the category TP, e.g. for the effective topos, one will feel
that its structure is somehow difficult to access and to comprehend. One reason for
this is its notion of morphism that differs from what we are used to from “normal”
mathematics. One effect of this is that the question whether two objects are isomorphic
becomes nontrivial. Consider for example the tripos [B × B] over Set. We define a
predicate ϕ over 2 by

ϕ : 2 // B× B
0 � // (true, false)
1 � // (false, true)

Then the object ‖ϕ‖ is terminal, a fact that becomes only clear by constructing a proof
(or by sheaf theoretic intuition).

The situation becomes a bit more intuitive if we restrict our attention to certain
well-behaved representatives of (isomorphism classes of) objects, the so-called weakly
complete ones.

Definition 4.1 Let P be a tripos over a cartesian category C.

• Let [φ] : (A, ρ) // (B, σ) in TP. We say that f : A // B is a tracking mor-
phism for [φ] (alternatively ‘[φ] is tracked by f ’) if one of the following equivalent
judgements

1. (a, b | φ(a, b) a` ρ(a) ∧ σ(fa, b))

2. (a | ρ(a) ` φ(a, fa))

holds in P.

• An object (A, σ) ∈ Obj(TP) is called weakly complete if all morphisms in TP with
codomain (A, σ) are tracked by some arrow in the base.

The relevance of tracking arrows and weakly complete objects is that we get some-
thing like skolem functions (or better skolem morphisms) witnessing in the base certain
existence statements (especially totality-statements for functional relations) in the fibra-
tion. In this ‘witnessed’ form, the judgements are stable under tripos morphisms even
if these are merely cartesian, for the simple reason that we do not use the ∃-symbol.
Concretely, we will make use of the following lemma.

Lemma 4.2 Let [φ] : (A, ρ) // (B, σ) and [γ] : (B, σ) // (C, τ) be morphisms in TP,
with tracking morphisms f and g, and let (F,Φ) : P // Q be a tripos morphism.

1. gf is a tracking morphism for [γ][φ] = [γφ].

2. Φφ is a functional relation with respect to (FA,Φρ) and (FB,Φσ) and Ff is a
tracking morphism for [Φφ]

3. If [φ] is a monomorphism then [Φφ] is also a monomorphism.
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4. [Φ(γφ)] = [ΦγΦφ], i.e. application of Φ commutes with relational composition.

Proof. 1, 2 and 3 are straightforward, and 4 follows from 1 and 2 because F (gf) is a
tracking morphism of [Φ(γφ)] as well as ΦγΦφ. �

It is important to notice that being weakly complete should not be seen as a property
of objects, but as a property of representations of objects. In particular, the class
of weakly complete objects is not closed under isomorphisms. Rather, every object is
isomorphic to a weakly complete one (and only this property makes them interesting for
us).

Lemma 4.3 Every (A, ρ) ∈ Obj(TP) is isomorphic to a weakly complete object.

Proof. The object is (PA, Sρ) with

Sρ = (m,n | ∃a . ρ(a) ∧ ∀a′ . a′ ∈ m↔ a′ ∈ n↔ ρ(a, a′)).

‘S’ is for singleton, because Sρ(m) has to be read as ‘m is a singleton with respect to
ρ’. It is straightforward to verify that the predicate ξ(A,ρ) = (a,m | Sρ(m) ∧ a ∈ m)
represents an isomorphism from (A, ρ) to (PA, Sρ). We have to show that (PA, Sρ) is
weakly complete. Let [φ] : (B, σ) // (PA, Sρ). By the definition of tripos, there is a
morphism f : B //PA with

B × A PA× A
f×idA

//

(b, a | ∃m. φ(b,m) ∧ a ∈ m)

B × A

(b, a | ∃m. φ(b,m) ∧ a ∈ m) 3A///o/o/o/o/o/o/o/o/o/o 3A

PA× A

,

that is
b, a | ∃m. φ(b,m) ∧ a ∈ m a` a ∈ fb

and it is again routine to check that this f tracks [φ]. �

Of course, because its codomain is weakly complete, γ(A,ρ) itself is tracked by some arrow
and this arrow is in fact {ρ}.

We denote the full subcategory of weakly complete objects of TP by wc(TP). The
previous result tells us that the embedding wc(TP) � � // TP is an equivalence.

In the sequel, we will need the singleton predicate mostly for constant objects (A,=A).
There, we will write SA instead of S=A to avoid double indizes.

Next, we present a technical lemma that helps to decide wether a given object is
weakly complete.

Lemma 4.4 1. Let σ ∈ P(A × A) be an equivalence relation on (A, ρ), i.e. σ tran-
sitive and symmetric such that

ρ(a, b) ` σ(a, b) and σ(a) ` ρ(a).

Then [φ] : (A, σ) // (C, τ) has a tracking arrow iff the composition [φ][σ] with
the quotient mapping has a tracking arrow.

23



2. (C, τ) is weakly complete iff all morphisms of the form ‖ψ‖ // (C, τ) (i.e. with
canonically subconstant domain) have tracking arrows.

Proof. 1 is straightforward and 2 follows from 1 and the second proposition of 3.4. �

TP((A, ρ), (B, σ)) as a subquotient of C(A,B)

By definition, every morphism with weakly complete codomain has a tracking arrow.
Conversely, for a given arrow f : A //B in the base, the predicate

a, b | ρ(a) ∧ σ(fa, b)

represents a morphism from (A, ρ) to (B, σ) iff we have

a, a′ | ρ(a, a′) ` σ(fa, fa′).

Abusing notation, we denote this morphism also by [f ]. Given two such arrows f, g :
A //B, we have

[f ] = [g] iff (a | ρ(a) ` σ(fa, ga)).

Thus, for weakly complete (B, σ), we obtain a description of TP((A, ρ), (B, σ)) as a
subquotient of C(A,B).

4.1 Weakly complete objects and ‘canonical’ constructions

Weakly complete objects enable us to work with maps instead of relations, therefore
we would like to use them whenever possible. Could we maybe restrict our attention
exclusively to the category wc(TP)? — In principle this is possible, but the ‘completion’
process described in 4.3 increases the complexity of the representations. In particular
we have to check for all categorical operations like constant objects, limits and col-
imits whether their underlying canonical constructions yield constant objects/transfer
constant objects to constant objects, or if we need additional completion.

Constant objects

Constant objects are not weakly complete in general. To see this, consider D2 in T [B×
B]. This object has four global elements (because it corresponds to (2,2) in Set× Set)
and these can not possibly all be tracked by functions in the base.

In realisability toposes, however, constant objects are weakly complete. This follows
from Lemma 4.4 and the well-known fact that morphisms between assemblies can be
represented by functions. The same argument works for relative realisability.

In modified realisability this argument fails, because there the constant objects lack
the assembly property 8. Consequently, constant objects in modified realisability are not
in general weakly complete.

8By ‘assembly property’, I mean here just the fact that morphisms between assemblies are representable
by arrows in the base.
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Finite limits

Lemma 4.5 Canonical subobjects and products of weakly complete objects are weakly
complete �

Arbitrary finite limits can be constructed (more or less) canonically as subobjects of
products. In fact, this is not totally canonical, because e.g. for pullbacks we can form
the product either over two or over all three objects in the diagram. But from the
above lemma follows that each of these constructions returns a weakly complete result
on weakly complete inputs.

When forming such a limit, the predicate on the product that gives us the subobject
is given as a formula involving data from the underlying diagram.

This predicate can be expressed using only Horn logic!
This is easy to see and will be important later.

Finite colimits

If all canonical quotients of weakly complete objects were weakly complete, then the
above contemplations together with Lemma 3.4 would imply that all objects of the
effective topos were weakly complete. This is too good to be true, and here is the
counterexample:

{0} {2} ∅ ∅ 0 {1} ∅ ∅
{1} {0} ∅ ∅ 1 {2} ∅ ∅
∅ ∅ {0} ∅ 2 ∅ {1} ∅
∅ ∅ ∅ {0} 3 ∅ ∅ {2}
0 1 2 3 a b c

a {1, 2} ∅ ∅
b ∅ {1} ∅
c ∅ ∅ {2}

The left and the lower part of the table are partial equivalence relations, the upper right
region is the functional relation. The direction of the mapping is from the x-axis to the
y-axis, like in calculus. The functional relation does not have a tracking function, and
this implies that the object given by the left per — although it is a canonical quotient
of D4 — is not weakly complete.

Canonical sums of weakly complete objects need not be weakly complete either, this
can again be seen in T [B× B], because D2 = D1 +D1.

The colimits are presented here just for completeness, they are not relevant in the
sequel.
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5 The lifting for non-regular tripos morphisms

In this section, we show how the lifting (F,Φ) 7→ (̂F,Φ) can be extended to possi-
bly non-regular tripos morphisms, and how this gives rise to an oplax functor of type
Tripc

// Topc. It will be explained in section 6 how this can be understood as a kind
of generalised adjunction, but I was advised to present the concrete case first, to avoid
loosing the reader in pages full of higher-dimensional generalities.

Therefore, here comes the theorem that in my opinion gives a satisfying characterisa-
tion of the ‘full’ tripos-to-topos construction.

Theorem 5.1 Let P be a tripos over C, let E be a topos and let (F,Φ) : P //SE be a
tripos morphism.

1. The category (P↙S)((D,Ξ), (F,Φ)) has an initial object ((̂F,Φ), α).

STP SE//

P

STP

(D,Ξ)

��

P

SE

(F,Φ)

��?????????????

α⇓

TP E
(̂F,Φ)

//

2. If (F,Φ) is regular, then (̂F,Φ) is also regular and α is invertible.

3. (idT P, id(D,Ξ)) is initial in (P↙S)((D,Ξ), (D,Ξ)).

4. For all toposes F and all regular functors K : E //F , (K (̂F,Φ), K ◦α) is initial
in (P↙S)((D,Ξ),SK(F,Φ)).

STP SE//

P

STP

(D,Ξ)

��

P

SE

(F,Φ)

��?????????????

α⇓

TP E
(̂F,Φ)

//

SE SF//

E F
K

//

Remark on notation

Strictly speaking, D and Ξ have to be indexed by P and α has to be indexed by (F,Φ).
We omit these indices for conciseness. If there are several (D,Ξ)’s belonging to different
triposes or several α’s induced by different tripos morphisms in the same diagram, we
will distinguish them by equipping them with number subscripts or primes (α0, α1, α2 . . .
or α, α′, α′′ . . .).
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5.1 Proof of Theorem 5.1

The proof of Theorem 5.1 makes use of the facts that TP ' wc(TP) and E ' TSE .
Because the proof is rather involved, we have to make these equivalences explicit as
adjoint equivalences

(I• a I : wc(TP) // TP, η, ε) and (J• a J : E // TSE , η, ε)9.

I is the identity embedding and J is the constant objects functor for the tripos SE .
We specify the adjunctions in ‘adjointability form’, i.e. by giving the object part of the
left adjoint and the unit, where the appropriate lifting condition has to hold (see e.g.
[12]). For the second adjunction, we assume that we have a generic construction that

assigns subquotients of the form A oo
m oo • e // // A/ρ to partial equivalence relations

ρ ∈ SE(A× A). Then the adjointability diagrams look as follows.

(A, ρ)

∼=[{ρ}]
��

[f ]

%%KKKKKKKKKK

(PA, Sρ) //___ (B, σ)

(A, ρ)

∼=[gr(e)gr(m)◦]
��

[φ]

%%KKKKKKKKKK

(A/ρ,=) //___ (B,=)

A/ρ //_____ B

The right hand diagram requires some exemplification. e and m come from the sub-
quotient cone, for any f : A // B in E , gr(f) denotes its graph as a subobject of
A × B, that is a relation between A and B, and by (−)◦ we mean the opposite of a
relation. Juxtaposition of relations denotes relational composition, which coincides with
the composition of functional relations that we defined in definition 3.1, but is more
general because it does not require the relations to be functional.

The relational composition φgr(m)gr(e)◦ is functional (with respect to equality) and
by unique choice give us the mediating arrow.

We will not write down the explicit definition of I•, J• and the four natural isomor-
phisms, as they can be more or less directly read off the diagrams.

Now we start proving the theorem.

Construction of (̂F,Φ)

Instead of (̂F,Φ) : TP //E we first define a functor G between the equivalent categories
by

G : wc(TP) // TSE
(A, ρ)

(B, σ)

[f ]

��

� //

(FA,Φρ)

(FB,Φσ)

[Ff ]

��

.

9The notation is adopted from Gurski
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By Lemma 4.2, this is well defined and functorial, and a careful rereading of the para-

graph about finite limits in section 4.1 shows that these are preserved as well. (̂F,Φ)
can now be defined as

(̂F,Φ) = J•GI•.

In fact, the construction of G is well defined and functorial not only on wc(TP), but
even on the lluf subcategory of TP on tracked morphisms, and we will make use of this
fact later.

Construction of α

Instead of α : F // (̂F,Φ)D, we define α̃ : JF //GI•D. α̃A is given by

(FA,=)
[id] // // (FA,Φ=)

(A,=)
η(A,=) // (PA, SA)

(FA,Φ=) // // (FPA,ΦSA)
(∗)

(FA,=) // (FPA,ΦSA)

The inference (∗) makes use of the fact that the construction of G works for all tracked
arrows, as remarked above.

Naturality of α̃ is established by the following inference.

(FB,=) (FB,Φ=)//

(FA,=)

(FB,=)
��

(FA,=) (FA,Φ=)// (FA,Φ=)

(FB,Φ=)
��

(B,=) (PB, SB)//

(A,=)

(B,=)
��

(A,=) (PA, SA)// (PA, SA)

(PB, SB)
��

(FB,Φ=) (FPB,ΦSB)//

(FA,Φ=)

(FB,Φ=)
��

(FA,Φ=) (FPA,ΦSA)// (FPA,ΦSA)

(FPB,ΦSB)
��

(FB,=) (FPB,ΦSB)//

(FA,=)

(FB,=)
��

(FA,=) (FPA,ΦSA)// (FPA,ΦSA)

(FPB,ΦSB)
��

The left square commutes, since the tracking arrows compose to the same arrow and the
right upper square commutes because of the naturality of η.

Similarly, we can establish the fact that α̃ is a tripos transformation from SJ(F,Φ)
to S(GI•)(D,Ξ). Let ψ ∈ PA. For appropriately defined θ (it is the strict predicate on

28



(PA, SA) that corresponds to ψ via the isomorphism), we can infer

(FA,=) (FA,Φ=)//

(FA,=|Φψ)

(FA,=)

��
��

(FA,=|Φψ) (FA,Φ=|Φψ)// (FA,Φ=|Φψ)

(FA,Φ=)

��
��

(A,=) (PA, SA)//

(A,=|ψ)

(A,=)

��
��

(A,=|ψ) (PA, SA|θ)// (PA, SA|θ)

(PA, SA)

��
��

(FA,Φ=) (FPA,ΦSA)//

(FA,Φ=|Φψ)

(FA,Φ=)

��
��

(FA,Φ=|Φψ) (FPA,ΦSA|Φθ)// (FPA,ΦSA|Φθ)

(FPA,ΦSA)

��
��

(FA,=) (FPA,ΦSA)//

(FA,=|Φψ)

(FA,=)

��
��

(FA,=|Φψ) (FPA,ΦSA|Φθ)// (FPA,ΦSA|Φθ)

(FPA,ΦSA)

��
��

and the bottom square is a diagrammatic representation of the desired judgement

(J(Φψ))(x) ` (G(I•(Ξψ)))(α̃(x))

in STSE .
α is constructed from α̃ via the equivalences, spelled out beneath.

α = (ε−1 ◦ F )(J• ◦ α)

C F //

D

��

E

J

��

id

��
ε−1⇓

TP
I•
//

(̂F,Φ)

wc(TP)
G

// TSE
J•

// E

⇓α̃

︸ ︷︷ ︸
Next, we have to show that ((̂F,Φ), α) is initial in (P↙S)((D,Ξ), (F,Φ)). Let (H, β)

be as second object in (P↙S)((D,Ξ), (F,Φ)). We have to show that there is a unique
mediator ι in the following diagram.

P

(D,Ξ)

��

(F,Φ)

''PPPPPPPPPPPPPPPPPP

SE

STP

11
??

E

TP

(̂F,Φ)

00

H

??

α


�

��
....

β

	�

ι��
....

In particular, we have to carry out the following steps:
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• construct ι

• verify that ι mediates

• show uniqueness

Construction of ι

The construction becomes most transparent when expressed relative to wc(TP) and E ,
therefore we define

ι̃ : J•G //HI : wc(TP) // E .
The construction of ι̃(A,ρ) is displayed in Figure 1. Basically, we chase the per ρ through
the diagram

P

(D,Ξ)

��

(F,Φ)

##GGGGGGGGG

⇓β

STP
SH

// SE

(5.1)

To understand why ι̃ is natural take a morphism (A, ρ)
[f ] // (B, σ) in wc(TP) and

imagine a copy of the diagram in figure 1 with A and ρ substituted by B and σ on
a plane parallel to the paper. Then connect the two copies of the diagram by arrows
constructed from f and convince yourself that everything commutes and that this gives
really an instance of the naturality condition.

Finally, ι is obtained from ι̃ via the following equation.

ι = (ι̃ ◦ I•)(H ◦ η−1)

Proof that ι mediates

We have to show that (ι ◦D)α = β, and this rewrites as

C F //

D

��

E

J

��

id

��
ε−1⇓

TP
I•
//

id
((

wc(TP)
G

//

I

��

⇓ι̃

TSE
J•

// E
⇓η−1

TP

H

88

⇓α̃

=

C

D

��

F

��
β⇓

TP
H

// E

.

If we evaluate the natural transformation represented by the left diagram at A, we
obtain the composite

FA // FA/= // FPA/ΦSA //H(PA, SA) //H(A,=) (5.2)

in E and we have to prove this to be equal to βA. The idea of the proof is similar to
the proof of naturality for ι̃. The idea of the naturality proof was to chase the left hand
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ρ

A× A

Ξρ HΞρ Φρoo

D(A× A) HD(A× A) F (A× A)
βA×Aoo

DA HDA HDA
=oo FA

βAoo

•
OO

OO

����

•
OO

OO

��

•
OO

OO

����

∼=oo_ _ _ _ _ _ _ _ _ •
OO

OO

����

oo_ _ _ _ _ _ _ _ _

(A, ρ) H(A, ρ) HDA/HΞρoooo_ _ _ _ FA/Φρoo_ _ _ _

(D,Ξ)
��

(F,Φ)

(0YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

(H,M(H)) +3

�� �� ��

H +3

Figure 1: Construction of ι̃. The component ι̃(A,ρ) : FA/Φρ → H(A, ρ) of ι̃ is given by
composing the two dashed arrows on the lower right hand side of the diagram.
It is explained in A.2 why there is a pair of mediators for the left transition of
spans.
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HDPA HDPA=
oo FPA

βPA

oo

HDA

ccGGGGGGGG

HDA

ccGGGGGGGG

=
oo FA

ccGGGGGGGG

βA
oo

•

��

OO

OO

•∼=
oo

����

OO

OO

•

����

oo
OO

OO

FA

=
ccHHHHHHHHH

HDA

ccHHHHHHHHHH

=

��

=

OO

•

ccHHHHHHHHHH

∼=
oo

∼=

��

∼=

OO

•

ccHHHHHHHHHH

����

oo
OO

OO

H(PA, SA) HDPA/HΞSAoooo FPA/ΦSAoo •

ccGGGGGGGGGGG

∼=

��

∼=

OO

HDA

∼=

bbEEEEEEEEE

HDA/=

bbEEEEEEEE

∼=
oo FA/Φ=

bbEEEEEEEE
oo

FA/=

bbbbEEEEEEEE

Figure 2: Proof that (ι ◦D)α = β.

pair of arrows beneath through the diagram (5.1) and then switch to subquotients as
depicted in Figure 1. Now we do the same for the right hand pair.

ρ // σ

A× A // B ×B

= // SA

A× A // PA×PA

The resulting diagram, with two squares appended for the transition from = to Φ=,
is displayed in Figure 2. In this diagram, we recover the composite (5.2), and careful
inspection shows that the asserted equality holds.

Uniqueness of ι

We have to show that the mapping

(ξ : (̂F,Φ) //H) 7→ ((ξ ◦D)α : F //HD)

is injective. By general principles about equivalences, it is injective if and only if

(ξ : GI• // JH) 7→ ((ξ ◦D)α̃ : JF // JHD)

is injective. Therefore, let ξ, υ : GI• // JH and assume that (ξ ◦D)α̃ = (υ ◦D)α̃. To
show ξ = υ it suffices to verify ξ ◦ I = υ ◦ I; that means that we only have to prove
ξ(A,ρ) = υ(A,ρ) for weakly complete (A, ρ).
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Let (A, ρ) be weakly complete. Consider the construction

(A, ρ)

∼=
��

(A, supp(ρ))oooo

∼=
��

// // (A,=)

∼=
��

(PA, Sρ) (PA, Ssupp(ρ))oooo // // (PA, SA)

(FA,Φρ)

∼=
��

(FA,Φsupp(ρ))oooo

��

��

// // (FA,Φ=)
��

��
(FPA,ΦSρ) (FPA,ΦSsupp(ρ))oooo // // (FPA,ΦSA)

Here, we again use the trick of applying the construction of G to not necessarily weakly
complete input. In this case, the construction even preserves the two epimorphisms,
because they have identity tracking arrows, what allows us to express their ‘being epi-
morphic’ without using ‘∃’. The left hand arrow in the lower diagram is an isomorphism,
because (A, ρ) is already weakly complete. Furthermore, the lower row of the lower pair
of squares is the GI•-image of the top row of the upper pair of squares, and from GI•

we may pass over to JH via ξ and υ. This looks as follows.

(FA,=)

����


α̃A(FA,Φρ)

∼=
��

(FA,Φsupp(ρ))oooo

��

��

// // (FA,Φ=)
��

��
(FPA,ΦSρ)

ξ(A,ρ)
��
υ(A,ρ)

��

(FPA,ΦSsupp(ρ))oooo // //

�� ��

(FPA,ΦSA)

�� ��
JH(A, ρ) JH(A, supp(ρ))oo // // JH(A,=)

By hypothesis, the two composites along the right hand side of the diagram are equal,
and by a simple diagram chasing argument we get ξ(A,ρ) = υ(A,ρ).

This concludes the proof of the first claim of Theorem 5.1. Fortunately, claims 2–4

are much easier. 2 follows directly from the definitions of (̂F,Φ) and α, and the initiality
claims of 3 and 4 can be verified by comparing with the initial objects that are given by
the construction and observing that the mediators are isomorphisms.

5.2 Theorem 5.1 as an adjointability condition

Proposition 1 of Theorem 5.1 was deliberately stated in a way that reminds us of the
concept of left adjointability for a(n ordinary) functor. The same pattern that leads us
from left adjointability to the left adjoint can also be applied here, only the resulting
functor T : Tripc

// Topc is merely oplax.
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The object part of T is given by P 7→ TP. Before defining the morphism part, we
observe that the lifting

((F,Φ) : P // SE) � // ((̂F,Φ) : TP // E)

can be extended to a functor

(−̂) : Tripc(P,SE) // Topc(TP, E),

mapping a transformation ϕ : (F,Φ) // (G,Γ) to the mediator in the diagram beneath

which exists and is unique because of the initiality of ((̂F,Φ), α).

P

(D,Ξ)

��

(F,Φ)
--

(G,Γ)

  

ϕ

V^55555

55555

SE

STP

@@
00

α

��
^fDDD

DDD

α

��

E

TP

(̂G,Γ)
00

(̂F,Φ)

@@

ϕ̂^fDDD
DDD

The morphism part of T is now given by

̂(D,Ξ) ◦ (−) = T P,Q : Tripc(P,Q) // Topc(TP,TQ).

The construction of the constraints for identity (T (idP) // idT P) and composition
(T ((G,Γ)◦ (F,Φ)) //T (G,Γ)◦T (F,Φ)) is suggested by the following diagrams (again
making use of initiality)

P
= //

��

P

��
STP ;;

&&HP
����

����

α

z�

idD

�


STP

TP

T idP

;;

idT P

&&HP
����

����
TP

P
(F,Φ) //

��

Q
(G,Γ) //

��

R

��
STP //

<<STQ // STR

TP
(̂F,Φ) //

̂(G,Γ)◦(F,Φ)

<<TQ
(̂G,Γ) // TR

α
qy kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

α

�	
α

y�

]eCCCCCCCC

CCCCCCCC

]eCCCCCCCC

CCCCCCCC
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The three axioms for the constraints follow directly from the uniqueness of the mediators.
Exploiting the metaphor of adjointability further, we can use Theorem 5.1 to construct

(oplax) natural transformations.

η : idTripc
// ST and ε : TS // idTopc

.

η at P is just given by (D′,Ξ′), and the constraint η(F,Φ) is given by the appropriate α.

P
(F,Φ) //

��

Q

��
STP // STQ

TP // TQ

αv~ uuuuu
uuuuu

The axioms are straightforward.
ε is a bit more complicated.
εE is given by îdSE , as usual. It is easy to see that îdSE is isomorphic to J• : TSE //E

and hence an equivalence, but we will ignore this fact for the moment and concentrate
on the general pattern.

The construction of constraints for ε is the most involved. Up to now, we only made
use of statement 1 of Theorem 5.1, but now we also need statements 2 and 4. Consider
the diagram

SE SF //

(D,Ξ)

��

idSE

##GGGGGGGGGGGGG SF

(D′,Ξ′)

��

idSF

##GGGGGGGGGGGGG

SE // SF

STSE //

;;wwwwwwwwwwwww
STSF

;;wwwwwwwwwwwww

E F // F

TSE
T SF

//

didSE

;;wwwwwwwwwwwww
TSF

didSF

;;wwwwwwwwwwwww

α0

�� �
�������

��������

α2

�� �
�������

��������

α1

��

_gG
G

G
G

G
G

G
G

(5.3)

By Theorem 5.1 2, ̂idSF is regular and α2 is invertible. By 5.1 4,

( ̂idSF ◦ TSF,S ̂idSF ◦ α1) is initial in (P↙S)((D,Ξ),S ̂idSF ◦ (D′,Ξ′) ◦ SF ),
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and because α2 is an isomorphism, it is easy to see that appending it does not destroy
initiality, i.e.

( ̂idSF ◦ TSF, (S ̂idSF ◦ α1)(α2 ◦ SF )) is initial in (P↙S)((D,Ξ),SF ).

(F îdSE ,SF ◦ α0) is a second object in (P↙S)((D,Ξ),SF ), and the unique mediator
(dashed in the diagram) gives us the desired constraint. The axioms follow again from
initiality considerations.

In our concrete case, the fact that TSE ' E for all toposes E lets us conjecture that
ε is an equivalence, and this is in fact the case (in particular, the constraint cells are
all invertible). However, the verification of this claim involves a lot of fiddling with
equivalences and isomorphisms and we will not carry it out here. If you want to prove
it yourself, notice that it is easier if you replace the pair (îdSE , α) as it is constructed in
the proof by a hand-tailored initial object in the respective category, and similarly for
the lifting of (D′,Ξ′) ◦ SF .

Up to now, the analogy between one-dimensional adjointability and the conditions of
Theorem 5.1 was quite successful, because we were able to more or less straightforwardly
translate the constructions of the left adjoint and the two transformations.

It is easy to see that the triangle equalities hold up to isomorphism, although strictly
speaking, we have to introduce new data in form of isomorphic modifications, subject
to new axioms. More on this in greater generality in the next section.

Finally, it is interesting to ask if the conditions of Theorem 5.1 are sufficient to
characterise the pair (TP, (D,Ξ)) up to equivalence. In the one-dimensional case,
ηA : A //UFA is given as an initial object in A↓U and therefore uniquely determined
up to isomorphism. 5.1 1 replaces initiality in a category with the condition that for
fixed I and varying A, both objects of the same 2-category A, the hom-categories A(I, A)
all have initial objects. Unfortunately, this condition does not suffice to characterise I
up to equivalence10. However, 5.1 1–4 together suffice to characterise (TP, (D,Ξ)) up to
isomorphism among pairs with regular second component, what can be seen as follows.

Assume (T ′P, (D′,Ξ′)) also satisfies 5.1 1–4 and (D′,Ξ′) is regular. Then we have
initial mediators

P

(D,Ξ)

��

(D′,Ξ′)PPPPPPPP

((PPPPPP

STP // ST ′P

TP
F

// T ′P

α
rz nnnnnnnnnn

and

P

(D′,Ξ′)
��

(D,Ξ)PPPPPPPP

((PPPPPP

ST ′P // STP

T ′P G
// TP

β
rz nnnnnnnn

where α, β are isomorphisms and F,G are regular because of 5.1 2.
5.1 4 tells us that (GF,SG◦α) is initial in (P↙S)((D,Ξ),SG◦(D′,Ξ′)) and composing

10In the 2-category of posets with least elements, for example, all objects have this property
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an isomorphism, we see that (GF, (SG ◦ α)β) is initial in (P↙S)((D,Ξ), (D,Ξ)).

P

(D,Ξ)

���������������

(D′,Ξ′)

��

(D,Ξ)>>>>>>>

��>>>>>>>

STP // ST ′P // STP

TP // T ′P // TP

αs{ ooooo
ooooo

β
{� ����

����

By 5.1 3, we have a second initial object (idT P, id(D,Ξ)), consequently we have GF ∼= idT P.
Similarly, we get FG ∼= idT ′P.

Thus, 5.1 can be seen as a universal characterisation of TP and (D,Ξ).
We had already given such a characterisation in section 3, making use only of regular

functors and morphisms, and in the present section, we also had to appeal to regularity
to show uniqueness. Hence, one could say that the tripos-to-topos construction gets its
stability and universality from the regular arrows, and the non-regular arrows are only
further decoration.

5.3 Examples

We give two examples of how α fails to be invertible if the trips morphism (F,Φ) in
5.1 is not regular. In both cases we diverge from the ‘canonical’ description of (D,Ξ)

and (̂F,Φ) given in the previous section. In concrete cases, especially the construction

of (̂F,Φ) can be quite complicated to spell out because of the involved equivalences,
therefore it is often useful to just propose a pair of functor and natural transformation
and then prove that this pair is initial in the respective hom-category.

We start by reconsidering the example sketched in the introduction.

Consider the tripos-morphism

(idSet, [∧]) : [B× B] // [B] ' S(Set)

that is induced by the meet-preserving map ∧ : B × B // B as sketched at the end
of 2.3. We know that T [B × B] is equivalent to Sh(B× B), the category of sheaves on
B× B11, and it is easy to see that this in turn is equivalent to Set× Set. Via this pair
of equivalences, (D,Ξ) : [B×B] //ST [B×B] corresponds (up to isomorphism) to the
tripos morphism

• Ξ̃:(U,V )7→U×V //

[B×B]
��

•
S(Set×Set)
��

Set 〈id,id〉
// Set× Set

where we implicitly identify predicates in [B× B] over I with pairs of subsets of I.

11This is mentioned in [4] and a proof can be found in [8], C1.3.
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If we want to verify our claim from the introduction, we have to show that the pair

(P : Set× Set // Set, δ : id // P ◦ 〈id, id〉)
P (A,B) = A×B

δA = 〈idA, idA〉 : A // A× A

is initial in ([B× B]↙S)((〈id, id〉, Ξ̃), (id, [∧])).

[B× B]

(id,[∧])

##HHHHHHHHHHHHHHHHHHH

(〈id,id〉,Ξ̃)

��
S(Set× Set) // [B] ' S(Set)

Set× Set
P

// Set

δ
w� vvvvv

vvvvv

Let (F, θ) be a second object in ([B × B]↙S)((〈id, id〉, Ξ̃), (id, [∧])). Then we can con-
struct a mediator ι : P // F by defining its component ι(A,B) as

A×B θA×B // F (A×B,A×B)
F (π1,π2) // F (A,B).

It is easy to see that this is natural and does really mediate. For uniqueness, assume
that we have two natural transformations ξ, υ : P // F such that for all A we have
ξ(A,A)ηA = υ(A,A)ηA. To see that ξ(A,B) = υ(A,B) consider the following diagram.

A×B
δA×B //

id
**TTTTTTTTTTTTTTTTTT A×B × A×B

ξ(A×B,A×B) //
υ(A×B,A×B)

//

π1×π2

��

F (A×B,A×B)

F (π1,π2)
��

A×B
ξ(A,B) //
υ(A,B)

// F (A,B)

Because the left hand triangle commutes and the two upper composites are equal, the
assertion follows.

We observe that in this example, the constraint transformtation (which is called α in
the generic construction and δ here) is a pointwise monomorphism. Next, we consider
an example where this transformation is a pointwise epimorphism.

Assume that A is a partial combinatory algebra over Set and consider the composition

S(Set)
(id,∇) // rtm(A)

(D,Ξ) // ST rtm(A)

of tripos morphisms.
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Then (D,Ξ) : SSet //STSSet is equivalent to id : SSet //SSet in (SSet↙S),
and we claim that an initial object in (SSet↙S)(id, (D,Ξ∇)) is given by (F, α) with

F : Set // T (rtm(A)) α : D // F

FA = (A,∇=) αA = [id] : (A,=) // (A,∇=)

Ff = [f ]

It is straightforward to see that F is well defined as a cartesian functor, and α as a
tripos transformation. Moreover, we observe that α is a pointwise epimorphism. Now,
let (G, β) be a second object in (SSet↙S)(id, (D,Ξ∇)). We have to show that there
exists one and only one ι : F //G with ια = β. ιA has to be a mediator in the diagram

FA GA//____

DA

FA

αA

����

DA

GA

βA

��?????????????

Because αA is an epimorphism, this mediator is necessarily unique; it exists iff βA
equalises the kernel pair of αA. To check this, we make use of the fact that β is not
only a natural transformation, but moreover a tripos transformation. If we take the
equality predicate on A in SSet and map it through (D,Ξ∇) and SG, we get therefore
a mediator

(A,=)× (A,=) FA× FA
βA×βA

//

(A× A,=)

(A,=)× (A,=)

∼=

��

(A× A,=) F (A× A)F (A× A)

FA× FA

∼=

��

(A× A,=) F (A× A)βA×A //

‖∇=‖

(A× A,=)

��

��

‖∇=‖ FA//___________ FA

F (A× A)

��

��

and the left hand side of the diagram is the kernel pair.
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6 dc-categories

In this section, we introduce a new class of 2-categories.
The starting point for the development of the ideas that are presented here was the

attempt to generalise the concept of semi-lax right adjoint introduced by Peter Johnstone
in [6] to include the tripos-to-topos construction. Johnstone’s trick was to sustain the
desirable uniqueness up to equivalence of the adjoint (normally lost when we go lax) by
introducing additional data in form of lluf 1-subcategories of the involved 2-categories.
This is the idea that we are now going to exploit systematically.

Before you start reading this section, you may want to have a look at Appendix B,
where we give some 2-categorical definitions.

Definition 6.1 1. A dc-category is just a 2-category A together with a designated
subclass Ar of the class of all 1-cells such that

• Ar contains all equivalences,

• Ar is closed under composition, and

• Ar is closed under vertical isomorphisms; i.e if f ∈ Ar and f ∼= g, then
g ∈ Ar.

We think of the 1-cells in Ar as of arrows with especially good properties and we
call them regular arrows. We use the arrow symbol ‘ � // ’ for regular arrows to
highlight them visually.

2. A semi-lax functor between dc-categories A and B is a lax functor (F, φ) : A //B

such that

• F maps regular arrows in A to regular arrows in B,

• for all objects A of A the constraint cell idFA
φA // F (idA) is invertible, and

• for all composable pairs f, g of 1-cells in A with regular g, the constraint cell

Fg Ff
φ(f,g) // F (gf) is invertible.

3. A semi-lax transformation between semi-lax functors F,G is a lax natural trans-
formation η : F //G such that

• For each object A, ηA is regular, and

• For each regular f : A //B the constraint cell

GA GB�
Gf

//

FA

GA

_

ηA

��

FA FB� Ff // FB

GB

_

ηB

��

;C����

is invertible.
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Given two dc-categories A,B, the semi-lax functors between them together with semi-
lax natural transformations and modifications form a sub-2-category of Lax(A,B) that
we denote by SLax(A,B)

Comparison with Johnstone’s definition and naming

Johnstone [6] uses the term ‘semi-lax’ only for his semi-lax adjunctions, the intended
meaning there is ‘adjunction, where part of the data (one of the transformations)’ is lax.
He gives the definition of what we call a semi-lax transformation, but he does not name
this concept and he considers these transformations only between pseudofunctors.

We use the name semi-lax functor/transformation in the sense of partially lax func-
tor/transformation12. Consequently, we use the term ‘semi-lax adjunction’ in a more
general sense than Johnstone, namely in the sense ‘adjunction where all of the data is
semi-lax’. It will turn out that the right adjoint is a pseudofunctor anyway, but this is
a theorem and not a definition.

The definition of semi-lax functor is new; it is suggested by the behaviour of the
tripos-to-topos construction13.

6.1 Composition of semi-lax functors and transformations

Pseudo-natural transformations are composable horizontally and vertically. However,
the horizontal composition is a derived concept. The primitive operations are the com-
position ϑF of a natural transformation after a functor and the composition Gη of a
natural transformation before a functor. Given

A

F
%%

F ′

99B

G
$$

G′

:: Cη�� θ�� ,

to define θ ◦ η one has to choose between one of the paths around the square

G ◦ F
Gη //

θF
��

G ◦ F
θF ′

��
G ◦ F

Gη
// G′ ◦ F ′

c(η,θ) 5=sssss
sssss . (6.1)

The constraints of θ give rise to an isomorphic modification c(η,θ) (which we call exchange
modification) between the two choices.

However, if θ is merely lax, then we lose the invertibility of c(η,θ). If we, by conven-
tion, choose one of the possibilities to define θ ◦ η, we get the problem that horizontal
composition is not pseudofunctorial any more.

12Actually this is not optimal, as it could be misinterpreted as meaning something even weaker than
lax. Maybe ‘semi-strong’ would be better, but this can not be dualised.

13Although in the case of the tripos-to-topos construction, everything is oplax, we treat everything here
in the (−)co-dual setting to save prefixes.
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If we consider lax functors instead of pseudofunctors, the situation becomes even
worse. If G is lax, the composition Gη is not even definable, because if we try to
construct (Gη)f for f : A //B, we end up with

GFA
GFf //

G(ηB◦Ff)

��
G(F ′f◦ηB)

((

GηA

��

GFB

GηB

��
GF ′A

GF ′f
// GF ′B

;C��� ���

;C����

{�
��� ���

(6.2)

and this does not compose.
Luckily, for semi-lax functors and semi-lax transformations, it all works out. Convince

yourself — the disturbing 2-cell in (6.2) becomes invertible because ηB is regular by
definition, and for similar reasons c(η,θ) in (6.1) is componentwise isomorphic.

Thus the really great thing about about semi-lax functors and transformations is that
they are lax data that nevertheless share all the good properties of pseudofunctors and
pseudo-natural transformations.

Because semi-lax functors and transformations behave so similar to the pseudo ones,
I conjectured that they give rise to a tricategory in the sense of [3]. Unfortunately, my
attempts to prove this failed because of the overwhelming complexity of the definition.
Nevertheless, the intuition behind our treatment of semi-lax adjunctions is that we see
them as ordinary biadjunctions — just not in 2-Cat or Bicat, but in some other three-
dimensional structure.

6.2 Semi-lax adjunctions

Definition 6.2 Let A,B be dc-categories. A semi-lax adjunction between A and B is
given by two semi-lax functors

(F, ψ) : A //B and (U, φ) : B // A,

two semi-lax natural transformations,

η : idA
// UF and ε : FU // idB

and two invertible modifications

µ : idU
∼= // (U ◦ ε)(η ◦ U) and ν : idF

∼= // (ε ◦ F )(F ◦ η).
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ηA
ψ◦idηA��

U idFA ◦ ηA
UνA◦idηA��

U(εFA ◦ FηA) ◦ ηA
ψ◦idηA��

UεFA ◦ UFηA ◦ ηA
idUεFA◦ηηA��

UεFA ◦ ηUFA ◦ ηA
µ−1
FA◦idηA��

ηA

= idηA

εB
idεB ◦φ��

εB ◦ F idUB
idεB ◦FµB��

εB ◦ F (UεB ◦ ηUB)
idεB ◦φ��

εB ◦ FUεB ◦ FηUB
ε−1
εB
◦idFηUB��

εB ◦ εFUB ◦ FηUB
idεB ◦ν

−1
UB��

εB

= idεB

Figure 3: The axioms for semi-lax adjunctions in one-dimensional form. The constraints
for F are denoted by φ and the constraints for U are denoted by ψ.

such that the canonical isomorphic 2-cell fill-ins in the following diagrams compose to
identities for A ∈ Obj(A) and B ∈ Obj(B) respectively.

A?

ηA

����������������������� �

ηA

��?????????????????????

UFA
�
UFηA //

�

U(εFAFηA)

��

v

U id

##

^

id

//

UFUFA_

UεFA

��

UFA
�ηUFAoo

?

id

�����������������������

UFA

;C��� ���

;C����

;C���
���

%-

�#
????

????

B

FUB
?

εB

??����������������������
FUFUB

�
FUεBoo � εFUB // FUB

�

εB

__??????????????????????

FUB�

id

OO

�

F id

ZZ

e

F (UεBηUB)

kk

_

FηUB

OO

?

id

??����������������������

;C��� ���

;C����

;C����
����

#+

�#
?????

?????

An alternative, one-dimensional presentation of the axioms is given in Figure 3.

At this point, we have to make some remarks on dualisation. Adjunctions between
ordinary categories are self-dual, therefore left adjoints are symmetric to right adjoints.
2-categories (and dc-categories) can be dualised in two ways: A 7→ Aop reverses the 1-
cells and A 7→ Aco reverses the 2-cells. However, none of the dualisations transfers semi-
lax adjunctions to semi-lax adjunctions. Rather, they both lead out of the framework
semi-lax functors and semi-lax natural transformations into dual frameworks:

• If we reverse all 1-cells, lax natural transformations are turned into oplax natural
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transformations (lax functors, however, remain lax14).

• If we reverse all 2-cells, lax natural transformations become oplax natural trans-
formations and lax functors become oplax functors.

• If we combine both dualisations, we get lax natural transformations and oplax
functors.

Therefore, semi-lax adjunctions are not self-symmetric in any sense, in particular the
left-right symmetry is missing. This becomes visible especially in Lemma 6.5.

Our first lemma says that semi-lax adjunctions are unique up to equivalence.

Lemma 6.3 Let A,B be two dc-categories.

1. Assume U : B // A is a semi-lax functor, part of two semi-lax adjunctions
((F, ψ) a (U, φ) : B //A, η, ε, µ, ν) and ((F ′, ψ′) a (U, φ) : B //A, η′, ε′, µ′, ν ′).
Then F ' F ′.

2. Assume F : A // B is a semi-lax functor, part of two semi-lax adjunctions
((F, ψ) a (U, φ) : B //A, η, ε, µ, ν) and ((F, ψ) a (U ′, φ′) : B //A, η′, ε′, µ′, ν ′).
Then U ' U ′.

Proof. Ad 1. We have semi-lax transformations

F
Fη′ // FUF ′ εF ′ // F ′ and F ′

F ′η // F ′UF ε′F // F.

We have to show that the compositions both ways round are isomorphic to idF respec-
tively idF ′ . The following pasting diagram shows the construction of one of the two
required modifications.

F
Fη′ //

Fη
EEEEE

""EEEEE

idF
22

FUF ′
εF ′ //

FUF ′η
KKKKKK

%%KKKKKK

F ′

F ′η

��

FUF
Fη′UF //

idFUF 44

F idUF
KKKKKK

%%KKKKKK

FUF ′UF

εF ′UF
KKKKKK

%%KKKKKKFUε′F

��
FUF

εF
KKKKKK

%%KKKKKKK

F ′UF

ε′F

��
F

ν
DL

���
���

γ
AI

����
����

Fµ′F 5=sss sss

c−1
(η,Fη′)

KS

c−1
(ε′F,ε)

+3

c(F ′η,ε)
5=sssssss

sssssss

14We observe, that — although the terminology suggests it — there is no special connection between
lax functors and lax natural transformations.
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The c(α,β) are the exchange modifications mentioned after (6.1). γ has as components

the constraints idFUFA
ψ // F idUFA. It is easily seen that this is natural (or rather

‘modificational’), and γ is invertible by definition of semi-lax functor. Because all faces
are isomorphisms, the diagram composes to an isomorphic modification.

Following the same pattern, one can construct an isomorphic modification of type
idU // εF ′ Fη′ ε′F F ′η. Thus, εF ′ Fη′ and ε′F F ′η together give an equivalence
between F and F ′ in SLax(A,B).

Remark. By general principles, every equivalence in a bicategory can be made into
an adjoint equivalence by modifying the 2-cells. However, it is natural to ask if the
equivalence as given by the above construction already is an adjoint equivalence. I have
not checked that yet, but I would be very surprised if this was not the case.

Ad 2. The proof of the second assertion follows the same pattern again. �

The next lemma is a categorification of the well-known correspondence

FA
Ff //

��

FA′

��
B g

// B′

=̂

A
f //

��

A′

��
UB

Ug
// UB′

between commutative squares (f, g fixed) for one-dimensional adjunctions. Instead of
commutativity, we allow arbitrary 2-cells. However, for this to work it is necessary that
the vertical arrows at the sides of the squares are regular.

Lemma 6.4 (Conjugate squares) 1. Given a semi-lax adjunction

((F, ψ) a (U, φ) : B // A, η, ε, µ, ν)

and morphisms A
f // A′ in A and B

g //B′ in B, the mappings

FA
Ff //

_

r

��

FA′_

r′

��
B g

// B′

ρ
;C����

���� 7→

A
f //

_

ηA

��

A′_

η′A

��
UFA

UFf //

U(r′Ff)

��U(gr)
))

_

Ur

��

UFA′_

Ur′

��
UB

Ug
// UB′

ηf
;C�������

�������

φ ;C����

Uρ ;C����

φ

;C����
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and

A
f //

_

s

��

A′_

s′

��
UB

Ug
// UB′

σ
;C�����

����� 7→

FA
Ff //

F (s′f)

��
F (Ugs)

((

_

Fs

��

FA′_

Fs′

��
FUB

FUg
//

_

εB

��

FUB′_

ε′B

��
B g

// B′

εf
;C�������

�������

ψ ;C����

Uσ ;C����

ψ

;C����

— both called conjugation — are inverse to each other in the sense that if we
conjugate a square twice, then the vertical sides of the original square and the
vertical sides of the resulting square are canonically isomorphic and if we compose
the 2-cell in the resulting square on both sides with these canonical isomorphisms,
then we get the 2-cell in the original square.

2. Conjugation commutes with the composition 2-cells on the top and bottom on the
square. More precisely, for given

FA
Ff //

_

r

��

FA′_

r′

��
B g

// B′

ρ 8@xxxxx
xxxxx

, A

f ′

))

f

55 A′
KS
α and B

g
))

g′

55 B′
KS
β

it does not make a difference if we first compose Fα and β to the top and the
bottom of the square and then conjugate, or first conjugate and then compose α
and Uβ.

The same is true for the other direction of conjugation.

Proof. Ad 1. If we conjugate the square

FA
Ff //

_

r

��

FA′_

r′

��
B g

// B′

ρ 8@xxxxx
xxxxx

twice, we obtain a square with left hand side εB ◦F (Ur ◦ ηA) and the canonical isomor-
phism to r is given by

εB ◦ F (Ur ◦ ηA)
id◦ψ // εB ◦ FUr ◦ FηA

ε−1
r ◦id // r ◦ εFA ◦ ηA

id◦νA // r,

similarly for the right hand side.
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The 2-cell in the result square is built up as follows (From now on, we leave it to the
reader to insert the names of the 2-cells).

g ◦ εB ◦ F (Ur ◦ ηA)

��

εB′ ◦ F (Ur′ ◦ UFf ◦ ηA) // εB′ ◦ F (Ur′ ◦ ηA′ ◦ f)

∼=
��

εB′ ◦ FUg ◦ F (Ur ◦ ηA)

��

εB′ ◦ F (U(r′ ◦ Ff) ◦ ηA)

∼=

OO

εB′ ◦ F (Ur′ ◦ ηA′) ◦ Ff

εB′ ◦ F (Ug ◦ Ur ◦ ηA) // εB′ ◦ F (U(g ◦ r) ◦ ηA)

OO

The proof that this, composed with the two canonical isomorphisms, is equal to ρ is
displayed in Figure 4. In this diagram, the path along the upper side is the mentioned
composition, the path along the lower side has ρ at the beginning and the fact that the
remainder is the identity is an instance of the modification axiom for ν, composed with
r′. Beneath the diagram, there are some comments on why the different faces commute.

This was the first half of the proof. When we start with a square of the form

A
f //

_

s

��

A′_

s′

��
UB

Ug
// UB′

σ
7?xxxxx

xxxxx

and conjugate twice, the proof is similar15, and we do not carry it out here.
Ad 2. We carry out the proof only for one direction of conjugation. The assertion

rewrites as
Ug′ Ur ηA

��
U(g′ r) ηA

��
U(g r) ηA

��
U(r′ Ff) ηA

��
U(r′ Ff ′) ηA

��
Ur′ UFf ′ ηA

��
Ur′ η′A f

′

=

Ug′ Ur ηA
��

Ug Ur ηA
��

U(g r) ηA
��

U(r′ Ff) ηA
��

Ur′ UFf ηA
��

Ur′ η′A f
��

Ur′ η′A f
′

15However, the other case is not symmetric. Remember that semi-lax adjunction is not a self-symmetric
concept.
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and the proof is given by the following diagram.

Ug′ Ur ηA
ttjjjj **TTTTT

U(g′ r) ηA
**TTTT

Ug Ur ηA
ttjjjjj

U(g r) ηA

��
U(r′ Ff) ηA

ttjjjj **TTTT

U(r′ Ff ′) ηA
**TTTTT

Ur′ UFf ηA
))RRRR

ttjjjjj

Ur′ UFf ′ ηA
**TTTT

Ur′ η′A f
uullll

Ur′ η′A f
′

�

Lemma 6.5 Assume that we have a semi-lax adjunction

((F, ψ) a (U, φ) : B // A, η, ε, µ, ν).

Then all constraint cells of U are invertible and thus U is a pseudofunctor.

Proof. id(UB)
∼= U(idB) holds for any semi-lax functor, therefore it remains to show

that for all composable pairs of arrows A
f //B

g // C in B, the constraint cell

(Ug)(Uf)
φ(f,g) // U(gf) (6.3)

is invertible.
Using the technique of conjugation, we can obtain a candidate for the inverse 2-cell

by conjugating the square

FUA
F (Ug Uf) //

FUf $$JJJJJJJJJ_

εA

��

FUC_

εC

��

FUB

FUgtttt

::tttt

εB
��

A
f

// B g
// C

εf

6>ttttttt

ttttttt

ψ(Uf,Ug)
KS���

���

εg

?G
��������

��������

(6.4)

and pre- and postcomposing the result with µA and µC . It remains to check wether the

resulting 2-cell

UA
UgUf //

_

id
��

UC_

id
��

UA
U(gf)

// UC

γ 8@xxxx
xxxx is in fact inverse to φ(f,g).
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g
ε B

F
U
r
F
η A

//

��

g
ε B

F
(U
r
η A

)

��
ε B
′
F
U
g
F
U
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F
η A

//

��

ε B
′
F
U
g
F

(U
r
F
η A

)

��
ε B
′
F
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g
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r)

F
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//

��
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′
F
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F
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)

��
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ε F

A
F
η A

//

��
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ε B
′
F
U

(g
r)

F
η A

//

��

ε B
′
F

(U
(g

r)
η A

)

��
r′
F
f
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′
F
f
ε F

A
F
η A

//

��

ε B
′
F
U
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′
F
f

)
F
η A

//

��

ε B
′
F

(U
(r
′
F
f

)
η A

)

��
ε B
′
F

(U
r′
U
F
f

)
F
η A

//

��

ε B
′
F

(U
r′
U
F
f
η A

)
//

��
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′
F

(U
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′ A
f

)
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′
F
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′ A
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To show that it is right inverse to φ(f,g) we can make use of the compatibility of
conjugation with composition on the upper side of the square. Via conjugation, we have
the correspondence (modulo canonical equivalences on the vertical sides)

UA
U(gf) //

_

id
��

UC_

id
��

UA
U(gf)

// UC

id 8@xxxx
xxxx =̂

FUA
FU(gf)//

_

εA
��

FUC_

εC
��

A
gf

// C

εgf 6>ttttt
ttttt

Therefore, the assertion

UA
Ugf //

Uf ##
HHHHH_

id

��

UC_

id

��

UB
Ug

::vvvvv

UA
Ugf

// UC
γ

7?vvvv
vvvv

φ(f,g)

KS���
���

=

UA //
_

��

UC_

��
UA // UC

id 8@xxxx
xxxx

is equivalent to

FUA

FU(g f)

  
F (Ug Uf) //

FUf $$JJJJJJJJJ_

εA

��

FUC_

εC

��

FUB

FUgtttt

::tttt

εB
��

A
f

// B g
// C

εf

6>ttttttt

ttttttt

ψ(Uf,Ug)
KS���

���

εg

?G
��������

��������

Fφ(f,g)

KS

=

FUA
FU(gf)//

_

εA
��

FUC_

εC
��

A
gf

// C

εgf 6>tttttt
tttttt

and this is an instance of the second axiom for lax transformations.

It remains to show that composing the other way round also gives the identity. If
we unfold the conjugation operation, we observe that the 2-cell that we want to prove
identic is built up as follows

UA UB// UB UC//

UFUA UFUC
UF (UgUf) //

UA UC//UA

UB
##GGGGGGGG

UB

UC;;wwwwwwww

UA

UFUA

_

��
UFUA

UA

_

��

UC

UFUC

_

��
UFUC

UC

_

��

UFUA

UC..

UFUA

UC
&&

UFUA

UC
��

UFUA

UC
��

UA

UA

E

idUA

��

UC

UC

y

idUC

��
;C����

;C����

;C����

;C����

∼=

KS

;C����

∼= ∼=
(6.5)
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where the curved arrows in the square are U(gfεA), U(gεB(FUf)), U(εC(FUg)(FUf))
and U(εC(F ((Ug)(Uf)))) from left to right. We first concentrate on the subdiagram
consisting of this square and the lower triangle. This subdiagram corresponds to the
path along the left side in the following diagram (living in A(UFUA,UC)).

UgUfUεA UgU(fεA)//

U(gf)UεA

UgUfUεA

OO
U(gf)UεA U(gfεA)// U(gfεA)

UgU(fεA)

OO

UgU(fεA) UgU(εBFUf)//

U(gfεA)

UgU(fεA)

U(gfεA) U(gεBFUf)// U(gεBFUf)

UgU(εBFUf)

OO

UgU(εBFUf) UgU(εB)UFUfoo
∼=

U(gεBFUf)

UgU(εBFUf)

OO
U(gεBFUf) U(gεB)UFUfU(gεB)UFUf

UgU(εB)UFUf

OO
U(gεBFUf) U(gεB)UFUfoo

U(εCFUgFUf)

U(gεBFUf)

OO
U(εCFUgFUf) U(εCFUg)UFUfoo U(εCFUg)UFUf

U(gεB)UFUf

OO
U(εCF (UgUf)) U(εCFUgFUf)oo

UεCUF (UgUf)

U(εCF (UgUf))

∼=
��

UεCUF (UgUf) UεCU(FUgFUf)oo UεCU(FUgFUf)

U(εCFUgFUf)

∼=
��

U(εCFUgFUf) U(εCFUg)UFUfoo

UεCU(FUgFUf)

U(εCFUgFUf)

UεCU(FUgFUf) UεCUFUgUFUfoo UεCUFUgUFUf

U(εCFUg)UFUf

∼=
��

Because all squares commute, we can replace the subdigram in (6.5) by a diagram that
visualizes the path counterclockwise along the lower, right and upper side of the above
diagram. This looks as follows.

UA UB// UB UC//

UFUA UFUB// UFUB UFUC//

UA UB// UB UC//

UA

UFUA

_

��
UFUA

UA

_

��

UC

UFUC

_

��
UFUC

UC

_

��

UFUB

UB

_

��

UA

UA

F

idUA

��

UC

UC

x

idUC

��

UFUA UFUC

UF (UgUf)

��
UFUA UFUC

U(FUgFUf)

&&
UFUA

UB
��

UFUA

UB
''

UFUB

UC
��

UFUB

UC
''

;C����

;C����

∼=

;C����

;C����

∼=∼= ∼=

KS

KS

;C����

The lax naturality of η allows us to rewrite the upper rectangle and we arrive at

UA UB// UB UC//

UFUA UFUB// UFUB UFUC//

UA UB// UB UC//

UA

UFUA

_

��

UB

UFUB

_

��
UFUA

UA

_

��

UC

UFUC

_

��
UFUC

UC

_

��

UFUB

UB

_

��

UA

UA

F

idUA

��

UC

UC

x

idUC

��

UFUA

UB
��

UFUA

UB
''

UFUB

UC
��

UFUB

UC
''

;C����

;C����

∼=

;C����

;C����

∼=∼= ∼=

;C����
;C����
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Now if we view the small squares grouped columnwise, we see that the left column is
((U ◦ ε)(η ◦U))f and the right one is ((U ◦ ε)(η ◦U))g, and the proposition follows from
the modification axiom for µ. �

In Lemma 6.5, we have observed that a necessary condition for a semi-lax functor
to have a left semi-lax adjoint is to be pseudo. Next, we will present a necessary and
sufficient condition which is inspired by the characterisation by representability of one-
dimensional adjunctions.

Theorem 6.6 Let A,B be dc-categories and let (U, φ) : B //A be a semi-lax pseudo-
functor (i.e. a pseudofunctor that maps regular arrows to regular arrows). Then U has
a left semi-lax adjoint iff

1. For each A ∈ Obj(A) there is an object FA ∈ Obj(B) and a regular arrow ηA :
A � // UFA such that for all B ∈ Obj(B) and all f : A // UB, the category
(A↗U)(ηA, f) has a terminal object (f̂ , αf )

UFA UB//

A

UFA

_

ηA

��

A

UB

f

��?????????????

αf ;C
����

����

FA B
f̂

//

2. If f : A // UB is regular then f̂ is also regular and αf is invertible.

3. (idFA, φ
−1
FA ◦ ηA) is terminal in (A↗U)(ηA, ηA).

A_
ηA
��

�
ηA

((RRRRRRRRRRRRRRR

UFA idUFA //

U idFA

==UFA

FA
idFA

// FA

=

KS
φ−1
FA

4. For all f : A // UB and all regular g : B � // C, (gf̂ , (φ−1

(f̂ ,g)
◦ ηA)(Ug ◦ αf )) is

terminal in (A↗U)(ηA, Ugf).

UFA UB//

A

UFA

_

ηA

��

A

UB

f

��?????????????

αf ;C
����

����

FA B
f̂

//

UB UC� //

B C�
g

//

UFA UC

U(gf̂)

::⇑φ−1

(f̂ ,g)
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Proof. Assume we have a semi-lax adjunction ((F, ψ) a (U, φ) : B // A, η, ε, µ, ν).

Ad 1. The terminal object in (A↗U)(ηA, f) is given by

(f̂ , αf ) = (εB Ff, (µ
−1
U ◦ f)(UεB ◦ ηf )(φ−1

(Ff,εB) ◦ ηA)),

as in the following diagram.

A
f //

_

ηA

��

UB�
id

$$HHHHHHHHHHHHH_

ηUB

��
UFA UFf //

U(εBFf)

;;UFUB
�
UεB // UB

FA
Ff

// FUB
�

εB
// B

ηf
6>uuuuuuuuu

uuuuuuuuu µ−1
U

6>vvvv vvvv

φ−1
(Ff,εB)

JR
���

���

(6.6)

Given a second object (G, β) in (A↗U)(ηA, f), a mediator is given by

g
��

g εFA FηA
��

εB FUg FηA
��

εB F (Ug ηA)
��

εB Ff

The proof that this really mediates involves drawing a big diagram in the style of Fig-
ure 4. We do not carry that out here, we only mention that it is necessary to use the
first axiom for semi-lax adjunctions (Figure 3).

To show that the mediator is unique, one has to show that any ι : g // εBFf can be
reconstructed from αf (Uι ◦ ηA) via the construction for the mediator. Again, the proof
involves a big diagram, and this time we need the second axiom for semi-lax adjunctions.

Ad 2. This becomes obvious when looking at (6.6).

Ad 3. The construction from 1 gives us the following terminal object in (A↗U)(ηA, ηA).

A
� ηA //

_

ηA

��

UFA�
id

%%KKKKKKKKKKKKKK_

ηUFA

��
UFA

�
UFηA //




U(εFAFηA)

::UFUFA
�
UεFA // UFA

FA
�

FηA
// FUFA

�
εFA

// FA

ηηA
5=sssssssss

sssssssss µ−1
U

5=ssss
ssss

φ−1
(FηA,εFA)

KS
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It is straightforward to check that νA gives an isomorphism to the proposed alternative
terminal object.

Ad 4. This is proved similarly to 3.

For the converse direction, assume that we are given a pseudofunctor (U, φ) : B //A

such that conditions 1–4 hold.
The construction of the left adjoint and the transformations η and ε have already been

described by the example of the tripos-to-topos construction in section 5.2.
The modification µ at B ∈ Obj(B) is given by α−1

UB

UB_
ηUB
��

�
id

((PPPPPPPPPPPPP

UFUB
�
UεB

// UB

FUB
�
εB= dηUB // B

rzµB nnn nnn

and if we have a look at (5.3), we observe that the constraints for ε were defined to
mediate a diagram that is precisely the modification axiom for µ.
νA is defined as the unique mediator between

A
� ηA //

_

ηA

��

UFA�
id

%%KKKKKKKKKKKKKK_

ηUFA

��
UFA

�
UFηA //




U(εFAFηA)

::UFUFA
�
UεFA // UFA

FA
�

FηA
// FUFA

�
εFA

// FA

ηηA
5=sssssssss

sssssssss αid

5=ssss
ssss

φ−1
(FηA,εFA)

KS and

A_
ηA
��

�
ηA

((RRRRRRRRRRRRRRR

UFA
�

idUFA //
�

U idFA

==UFA

FA
�

idFA
// FA

=

KS
φ−1
FA

.

These diagrams are both terminal: the left one because of properties 2 and 4, and the
right one because of property 3. To check the modification axiom, one again has to make
use of terminality in the appropriate hom-category of (A↗U).

Finally, we have to check the two axioms for semi-lax adjunctions.
If we compare the diagrams in Definition 6.2 with the definition of νA, then we see

that the defining condition for ν is precisely the first axiom.
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For the second axiom have a look at the diagram

UB �

��

_

��

UB
� //

_

��

UFUB
/

77oooooooooooo
�

��

_

��

UFUB
� // UB

UFUB
� // UFUFUB

/

77ooooooooooo � // UFUB
4

::ttttttttt

FUB
� // B

FUB
� // FUFUB

/

77ooooooooooo � // FUB
4

::tttttttttt

Insert some arrows and 2-cells and observe that the composition that we want to prove
identic is an endo-map of (εB, µB) in (ηUB↗U). This proves the assertion because
(εB, µB) is terminal. �

6.3 dc-categories and (1-)adjunctions

It is well known that 2-functors and pseudofunctors map adjunctions to adjunctions.
However, if we are given an adjunction

A
id //

f

��@@@@@@@@@@@@@@ A A

f

��@@@@@@@@@@@@@@

B

g

??��������������
B

g

??��������������

id
// B

η

��
ε

��

in A and apply a semi-lax functor (F, φ) to the data, we get

FA

id

%%
F id //

F (gf)

99

Ff

!!DDDDDDDDDDDDDDD
FA FA

Ff

!!DDDDDDDDDDDDDDD

FB

Fg

=={{{{{{{{{{{{{{{
FB

Fg

=={{{{{{{{{{{{{{{

F (fg)

%%
F id //

id

99FB

∼=��

��

KS ��

��
KS
∼=
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and we can not define a new unit, because one of the 2-cells points in the wrong direction.
If the dc-category A has the property that all right adjoints in A are regular, then

the disturbing 2-cell becomes invertible and we can define 2-cells id // FgFf and
FfFg // id. It is then easy to see that the triangle equalities hold.

A related concept are monads. Monads in A can be defined as lax functors from
the terminal 2-category into A. Because we can compose lax functors, it follows that
semi-lax functors map monads to monads.

For comonads, this does not work, because we can not compose lax and oplax func-
tors. However, if a comonad splits into an adjunction then we can map this adjunction
and then form the associated comonad in the image-2-category. This tactic has the
nice property that it maps idempotent comonads to idempotent comonads, as can be
seen in the above diagram (if η is isomorphic, then the induced transformation of type
id // FgFf is also isomorphic).

Now, let us try to apply this to the dc-categories Tripc and Topc. Because we consider
semi-oplax functors and transformations between them, we have to dualise and therefore
exchange left and right adjoints as well as monads and comonads.

Indeed, right adjointable functors and tripos morphisms are necessarily regular, which
is just what we need. Idempotent monads (also known as cartesian reflections or topolo-
gies) split in Tripc as well as Topc.

Thus, we have finally arrived at a conceptual explanation why the tripos-to-topos
construction behaves well with respect to these two concepts. In particular, we recover
the geometric morphisms, that are so important for topos theory, as adjunctions in Topc.

Note: The dc-category that was considered by Johnstone has the property that all
right adjoints are regular.
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A Partial equivalence relations in toposes

Let E be a topos. A partial equivalence relation (per) on A ∈ Obj(E) is a subobject
R // // A × A that is symmetric and transitive as a predicate in the internal logic. Its
support A0 is the denotation of the predicate (a | R(a, a)); given by the pullback

A A× A//
δ
//

A0

A

��

��

A0 R// // R

A× A

��

��

We have the following decomposition:

A0
// //R // 〈r0,r1〉 // A0 × A0

// // A× A (A.1)

Partial equivalence relations are used to form subquotients, intuitively the ‘set of equiv-
alence classes’. Category-theoretically, the subquotient defined by R is the coequaliser

R
p0 //

p1
// A0

// //Q(R)

of r0 and r1; r0, r1 form a kernel pair for this coequaliser because any topos is effective
regular.

It is easy to see that up to isomorphism, every subquotient

A oo
m oo U

e // //Q

comes from a partial equivalence relation. The predicate that classifies this relation is

a, a′ | ∃u, u′ . m(u) = a ∧m(u′) = a′ ∧ e(u) = e(u′).

A.1 Comparison of partial equivalence relations

Lemma A.1 Consider two per’s R // //A×A and S // //B×B, inducing the subquo-
tients Q(R) oooo A0

// // A and Q(S) oooo B0
// //B; and a morphism f : A→ B.

Then there exists a mediating arrow for the left diagram iff there exists a pair of
mediating arrows for the right diagram.

A× A B ×B//

R

A× A

��

��

R S//_____ S

B ×B

��

��

A B//

A0

A

��

��

A0 B0B0

B

��

��

A0 B0
//____

Q(R)

A0

OOOO
Q(R) Q(S)//___ Q(S)

B0

OOOO

�
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A.2 Partial equivalence relations and cartesian functors

Now consider a second topos F and a cartesian functor F : E → F . The image of a per
R // // A × A under a cartesian functor is again a per, and the decomposition (A.1) is
(up to canonical isos) also stable under F . The only thing that is not stable without
regularity of F is the coequaliser, here a non-invertible mono mR,F creeps in, illustrated
in the following diagram.

FR FA0

Fr0 //FR FA0
Fr1

// FA0 Q(FR)// //FA0

F (Q(R))
��???????????? Q(FR)

F (Q(R))

��

mR,F

��
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B 2-categorical basics

A 2-category is a Cat-enriched category. The Cat-enriched functors and natural transfor-
mations are called 2-functors and 2-natural transformations. However, there is a bigger
class of functors and transformations between 2-categories that can not be captured
by the enrichment idea: pseudofunctors and pseudo-natural transformations, and more
generally lax functors and lax transformations. We state the relevant definitions here
for reference.

Definition B.1 (Lax functor) Let A,B be 2-categories. A lax functor

(F, φ) : A //B

is given by the following data

• a mapping
F0 : Obj(A) // Obj(B)

• for each pair of objects X, Y ∈ Obj(A), a functor

FXY : A(X, Y ) //B(FX,FY )

• for each object X ∈ Obj(A), an arrow

φX : idFX // F idX

• for each triple X, Y, Z ∈ Obj(A), a natural transformation φXY Z

A(X, Y )× A(Y, Z) ◦ //

FXY ×FY Z

��

A(X,Z)

FXZ

��
B(X, Y )×B(Y, Z) ◦

//B(X,Z)

φXY Z

3;oooooooooo

oooooooooo

subject to the following axioms

• For all f : X // Y in A, we have

FX

Ff

��???????????

FX

id
00

F id

FF

Ff
// FY

�#
???

???

��

= idFf =

FX id

��
F id

$$
FX

Ff

??�����������

Ff
// FY

{� ������

��
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• For every sequence W
f //X

g // Y
h // Z of 1-cells in A, we have

FX
Fg //

F (hg)
EEEEE

""EEEEE

FY

Fh

��
FW

Ff

OO

F (hgf)
// FZ

x� yyyy

��

=

FX
Fg // FY

Fh

��
FW

Ff

OO

F (gf)yyyyy

<<yyyyy

F (hgf)
// FZ

�&
EEEE

��

The arrows φX and the components of the transformations φXY Z are called constraint
cells. A lax functor with all constraint cells invertible is called a pseudofunctor. The 2-
functors that we mentioned at the beginning can be recovered as the lax functors whose
constraints are all identities. We can dualise the definition of lax functor by reversing
all constraints. The resulting concept is called oplax functor.

Definition B.2 (Lax transformation) Let A,B be 2-categories and F,G : A //B

lax functors. A lax (natural) transformation η : F //G is given by the following data.

• for each object X ∈ Obj(A) a 1-cell

ηX : FX //GX

• for each pair of objects X, Y ∈ Obj(A) a natural transformation

A(X, Y )
FXY //

GXY
��

B(FX,FY )

ηY ◦(−)

��
B(GX,GY )

(−)◦ηX
//B(FX,GY )

ηXY

2:mmmmmm
mmmmmm

(Remark: We denote the component of ηXY at f : X // Y by ηf instead of
(ηXY )f .)

subject to the following axioms

• For all objects X ∈ Obj(A) we have

FX
F id //

ηX

��

FX

ηX

��
GX

Gid //

id

>>GX

ηid
8@yyyyyyy

yyyyyyy

KS

=

FX
F id //

id

>>FX

ηX

��
GX

KS
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• For all composable pairs X
f // Y

g // Z in A we have

FX
F (gf) //

ηX

��

FZ

ηZ

��
GX

G(gf) //

Gf ##FFFFFFFF GZ

GY
Gg

<<xxxxxxxx

ηgf
6>uuuuuuuuu

uuuuuuuuu

KS� � �
� � �

=

FX
F (gf) //

Ff ##FFFFFFFF

ηX

��

FZ

ηZ

��

FY
Fg

<<xxxxxxxx

ηY

��

GX

Gf ##FFFFFFFF GZ

GY
Gg

<<xxxxxxxx

KS� � �
� � �

ηf

7?xxxx
xxxx ηg

DL
����������

����������

The constraint cells of a lax transformation are the components of the natural transfor-
mations ηXY . A lax transformation with all constraints invertible is called pseudo-natural
transformation. If we require all constraints to be identities, we recover 2-natural trans-
formations. If we reverse the constraint, we get what is called an oplax transformation16.

Definition B.3 (Modification) Let A,B be 2-categories, F,G : A //B lax functors
and η, θ : F //G lax natural transformations. A modification α : η //θ is a mapping
that assigns to each X ∈ Obj(A) a 2-cell

αX : ηX // θX

such that for all f : X // Y in A we have

FX
Ff //

ηX

��

θX

��

FY

θY

��
GX

Gf
// GY

αX +3
θf

=E

=

FX
Ff //

ηX

��

FY

ηY ��

θY

��
GX

Gf
// GY

αY +3
ηf

6>

Given 2-categories A,B, the collection of all lax functors between them, lax transfor-
mations between the functors, and modifications between the transformations, forms a
2-category in a natural way (with the obvious compositions and identities), denoted by
Lax(A,B).

Here is a basic lemma about adjoint equivalences in Lax(A,B).

Lemma B.4 Let F,G : A // B such that φ a γ : G // F constitute an adjoint
equivalence (The isomorphic modifications for unit and counit remain nameless). Then
φ and γ are pseudo-natural transformations.

16In the literature, there is no consensus about which direction of constraints should be called lax and
which oplax for transformations. While [9, 6, 2] use the same convention as we do, in [7, 3] lax and
oplax transformations are exchanged.
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Proof. We only carry out the proof for φ; thus, given some f : A //B in A, we have
to show that φf is an isomorphic 2-cell. To establish this fact, it suffices to show that
φf has a left and a right inverse. Again, we only construct the right inverse, the left one
is symmetrical.

First of all, although unit and counit are nameless, they are nevertheless important,
and most important about them are the triangle equalities. They can be presented as

F G//F

F

=

��????????????? G

F
��
F G//

G

F
��

G

G

=

��?????????????
∼=

∼=
and

G F//G

G

=

��????????????? F

G
��
G F//

F

G
��

F

F

=

��?????????????
∼=

∼=

and the message is that in both cases, the composition of the isomorphisms in the faces
yields the identity.

Now, because γφ ∼= idF , the 2-cells in the following diagram compose to idFf .

FA FB
Ff //

GA GBGf //

FA FB
Ff

//

FA

FA

id

��

FB

FB

id

��

FA

GA

φA

?????

��?????

GA

FA

γA
������

��������

FB

GB

φB
�����

�������

GB

FB

γb

??????

��??????

∼=

;C����

;C����

∼=

whence

GA GB//

FA

GA
��

FA FB// FB

GB
��

GB FB//

FB

GB
��

FB

FB
��?????????????

;C����
∼=

has a right inverse. Composing another invertible 2-cell, we see that

GA GB//

FA

GA
��

FA FB// FB

GB
��

GB FB//

FB

GB
��

FB

FB
��?????????????

GB FB//GB

GB
��????????????? FB

GB
��

;C����
∼=

∼=
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is also right-invertible, but this is just φf , since the two triangles cancel by the triangle
equality. �

Finally, here is a 2-dimensional version of the comma category construction.

Definition B.5 (Lax comma category) Assume we are given three 2-categories A,
B and C, a lax functor F : A // C and an oplax functor G : B // C. The 2-category
(F↗G) is given by the follwing data.

• Objects are triples (A,B, f) with A ∈ Obj(A), B ∈ Obj(B) and f : FA // GB.
Normally we suppress A and B in the notation because they can be deduced from
the context.

• A morphism from (A,B, f) to (C,D, g) is a triple (h, k, α) with h : A // C,
k : B //D and α : Gkf // gFh.

GB GD
Gk

//

FA

GB

f

��

FA FC
Fh // FC

GD

g

��

α
;C

����
����

• A 2-cell from (h, k, α) to (l,m, β) is given by a pair (ϕ, ψ) with ϕ : h // l and
ψ : k //m such that (g ◦ ϕ)α = β(ψ ◦ f).

Gmf gF l
β
//

Gkf

Gmf

ψ◦f

��

Gkf gFhα // gFh

gF l

g◦ϕ

��

Identities and compositions are defined in the obvious way. It is important that F is lax
and G is oplax because otherwise the composition of 1-cells is not definable.

We are especially interested in the situation where A is the terminal 2-category and F
is a strict functor, in which case we use the notation (A↗G) where A is the only value
of F . In this case, the first component of the tuples defining 0-, 1-, and 2-cells does not
carry any information and we can omit it.
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[11] Thomas Streicher. Fibred Categories à la Jean Bénabou. Script, available at www.
mathematik.tu-darmstadt.de/~streicher.

[12] Thomas Streicher. Introduction to category theory and categorical logic. Lecture
notes, available at www.mathematik.tu-darmstadt.de/~streicher.

[13] Thomas Streicher. Realizability. Lecture notes, available at www.mathematik.

tu-darmstadt.de/~streicher.

[14] Jaap van Oosten. The modified realizability topos. J. Pure Appl. Algebra, 116(1-
3):273–289, 1997. Special volume on the occasion of the 60th birthday of Professor
Peter J. Freyd.

64

www.math.yale.edu/~mg622/tricats.pdf
www.mathematik.tu-darmstadt.de/~streicher
www.mathematik.tu-darmstadt.de/~streicher
www.mathematik.tu-darmstadt.de/~streicher
www.mathematik.tu-darmstadt.de/~streicher
www.mathematik.tu-darmstadt.de/~streicher

	Introduction
	Motivation
	Conventions and Notation

	Triposes
	The internal language of a tripos
	Examples of triposes
	Tripos morphisms
	Tripos transformations and 2-categories of triposes

	The tripos-to-topos construction
	Weakly complete objects
	Weakly complete objects and `canonical' constructions

	The lifting for non-regular tripos morphisms
	Proof of Theorem 5.1
	Theorem 5.1 as an adjointability condition
	Examples

	dc-categories
	Composition of semi-lax functors and transformations
	Semi-lax adjunctions
	dc-categories and (1-)adjunctions

	Partial equivalence relations in toposes
	Comparison of partial equivalence relations
	Partial equivalence relations and cartesian functors

	2-categorical basics

