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Following a suggestion by Martin Hyland from the early 1980ies [Hy] we
define triposes reflecting as much as possible the original idea of the Diller-
Nahm variant of Gödel’s Dialectica Interpretation.

1 Diller-Nahm Dialectica Tripos

According to Gödel’s original Dialectica Interpretation from 1958 a proposi-
tion is a pair of types X and Y together with a decidable relation R ⊆ X×Y
between them. For our purposes we assume that types are subsets of N
and (constructive) functionals between them are total recursive functions
between sets of natural numbers. Entailment between propositions (X, Y,R)
and (U, V, S) is given by a pair of (constructive) functionals f : X → U and
g : X × V → Y such that

∀x ∈ X.∀v ∈ V. R(x, g(x, v)) ⇒ S(f(x), v) .

However, if relations are not required to be decidable1 one usually2 considers
the Diller-Nahm variant of the Dialectica Interpretation where entailment

1Which is impossible as for quantification we have to take into account arbitrary unions
and intersections of relations.

2For an alternative way to cope with undecidability of relations cf. the appendix on
the Dialectica Tripos considered in [BiRo].
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is defined in a somewhat different way: (X, Y,R) ` (U, V, S) iff there are
(constructive) functionals f : X → U and g : X × V → Pf(Y ) such that

∀x ∈ X.∀v ∈ V. [∀y ∈ g(x, v). R(x, y)] ⇒ S(f(x), v) .

Here m ∈ n stands for m ∈ en (where e is some standard Gödel numbering of
finite sets of natural numbers) and Pf(Y ) is a shorthand for {n ∈ N | en ⊆ Y }.

Motivated by these considerations we are now going to define the Diller-
Nahm Dialectica tripos DN over Set. We will assume in the following that
〈0, 0〉 = 0 and 0 · n = 0 for all n ∈ N. Let

ΣDN = {(X, Y,R) ∈ P(N)2 × P(N× N) | R ⊆ X × Y }

be the “set of truth values of DN”. If p = (X, Y,R) ∈ ΣDN we write p+, p−,
p(a, b) for X, Y , R(a, b), respectively. For I ∈ Set the fibre DNI is defined
as the preorder (ΣDN

I ,`I), where ΣDN
I is the set of all functions from I to

ΣDN and ϕ `I ψ iff there exist

e+ ∈
⋂
i∈I

[ϕ+
i → ψ+

i ] and e− ∈
⋂
i∈I

[ϕ+
i ×ψ−

i → Pf(ϕ
−
i )]

such that

∀i ∈ I. ∀a ∈ ϕ+
i , b ∈ ψ−

i . [∀c ∈ e−〈a, b〉. ϕi(a, c)] ⇒ ψi(e
+a, b) .

All fibres of DN are cartesian closed and this structure is preserved by rein-
dexing since finite products and exponentials are constructed componentwise.

Terminal Object
is given by > = ({0}, ∅, ∅). Notice, that > ∼= ({0}, {0}, {〈0, 0〉}).

Products
The conjunction p ∧ q is given by

(1) (p ∧ q)+ = p+ × q+

(2) (p ∧ q)− = p− + q−

(3) (p ∧ q)(〈n,m〉, 〈i, k〉) ⇔ (i = 0 ∧ p(n, k)) ∨ (i = 1 ∧ q(m, k)) .
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Exponentials
The implication p→ q is given by

(1) (p→ q)+ = (p+ → q+)× (p+ × q− → Pf(p
−))

(2) (p→ q)− = p+ × q−

(3) (p→ q)(〈e+, e−〉, 〈a, b〉) ⇔ [∀c ∈ e−〈a, b〉. p(a, c)] ⇒ q(e+a, b) .

Next we consider quantification in DN. In the following we write [i = j]
for {0 | i = j}.

Universal Quantification
For u : I → J and ϕ ∈ DNI we construct ∀u(ϕ) ∈ DNJ as follows

(1) ∀u(ϕ)+
j =

⋂
i∈I [u(i) = j] → ϕ+

i

(2) ∀u(ϕ)−j =
⋃

i∈u−1(j) ϕ
−
i

(3) ∀u(ϕ)j(a, b) ⇔ ∀i ∈ u−1(j).
(
b ∈ ϕ−i ⇒ ϕi(a · 0, b)

)
.

Lemma 1.1 In DN it holds for all functions u : I → J that u∗ a ∀u.

Proof. First we show that for all ϕ ∈ DNI and ψ ∈ DNJ it holds that

u∗ψ `I ϕ iff ψ `J ∀u(ϕ)

i.e. that ∀u is right adjoint to u∗ w.r.t. DN.

The pair (e+, e−) realises ψ `J ∀u(ϕ) iff

e+ ∈
⋂

j∈J (ψ+
j →

⋂
i∈I [u(i) = j] → ϕ+

i ) =

=
⋂

j∈J

⋂
i∈u−1(j) (ψ+

j → {0} → ϕ+
i )

and

e− ∈
⋂

j∈J ((ψ+
j ×

⋃
i∈u−1(j) ϕ

−
i ) → Pf(ψ

−
j )) =

=
⋂

j∈J

⋃
i∈u−1(j) ((ψ+

j × ϕ−i ) → Pf(ψ
−
j ))

such that
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∀j ∈ J.∀a ∈ ψ+
j .∀b ∈

⋃
i∈u−1(j) ϕ

−
i .

[∀c ∈ e−〈a, b〉. ψj(a, c)] ⇒ ∀i ∈ u−1(j). b ∈ ϕ−i ⇒ ϕi(e
+a0, b)

which is equivalent to

∀j ∈ J.∀a ∈ ψ+
j .∀i ∈ u−1(j).∀b ∈ ϕ−i . [∀c ∈ e−〈a, b〉. ψj(a, c)] ⇒ ϕi(e

+a0, b)

which in turn is equivalent to

∀i ∈ J.∀a ∈ ψ+
u(i).∀b ∈ ϕ

−
i .[∀c ∈ e−〈a, b〉. ψj(a, c)] ⇒ ϕi(e

+a0, b) .

The pair (f+, f−) realises u∗ψ `I ϕ iff

f+ ∈
⋂

i∈I (ψ+
u(i) → ϕ+

i )

and
f− ∈

⋂
i∈I ((ψ+

u(i) × ϕ−i ) → Pf(ψ
−
u(i)))

such that

∀i ∈ J.∀a ∈ ψ+
u(i).∀b ∈ ϕ

−
i .[∀c ∈ f−〈a, b〉. ψj(a, c)] ⇒ ϕi(f

+a, b) .

Using these explicitations one gets that

(1) If (e+, e−) realises ψ `J ∀u(ϕ) then putting f+ := Λa.e+a0 and f− :=
e− the pair (f+, f−) realises u∗ψ `I ϕ.

(2) If (f+, f−) realises u∗ψ `I ϕ then putting e+ := Λa.Λn.f+a and e− :=
f− the pair (e+, e−) realises ψ `J ∀u(ϕ).

as is easily shown by standard logical manipulations. �

It is obvious from the construction that universal quantification is pre-
served by substitution, i.e. that BCC holds.
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Notice that in case u : I → J is onto one may simplify the construction
of ∀u(ϕ) by putting ∀u(ϕ)+

j =
⋂

i∈u−1(j) ϕ
+
i and

∀u(ϕ)j(a, b) ⇔ ∀i ∈ u−1(j).
(
b ∈ ϕ−i ⇒ ϕi(a, b)

)
.

Existential Quantification
For u : I → J and ϕ ∈ DNI existential quantification is given by

(1) ∃u(ϕ)+
j =

⋃
i∈u−1(j) ϕ

+
i

(2) ∃u(ϕ)−j =
⋂

i∈u−1(j)[ϕ
+
i →Pf(ϕ

−
i )]

(3) ∃u(ϕ)j(a, b) ⇔ ∃i ∈ u−1(j).
(
a ∈ ϕ+

i ∧ ∀c ∈ ba. ϕi(a, c)
)

.

Lemma 1.2 In DN it holds for every function u : I → J that ∃u a u∗.

Proof. Let ϕ ∈ ΣI and ψ ∈ ΣJ . We have to show the equivalence of the
following two statements

(a) ∃u(ϕ) aJ ψ, i.e. there exist

e+1 ∈
⋂
j∈J

[
∃u(ϕ)+

j →ψ+
j

]
and e−1 ∈

⋂
j∈J

[
∃u(ϕ)+

j ×ψ−
j →Pf(∃u(ϕ)−j )

]
such that

(1) ∀j∈J.∀a∈∃u(ϕ)+
j .∀b∈ψ−

j .[∀c∈e−1 (a, b).∃u(ϕ)j(a, c)] ⇒ ψj(e
+
1 a, b)

(b) ϕ `I u
∗ψ, i.e. there exist

e+2 ∈
⋂
i∈I

[
ϕ+

i →ψ+
u(i)

]
and e−2 ∈

⋂
i∈I

[
ϕ+

i ×ψ−
u(i)→Pf(ϕ

−
i )

]
such that

(2) ∀i∈I.∀a∈ϕ+
i .∀b∈ψ−

u(i). [∀c∈e
−
2 (a, b).ϕi(a, c))] ⇒ ψu(i)(e

+
2 a, b) .
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Suppose (a), i.e. there exists e+1 and e−1 satisfying (1). We have to show
that (b). For this purpose put e+2 = e+1 and e−2 in such a way such that
e−2 (a, b) is a code for the finite set

⋃
c∈e−1 (a,b) εc·a. For showing that e+2 and e−2

validate (2) suppose i ∈ I, a ∈ ϕ+
i , b ∈ ψ−

u(i) satisfying

(3) ∀c ∈ e−2 (a, b). ϕi(a, c).

Then from assumption (1) it follows that

(4) [∀c∈e−1 (a, b).∃u(ϕ)u(i)(a, c)] ⇒ ψu(i)(e
+
1 a, b)

Since e+1 = e+2 for showing the desired ψu(i)(e
+
2 (a, b) it suffices to show the

premiss of (4), i.e. more explicitly that

(5) ∀c ∈ e−1 (a, b).∃i′ ∈ u−1(u(i)). a ∈ ϕ+
i′ ∧ ∀d ∈ c·a. ϕi′(a, d)

For that purpose suppose that c ∈ e−1 (a, b). Put i′ = i. By assumption we
have a ∈ ϕ+

i . Suppose d ∈ c·a. Then also d ∈ e−2 (a, b) from which it follows
by (3) that ϕi(a, d) and we are done.

Suppose (b), i.e. there exists e+2 and e−2 satisfying (2). We have to show
that (a). For this purpose put e+1 = e+2 and choose e−1 in such a way that
e−1 (a, b) is a code for the set {Λx.e−2 (a, b)}. For showing that e+1 and e−1
validate (1) suppose j ∈ J , a ∈ ∃u(ϕ)+

j , b ∈ ψ−
j satisfying the condition ∀c ∈

e−1 (a, b).∃u(ϕ)j(a, c), i.e. ∃u(ϕ)j(a,Λx.e
−
2 (a, b)) by definition of e−1 . Thus, by

definition of ∃u(ϕ)j and since (Λx.e−2 (a, b))a = e−2 (a, b) we get that

(6) ∃i ∈ u−1(j).a ∈ ϕ+
i ∧ ∀c ∈ e−2 (a, b). ϕi(a, c)

Now let i ∈ u−1(j) such that

(7) a ∈ ϕ+
i ∧ ∀c ∈ e−2 (a, b). ϕi(a, c)

Then it follows by assumption (2) that ψu(i)(e
+
2 a, b)) and thus since j = u(i)

and e+1 = e+s also that ψj(e
+
2 (a, b) as desired. �

It is obvious from the construction that existential quantification is pre-
served by substitution, i.e. that BCC holds.

Notice that in case u : I → J is onto one may simplify the construction
of ∃u(ϕ) by putting ∃u(ϕ)−j =

⋂
i∈u−1(j) Pf(ϕ

−
i ) and

∃u(ϕ)j(a, b) ⇔ ∃i ∈ u−1(j).
(
a ∈ ϕ+

i ∧ ∀c ∈ b. ϕi(a, c)
)
.
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Generic Predicate
is given by the identity function on ΣDN considered as an element of DNΣ.

The structure exhibited so far guarantees DN to be a tripos. Disjunction
can be defined impredicatively à la Prawitz as usual. We give a more direct
construction of ⊥, negation and (Lawvere) equality.

Falsity
is given by ⊥ = (∅, ∅, ∅). Notice that ⊥ ∼= (∅, {0}, ∅).
Negation
For a proposition p its negation ¬p is given by

¬p =

{
(N, ∅, ∅) if p+ = ∅
(∅, ∅, ∅) otherwise.

Accordingly, double negation is given by

¬¬p =

{
(∅, ∅, ∅) if p+ = ∅
(N, ∅, ∅) otherwise.

As (N, ∅, ∅) ∼= > we have that ¬p is > if p+ = ∅ and ⊥ otherwise.

Lawvere Equality
For a set I the equality predicate eqI ∈ DNI×I is given by

eqI(i, j)
+ = {0 | i = j} and eqI(i, j)

− = ∅

for i, j ∈ I. One easily shows that eqI a` ∃δ(I)(>I), i.e. that eqI coincides
with Lawvere’s notion of equality.

As DN is a tripos one may consider the associated “Dialectica topos”
DN = Set[DN] obtained by the tripos-to-topos construction. Due to the
particular nature of (double) negation the ¬¬–sheaves of DN are equivalent
to Set. However, the sheafification functor for the ¬¬-topology is not given
by the global sections functor. The reason is that DN lacks the ∃-property as
can be seen from the following counterexample. Consider p ∈ DNN as given
by p+

n = ({0}, {0, n + 1}, {〈0, 0〉}) all whose items pn are not valid whereas
∃N(p) = ({0}, {0}→Pf({0}), {0}×({0}→Pf({0}))) is valid. Anyway, due to
the pleasantly simple nature of double negation a useful notion of “assembly”
seems to be available via ¬¬-separated objects as usual.
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2 Relation to Number Realizability

Next we will show that DN contains as subtripos the number realizability
tripos R from which the effective topos Eff = Set[R] arises via the tripos-to-
topos construction. Recall that ΣR = P(N) and ϕ `I ψ iff

⋂
i∈I [ϕi→ψi] is

inhabited.

Theorem 2.1 There is an injective geometric morphism i : R → DN and,
accordingly, Eff is a subtopos of DN. This geometric inclusion arises from
the topology u→ (−) on DN where u = ({0}, {0}, ∅). Moreover, one obtains
Set as the subtopos of ¬¬-sheaves of DN.

Proof. We define i : R → DN as the fibred adjunction

i∗(X, Y,R) = X and i∗(X) = (X, ∅, ∅)

and one easily checks that i∗ preserves > and also conjunction in each fibre
(if conjuction is constructed à la Gödel 1958).

One easily checks that i∗i
∗(X, Y,R) = (X, ∅, ∅) ∼= u → (X, Y,R) from

which it follows that the geometric inclusion i is induced by the topology
u→ (−) on DN.

It is well known that Set ' Eff ¬¬. Thus, since ¬¬(u → (X, Y,R)) =
¬¬(X, Y,R) it follows that Set ' DN¬¬. �

It might be worthwhile to further investigate the subtopos of DN which
is the complement of Eff , i.e. the subtopos of DN induced by the topology
u ∨ (−). It arises via the tripos-to-topos construction from the subtripos of
DN consisting of those predicates (ϕi)i∈I where

⋂
i∈I ϕ

+
i is nonempty.

Since direct image parts of injective geometric morphisms preserve fi-
nite limits and exponentials via the geometric inclusion i : Eff → DN of
Theorem2.1 we obtain an embedding of Asm(N) into DN which preserves
finite limits and exponentials. Recall that i∗(X,E) = (X, i∗◦E).

In general direct image parts of geometric morphisms do not preserve
nno’s. But in the particluar case i : Eff → DN one readily checks that
i∗(N) = (N, EN) with EN(n,m) = ({k ∈ N | n = k = m}, ∅, ∅) happens to
be a nno in DN. Thus i∗ restricts to a structure preserving embedding of
HEO into DN.
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3 Modified Diller-Nahm Dialectica Tripos

The set of truth values of the Modified Diller-Nahm Dialectica tripos DNm

over Set is

Σ = {(X, Y,R) ∈ P0(N)2 × P(N× N) | R ⊆ X × Y }

where P0(N) is the set of all subsets of N containing 0 as an element. Again
we tacitly assume that 〈0, 0〉 = 0 = 0 · n and e0 = ∅.

For p = (X, Y,R) ∈ Σ we write p+, p−, p(a, b) for X, Y , R(a, b), re-
spectively. For I ∈ Set the fibre DNm

I is defined as the preorder (ΣI ,`I),
where ΣI the set of all functions from I to Σ and ϕ `I ψ iff there exist
e+ ∈

⋂
i∈I [ϕ

+
i → ψ+

i ] and e− ∈
⋂

i∈I [ϕ
+
i × ψ−

i → Pf(ϕ
−
i )] such that

∀i ∈ I. ∀a ∈ ϕ+
i , b ∈ ψ−

i . [∀c ∈ e−〈a, b〉. ϕi(a, c)] ⇒ ψi(e
+a, b) .

In many cases the verification of the tripos requirement is the same as for
DN together with the observation that 0 shows up in the positive and neg-
ative part of propositions. Sometimes, however, the 0 has to be added after
“shifting by 1”.

All fibres of DNm are cartesian closed and this structure is preserved by
reindexing as finite products and exponentials are constructed component-
wise.

Terminal Object
is given by > = ({0}, {0}, {〈0, 0〉}).

Products
The conjunction p ∧ q is given by

(1) (p ∧ q)+ = p+ × q+

(2) (p ∧ q)− = p− + q−

(3) (p ∧ q)(〈n,m〉, 〈i, k〉) ⇔ (i = 0 ∧ p(n, k)) ∨ (i = 1 ∧ q(m, k)) .

Notice that 0 ∈ (p ∧ q)+ as 0 ∈ p+ and 0 ∈ q+ and 0 ∈ (p ∧ q)− as 0 ∈ p−.
Notice, however, that p ∧ q may be constructed also in a different way

following more closely Gödel 1958. Put (p∧q)+ = p+×q+, (p∧q)− = p−×q−
and

(p ∧ q)(〈n,m〉, 〈k, `〉) ⇔ p+(n, k) ∧ q+(m, `) .
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We have 0 = 〈0, 0〉 ∈ p+×q+ = (p ∧ q)+ and 0 = 〈0, 0〉 ∈ p−×q− = (p ∧ q)−
since 0 ∈ p+, p−, q+, q− and thus the so defined p ∧ q is actually in ΣDNm .
Notice that if r ` p is realized by f and F and r ` q is realized by g and G
then r ` p ∧ q is realized by c 7→ 〈f(c), g(c)〉 and 〈a, b〉 7→ F (c, a) ∪ G(c, b).
For realizing the projections it is essential to have a ”dummy” element 0
available in p− and q, respectively. That is the reason why this construction
of conjunction does not work for DN.

Exponentials
The implication p→ q is given by

(1) (p→ q)+ = (p+ → q+)× (p+ × q− → Pf(p
−))

(2) (p→ q)− = p+ × q−

(3) (p→ q)(〈e+, e−〉, 〈a, b〉) ⇔ ([∀c ∈ e−〈a, b〉. p(a, c)] ⇒ q(e+a, b)) .

Notice that 0 ∈ (p → q)+ as 0 ∈ q+ and 0 ∈ Pf(p
−) (because e0 = ∅) and

0 ∈ (p→ q)− as 0 ∈ p+ and 0 ∈ q−.

Next we consider quantification in DNm. The following notation will be
useful: succ(X) := {n + 1 | n ∈ X} for X ⊆ N. Again we write [i = j] for
{0 | i = j}.

Universal Quantification
For u : I → J and ϕ ∈ DNmI universal quantification is given by

(1) ∀u(ϕ)+
j =

⋂
i∈I [u(i) = j] → ϕ+

i

(2) ∀u(ϕ)−j = {0} ∪ succ(
⋃

i∈u−1(j) ϕ
−
i )

(3) ∀u(ϕ)j(a, b+ 1) ⇔ ∀i ∈ u−1(j).
(
b ∈ ϕ−i ⇒ ϕi(a0, b)

)
and ∀u(ϕ)j(a, 0) always holds.

Notice that ∀u(ϕ)+
j contains 0 as all ϕ+

i contain 0. As
⋃

i∈u−1(j) ϕ
−
i does

not contain 0 if u−1(j) is empty we have added 0 to this union and shifted⋃
i∈u−1(j) ϕ

−
i by 1 in order to enforce that ∀f (ϕ)−j always contains 0.

Lemma 3.1 In DNm it holds for all functions u : I → J that u∗ a ∀u.
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Proof. Essentially like the proof of Lemma 3.1.
The difference is only that for b ∈ ∀u(ϕ)j we to consider the cases b = 0

and b > 0. In the second case the argument is like in the proof of Lemma 3.1
and for b = 0 there is nothing to show as we have defined ∀u(ϕ)j(a, 0) to hold
anyway. Enforced by this additional case analysis we have to show instead

(1) If (e+, e−) realises ψ `J ∀u(ϕ) then putting f+ := Λa.e+a0 and f− :=
Λn.e−(n+ 1) the pair (f+, f−) realises u∗ψ `I ϕ.

(2) If (f+, f−) realises u∗ψ `I ϕ then putting e+ := Λa.Λn.f+a and e− :=
Λn.if n > 0 then f−(n−1) else 0 the pair (e+, e−) realises ψ `J ∀u(ϕ).

which again is verified by straightforward logical manipulation. �

It is obvious from the construction that universal qantification is pre-
served by substitution, i.e. that BCC holds.

Notice that in case u : I → J is onto the construction of ∀u(ϕ) can be
simplified by putting ∀u(ϕ)+

J =
⋂

i∈u−1(j) ϕ
+
i and

∀(ϕ)j(a, b+ 1) ⇔ ∀i ∈ u−1(j).
(
b ∈ ϕ−i ⇒ ϕi(a, b)

)
.

Existential Quantification
For u : I → J and ϕ ∈ DNm

I existential quantification is given by

(1) ∃u(ϕ)+
j = {0} ∪ succ(

⋃
i∈u−1(j) ϕ

+
i )

(2) ∃u(ϕ)−j =
⋂

i∈u−1(j)

[
ϕ+

i →Pf(ϕ
−
i )

]
(3) ∃u(ϕ)j(a+ 1, b) ⇔ ∃i ∈ u−1(j).

(
a ∈ ϕ+

i ∧ ∀c ∈ ba. ϕi(a, c)
)

and ∃u(ϕ)j(0, b) never holds.

Notice that ∃u(ϕ)+
j contains 0 by construction and ∃u(ϕ)−j contains 0 as all

Pf(ϕ
−
i ) and thus all [ϕ+

i →Pf(ϕ
−
i )] contain 0.

It is obvious from the construction that existential qantification is pre-
served by substitution, i.e. that BCC holds.

Notice that in case u : I → J is onto the construction of ∃u(ϕ) can be
simplified by putting ∃u(ϕ)+

j =
⋂

i∈u−1(j) Pf(ϕ
−
i ) and

∃u(ϕ)j(a+ 1, b) ⇔ ∃i ∈ u−1(j).
(
a ∈ ϕ+

i ∧ ∀c ∈ b. ϕi(a, c)
)
.
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Generic Predicate
is given by the identity function on Σ considered as an element of DNm

Σ.

The structure exhibited so far guarantees DN to be tripos. Disjunction
can de defined impredicatively à la Prawitz as usual. However, we give a
more direct construction of ⊥, negation and (Lawvere) equality.

Falsity
is given by ⊥ = ({0}, {0}, ∅).

Negation
For a proposition p its negation ¬p is given by

(¬p)+ = p+ → Pf(p
−) (¬p)− = p+

(¬p)(a, b) ⇔ ∃c ∈ ab.¬p(b, c)

Accordingly, double negation of p is given by

(¬¬p)+ = [p+ → Pf(p
−)] → Pf(p

+) (¬¬p)− = p+ → Pf(p
−)

(¬¬p)(a, b) ⇔ ∃c ∈ ab. ∀d ∈ bc. p(c, d)

because (¬¬p)(a, b) ⇔ ∃c ∈ ab.¬(¬p)(b, c) ⇔ ∃c ∈ ab.¬(∃d ∈ bc.¬p(c, d)).

Equality
For a set I the equality predicate eqI ∈ DNm

I×I is given by

eqI(i, j)
+ = {0} ∪ {1 | i = j} eqI(i, j)

− = {0}

eqI(i, j)(a, 0) ⇔ (a = 1 ∧ i = j)

for all i, j ∈ I as one easily shows that eqI a` ∃δ(I).
Notice that, alternatively, one may define eqI as eqI(i, j)

+ = {0} = eqI(i, j)
−

and eqI(i, j) ≡ i = j.

Now we can define our central notion.

Definition 3.1 The modified Dialectica Topos DNm is defined as Set[DNm],
the topos obtained from DNm by the tripos-to-topos construction.
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As we almost never consider DN we often omit the epitheton “modified”
when speaking of DNm and call it simply the Dialectica topos.

In contrast to the usual realizability toposes (and also the modified real-
izability topos) DNm is not 2-valued.

Lemma 3.2 The tripos DNm is not 2-valued, i.e. there are propositions
which are neither true nor false. Consequently, the topos DNm is not 2–
valued either.

Proof. A proposition p is true iff ∃a ∈ p+.∀b ∈ p−. p(a, b) and p is false iff
∃e ∈ p+→Pf(p

−).∀a ∈ p+.∃b ∈ e · a.¬p(a, b).
Let f be a function growing faster than any total recursive function3

Obviously, the proposition p = (N,N, {〈n,m〉 | f(n) 6= m}) is neither true
nor false. The latter follows as e · a ≥ f(a) for all a ∈ N. �

Obviously, the argument goes through for DN and DN, too. We do not
consider the failure of 2-valuedness as a disadvantage as in the case of DN the
¬¬-sheaves are still equivalent to Set and for this reason the ¬¬-separated
objects of DN are well-behaved and provide a good notion of “assembly”.

However, for DNm this is not the case as its ¬¬-sheaves are not equiv-
alent to Set. Actually, it is not clear how to provide a sufficiently simple
characterisation of the ¬¬–sheaves of DNm avoiding the intricacies of double
negation.

4 Relation to Modified Realizability

Already in [Hy] Martin Hyland observed that there is a surjective localic
geometric morphism from DN to Eff 2, the effective topos built over the
Sierpinski topos, induced by a surjective geometric morphism between the
triposes from which DN to Eff 2 originate. The aim of this section is to show
an analogous result for DNm and Mod, the modified realizability topos.

For this purpose we first briefly recall the definition of M, the modified
realizability tripos, from which the modified realizability topos Mod is ob-
tained via the tripos-to-topos construction. The modified realizability topos

3Let (fn | n ∈ N) be some enumeration of all total recursive functions and define
f(n) = 1 + maxi≤nf(i).
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was originally introduced by Grayson in [Gr] and further investigated by
vanOosten in [vO].

The propositions of M are given by

ΣM = {(Aa, Ap) ∈ P(N)2 | Aa ⊆ Ap 3 0}

i.e. a proposition is given by a set Ap of potential realizers containing 0 and
a subset Aa ⊆ Ap of actual realizers. For I ∈ Set the fibre MI = (ΣI

M,`I)
where ΣI

M is the set of all functions from I to ΣM and ϕ `I ψ iff there is an

e ∈
⋂
i∈I

(ϕa
i → ψa

i ) ∩ (ϕp
i → ψp

i )

for ϕ, ψ ∈ MI . The propositional logical structure is given by componentwise
application of the following operations on ΣM

> = ({0}, {0})
⊥ = (∅, {0})

A→ B = ((Aa → Ba) ∩ (Ap → Bp), Ap → Bp)

A ∧B = (Aa ×Ba, Ap ×Bp)

A ∨B = (Aa +Ba, Ap +Bp) .

The quantificational structure of M is given by

∀u(ϕ)j = (
⋂

i∈u−1(j){0} → ϕa
i ,

⋂
i∈u−1(j){0} → ϕp

i )

∃u(ϕ)j = ( succ(
⋃

i∈u−1(j) ϕ
a
i ) , {0} ∪ succ(

⋃
i∈u−1(j) ϕ

p
i ) )

for u : I → J and ϕ ∈ MI . Notice that this definition of quantifiers is easily
seen to be equivalent to the one of [vO].

Now we will define a geometric morphism from DNm to M.

Definition 4.1 Let the maps q∗ : ΣM → ΣDNm and q∗ : ΣDNm → ΣM be
defined as

q∗(Aa, Ap) = (Ap, {0}, Aa × {0})
q∗(X, Y,R) = ( {x ∈ X | ∀y ∈ Y.R(x, y)} , X ) .

We also write q∗ : M → DNm and q∗ : DNm → M for the morphisms of
triposes induced by componentwise application.
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That q∗ and q∗ are tripos morphisms is immediate from the fact that they
respect logical entailment in each fibre and commute with reindexing as they
are defined componentwise.

Theorem 4.1 The tripos morphisms of Definition 4.1 give rise to a con-
nected geometric morphism q : DNm → M as given by the adjunction q∗ a q∗
where q∗ preserves finite limits and is full and faithful.

But q∗ does not have a right adjoint as q∗ does not preserve existential
quantification.

Proof. We first check that q∗ a q∗. Let A ∈ MI and p ∈ DNm
I .

Suppose q∗A `I p. Then there exist

e+ ∈
⋂
i∈I

(Ap
i → p+

i ) and e− ∈
⋂
i∈I

(Ap
i × p−i → Pf({0}))

such that

∀i ∈ I. ∀a ∈ Ap
i , b ∈ p−i . (∀c ∈ e−〈a, b〉. a ∈ Aa

i ) ⇒ pi(e
+a, b)

from which it follows that

∀i ∈ I. ∀a ∈ Ap
i . a ∈ Aa

i ⇒ ∀b ∈ p−i . pi(e
+a, b)

which is equivalent to

∀i ∈ I. ∀a ∈ Ap
i . a ∈ Aa

i ⇒ (q∗p)
a
i

and, therefore, it holds that A `I q∗p.
Suppose that A `I q∗p. Then there exists an

f ∈
⋂
i∈I

(Ap
i → p+

i )

with ∀i ∈ I. ∀a ∈ Ap
i . a ∈ Aa

i ⇒ (q∗p)
a
i , i.e.

∀i ∈ I. ∀a ∈ Ap
i . a ∈ Aa

i ⇒ ∀b ∈ p−i . pi(fa, b) .

But then putting e+ := f and e− = Λa.Λb.c0 with ec0 = {0} we get that
e+ ∈

⋂
i∈I (Ap

i → p+
i ) and e− ∈

⋂
i∈I (Ap

i × p−i → Pf({0})) satisfying

∀i ∈ I. ∀a ∈ Ap
i , b ∈ p−i . (∀c ∈ e−〈a, b〉. a ∈ Aa

i ) ⇒ pi(e
+a, b)
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and, therfore, it holds that q∗A `I p.
It is a straightforward exercise to show that q∗ preserves > and ∧ and

that q∗ is full (it is faithful anyway!).
That q∗ does not preserve existential quantification can be seen from the

following counterexample. Let p ∈ DNm
N be defined as

p+
n = {0} p+

n = {0, n+ 1} pn = {〈0, 0〉}

for n ∈ N. We write ∃N for existential quantification along the terminal
projection N → 1. We have ∃Np = ({0, 1}, {0, 1}→{0}, {1}×({0, 1}→{0}))
and, accordingly, q∗∃Np = ({1}, {0, 1}). On the other hand (q∗p)n = q∗(pn) =
(∅, {0}) for all n ∈ N and accordingly ∃Nq∗p = (∅, {0, 1}). Thus, q∗∃Np and
∃Nq∗p are not equivalent as the former is true and the latter is false. �

5 Markov’s Principle in DNm

We next prove a lemma from which it follows that DNm validates Markov’s
principle.

Lemma 5.1 Let p = (X,U,R) be a proposition with U = {0} and R a
decidable predicate on X × {0}. Then ¬¬p ` p holds in DNm.

Proof. The proposition ¬¬p looks as follows. Its positive underlying set
is (¬¬p)+ = (¬¬p)− → Pf(p

+) where (¬¬p)− = p+ → Pf({0}) is the set of
(Gödel numbers of) decidable predicates on p+ as Pf({0}) = {0, 1} (recall
that e0 = ∅ and e1 = {0}). The underlying relation of ¬¬p is given by

(¬¬p)(a, b) ≡ ∃c ∈ ab.∀d ∈ bc.p(c, d) ⇔ ∃c ∈ ab.(bc = 1) → p(c, 0) .

Now the entailment ¬¬p ` p is realized by

e+a = µc ∈ a(Λn.1). p(c, 0) and e−〈a, 0〉 = Λn.1

as it holds that

∀a ∈ (¬¬p)+. [∃c ∈ a(Λn.1). p(c, 0)] ⇒ p(e+a, 0)

because if ∃c ∈ a(Λn.1). p(c, 0) then by definition of e+ it holds that e+a ∈
a(Λn.1) and p(e+a, 0). �
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Since inverse image parts of geometric morphisms preserve nno’s we know
that a nno in DNm is given by q∗(N) where N is a nno in Mod. In [vO]
one finds the following description of a nno in Mod, namely as N = (N, EN)
where EN(n,m) = (∅, {0}) if n 6= m and EN(n, n) = ({n+1}, {0, n+1})
otherwise. Thus, a nno in DNm is given by (N, En) where EN(n,m) =
({0}, {0}, ∅) if n 6= m and EN(n, n) = ({0, n+1}, {0}, {〈n+1, 0〉}) otherwise.

An alternative construction of nno in DNm which is often easier to com-
pute with looks as follows: again the underlyings set is N but the equality
predicate is given by EN(n,m) = (N, {0}, {〈k, 0〉 | n = k = m}).

Notice that for any of these constructions the proposition En(n,m) satifies
the assumption of Lemma 5.1.

Theorem 5.2 In DNm the Markov principle

MP ¬¬∃x:N.P (x) → ∃x:N.P (x)

holds for every quantifier-free formula P (x).

Proof. Every quantifierfree predicate P (x) is decidable and thus the neg-
ative part of the interpretation of P can always be chosen as {0}. We have
already observed that the negative part of the existence predicate En can
always be chosen as {0}. Thus, we can always choose [[∃x:N.P (x)]]DNm

in
such a way that its negative part is {0} from which it follows by Lemma 5.1
that [[∃x:N.P (x)]]DNm

is ¬¬-stable in DNm as claimed by MP. �

It is a distinguishing feature of Gödel’s original functional interpretation
that it validates a generalized Markov’s principle

MPσ ¬¬∃x:σ.P (x) → ∃x:σ.P (x)

for all finite types σ over N . This presumably is wrong for DNm since ex-
istence predicate for arbitrary finite types σ will not satisfy the assumption
of Lemma 5.1. However, when performing the modified Diller-Nahm con-
struction over the typed pca HRO one can show the validity of MPσ with
an argument like in the proof of Theorem 5.2. The reason is that typed
realizability over HRO renders the existence predicates Eσ “discrete” in the
sense that Eσ(u, v) = (σ, 1, {〈w, ∗〉 | u = w = v}) (where 1 is the terminal
type containing just the element ∗).
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Appendix A Dialectica Tripos

In [BiRo] L. Birkedal and G. Rosolini have shown that implication exists in
Gödel’s original setting even if relations are not decidable. However, this
implication is different from Gödel’s original one which rather forms part of
a monoidal closed structure different from the cartesian one.

The (modified) Dialectica tripos Dm is defined as follows. Its underlying
set of propositions is given by

ΣDm = {(X,U,R) ∈ P0(N)2 × P(N2) | R ⊆ X × U} .

For I ∈ Set the fibre Dm
I is the preorder whose underlying set of elements

is the set of all arbitrary set-theoretic functions from I to ΣDm and where
ϕ `I ψ iff there exist

e+ ∈
⋂
i∈I

(ϕ+
i → ψ+

i ) e− ∈
⋂
i∈I

(ϕ+
i × ψ−

i → ϕ+
i )

such that

∀i ∈ I. ∀a ∈ ϕ+
i .∀b ∈ ψ+

i . ϕi(a, e
−〈a, b〉) ⇒ ψi(e

+a, b) .

Terminal objects, products, universal and existential quantification are
constructed as for DNm in section 3. However, the construction of exponen-
tials differs considerably from the orginal one given by Gödel in 1958.

Exponentials
The implication p→ q is constructed as follows

(1) (p→ q)+ consists of all

〈e+, e−〉 ∈ (p+ → q+)× (p+ × q− → {0}+ p−)

such that

∀a ∈ p+.∀b ∈ q−. π1(e
−〈a, b〉) = 1 ⇒ p(a, π2(e

−〈a, b〉)) ⇒ q(e+a, b)

where πi(〈n1, n2〉) = ni for i = 1, 2.

(2) (p→ q)− = p+ × q−
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(3) (p→ q)(〈e+, e−〉, 〈a, b〉) ⇔ (π1(e
−〈a, b〉) = 0 ⇒ q(e+a, b)) .

Notice that the restriction to propositions whose positive and negative un-
derlying sets both contain 0 is intrinsic for showing that θ ` ϕ → ψ implies
θ ∧ ϕ ` ψ.

Negation
For a proposition p its negation ¬p up to isomorphism looks as follows. The
positive part (¬p)+ consists of all e : p+ → {0}+ p− such that

∀a ∈ p+. π1(e·a) = 1 ⇒ ¬p(a, π2(e·a)) .

The negative part (¬p)− = p+ and (¬p)(e, a) ≡ π1(e·a) = 1.

Again as for DNm we have

Lemma 5.3 Let p = (X,U,R) be a proposition with U = {0} and R a
decidable predicate on X × {0}. Then ¬¬p ` p

Proof. Due to the above explicitation of negation we have that (¬p)+

consists e : p+ → {0} + {0} such that ∀a ∈ p+. π1(ea) = 1 ⇒ ¬p(a, 0),
(¬p)− = p+ and (¬p)(e, a) ≡ π1(ea) = 1. Accordingly, (¬¬p)+ consists of all
f ∈ (¬p)+ → {0}+p+ such that ∀e ∈ (¬p)+. π1(fe) = 1 ⇒ π1(e·π2(f ·e)) = 0,
(¬¬p)+ = (¬p)+ and (¬¬p)(f, e) ≡ π1(f ·e) = 1.

Let n0 ∈ p+ → {0} + {0} with π1(n0·a) = 1 iff p(a, 0) for all a ∈ p+.
Such an n0 exists as p( , 0) is decidable by assumption and, obviously, it is
an element of (¬p)+ by construction. Now ¬¬p ` p is realized by

e+ = Λf. π2(f ·n0) and e− = Λz. n0

as it holds that

∀f ∈ (¬¬p)+. π1(f ·n0) = 1 ⇒ p(π2(f ·n0), 0)

which follows immediately from the expansions of the statements f ∈ (¬¬p)+

and n0 ∈ (¬p)+. �

Finally, we observe that there is a connected geometric morphism from
Dm to M which is defined in the same way as in Theorem 4.1.
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Appendix B

Assemblies and Discrete Sets in DN

In this appendix we will have a closer look at the category of assemblies
A = Sep¬¬(DN) and the discrete objects in there. They will turn out as
closely related to assemblies and modest sets in Eff .

Let U ∈ DN be the subterminal object whose underlying set is a singleton
{∗} and where [[∗ =U ∗]] = ({0}, {0}, ∅). One can show that ΓU = DN(U,−) :
DN → Set is the sheafification functor for the ¬¬-topology on DN whose
right adjoint is the inclusion ∇U : Set → DN sending S to (S, eqS).

The category A = Sep¬¬(DN) of assemblies, i.e. ¬¬-separated objects in
DN can be described up to equivalence as follows. An assembly is given by a
pair X = (|X|, || · ||X) where |X| is a set and ||x||+X 6= ∅ for all x ∈ |X|. Often
we write simply ||x|| instead of ||x||X when X is clear from the context. A
morphism (of assemblies) from X to Y is an ordinary set-theoretic function
f : |X| → |Y | such that there exist

e+ ∈
⋂

x∈|X|

||x||+ → ||f(x)||+ e− ∈
⋂

x∈|X|

||x||+ × ||f(x)||− → Pf(||x||−)

satisfying

∀x∈|X|.∀a∈||x||+, b∈||f(x)||−. [∀c ∈ e−〈a, b〉.||x||(a, c)] ⇒ ||f(x)||(e+a, b) .

When restricting ΓU to A then it looks particularly simple, namely ΓU(X) =
|X| and similarly for morphisms. The inclusion ∇U sends S to (S, λx:S.>).
Therefore, unlike in case of Eff the category of assemblies is not well-pointed
anymore but, of course, U = ({∗}, ∗ 7→ ({0}, {0}, ∅)) is a separating object.

For this reason for X, Y ∈ A their exponential F = Y X looks somewhat
different from what one might expect (from the case of assemblies in Eff ).
The underlying set of F is not A(X, Y ) but

|F | = {f : |X| → |Y | | ∃e ∈
⋂

x∈|X|

||x||+ → ||f(x)||+}

i.e. the underlying set of F consists of all morphisms from U(X) to U(Y ) in
the category of assemblies in Eff (where U is the forgetful functor sending

21



X ∈ A to the assembly (|X|, λx: |X|.||x||+) in Eff ). The existence predicate
|| · ||F is defined for f ∈ |F | as follows: ||f ||+F consists of all 〈e+, e−〉 with

e+ ∈
⋂

x∈|X|

||x||+ → ||f(x)||+ e− ∈
⋂

x∈|X|

||x||+ × ||f(x)||− → Pf(||x||−)

||f ||− =
⋃

x∈|X| ||x||+ × ||f(x)||− and ||f ||F (〈e+, e−〉, 〈a, b〉) holds iff

∀x∈|X|. a∈||x||+∧ b∈||f(x)||− ⇒ [∀c ∈ e−〈a, b〉.||x||(a, c)] ⇒ ||f(x)||(e+a, b) .

Recall that an object X in A is called discrete iff

X∇U (!2) : X∇U (1) → X∇U (2)

is an isomorphism. Using the explicit construction of exponentials above one
show that X is discrete iff U(X) is a modest set in Sep¬¬(Eff ), the category of
assemblies in Eff . Thus X is discrete iff n ∈ ||x1||+ ∩ ||x2||+ implies x1 = x2.

We conjecture that the “Sierpinski object”

S = {p ∈ Ω | ∃f ∈ NN . p↔ ∃n ∈ N.f(n) = 0}

stays within ω–Set, too. Provided this is correct SDT in DN shouldn’t look
too differently from SDT in Eff .
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