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Motivation

Observation

Usual realizability models for Type or Set Theory are impredicative!

Question

Can one - without restricting the meta-theory - construct realizability

models for CZF that are not fully impredicative, i.e. validate e.g. ¬Pow

or all sets are subcountable,?

Answer

Yes, by a modification of the Aczel construction !

However, the model still validates full separation, i.e. a theory with

the same strength as Second Order Arithmetic.
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CZF (Aczel, Myhill)

formulated in the language of FOL with equality and a binary base

predicate ∈. The axioms of CZF are Extensionality, Pairing, Union,

Infinity, ∈-Induction, Bounded∗ Separation and

Collection (strong)(
(∀x∈a)(∃y)ϕ

)
⇒ (∃b) M(x:a, y:b)ϕ

Subset Collection (needed for existence of function spaces ba)

∀a, b ∃c ∀~u
(
(∀x∈a)(∃y∈b)ϕ(x, y, ~u)

)
⇒ (∃d∈c) M(x:a, y:d)ϕ(x, y, ~u)

where M(x:a, y:b)ϕ(x, y, . . . ) stands for

(∀x∈a)(∃y∈b)ϕ(x, y, . . . ) ∧ (∀y∈b)(∃x∈a)ϕ(x, y, . . . )

∗A formula is bounded iff all its quantifications are of the form (∀x∈a) or (∃x∈a).
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Review of the Aczel Construction

In MLTT with W -types and one universe U (without W -types) one

can form the type V = (WA:U)A of well-founded trees which are U-

branching in the sense that the sons of a node are indexed by a type

in U (or, alternatively, V is the initial solution of the type equation

V ∼= (ΣA:U)V A). The elements of V are generated by the rule

A ∈ U f : A → V

sup(A, f) ∈ V

NB The notation sup(A, f) is merely historical! Better think of

sup(A, f) as {f(a) | a ∈ A}. Thus V is generated by transfinitely

iterating the functor EU(X) = (ΣA:U)XA instead of the (covariant)

powerset functor P (à la H. Friedman ’73 and Ch. McCarty ’80).
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Review of the Aczel Construction (ctd.)

Exploiting the inductive nature of V one can define binary predicates

=V ,∈V : V × V → Prop by transfinite recursion on V

• sup(A, f) =V sup(B, g) ≡(
(∀i:A)(∃j:B) f(i) =V g(j)

)
∧

(
(∀j:B)(∃i:A) f(i) =V g(j)

)

• b ∈V sup(A, f) ≡ (∃i:A) b =V f(i).

These relations take values in Prop as Prop is assumed to be closed

under universal and existential quantification over sets in U .

NB Only the definition of =V requires transfinite recursion. The

relation ∈V is defined explicitly in terms of =V .
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What is Prop ?

Aczel’s choice for Prop is U which – by assumption – is closed under

products and disjoint sums of families indexed by elements of U .

As MLTT validates

AC (Πx:A)(Σy:B)C(x, y) → (Σf :BA)(Πx:A)C(x, f(x))

he could show that

Theorem (Aczel)

The structure (V,=V ,∈V ) validates all axioms of CZF when interpret-

ing logic via propositions as types in U .

Warning In general (Qx:V )ϕ(x) 6∈ Prop for ϕ : V → Prop and Q ∈ {∀,∃}

simply because U is not closed under products and sums of families

indexed by V (as V 6∈ U).
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Our Plan

As models for our type theory we take Asm(A) for arbitrary pca’s A.

We interpret Prop as ∇(P(A)), a proof-irrelevant universe of propo-

sitions (impredicative).

We will consider 2 interpretations of U :

(1) for U = ∇(Mod(A)) we have V � CZF+ ¬Pow

(2) for U = ∇(Asmκ(A)) we have V � IZF

where κ is some strongly inaccessible cardinal.

Problem For neither choice of U we get AC simply because Prop is

proof-irrelevant.
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Projective Cover Axiom
In Asm(A) every object A has a projectice cover, i.e. there exists a

regular epi c : C ։ A such that for every regular epi e : X ։ A

X

for some f : C → X.

C
c

✲✲

f

✲

A

e
❄

❄

This holds even internally giving rise to the following

Projective Cover Axiom (PCA)

(∀A:U)(∃C:U)(∃c:AU) c surj. ∧

(∀X:U1)(∀e:A
X) e surj. ⇒ (∃f :XC) e◦f=c

where U1 is some universe containing U as an element.
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Projective Cover Axiom (ctd.)

If U is ∇(Mod(A)) or ∇(Asmκ(A)) for some strongly inaccessible car-

dinal κ then put U1 = ∇(Asmκ′(A)) where κ′ is a strongly inaccessible

cardinal such that Mod(A) ∈ Vκ′ or Asmκ(A) ∈ Vκ′.

Then PCA is realized “essentially by identity” :

Given A in Asmκ(A) choose C as the partitioned assembly with |C| =

{(x, a) | x ∈ |A| and a 
A x} and b 
C (x, a) iff b = a. Choose c : C ։ A

as the map with c(x, a) = a (realized by identity). Suppose e : X → A

and there is a realizer for “e surjective”. Then there is a b ∈ A such

that whenever a 
A x there exists a z ∈ e−1(x) with b·a 
X z. Thus,

there is a map f : C → X with e ◦ f = c and b 
 f .
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ECC + PCA proves V � CZF

The Extended Calculus of Constructions (ECC) proves that VU =

(WA:U)A validates all axioms of CZF but Collection and Subset Col-

lection. Moreover, we have

Theorem In ECC + PCA one can prove that VU validates Collec-

tion and Subset Collection.

Using the LEGO Proof Assistent it can be formally checked that

(1) ECC ⊢ VU � IZ (where IZ is Intuitionistic Zermelo Set Theory)

(2) ECC + PCA ⊢ VU � IZF

(3) MLU2W ⊢ VU � CZF (avoid using Prop ∈ U giving powersets!)
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ECC + PCA proves V � CZF (ctd.)

Proof :

For Collection suppose a = sup(A, f) and (∀x∈a)(∃y)ϕ(x, y).

Then (∀i:A)(∃y)ϕ(f(i), y). Let c : C ։ A be a projective cover as

guaranteed by PCA. As we have (∀j:C)(∃y)ϕ(f(c(j)), y) it follows by

PCA that there is a map g : C → VU with (∀j:C)ϕ(f(c(j)), g(j)).

Thus, for b = sup(C, g) we have (∀x∈a)(∃y∈b)ϕ(x, y) as desired.

For Subset Collection suppose a = sup(A, f) and b = sup(B, g).

Let c : C ։ A be a projective cover as guaranteed by PCA.

Put c = sup(BC, λh:BC. sup(C, g◦h)).

Suppose (∀x∈a)(∃y∈b)ϕ(x, y, ~u). Then (∀j:C)(∃y∈b)ϕ(c(j), y, ~u) and,

thus, also (∀j:C)(∃i:B)ϕ(c(j), g(i), ~u) from which it follows by PCA

that there exists h : C → B with (∀j:C)ϕ(c(j), g(h(j)), ~u). Then for

d = sup(C, g◦h) we have d ∈ c and M(x:a, y:d)ϕ(x, y, ~u) as desired. �
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Refuting the Powerset Axiom

Theorem For A = K1, the first Kleene algebra (number realizability),

and U = ∇(Mod(K1)) we have VU � CZF+ ¬Pow.

Moreover VU validates that every set is subcountable, i.e. can be

enumerated by a subset of ω.

Alas, the full separation scheme is validated by VU as well.

Proof :

All A in Mod(K1) have only countably many elements. Thus, any set

of the form sup(A, f) can be enumerated by the (¬¬-stable) subset

IA = {n ∈ ω | ∃x ∈ |A|. n ⊢A x} of ω. However, the powerset P(ω)

does not exist in VU as there are uncountably many subsets of ω.

Alas, VU validates the full separation scheme Sep because modest sets

are closed under arbitrary subobjects. �
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Refuting the Powerset Axiom (ctd.)

Addendum The above Theorem extends to all pca’s A with |A| < iω,

i.e. for practically all pca’s!

If A has cardinality < in then Pn(ω) does not exist in VU .

Remarkably VMod(A) validates ¬Pow although Asm(A) is a model

of impredicative type theory hosting even a model of IZF, namely

VAsmκ(A) for some strongly inaccessible cardinal κ.

The strength of CZF + Sep is that of Second Order Arithmetic (ac-

cording to M. Rathjen).
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Can we get rid of Full Separation?

As full separation is certainly impredicative we would like to get rid

of it. For this purpose one would have to

(1) identify a universe U in Asm(A) not closed under subobjects

or

(2) construct a non-impredicative model of type theory with W -types

that hosts a universe U .

(1) is hopeless if U is required to be closed under finite sums.

(2) is also a problem for the following reasons.
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Can we get rid of Full Separation? (ctd.)

Lietz and TS have shown that for a typed pca T (e.g. some (standard)

model of Gödel’s T )

(1) Asm(T ) is a model of predicative Martin-Löf Type Theory

(2) Asm(T ) is genuinely predicative, i.e. does not admit a generic

mono, if and only if T is genuinly typed, i.e. does not have a universal

type of which all other types can be obtained as retracts.

Although there are plenty of genuinely impredicative models Asm(T )

none of them is known to host a(n appropriate) universe.

The natural candidate would be families of modest sets which satisfy

all desired closure properties but admit a generic family if and only if

T admits a universal type, i.e. Asm(T ) is impredicative.
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Predicative Models of a Weaker Theory
If one drops the Infinity axiom from CZF and replaces it by the weaker

requirement that in the full subcategory of (small) sets there exists an

initial orbit N (n.n.o. in small sets) then there exist plenty of genuinely

predicative models for this weaker set theory called PAST.

S. Awodey & al. have shown that for every locally cartesian closed

pretopos E with n.n.o. N (model of MLTT without universes) the

category Idl(E) gives rise to a model of PAST when defining “small”

as “representable” and taking Yon(N) for n.n.o. in sets. The category

Idl(E) is defined as the full subcategory of Ê = Set
Eop

on objects which

appear as directed colimits of mono’s of representables. Thus, the

full subcategory of (small) sets of Idl(E) is equivalent to E itself.

Istantiating E by Asm(T ) for some genuinely typed pca T gives rise

to genuinely predicative models of PAST (with same strength as HA).
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Comparison with Algebraic Set Theory

In Joyal and Moerdijk’s Algebraic Set Theory (CUP 1995) they have

constructed models of IZF in models for intuitionistic FOL with quo-

tient types (so called Heyting pretoposes) endowed with a class S of

small maps which are close to universes in the type-theoretic sense.

The only difference is that they do not postulate a generic family for

S but only a weakly generic one, i.e. a family El : E → U in S such

that for every a : A → I in S there exists a regular epi e : J ։ I such

that e∗a ∼= f∗El for some f : J → U .

In more “logical” terms “weakly generic” means that A → I is in S

iff (∀i:I)(∃a:U) Ai
∼= El(a).

Joyal and Moerdijk construct “initial ZF-algebras” like Aczel taking

V = (WA:U)El(A) (and then taking the quotient by extensional equal-

ity =V although there is no need for it!).
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Comparison with AST (ctd.)
J.&M. show that every realizability topos and every Grothendieck

topos hosts a class S of small maps giving rise to an initial ZF-algebra

providing a model for IZF.

For realizability toposes RT(A) the W -type V = (WA:U)El(A) stays

within Asm(A) and only the quotient V/=V
leads out of it. At least

when choosing U = Asmκ(A) as we do. Their choice of U is more

complicated because ignoring Asm(A) they prefer to work in the wider

category RT(A) (obtained from Asm(A) by adding quotients). How-

ever, there is no need for this unless one insists on taking quotients!

For Grothendieck toposes one can construct universes S which even

admit a generic family (see TS Universes in Toposes (2004) based

on joint work with M. Hofmann) but do not validate the Projective

Cover Axiom.
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Comparison with AST (ctd.)

Instead the universes constructed in Grothendieck toposes validate

the following

Type-Theoretic Collection Axiom (J.&M.’95)

(∀A:U)(∀X:U1)(∀e:A
X) e surj. ⇒ (∃C:U)(∃f :XC) e ◦ f surj.

meaning that for small A covered by e : X ։ A with X possibly big

there exists f : C → X such that C is small and e ◦ f is still a cover,

i.e. every cover of a small type admits a small subcover.

I have checked in LEGO that

ECC + TTCA ⊢ VU � IZF

thus providing a purely type-theoretic account of J.&M.’s Algebraic

Set Theory.
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Comparison with AST (ctd.)

Proof idea for ECC + TTCA ⊢ V � Coll

Suppose a = sup(A, f) and (∀x∈a)(∃y)ϕ(x, y).

Then X := (Σi:A)(Σy:V )ϕ(f(i), y) ∈ U1 and π1 : X ։ A. From TTCA

it follows that there exists h : C ։ X with C ∈ U and π1 ◦h surjective.

Then for c = (C, π1◦π2◦f) one easily shows that (∀x∈a)(∃y∈c)ϕ(x, y)

as desired.

Inspecting the proof we actually see that

MLU2W + TTCA ⊢ V � Coll
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Predicative AST

If one tries to verify that MLU2W + TTCA ⊢ V � CZF one runs into

problems with showing that MLU2W + TTCA ⊢ V � SubColl.

Thus, one has to introduce the following family version of TTCA

TTCAfam (implied by Moerdijk and Palmgren’s AMC)

(∀A:U)(∃I:U)(∃C:UI)

(∀X:U1)(∀e:A
X) e surj. ⇒ (∃i:I)(∃f :XCi) e◦f surj.

for which we have MLU2W + TTCAfam ⊢ V � SubColl and thus

MLU2W + TTCAfam ⊢ V � CZF

as desired.
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Predicative AST (ctd.)

Proof : Suppose a = sup(A, f) and b = sup(B, g).

Let I ∈ U and C ∈ UI as guaranteed by TTCAfam for A.

Put c = sup
(
(Σi:I)BCi, λ(i, h). sup(Ci, g◦h)

)
.

Suppose (∀x∈a)(∃y∈b)ϕ(x, y, ~u).

Then (∀j:A)(∃k:B)ϕ(f(j), g(k), ~u).

For X := (Σj:A)(Σk:B)ϕ(f(j), g(k), ~u) we have π1 : X ։ A.

By TTCAfam there exist i ∈ I and h ∈ XCi with π1 ◦ h : Ci ։ A.

Then d = sup(Ci, g◦π1◦π2◦h) ∈ c and M(x:a, y:d)ϕ(x, y, ~u). �
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Summary

• Without restricting the meta-theory we have constructed a real-

izability model for CZF+ ¬Pow (+Sep).

• Getting rid of full separaration seems to be related to the problem

of finding genuinely predicative models of MLTT with universes

which is a difficult open problem.

However, for the weaker predicative set theory PAST (same strength

as HA) there are plenty of genuinely predicative models.

• Joyal and Moerdijk’s Algebraic Set Theory can be understood as

as a variant of the Aczel construction. As Prop is proof-irrelevant

the lack of Axiom of Choice has to be compensated by adding

“non-logical” axioms like PCA or TTCA(fam) to type theory.
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