
Introduction to
Constructive Logic and Mathematics

Thomas Streicher

WS 00/01

Prerequisites

The aim of this course is to give an introduction to constructive logic and math-
ematics for people who have some basic acquaintance with naive set theory and
the formalism of first order logic (propositional connectives and quantifiers) as
usually acquired within the first year when studying mathematics or computer
science. It were desirable to know the basic notions of computability theory (re-
cursion theory) but for reasons of selfcontainedness we will give a crash course /
recap of computability theory later on when we need it. Besides that one should
have seen once a construction of the real numbers though its constructive variant
will be introduced and studied in detail.

1

Contents

1 Introduction 3

2 Natural Deduction 7

3 A Hilbert Style System 14

4 Truth–Value Semantics of Constructive Logic 15

5 Embedding Classical into Constructive Logic 19

6 Constructive Arithmetic and Analysis 24

7 Constructive Real Numbers 30

8 Basic Recursion Theory in HA 36

9 Kleene’s Number Realizability 39

10 Markov’s Principle 48

11 Kleene’s Function Realizability 49

12 Higher Type Arithmetic 52
12.1 Description of HAω . 54
12.2 Models of HAω . 56

13 Kreisel’s Modified Realizability 58

14 Gödel’s Functional Interpretation 65

2

1 Introduction

Constructive Logic and Mathematics has always existed as a trend in mainstream
mathematics. However, the need of developing it as a special branch of math-
ematics did not arise before beginning of the 20th century when mathematics
became more abstract and more inconstructive due to the influence of set the-
ory. Inconstructive methods have dominated (the presentation) of 20th century
mainstream mathematics. However, during the last 30 years—mainly triggered
by the growing influence of computer science—we have experienced an increasing
interest in constructive mathematics typically for the following reason.
If we have proved ∀n.∃m.A(n,m) then we want to read off from this proof an
algorithmic function f for which we can show that ∀n.A(n, f(n)), i.e. we want to
extract an algorithm from a proof of existence. Clearly, if A(n,m) is a decidable
property of natural numbers then from the mere validity of ∀n.∃m.A(n,m) we
obtain a most stupid algorithm computing an m with A(n,m) for every n: search
through the natural numbers until you find (the first) m with A(n,m). But very
often one can read off a much more intelligent algorithm from a (constructive)
proof of ∀n.∃m.A(n,m).
However, if A is not decidable this is not possible anymore in the general case
even if m does not depend on n. Consider for example the formula

∃x. (P (x) → ∀y. P (y))

of pure predicate logic where P is an unspecified predicate constant of arity 1.
Classically this is a tautology as if ∀y.P (y) holds then x can be chosen arbitrarily
and if ¬∀y.P (y) then there exists an a with ¬P (a) which we may choose for x.
However, what is sort of intriguing is that this proof does not provide us with a
concrete a for which we could show P (a) → ∀y. P (y). One easily sees that there
cannot exist a term t for which P (t) → ∀y. P (y) is valid (in all models).
One might think that this defect has to do with the general nature of the predicate
P whose nature is left absolutely unspecified. But the following example shows
that we may run into a problem also for very concrete existence statements.

Theorem 1.1 There are irrational numbers a and b such that ab is rational.

Proof: Suppose that
√

2
√

2
is rational then put a = b =

√
2. Otherwise if

√
2
√

2
is

irrational then we may put a =
√

2
√

2
and b =

√
2 which are both irrational but

ab = (
√

2
√

2
)
√

2 =
√

2
(
√

2·
√

2)
=
√

2
2

= 2

is certainly rational. 2

This proof—though undoubtedly correct w.r.t. the usual standards—does not tell

us how to choose a and b unless we have decided whether
√

2
√

2
is rational. But

3

deciding whether
√

2
√

2
is rational or not is a non–trivial problem whose answer

is not at all implicit in the proof just given.
Another example exhibiting the “defects” of classical logic comes from theoretical
computer science. Consider the predicate

A(n,m) ≡ m = 0 ↔ {n}(n)↓

where {n} stands for the partial function computed by the nth Turing machine
and e↓ stands for “e is is defined” (accordingly we write e↑ when e is undefined).
Now using classical reasoning one easily proves ∀n.∃m.A(n,m) as if {n}(n)↓ then
put m = 0 and otherwise put m = 1, say. But, there cannot exist an algorithmic
function f with

∀n.f(n) = 0 ↔ {n}(n)↓

as otherwise the halting problem were decided by f .1

The next example of a non–constructive existence proof is taken from basic clas-
sical analysis where one of the first theorems is the following.

Theorem 1.2 For every bounded sequence (xn)n∈N of real numbers there exists
a point of accumulation.

Proof: Let [a, b] be a rational interval containing all xn (which exists as by as-
sumption the sequence (xn)n∈N is bounded). A point of accumulation is given
by the nesting of intervals [an, bn]n∈N which is “constructed” as follows: put
[a0, b0] := [a, b] and

[an+1, bn+1] =

{
[an,

an+bn

2
] if ∀m.∃k ≥ m.xk ∈ [an,

an+bn

2
]

[an+bn

2
, bn] otherwise .

2

Notice that the “construction” of [an+1, bn+1] from [an, bn] cannot be performed
algorithmically as one has to decide whether the interval [an,

an+bn

2
] contains

infinitely many items of the sequence (xn)n∈N which surely cannot be achieved in
finite time.

1It is a basic fact from recursion theory that K = {n ∈ N | {n}(n)↓} is not decidable.
Otherwise there would exist a Gödelnumber e such that

{e}(n)↓ iff {n}(n)↑

leading to the contradiction
{e}(e)↓ iff {e}(e)↑

when instantiating n by e (a trick called diagonalisation). Obviously, from the undecidability
of K there follows immediately the undecidability of the halting set H = {〈n, m〉 | {n}(m)↓}.

Notice that diagonalisation arguments are all instances of the (constructive) tautology
¬∃x.∀y. R(x, y) ↔ ¬R(y, y).

4

Thus, apparently the use of classical reasoning allows one to prove existential
statements whose witnessing object cannot be read off from the argument. Crit-
ical examination of the above examples tells us that this lack of constructivity
originates from the use of the (classically correct) principles

(1) ∀y.P (y) ∨ ¬∀y.P (y)

(2) ¬∀y.P (y) ↔ ∃y.¬P (y)

(3)
√

2
√

2
is either rational or irrational

(4) {n}(n)↓ ∨ {n}(n)↑

(5) (∀m.∃k ≥ m.xk ∈ [an,
an+bn

2
]) ∨ ¬(∀m.∃k ≥ m.xk ∈ [an,

an+bn

2
]).

Propositions (1), (3), (4) and (5) are instances of the schema

PEM A ∨ ¬A

called Principle of Excluded Middle characteristic for classical logic. Use of PEM
may render proofs inconstructive as in general we cannot decide for a proposition
A whether A or ¬A holds. This is typically the case if A is of the form ∀x.B(x) as
one would have to examine infinitely many B(n) if x ranges e.g. over the natural
numbers.
As long as one is not interested in extracting algorithms from existence proofs
there is nothing to complain about classical logic. Most steps even in a classical
proof are constructive but sometimes there is made appeal to an oracle deciding
the truth of a proposition.
In a sense it is true that constructive logic is obtained from classical logic by
omitting PEM. But the question is what are the constructively valid principles
of reasoning. This is not so easy to answer as there are logical principles which
at first sight look different from PEM but whose proof requires PEM or is even
equivalent to it. For example the logical principle (2) above is usually proved
via PEM making a case analysis on ∃y.¬P (y): if ∃y.¬P (y) then ¬∀y.P (y) and
if ¬∃y.¬P (y) then ∀y.¬¬P (y) from which it follows that ¬∀y.¬P (y). Another
logical principle familiar from classical reasoning is reductio ad absurdum

RAA ¬¬A→ A

where in order to prove A one refutes ¬A. We shall see later that the principles
PEM and RAA are equivalent and adding either of them to constructive logic
one obtains classical logic.
Having seen that it is not so obvious to identify what are “constructively valid”
principles of reasoning we will discuss this question next. Usually, classical valid-
ity is explained in terms of truth values, i.e. one explains what is the truth value
of a compound formula in terms of the truth values of its constituent formulas.

5

This will not work for constructive validity as ordinary truth value semantics
does validate PEM. Accordingly, the constructive meaning of propositions is ex-
plained best in terms of an alternative semantics based on an (informal) notion
of “proof” instead of an (informal) notion of “truth value”. Here “proof” should
not be understood in the sense of a formal proof in some logical calculus as given
for example by a derivation tree but rather as an informal basic notion (like truth
in case of classical logic). One can say that the meaning of constructive logic
is best understood in terms of a proof semantics as opposed to the well-known
truth–value semantics appropriate for classical logic. What we have called “proof
semantics” is often called Brouwer–Heyting–Kolmogoroff Interpretation (or sim-
ply BHK Interpretation) after the people who brought it up.

Proof Semantics of Constructive Logic

Conjunction
A proof of A ∧B is a pair 〈p, q〉 where p is a proof of A and q is a proof of
B.

Implication
A proof of A → B is a (constructive) function f mapping proofs of A to
proofs of B, i.e. f(p) is a proof of B whenever p is a proof of A.

Falsity
There is no proof of ⊥ (falsity).

Disjunction
A proof of A∨B is either a proof of A or a proof of B where it is indicated
(e.g. by a label) whether it proves A or B.

Universal Quantification
A proof of ∀x.A(x) is a (constructive) function f such that f(d) is a proof
of A(d) for all d ∈ D where D is the domain of discourse (over which the
variable x ranges).

Existential Quantification
A proof of ∃x.A(x) is a pair 〈d, p〉 where d ∈ D and p is a proof of A(d)
where D is the domain of discourse (over which the variable x ranges).

The clauses for implication and universal quantification may appear as “circular”
and actually are. However, this is the case as well for the traditional 2–valued
truth value semantics of classical logic where the logic to be explained is used on
the meta–level.2 Accordingly, the BHK interpretation must not be understood as

2If in classical logic one defines A→B as ¬A∨B then implication gets reduced to something
more primitive (in terms of the unexplained notions of negation and disjunction). However, this

6

a precise mathematical definition but rather as an informal, but intuitive explana-
tion of meaning just as the ordinary truth semantics for classical logic. However,
as we shall see later on there are variations of the BHK interpretation which have
a precise technical meaning and are most useful in the sense that they provide
interesting models of constructive logic and allow us to give transparent proofs
of metamathematical properties.

2 Natural Deduction

In this section we introduce a derivation calculus for constructive predicate calcu-
lus which as close as possible reflects the structure of actual mathematical proofs
and, therefore, has been baptized calculus of “Natural Deduction”3. Of course,
derivations in this calculus are much more detailed than actual mathematical
arguments. It is not intended to develop constructive mathematics in a purely
formal way within such a calculus but rather to use it as a mathematical model of
actual constructive reasoning for which one may prove certain metamathematical
properties exhibiting the nature of actual constructive reasoning.4

Notice that the syntax of predicate logic employed here deviates from the usual
practice in one particular aspect: instead of having negation as a basic proposi-
tional connective we introduce a propositional constant ⊥ (‘falsity’) for the false
proposition and introduce negation via the ‘macro’ ¬A ≡ A→ ⊥. It is clear that
under the usual 2–valued truth semantics we have that A → ⊥ is true iff A is
false and, therefore, this ‘implementation’ of negation is in accordance the usual
understanding of negation in classical logic.
We suggest it as an informative exercise to explain the validity of the proof rules
of the following definition in terms of the BHK interpretation.

Definition 2.1 Sequents are expressions of the form

A1, . . . , An ` B

“explanation” of implication was always considered as somewhat contrived and not (properly)
reflecting the intuitive understanding of implication which seems to be brought to the point by
the above clause for implication though in a somewhat “circular” way. On the other hand the
BHK interpretation provides a proper reduction of disjunction and existential quantification
which are the two connectives where constructive logic really deviates from classical logic.

3Natural Deduction was introduced by G. Gentzen back in the 30ies as a mathematical
model of mathematical proofs. His aim was to prove—as strongly advocated by D. Hilbert—
the consistency of arithmetic, i.e. that there is no derivation of a false proposition. Generally,
the endeavour of analyzing proofs by mathematical methods is called proof theory. Nowadays,
however, consistency proofs are not the holy grail of proof theory anymore as their foundational
value is more than debatable due to Gödel’s (Second) Incompletness Theorem.

4Of course, the same applies to formalisations of classical logic. However, as classical rea-
soning is more familiar to most mathematicians than constructive reasoning for studying the
latter it is worthwhile to explicitly state the proof rules from the very beginning.

7

where the Ai and B are formulas of predicate logic. The intended meaning is that
the assumptions A1, . . . , An entail conclusion B. The valid sequents of CPL
(Constructive Predicate Logic) are defined inductively via the following proof
rules.

Structural Rules

(ax)
Γ, A,∆ ` A

Γ, A,B,∆ ` C
(ex)

Γ, B,A,∆ ` C

Γ ` C
(w)

Γ, A ` C

Γ, A,A ` C
(c)

Γ, A ` C

Propositional Connectives

Γ ` A Γ ` B
(∧I)

Γ ` A ∧B

Γ ` A1 ∧ A2
(∧Ei)

Γ ` Ai

Γ, A ` B
(→ I)

Γ ` A→ B

Γ ` A→ B Γ ` A
(→ E)

Γ ` B

Γ ` Ai
(∨Ii)

Γ ` A1 ∨ A2

Γ ` A ∨B Γ, A ` C Γ, B ` C
(∨E)

Γ ` C

Γ ` ⊥
(⊥E)

Γ ` C

Quantifiers

Γ ` A(x) x 6∈ FV (Γ)
(∀I)

Γ ` ∀x.A(x)

Γ ` ∀x.A(x)
(∀E)

Γ ` A(t)

Γ ` A(t)
(∃I)

Γ ` ∃x.A(x)

Γ ` ∃x.A(x) Γ, A(x) ` C x 6∈ FV (Γ, C)
(∃E)

Γ ` C

♦

Notice that there are two elimination rules (∧E1) and (∧E2) for conjunction and
two introduction rules (∨I1) and (∨I2) for disjunction.

8

It is absolutely necessary to take the variable conditions serious in rules (∀I) and
(∃E) as the following counterexamples show where faulty applications of these
rules are marked by †.
That in rule (∀I) the variable x must not occur in the premiss is demonstrated
by the following pseudo–derivation

(ax)
A(x) ` A(x)

(∀I)†
A(x) ` ∀x.A(x)

(→ I)
` A(x) → ∀x.A(x)

(∀I)
` ∀x.(A(x) → ∀x.A(x))

(∀E)
` A(t) → ∀x.A(x)

That in rule (∃E) the variable x must not occur freely in C is demonstrated by
the following pseudo–derivation

(ax)
∃x.A(x) ` ∃x.A(x)

(ax)
∃x.A(x), A(x) ` A(x)

(∃E)†
∃x.A(x) ` A(x)

(∀I)
∃x.A(x) ` ∀x.A(x)

That in rule (∃E) the variable x must not occur freely in Γ is shown by the
following pseudo–derivation

(ax)
Γ ` ∃x.¬A(x)

(ax)
Γ,¬A(x) ` ¬A(x)

(ax)
Γ,¬A(x) ` A(x)

(→ E)
Γ,¬A(x) ` ⊥

(∃E)†
A(x),∃x.¬A(x) ` ⊥

(→ I)
∃x.¬A(x) ` ¬A(x)

(∀I)
∃x.¬A(x) ` ∀x.¬A(x)

where Γ ≡ A(x),∃x.¬A(x).
The consideration of these pseudo–derivations should have already conveyed some
feeling for how to construct formal derivations in the calculus of Natural Deduc-
tion. But, of course, in correct derivations in all applications of the rules (∀I)
and (∃E) the variable conditions have to be fulfilled. We now consider quite a
few examples of correct derivations in CPL as well as derived rules not just for
getting familiar with the practice of the construction of formal proofs but also to
have these constructive logical principles available for subsequent use.

9

The derivation
(ax)

A,¬A ` ¬A
(ax)

A,¬A ` A
(→ E)

A,¬A ` ⊥
(→ I)

A ` ¬¬A

demonstrates that a proposition entails its double negation.
However, a negated formula ¬A follows from its double negation ¬¬¬A via the
derivation

(ax)
¬¬¬A,A ` ¬¬¬A

(ax)
A,¬A ` ¬A

(ax)
A,¬A ` A

(→ E)
A,¬A ` ⊥

(w)
¬¬¬A,A,¬A ` ⊥

(→ I)
¬¬¬A,A ` ¬¬A

(→ E)
¬¬¬A,A ` ⊥

(→ I)
¬¬¬A ` ¬A

and, therefore, we easily can derive

¬A↔ ¬¬¬A

from which it follows that double negation is idempotent, i.e. that

¬¬A↔ ¬¬¬¬A

is derivable.5 This observation allows us to reduce multiple negations either to
simple negation or double negation. Classically, we also have ¬¬A → A (and
therefore also ¬¬A ↔ A) which logical principle is called reductio ad absurdum
and distinguishes classical logic from constructive logic as we shall see later.
Next we show that

A ∨B → C a` (A→ C) ∧ (B → C)

abbreviating

A ∨B → C ` (A→ C) ∧ (B → C) and (A→ C) ∧ (B → C) ` A ∨B → C

as suggested by the notation.

5The phrase “A is derivable” is an abbreviation for “`A is derivable”. Moreover, notice that
A ↔ B is a ‘macro’ for (A → B) ∧ (B → A).

10

We have

(ax)
A ∨B → C,A ` A ∨B → C

(ax)
A ∨B → C,A ` A

(∨I1)
A ∨B → C,A ` A ∨B

(→ E)
A ∨B → C,A ` C

(→ I)
A ∨B → C ` A→ C

and similarly one proves A ∨ B → C ` B → C form which it follows that
A ∨B → C ` (A→ C) ∧ (B → C).
Now we derive the reverse direction. We have

(ax)
Γ ` A ∨B Γ, A ` C Γ, B ` C

(∨E)
(A→ C) ∧ (B → C), A ∨B ` C

(→ I)
(A→ C) ∧ (B → C) ` A ∨B → C

where Γ stands for the context (A→C) ∧ (B→C), A ∨ B. The open assumption
Γ, A ` C can be derived as follows

(ax)
Γ, A ` (A→ C) ∧ (A→ C)

(∧E1)
Γ, A ` A→ C

(ax)
Γ, A ` A

(→ E)
Γ, A ` C

and similarly for the other open assumption Γ, B ` C.
Notice that from ((A → C) ∧ (B → C)) ↔ (A ∨ B → C) there immediately
follows the ‘deMorgan’ law

¬A ∧ ¬B ↔ ¬(A ∨B)

instantiating C by ⊥. Further instantiating B by ¬A we get

¬(A ∨ ¬A) ↔ (¬A ∧ ¬¬A)

and as one easily derives
¬(¬A ∧ ¬¬A)

it follows (Exercise!) that
¬¬(A ∨ ¬A)

11

holds constructively. Thus, by reductio ad absurdum6 we get PEM. On the other
hand PEM entails reductio ad absurdum as can be seen from the derivation

(ax)
Γ ` A ∨ ¬A

(ax)
Γ, A ` A

(ax)
Γ,¬A ` ¬¬A

(ax)
Γ,¬A ` ¬A

(→ E)
Γ,¬A ` A

(∨E)
A ∨ ¬A,¬¬A ` A

(→ I)
A ∨ ¬A ` ¬¬A→ A

where Γ ≡ A ∨ ¬A,¬¬A.
Next we show that

∃x.A(x) → B a` ∀x.(A(x) → B)

provided x is not free in B. The direction from left to right is given by the
derivation

(ax)
∃x.A(x) → B,A(x) ` ∃x.A(x) → B

(ax)
∃x.A(x) → B,A(x) ` A(x)

(∃I)
∃x.A(x) → B,A(x) ` ∃x.A(x)

(→ E)
∃x.A(x) → B,A(x) ` B

(→ I)
∃x.A(x) → B ` A(x) → B

(∀I)
∃x.A(x) → B ` ∀x.(A(x) → B)

and the reverse direction is given by the derivation

(ax)
Γ ` ∃x.A(x)

(ax)
Γ, A(x) ` ∀x.(A(x) → B)

(∀E)
Γ, A(x) ` A(x) → B

(ax)
Γ, A(x) ` A(x)

(→ E)
Γ, A(x) ` B

(∃E)
∀x.(A(x) → B),∃x.A(x) ` B

(→ I)
∀x.(A(x) → B) ` ∃x.A(x) → B

where Γ ≡ ∀x.(A(x) → B),∃x.A(x). Instantiating B by ⊥ we get the ‘deMorgan’
law

¬∃x.A(x) ↔ ∀x.¬A(x) .

Notice, however, that as we shall see later the dual deMorgan law

¬∀x.A(x) ↔ ∃x.¬A(x)

6But notice that the schema ¬¬A → A has to be instantiated by A ∨ ¬A ! Actually, as we
will see later on for a particular proposition it may hold that ¬¬A → A but not A ∨ ¬A.

12

is not constructively valid.
We conclude this section by exhibiting some derived rules.
First of all we have the most useful cut rule

Γ ` A Γ, A ` B
(cut)

Γ ` B

which allows us to remove unnecessary assumptions from a sequent. Its correct-
ness is immediate from the derivation

Γ, A ` B
(→ I)

Γ ` A→ B Γ ` A
(→ E)

Γ ` B

with open assumptions Γ ` A and Γ, A ` B.
By definition for every connective of CPC there is a rule for its introduction on
the right of the turnstile. The following derived rules allow one to introdcue
compound formulas on the left of the turnstile

Γ, A,B ` C
(∧L)

Γ, A ∧B ` C

Γ, A ` C Γ, B ` C
(∨L)

Γ, A ∨B ` C

Γ ` A Γ, B ` C
(→ L)

Γ, A→ B ` C
(⊥L)

Γ,⊥ ` C

Γ, A(t) ` C
(∀L)

Γ,∀x.A(x) ` C

Γ, A(x) ` C x 6∈ FV (Γ, C)
(∃L)

Γ,∃x.A(x) ` C

We leave the verification of their correctness to the diligent reader.
Notice that rule (∧L) can be inverted, i.e. we have

Γ, A,B ` C iff Γ, A ∧B ` C

and, therefore,

A1, . . . , An ` C iff A1 ∧ . . . ∧ An ` C

allowing us to reduce sequents to entailment between formulas.

13

We leave it as an exercise to show that the equivalences

C ` A ∧B iff C ` A and C ` B

A ∨B ` C iff A ` C and B ` C

C ` A→ B iff C ∧ A ` B

C ` ∀x.A(x) iff C ` A(x)

∃x.A(x) ` C iff A(x) ` C

where in the last two clauses x 6∈ FV (C) together with the rules

A ` A ⊥ ` A
A ` B B ` C

A ` C

A ` B

A[t/x] ` B[t/x]

provide an alternative axiomatization of CPC. This axiomatization of entailment
between formulas will turn out as most useful when considering semantics.

3 A Hilbert Style System

Though the calculus of Natural Deduction most closely reflects the structure of
actual mathematical proofs (when spelt out in detail) for metamathematical pur-
poses it is often convenient to use a Hilbert style system which inductively defines
the set of all formulas A such that ` A can be derived by Natural Deduction.
The rules of such an inductive definition are of the form

A1, . . . , An ⇒ B

which means that B is provable provided A1, . . . , An are all provable. If n = 0
then we simply write A instead of ⇒ A.

Theorem 3.1 The set of all formulas A of predicate logic for which the sequent
` A is derivable in the calculus of Natural Deduction is defined inductively by the
following rules

(L1) A→ A

(L2) A , A→ B ⇒ B

(L3) A→ B , B → C ⇒ A→ C

(L4) A ∧B → A , A ∧B → B

(L5) C → A , C → B ⇒ C → A ∧B

14

(L6) A→ A ∨B , B → A ∨B
(L7) A→ C , B → C ⇒ A ∨B → C

(L8) A ∧B → C ⇒ A→ B → C

(L9) A→ B → C ⇒ A ∧B → C

(L10) ⊥ → A

(L11) B → A(x) ⇒ B → ∀x.A(x) (x 6∈ FV (B))

(L12) ∀x.A→ A(t)

(L13) A(t) → ∃x.A
(L14) A(x) → B ⇒ ∃x.A(x) → B (x 6∈ FV (B)).

Proof: One easily shows that if A can be derived via the rules (L1)–(L12) then
` A can be proved by Natural Deduction.
For the reverse direction one shows that if A1, . . . , An ` B can be derived in the
calculus of natural deduction then the formula A1 → . . .→ An → B is derivable
via the rules (L1)–(L14). 2

4 Truth–Value Semantics of Constructive Logic

Although proof semantics is conceptually more adequate as an explanation of
the constructive meaning of propositional connectives and quantifiers we will
introduce in this section a truth–value semantics as an alternative. We will
mainly use it for obtaining independence results, i.e. for showing that classical
tautologies (as e.g. A ∨ ¬A or ¬¬A → A) cannot be proved constructively. It
will turn out that semantic proofs of underivability will be fairly simple due to
their ‘algebraic’ nature whereas direct purely syntactical proofs would be very
cumbersome as they require a careful analysis of derivations as mathematical
objects.
The idea of truth–value semantics is to assign every formula a truth value, i.e. an
element of some structured set P of propositions.7 The distinguishing structure
on propositions is given by a partial order ≤ thought of as entailment. In the
light of the discussion at the end of Section 2 conjunction/disjunction will be
interpreted as (binary) supremum/infimum and falsity will be interpreted as the
least element of the partial order (P,≤). Implication will turn out as another
binary operation which, however, is also fully determined by ≤. Such a kind of
poset (= partially ordered set) is axiomatized as follows.

7We have the tendency to understand the word ‘proposition’ in a semantical sense. A formula
or a sentences denotes a proposition. But we will not be consequent in this respect.

15

Definition 4.1 A Heyting algebra or Heyting lattice is a poset (A,≤) with finite
infima and suprema such that for all a, b ∈ A there exists a→b ∈ A with

c ≤ a→b iff c ∧ a ≤ b

for all c ∈ A. Observe that a→b is uniquely determined by this property and,
therefore, gives rise to a binary operation → on A called Heyting implication.

Notice that (in accordance with the subsequent definition of interpretation) we
write ∧ for binary infimum and ∨ for binary supremum. Further notice that the
existence of a greatest element > in A is already ensured by → as c ≤ ⊥ → ⊥
holds for all c ∈ A (where ⊥ stands for the least element of A).
Heyting algebras provide enough structure to interpret the propositional part of
constructive logic.

Definition 4.2 Let A be a Heyting algebra. A mapping ρ from PC, the set of
propositional constants, to A is called a valuation (of propositional constants in
A). Such a valuation ρ induces an interpretation of formulas of propositional
logic as given by the following inductive clauses

[[p]]ρ = ρ(p)
[[A ∧B]]ρ = [[A]]ρ ∧A [[B]]ρ
[[A ∨B]]ρ = [[A]]ρ ∨A [[B]]ρ
[[A→ B]]ρ = [[A]]ρ→A [[B]]ρ
[[⊥]]ρ = ⊥A

where ∧A, ∨A, →A and ⊥A stand for binary infimum, binary supremum, Heyting
implication and least element in A.

The proof of the following theorem is straightforward and recommended as an
instructive exercise as it reveals the ‘design decisions’ behind the definition of
Heyting algebra.

Theorem 4.1 If there is a derivation of the sequent A1, . . . , An ` B in (the
propositional part of) the calculus of Natural Deduction then

[[A1]]ρ ∧A . . . ∧A [[A1]]ρ ≤A [[B]]ρ

for every Heyting algebra A and valuation ρ in A.

This correctness theorem w.r.t. interpretation in Heyting algebras allows us to
show by purely semantical means that a sequent A1, . . . , An ` B is not derivable,
namely by exhibiting appropriate A and ρ such that

[[A1]]ρ ∧A . . . ∧A [[A1]]ρ 6≤A [[B]]ρ .

Next we discuss a wide class of Heyting algebras among which we will find the
counterexamples needed for our independence results.

16

Example 4.1 Let X be a topological space. We write O(X) for the poset of open
subsets of X under subset inclusion. Then O(X) is a complete Heyting algebra.
The poset has arbitrary joins given by set–theoretic union. Therefore, O(X) has
also arbitrary infima (given by the interior of intersections). Thus, O(X) is
a complete lattice, i.e. a poset with arbitrary infima and suprema. Notice that
finite infima are given by ordinary set–theoretic intersections as open sets are by
definition required to be closed under finite intersections. Accordingly, in O(X)
there holds the following infinitary distributive law

U ∧
∨
i∈I

Vi =
∨
i∈I

U ∧ Vi

as
U ∩

⋃
i∈I

Vi =
⋃
i∈I

U ∩ Vi

holds for sets and joins and finite meets in O(X) are given by unions and fi-
nite intersections, respectively. Due to this infinitary distributive law Heyting
implication in O(X) exists and is given by

U → V =
⋃
{W | U ∩W ⊆ V }

as it immediately follows from the infinite distributive law that (U → V)∩U ⊆ V
and U ∩W ⊆ V implies W ⊆ U → V .

The following particular instances will be most useful for providing counterex-
amples.

Example 4.2 Let P be a poset and

dcl(P) := {A ∈ P(P) | y ≤ x ∈ A⇒ y ∈ A}

be the set of downward closed subsets of P partially ordered by ⊆. As P(P) is
closed under arbitary unions and arbitrary intersections it certainly is a complete
Heyting algebra (coming from a topological space). In this particular case Heyting
implication is given by

U→V = {p ∈ P | ∀q ≤ p. q ∈ U ⇒ q ∈ V }

where ↓p = {q ∈ P | q ≤ p}. This readily follows from the fact that U→V =⋃
{↓p ∈ P | U ∩ ↓p ⊆ V } (Exercise!).

Having these classes of Heyting algebras at hand we can easily show that PEM
and reductio ad absurdum are not derivable.

Theorem 4.2 In the calculus of Natural Deduction one cannot derive

¬¬p→ p p ∨ ¬p ¬p ∨ ¬q ↔ ¬(p ∧ q)

for propositional constants p and q.

17

Proof: Let A be the Heyting algebra dcl(2) where 2 is the poset 0 < 1 (i.e. the
ordinal 2). Let u = ↓0 for which we have

¬u = ⊥ and ¬¬u = >

and, therefore,

¬¬u = > > u and u ∨ ¬u = u ∨ ⊥ = u < > .

Thus, PEM and reductio ad absurdum cannot be derived.
For refuting ¬p ∨ ¬q ↔ ¬(p ∧ q) consider the poset a < 1 > b with a and b
incomparable. Let p = ↓a and q = ↓b. Then we have ¬p = q and ¬q = p and,
therefore,

¬p ∨ ¬q = ↓{a, b} 6= {a, b, 1} = ¬∅ = ¬(p ∧ q) .

2

For complete Heyting algebras one may extend the interpretation of constructive
propositional logic to predicate logic in the following way. One chooses a set D
as universe of discourse and n-ary predicates are interpreted as functions from
Dn to A. Universal and existential quantification are interpreted as (possibly)
infinite joins and meets in A which exist as A is assumed to be complete. More
precisely, we have

[[∃x.A(x)]]e =
∨

d∈D[[A]]e[d/x]
[[∀x.A(x)]]e =

∧
d∈D[[A]]e[d/x]

where e is an environment sending (object) variables to elements of A. This
interpretation of constructive predicate logic is quite in accordance with the usual
Tarskian semantics of classical predicate logic. The difference just is that the 2
element Heyting algebra is replaced by arbitrary complete Heyting algebras.
Though Heyting–valued models of CPC are an interesting topic8 we refrain from
investigating them in greater detail.

Intermezzo on Kripke Semantics

It might be illuminating to give a more concrete version of the interpretation
of propositional logic in cHa’s of the form dcl(P) commonly known as Kripke
semantics. The key idea of Kripke semantics is to think of the poset P as a set
of ‘possible worlds’ and of v ≤ u as “v is a possible development of u”. The
meaning of a proposition then is considered as a set of possible worlds “closed
under all possible developments”, i.e. as a downward closed subset of P .

8The adequate setting for Heyting–valued semantics is the theory of sheaves over a topolog-
ical space or a cHa (complete Heyting algebra). Categories of sheaves are the basic examples
of so–called toposes which constitute a further even more general notion of model for higher
order constructive logic.

18

Let ρ be some valuation of propositional constants in dcl(P). For u ∈ P we write
u
 A for u ∈ [[A]]ρ. Usually, u
 A is read as “u forces A”. Obviously, for the
‘forcing’ relation
 it holds that

u
 p iff u ∈ ρ(p)
u
 ⊥ never
u
 A ∧B iff u
 A and u
 B
u
 A ∨B iff u
 A or u
 B
u
 A→ B iff v
 B forall v ≤ u with v
 A

which amounts to an inductive redefinition of
 closer to the ‘spirit’ of the original
Tarskian definition of truth. But notice that u
 ¬A iff v 6
 A for all v ≤ u and
in general for u
 ¬A it is not sufficient that u 6
 A!

5 Embedding Classical into Constructive Logic

At first sight one may be inclined to consider constructive logic as a properly
weaker fragment of classical logic as the latter proves more theorems than the
former. However, as we shall show in this section this (possible) view is quite
misleading as there is a full embedding of classical logic into the fragment of
constructive logic based on ⊥, ∧, → and ∀. The point is that the construc-
tive meaning of ∨ and ∃ is incomparable with the classical meaning of these
connectives. It will turn out that the classical disjunction of A and B can be
expressed constructively as ¬(¬A ∧ ¬B) and classical existential quantification
can be expressed as ¬∀¬.
Before turning to syntax let us study the relation between classical and construc-
tive logic on the level of the truth–value semantics introduced in the previous
section. Usually a model for classical propositional logic is given by a so–called
Boolean algebra which we define as follows.

Definition 5.1 A Boolean algebra is a Heyting algebra B such that

¬¬a ≤ a

for all a ∈ B.

Equivalently one may define a Boolean algebra as a Heyting algebra B with

a ∨ ¬a = >

for all all a ∈ B (Exercise!). Usually, Boolean algebras are defined as a certain
algebraic structure satisfying a long list of equational axioms. However, we think
that the equivalent formulation given in Definition 5.1 is easier to memorize and
easier to work with. We suggest it as a (not too difficult) exercise to show that
dcl(P) is a Boolean algebra if and only if all elements of P are incomparable.
The next theorem shows that within any Heyting algebra one can find a Boolean
algebra.

19

Theorem 5.1 Let A be a Heyting algebra and

B := A¬¬ := {¬a | a ∈ A}

be the set of ¬¬–closed elements of A. This terminology makes sense as a ∈ B
iff ¬¬a ≤ a. The set B of ¬¬–closed elements of A satisfies the following closure
properties

(1) ⊥,> ∈ B

(2) B is closed under ∧

(3) a→ b ∈ B whenever b ∈ B (for arbitrary a ∈ A).

Moreover, B considered as a sub–poset of A is a Boolean algebra where b1∨B b2 =
¬(¬b1 ∧ ¬b2).

Proof: Let a ∈ A. Then we have a ≤ ¬¬a as a ∧ ¬a ≤ ⊥ and, therefore,
¬¬¬a ≤ ¬a as ¬¬¬a∧ a ≤ ¬¬¬a∧¬¬a ≤ ⊥. Thus, it follows that A¬¬ consists
precisely of negations of elements of A.
As ⊥ = > → ⊥ and > = ⊥ → ⊥ it follows that > and ⊥ are in A¬¬.
Suppose a, b ∈ A¬¬, i.e. ¬¬a = a and ¬¬b = b. Then a ∧ b = ¬¬a ∧ ¬¬b =
¬(¬a ∨ ¬b) ∈ A¬¬ = B.
Let a ∈ A and b ∈ B. Then ¬¬b = b and, therefore, a → b = a → ¬¬b =
¬(a ∧ ¬b) ∈ A¬¬ = B.
It remains to check that joins in B are given by b1∨B b2 = ¬(¬b1∧¬b2). Suppose
that b1, b2 ∈ B, i.e. b1 = ¬¬b1 and ¬¬b2 = b2. Clearly, ¬(¬b1 ∧ ¬b2) ∈ A¬¬
as its is negated. For i = 1, 2 we have that ¬b1 ∧ ¬b2 ≤ ¬bi and, therefore,
bi = ¬¬bi ≤ ¬(¬b1 ∧ ¬b2) = b1 ∨B b2, i.e. b1 ∨ b2 is an upper bound of b1 and
b2. We now show that it is the least upper bound in B. Suppose b1, b2 ≤ c ∈ B.
Then ¬c ≤ ¬bi for i = 1, 2 and, accordingly, ¬c ≤ ¬b1∧¬b2 from which it follows
that b1 ∨B b2 = ¬(¬b1 ∧ ¬b2) ≤ ¬¬c = c as desired. 2

It is easy to see (by inspection of the proof we just gave) that for a cHa A the
subposet B = A¬¬ of double negation closed elements is a cBa. Infinite meets in
B are inherited from A and

∨B
i∈I bi = ¬

∧
i∈I ¬bi. Notice that for a topological

space X the Boolean algebra O(X)¬¬ is the subposet of O(X) on the so–called
regular open sets, i.e. those open sets U which coincide with the interior of the
closure of U (int(cl(U)) = U).
After these simple algebraic considerations we apply a construction analogous to
(−)¬¬ to the syntax of predicate logic.

20

Definition 5.2 The Gödel–Gentzen double negation translation (−)G of formu-
las of predicate logic is defined inductively as follows

⊥G ≡ ⊥
PG ≡ ¬¬P P atomic but different from ⊥
(A ∧B)G ≡ AG ∧BG

(A→B)G ≡ AG → BG

(A ∨B)G ≡ ¬(¬AG ∧ ¬BG)

(∀x.A)G ≡ ∀x.AG

(∃x.A)G ≡ ¬∀x.¬AG .

The double negation translation can be described informally as follows: atomic
formulas are negated twice, ∧, →, ⊥ and ∀ are left unchanged but ∨ and ∃ are
replaced by their “de Morgan dual”. Obviously, the double negation translation
is a syntactic analogue of Theorem 5.1 in the sense that classical connectives and
quantifiers look as they have to be in A¬¬. Often (e.g. in constructive arithmetic)
the basic predicates are decidable, i.e. satisfy PEM, and, therefore, one may define
PG ≡ P for atomic formulas. However, in the general case atomic formulas
different9 from ⊥ have to be doubly negated. We leave it as an exercise to
show that the equivalence of AG and (AG)G can be proved constructively for all
formulas A. Notice also that in general ¬¬A and AG are not provably equivalent
in constructive logic (exercise!).
The key result of this section will be the following

Theorem 5.2 A sequent A1, . . . , An ` B can be derived in classical predicate
logic if and only if its G–translation AG

1 , . . . , A
G
n ` BG can be derived in con-

structive predicate logic.

Notice, however, that in general A and AG are not provably equivalent in con-
structive logic (e.g. if A is an appropriate instance of PEM) though they are
provably equivalent in classical logic.
But before proving Theorem 5.2 we need the following notion.

Definition 5.3 The class of Harrop formulas is defined inductively by the fol-
lowing clauses

• ⊥ is a Harrop formula

• A ∧B is a Harrop formula whenever A and B are Harrop formulas

9We could have defined ⊥G as ¬¬⊥ but as ¬¬⊥ is provably equivalent to ⊥ this makes no
difference!

21

• A→ B is a Harrop formula whenever B is a Harrop formula

• ∀x.A is a Harrop formula whenever A is a Harrop formula.

Notice that it follows from the first and third clause of the previous definition that
every negated formula is a Harrop formula. Obviously, AG is always a Harrop
formula.
We next show that Harrop formulas are provably double negation closed.

Lemma 5.1 For every Harrop formula A one can derive ¬¬A ` A in the calculus
of Natural Deduction. Thus, for Harrop formulas A the equivalence A ↔ ¬¬A
can be proved constructively.

Proof: As for every formula A one can prove constructively that A ` ¬¬A.
It suffices to verify that ¬¬A ` A can be proved constructively for all Harrop
formulas A.
For the first 3 clauses of Definition 5.3 the argument is analogous to the proof of
Theorem 5.1.
It remains to show that ∀x.A is double negation closed if A is. Suppose that
¬¬A ` A. We have ∀x.A ` A and, therefore, also ¬¬∀x.A ` ¬¬A. As A
was assumed as double negation closed we also have ¬¬∀x.A ` A from which it
follows by (∀I) that ¬¬∀x.A ` ∀x.A as desired. 2

Now we are ready to give the

Proof (of Theorem 5.2) :
First notice that the formulas AG and A are provably equivalent in classical
predicate logic as there one can derive the deMorgan laws

¬(A ∧B) a` ¬A ∨ ¬B and ¬∀x.A(x) a` ∃x.¬A(x) .

Thus, if AG
1 , . . . , A

G
n ` BG is derivable in constructive logic then A1, . . . , An ` B

can be derived in classical logic.
Thus, it remains to prove that AG

1 , . . . , A
G
n ` BG is derivable in constructive logic

whenever A1, . . . , An ` B can be derived classically. This we show by induction
on derivations in classical predicate logic. The cases of structural rules as well as
introduction and elimination rules for ∧, → ⊥ and ∀ are trivial (as in these cases
the double negation rule does not change the connectives). Accordingly, we just
discuss the few remaining cases.
(∨I1) Suppose that Γ ` A can be derived classically and ΓG ` AG can be derived
intuitionistically. The following derivation shows that then the sequent ΓG `

22

(A ∨B)G can be derived constructively, too,

(ax)
ΓG,¬AG ∧ ¬BG ` ¬AG ∧ ¬BG

(∧E1)
ΓG,¬AG ∧ ¬BG ` ¬AG

ΓG ` AG

(w)
ΓG,¬AG ∧ ¬BG ` AG

(→ E)
ΓG,¬AG ∧ ¬BG ` ⊥

(→ I)
ΓG ` ¬(¬AG ∧ ¬BG)

where the open assumption ΓG ` AG is derivable by assumption.
The case of (∨I2) is analogous.
(∨E) Suppose that the sequents

Γ ` A1 ∨ A2 Γ, A1 ` C Γ, A2 ` C

are classically derivable. Then by induction hypothesis their double negation
translations

ΓG ` (A1 ∨ A2)
G ΓG, AG

1 ` CG ΓG, AG
2 ` CG

can be derived constructively, too. Thus, we can derive constructively the se-
quents ΓG,¬CG ` ¬AG

i for i = 1, 2 from which it follows that ΓG,¬CG `
¬AG

1 ∧ ¬AG
2 can be derived constructively. But by assumption we have ΓG `

¬(¬AG
1 ∧ ¬AG

2) (as (A1 ∨ A2)
G ≡ ¬(¬AG

1 ∧ ¬AG
2)) and, therefore, by (→ E)

we get ΓG,¬CG ` ⊥. Thus, by (→ E) we get ΓG ` ¬¬CG and, therefore, by
Lemma 5.1 that ΓG ` CG.
The introduction and elimination rules for ∃ are analogous to those for ∨.
Thus, we finally have to consider the rule reductio ad absurdum. Suppose that
Γ ` ¬¬A is classically derivable. Then by induction hypothesis the sequent
ΓG ` (¬¬A)G can be derived constructively. Unfolding the definition of (−)G we
observe (¬¬A)G ≡ ¬¬AG and, therefore, we get that Γ ` ¬¬AG is constructively
derivable. As by Lemma 5.1 AG is provably ¬¬–closed it follows that ΓG ` AG

is constructively derivable as well. 2

The above theorem about double negation translation nicely extends to theories
T (i.e. sets of sentences of predicate logic) under a certain proviso which is often
satisfied, e.g. for the important case of constructive arithmetic which will be
considered in the next section.

Corollary 5.1 Let T be a theory, i.e. a set of sentences (closed formulas) of
predicate logic, such that for every A ∈ T the formula AG is constructively deriv-
able from T .
Then A is classically derivable from T iff AG is constructively derivable from T .

23

Proof: Exercise! 2

Summarizing we can say that though classical logic proves more formulas than
constructive logic it is the case that classical logic can be embedded into the
∧→⊥∀–fragment of constructive logic in a full and faithful way. Not every for-
mula of constructive predicate logic is provably equivalent to one in the ∧→⊥∀–
fragment as not every formula of constructive predicate logic is ¬¬–closed. Thus,
constructive logic is rather an extension of classical logic than a restriction as it
contains the latter properly!
Another conclusion we may draw from Theorem 5.2 and Corollary 5.1 is that
constructive logic cannot be considered as “saver” than classical logic as they are
equiconsistent, i.e. one is consistent iff the other is. This fact has to be seen in
sharp contrast with the point of view widely10 adopted in the 20ies and 30ies of
the 20th century where constructive logic was considered as a save(r) alternative
to classical logic. The reason was that L. E. J. Brouwer forcefully pushed con-
structive or — as he called it — “intuitionistic” logic as a save alternative to
classical logic and, in particular, modern set theory. He certainly was right w.r.t.
the inherently inconstructive nature of axiomatic set theory but not w.r.t. classi-
cal logic. Although Gödel proved Theorem 5.2 already in the early 30ies it took
some time until people realized that it implies the equiconsistency of constructive
and classical logic.

6 Constructive Arithmetic and Analysis

After having explained the basics of constructive logic and its relation to classical
logic it definitely is time to consider some (formalization of) elementary construc-
tive mathematics. Certainly natural numbers are the basic phenomenon where
mathematics starts and, therefore, we first consider Heyting Arithmetic (HA)
called after A. Heyting, a disciple of Brouwer, who gave the first axiomatization
of constructive logic and arithmetic.
In principle one could base an axiomatisation of constructive arithmetic on the
basic operations 0, succ (for the successor operation on numbers), addition and
multiplication and equality as the only predicate. However, this has the disad-
vantage that developing elementary number theory, e.g. defining division, the
divisibility relation or the predicate “is a prime number”, would involve a lot of
coding. Therefore, we prefer to take all primitive recursive algorithms as basic
constants and postulate their defining equations as axioms.11

10Though most people considered constructive logic as “saver” than classical logic the great
majority did not adopt it as they thought that it is much too weak to develop a reasonable part
of mathematics on its grounds. After some decades of investigations into constructive logic and
mathematics since that time, however, it has turned out that most parts of (applied) analysis
can indeed be developed in a purely constructive manner (see e.g. [BiBr]).

11In principle it were desirable to add function symbols for all algorithms (together with

24

For sake of completeness we recall the definition of the basic concept of primitive
recursive function.

Definition 6.1 The set PRIM (⊆
⋃

n∈N Nn→N) of primitive recursive functions
is defined inductively as follows.

(1) 0 (considered as a function from N0→N) is in PRIM.

(2) The successor function succ : N → N : n 7→ n+ 1 is in PRIM.

(3) For every n > 0 and i with 1 ≤ i ≤ n the projection function

prn
i : Nn → N : (x1, . . . , xn) 7→ xi

is in PRIM.

(4) If g : Nn → N and hi : Nm → N for i = 1, . . . , n then the function

f : Nm → N : ~x 7→ g(h1(~x), . . . , hn(~x))

is in PRIM whenever g and the hi are in PRIM.

(5) If g : Nn → N and h : Nn+2 → N are in PRIM then the function f : Nn+1 →
N with

f(~x, 0) = g(~x) and f(~x, n+ 1) = h(~x, n, f(~x, n))

is in PRIM.

The scheme of defining f from g and h as in (5) is commonly called the schema
of definition by primitive recursion. Most number theoretic functions (of ele-
mentary number theory and far beyond) are primitive recursive. It is obvious
that addition, multiplication and exponentiation are primitive recursive. Just to
give a simple example (which is needed subsequently) the predecessor function
pred with pred(0) = 0 and pred(n + 1) = n is primitive recursive as its defining
equations can be rewritten as

pred(0) = 0 pred(n+ 1) = pr2
1(n, pred(n)) .

Notice further that basic predicates on numbers such as equality, ≤ etc. have
primitive recursive characteristic functions.12

Now we are ready to define Heyting arithmetic.

their defining equations) to the language. But as the class of algorithms which terminate for
all arguments cannot be effectively enumerated this would render our syntax undecidable and
this is unacceptable for a formal system (as its underlying language should be decidable and
its consequences should be effectively enumerable!).

12We often claim that a function or predicate is primitive recursive without proving it in
detail. This is common practice in computability theory. To get confidence have a look at
any book on recursion theory or the first part of my course LogikII: Berechenbarkeit und Un-
vollständigkeit formaler Systeme. For people used to imperative programming in FORTRAN,
PASCAL, C, Java or whatever language of this kind it may be informative to know that a func-
tion is primitive recursive iff it can be implemented using only for–loops and no while–loops
(and, of course, no arbitrary jumps).

25

Definition 6.2 The language of Heyting arithmetic (HA) is given by function
symbols for every (definition of a) primitive recursive function and binary equality
predicate =.
Besides the rules of constructive predicate calculus the usual equality axioms

t = t A(t) ∧ t = s→ A(s)

(called reflexivity and replacement, respectively) the axioms of HA are

(1) the defining equations for the primitive recursive functions

(2) ¬ 0 = succ(x)

(3) the induction axiom A(0)∧ (∀x.(A(x) → A(succ(x)))) → ∀x.A(x) for every
predicate A(x) definable in the language of HA.

The system PRA of Primitive Recursive Arithmetic is obtained from HA by
restricting induction to quantifier–free predicates A(x).

Note that classical arithmetic, often called Peano arithmetic (PA), is obtained
from HA by adding the axiom schema of reductio ad absurdum, i.e. strengthening
constructive logic to classical logic.
It turns out that most theorems of elementary number theory can be proved
already in HA. Decidability of equality, i.e. ∀x, y. x = y∨¬x = y holds in PA for
purely logical reasons. It holds in HA as well but there it needs a mathematical
argument.

Lemma 6.1 In HA one can prove decidability of equality. Therefore, equality
is ¬¬–closed, i.e. ∀x, y. ¬¬x=y → x=y.

Proof: Instead of giving a formal derivation in HA we give a detailed, but infor-
mal argument from which a derivation in HA could13 be constructed.
We prove ∀x, y. x=y ∨ ¬x=y by induction on x.
We leave it as an exercise to prove ∀y. 0=y ∨¬ 0=y by by induction on y (in the
induction step the hypothesis isn’t used at all!).
Assume as induction hypothesis that ∀y. x=y ∨ ¬x=y holds for an arbitrary,
but fixed x. We show by induction on y that ∀y. succ(x)=y ∨ ¬ succ(x)=y. For
y=0 we clearly have ¬ succ(x)=y as ¬ 0=succ(x) is an axiom of HA. Assume
as induction hypothesis that succ(x)=y ∨ ¬succ(x)=y. We have to show that
succ(x)=succ(y) ∨ ¬ succ(x)=succ(y). Due to the first induction hypothesis we
know that x=y ∨ ¬x=y. If x=y then succ(x) = succ(y). Suppose ¬x=y. We
show that under this assumption ¬ succ(x)=succ(y): if succ(x)=succ(y) then

x=pred(succ(x))=pred(succ(y))=y

13It would be overly laborious to construct a formal derivation without machine assistance.
See my course on Constructive Type Theory for an introduction to such systems.

26

and, therefore, it follows that ⊥ as ¬x=y. Thus, we have ∀y. succ(x)=y ∨
¬ succ(x)=y as desired which also completes the outer induction proof. 2

Our next goal is to identify a class of formulas for which PA is conservative over
HA which means that every formula in this class which is provable in PA can
already be proved in HA.

Lemma 6.2 If A is derivable in PA then its double negation translation AG is
derivable in HA.

Proof: By Corollary 5.1 it suffices to show that double negation translations of
HA axioms can be derived in HA, too. This can be seen as follows.
By the previous Lemma 6.1 an equation t=s is provably equivalent to (t=s)G ≡
¬¬ t=s. The axiom ¬ 0=succ(x) is double negation closed as it is itself a negation.
The double negation of an induction axiom

A(0) ∧ (∀x.(A(x) → A(succ(x)))) → ∀x.A(x)

is
AG(0) ∧ (∀x.(AG(x) → AG(succ(x)))) → ∀x.AG(x)

which itself is an instance of the induction schema and, therefore, derivable in
HA. 2

Alas, the previous lemma does not help us to show that if for a quantifier–free
formula A the formula ∃x.A(x) can be derived in PA then the same formula
can be derived in HA. The reason is that from (∃x.A(x))G ≡ ¬∀x.¬A(x) we
cannot derive constructively that ∃x.A(x). Nevertheless, it is the case that PA is
conservative over HA w.r.t. existential quantifications of quantifier–free formulas.
But for this purpose we need the so–called Friedman translation defined next.

Definition 6.3 Let R be a fresh propositional constant (predicate of arity 0).
Then the Friedman or R–translation (−)R is defined inductively by the following
clauses

⊥R ≡ R

PR ≡ ¬R¬RP P atomic but different from ⊥
(A ∧B)R ≡ AR ∧BR

(A→B)R ≡ AR → BR

(A ∨B)R ≡ ¬R(¬RA
R ∧ ¬RB

R)

(∀x.A)R ≡ ∀x.AR

(∃x.A)R ≡ ¬R∀x.¬RA
R

where ¬RA stands for A→ R. ♦

27

Now one can show analogously to the proof of Theorem 5.2 that

Lemma 6.3 The sequent ΓR ` AR is derivable in constructive predicate logic
without (⊥) whenever Γ ` A is derivable in classical predicate logic.
Therefore, AR is derivable in PA whenever A is derivable in HA as the R–
translations of HA axioms can be derived in HA.

Proof: Exercise! 2

Now using Lemma 6.3 we can easily prove the conservativity of PA over HA
w.r.t. existential quantifications of quantifier–free formulas.

Theorem 6.1 Let A be a quantifier–free formula. If ∃~x.A can be derived in PA
then it can be derived in HA, too.

Proof: We just consider the case where ~x consists of one single variable x and
leave the (easy) generalisation as an exercise.
Suppose that PA proves ∃x.A. Then by Lemma 6.3 the formula (∃x.A)R can be
derived in HA. As (∃x.A)R ≡ (∀x.¬R¬R¬RA(x)) → R is HA–provably equiva-
lent to (∀x.A(x) → R) → R we conclude that the latter formula is derivable in
HA. As this proof does not use any assumptions about R it follows that HA
proves14 also (∀x.A(x) → ∃x.A(x)) → ∃x.A(x). As the premiss of this impli-
cation can be derived already in constructive predicate logic it follows that HA
derives ∃x.A(x) as desired. 2

The idea of replacing R in (∃x.A(x))R by ∃x.A(x) itself is often called the Fried-
man trick.
As Theorem 6.1 applies to open formulas of the form ∃~y. A(~x, ~y) withA quantifier–
free it follows that ∀~x.∃~y. A(~x, ~y) can be derived already in HA whenever it can
be derived in PA (Exercise!). As most theorems of elementary number theory
are of this form constructive and classical arithmetic are not too different.15 No-
tice, however, that it is not clear whether the proof of Fermat’s Last Theorem by
A. Wiles (and R. Taylor) can be formalized in PA and, therefore, also in HA.
But in general PA is not conservative over HA for formulas of a logical structure
more complicated than ∀∃–statements. For example the least number principle

LNP (∃x.A(x)) → ∃x. (A(x) ∧ ∀y. A(y) → x ≤ y)

familiar from classical mathematics does not hold anymore in the constructive
context as we show in the next Lemma.

14Notice, however, that in the proof of (∀x. A(x)→R)→R we have to rename all bound
variables in such a way that they are distinct from FV(A) \ {x} in order to avoid violations of
the variable conditions of (∀I) and (∃E) when replacing R by ∃x.A(x).

15As opposed to elementary analysis (discussed a bit later on) where already the basic pred-
icates = and < on real numbers are not decidable and, therefore, in general for real numbers x
and y the trichotomy law x < y ∨ x = y ∨ y < x is not constructively valid anymore!

28

Lemma 6.4 The scheme LNP entails PEM. As PEM cannot be derived in HA
it follows that LNP cannot be derived in HA.

Proof: Let B be a closed formula of HA. Consider the instantiation of LNP by
the predicate

A(x) ≡ x=1 ∨ (x=0 ∧B)

which entails
(†) ∃x. (A(x) ∧ ∀y. A(y) → x ≤ y)

by LNP as A(1) obviously holds. As A(x) implies x=0∨x=1 we can derive from
(†) that B∨¬B as if x=0 then B and if x=1 then ∀y. (y=1∨(y = 0∧B) → 1 ≤ y)
which entails ¬B when instantiating y by 0. 2

Notice that classically LNP is equivalent to the induction principle (exercise!)
which, however, constructively is not the case as induction holds in HA whereas
LNP does not.

Next we consider the formalism EL of Elementary Analysis. Among other aspects
it differs from HA in the respect that it is 2–sorted.

Definition 6.4 The system EL of Elementary Analysis is the extension of HA
defined as follows.
Besides the type of natural numbers ranged over by variables x, y, z . . . there is also
a type of unary functions on natural numbers ranged over by variables α, β, γ
The type of natural numbers is also called type 0 and the type of unary functions
on numbers is also called type 1.
We have the following term formation rules in addition to those of HA.

(1) Every variable α of type 1 is a term of type 1.

(2) If ϕ is a term of type 1 and t is a term of type 0 then Ap(ϕ, t) is a term of
type 0 for which we usually write ϕ(t).

(3) If t is a term of type 0 and x is a variable of type 0 then λx.t is a term of
type 1.

(4) If t is a term of type 0 and ϕ is a term of type 1 then R(t, ϕ) is a term of
type 1.

Let 〈−,−〉 be some primitive recursive coding of pairs of natural numbers with
primitive recursive projection functions pr0 and pr1 satisfying pri(〈n0, n1〉) = ni

for i = 0, 1. We write ϕ(t1, t2) as a shorthand for ϕ(〈t1, t2〉).
Besides the axioms of HA with induction principle

A(0) ∧ (∀x.(A(x) → A(succ(x)))) → ∀x.A(x)

extended to all predicates A(x) definable in the language of EL we postulate in
addition the following axioms

29

(β) (λx.t)(s) = t[s/x]

(R0) R(t, ϕ)(0) = t

(R1) R(t, ϕ)(succ(t′)) = ϕ(t′,R(t, ϕ)(t′))

(AC–QF) ∀x.∃y.A(x, y) → ∃α.∀x.A(x, α(x))

where A(x, y) is quantifier-free

which allow one to define functions explicitely via λ–abstraction and by primitive
recursion via R relative to variables of function type 1. ♦

If unary functions on numbers are all assumed to be recursive then this extension
can be avoided as one may refer to number–theoretic functions via their Gödel
numbers (cf. the next section on Basic Recursion Theory in HA). This situation is
typical for Constructive Recursive Arithmetic (CRA) which postulates Church’s
Thesis in the (strong) from that all number–theoretic functions are recursive.
However, in Brouwerian Intuitionistic Mathematics (BIM) – which we study later
on – the notion of choice sequence is essential where a choice sequence α is thought
of as an arbitrary sequence

α(0), α(1), . . . , α(n), . . .

of natural numbers typically not given by a law, i.e. an algorithm for computing
the items of this sequence. Brouwer’s motivation for considering choice sequences
was (1) to make the intuitionistic continuum comprehensive enough by avoiding
the restriction to computable real numbers and (2) to retain principles like “every
continuous real–valued function on [0, 1] is bounded” which fails when restricting
to computable reals.

7 Constructive Real Numbers

The theory of rational numbers can be developed constructively quite as in the
classical case because one can effectively code rational numbers by natural num-
bers in a way that the basic functions and predicates on the rational numbers are
primitive recursive. In particular, the equality predicate = and the predicate <
on Q are decidable and the law of trichotomy

∀p, q ∈ Q. p < q ∨ p = q ∨ q < p

is valid also constructively.
Classically there are two ways of introducing the real numbers: either as equiva-
lence classes of Cauchy sequences of rational numbers or as Dedekind cuts. Con-

30

structively, these two constructions give different results unless16 one postulates
the axiom of choice for numbers (also known as number choice)

AC00 ∀n.∃m.A(n,m) → ∃α.∀n.A(n, α(n))

where n and m range over natural numbers. As AC00 is most natural from a con-
structive point of view we just deal with Cauchy reals. For a detailed discussion
of the relation between Cauchy and Dedekind reals in absence of number choice
see for example vol.1 of [TvD].

Definition 7.1 A fundamental sequence is a sequence r = (rn)n∈N of ratio-
nal numbers for which there exists a sequence β of natural numbers, called its
(Cauchy-)modulus, such that

|rβ(n)+m − rβ(n)+m′| < 2−n

for all n,m,m′ ∈ N. ♦

Obviously, under assumption of number choice a sequence r of rational numbers
is a fundamental sequence if and only if

∀k.∃n.∀m,m′. |rn+m − rn+m′| < 2−k

as by AC00 this condition implies the existence of a Cauchy modulus. Thus,
under assumption of number choice a fundamental sequence is nothing else but
a Cauchy sequence of rational numbers in the usual sense.

From now on we postulate AC00 for the rest of this section.

Definition 7.2 Let r and s be fundamental sequences.
We say that r and s are equal (notation r ≈ s) iff

∀k.∃n.∀m. |rn+m − sn+m| < 2−k .

We say that r is strictly below s (notation r < s) iff

∃k, n.∀m. sn+m−rn+m > 2−k .

We write r ≤ s as an abbreviation for ¬(s < r) for which we say that “r is not
strictly above s”.
We say that r and s are apart (notation r#s) iff r < s ∨ s < r. ♦

16In general Dedekind reals are more general than Cauchy reals. For example in sheaf toposes
over a connected topological space X the Cauchy and the Dedekind reals look as follows. The
Cauchy reals Rc are given by the functor from O(X)op to Set sending U ∈ O(X) to the
set of locally constant functions from U to R. The Dedekind reals are given by the sheaf
Rd : O(X)op → Set sending U ∈ O(X) to the set of continuous functions from U to R. In both
cases the morphism part is given by restriction.

31

The following disjunction–free characterisation of apartness will turn out as use-
ful.

Lemma 7.1 Fundamental sequences r and s are apart iff

∃k, n.∀m. |rn+m − sn+m| > 2−k .

Proof: Obviously, the condition is necessary.
For the reverse direction assume that there exist natural numbers k and n such
that |rn+m − sn+m| > 2−k for all m ∈ N. As both r and s are fundamental
sequences there exists a natural number ` with ` ≥ n such that |r`−r`+i| < 2−k−1

and |s` − s`+i| < 2−k−1 for all i.
Now by the law of trichotomy for rational numbers it holds that either r` < s` or
s` < r` because r` = s` is impossible as |r` − s`| > 2−k.
Assume that r` < s`. We show that for all i it holds that r`+i < s`+i and hence
s`+i − r`+i > 2−k−1 from which it follows that r < s. Suppose ¬(r`+i < s`+i), i.e.
s`+i ≤ r`+i. Then r`+i − s`+i > 2−k and, therefore,

r`+i > s`+i + 2−k = s`+i + 2 · 2−k−1 > s`+i + |s` − s`+i|+ |r`+i − r`|
≥ s`+i + s` − s`+i + r`+i − r` = r`+i + s` − r`

which entails that 0 > s`−r` and hence r` > s` in contradiction to our assumption
r` < s`.
If s` < r` it follows by an analogous argument that s < r. 2

We suggest it as a straightforward exercise to show that ≈ is a congruence relation
w.r.t. < (which means that (r ≈ r′ ∧ s ≈ s′) ∧ r < s → r′ < s′) and hence also
w.r.t. the relation ≤ and # as they are defined in terms of <. Thus, we may
factorize the collection of fundamental sequence by the equivalence relation ≈
and define the predicates < and # on the quotient R as follows: x < y iff r < s
for some fundamental sequences r ∈ x and y ∈ y and similarly for #. Notice that
x = y iff r ≈ s for some fundamental sequences r ∈ x and y ∈ y.
An alternative to factorization of fundamental sequences by the relation ≈ one
could take the approach taken by Bishop in [BiBr]. He considers collections of
objects as presets and defines a set as a preset together with a symmetric and
transitive relation on this preset. From this point of view the set of reals is given
by the preset of functions from N to Q and r and s are considered as equal iff
both r and s are fundamental sequences and r ≈ s in the sense of Definition 7.2.
Of course, when defining functions and predicates on such a set one has to show
that they respect the equality relation which is part of the set.17

17Such an approach is also taken (implicitly) in programming when implementing an abstract
data type by a concrete data type. One has to specify which concrete objects represent abstract
objects and when concrete objects represent the same abstract object.

32

Next we study a few properties of the apartness relation which are often consid-
ered an axiomatization of a general notion of apartness (put to use when studying
e.g. constructive algebra).

Lemma 7.2 For all real numbers x and y it holds that

(AP1) ¬x#y ↔ x = y
(AP2) x#y → y#x
(AP3) x#y → ∀z. x#z ∨ y#z.

Proof: We first prove (AP1). If x = y then ¬x#y as obviously ¬x#x and = is a
congruence w.r.t. the apartness relation.
For the reverse direction assume that ¬x#y. Pick some fundamental sequences
r and s out of x and y, respectively. Then we have

(1) ∀k, n.¬∀m. |rn+m − sn+m| > 2−k

due to the assumption ¬x#y. Let α and β be Cauchy moduli for the fundamental
sequences r and s, respectively, i.e.

(2) ∀k, n,m. |rα(k)+n − rα(k)+m| < 2−k

(3) ∀k, n,m. |sβ(k)+n − sβ(k)+m| < 2−k.

Let γ be the function from N to N defined as max(α(k + 2), β(k + 2)). We show
that ∀k, n. |rγ(k)+n − sγ(k)+n| < 2−k from which it follows that r ≈ s and hence
x = y.
First notice that

(4) ∀k.¬∀m. |rγ(k)+m − sγ(k)+m| > 2−k−2

due to (1). Let k be an arbitrary natural number. Suppose that |rγ(k)+n −
sγ(k)+n| ≥ 2−k for some n. Then for arbitrary m we have

|rγ(k)+m − sγ(k)+m|
≥ |rγ(k)+n − sγ(k)+n| − |rγ(k)+m − rγ(k)+n| − |sγ(k)+m − sγ(k)+n|
≥ 2−k − 2 · 2−k = 2−k − 2−k−1 = 2−k−1

in contradiction to (4). Thus, we conclude ∀k, n. |rγ(k)+n − sγ(k)+n| < 2−k.

(AP2) is trivial and the proof of (AP3) is left as an exercise. 2

Thus, apartness appears as more basic than equality on reals as ¬x=y is equiv-
alent to ¬¬x#y but in general18 not to x#y.

18One can show (exercise!) that ∀x, y. x#y ↔ ¬x=y is equivalent to the so–called Markov’s
Principle claiming that for decidable predicates A(x) it holds that ¬¬∃x.A(x) → ∃x.A(x).

33

Moreover, another consequence of (AP1) is that

x=y ↔ ¬(x<y ∨ y<x) ↔ x≤y ∧ y≤x

which gives some justification for the definition of ≤.
A further useful consequence of Lemma 7.2 is the following.

Corollary 7.1 Equality on reals is ¬¬–closed, i.e. ¬¬x = y → x = y for all real
numbers x and y.

Proof: Immediate from (AP1) as it says that x=y is equivalent to the negated
proposition ¬x#y. 2

Next we show that decidability of equality on R entails ∀n.A(n) ∨ ¬∀n.A(n) for
all decidable predicates A on N.

Lemma 7.3 Let A be a decidable predicate on natural numbers. Then the func-
tion rA from N to Q defined as

rA
n =

{
2−n if ∀k ≤ n.A(k)
2−k if k ≤ n ∧ ¬A(k) ∧ ∀k′ < k.A(k′)

is a fundamental sequence. We write xA for the real number containg rA. It holds
that

xA=0 ↔ ∀n.A(n) and ¬xA=0 ↔ ¬∀n.A(n) .

Proof: Let A be some decidable predicate. Obviously, rA is a fundamental se-
quence as ∀n,m. |rA

n − rA
n+m| < 2−n.

Next we show that xA=0 ↔ ∀n.A(n). The implication from right to left is
obvious. For the converse direction assume that rA = 0 , i.e.

(1) ∀k.∃n.∀m. |rA
n+m| < 2−k .

Suppose that ¬A(n) holds for some n. Then for ∀m>n. |rA
m| ≥ 2−n contradicting

(1). Thus, it follows that ¬¬A(n) and, therefore, also A(n) as A(n) is ¬¬–closed.
Thus, we have shown that ∀n.A(n).
From the equivalence xA=0 ↔ ∀n.A(n) it follows immediately by propositional
logic that ¬xA=0 ↔ ¬∀n.A(n). 2

Theorem 7.1 Under the assumption of decidability of equality for real numbers
(i.e. ∀x, y ∈ R. x=y ∨ ¬x=y) one can prove

∀x.A(x) ∨ ¬∀x.A(x)

for every primitive recursive predicate A(x) on natural numbers.

34

Then for any formal system S which proves only true19 formulas of the form
¬∀x.A(x) with A(x) primitive recursive it holds that if S proves the decidability
of equality on real numbers there is a provable disjunction A ∨ ¬A such that S
proves neither A nor ¬A.

Proof: Let A(x) be some primitive recursive predicate on natural numbers. From
decidability of equality on R it follows that xA=0 ∨ ¬xA=0 where xA is defined
as the equivalence class of the fundamental sequence rA defined in the previous
Lemma 7.3. Thus, it follows that ∀x.A(x) ∨ ¬∀x.A(x) as by Lemma 7.3 xA=0
is provably equivalent to ∀x.A(x).
But now take for A(x) some primitive recursive predicate for which ∀x.A(x) is
true but not derivable. Such a predicate exists for every formal system as its set
of consequences is recursively enumerable by definition. But as ¬∀x.A(x) is not
true it cannot be derived in our formal system S as by assumption S derives only
true sentences of this form. 2

This sort of argument was introduced by Brouwer and called by him “method of
weak counterexamples”. He refuted constructively dubious principles by showing
that they entail A ∨ ¬A for a proposition A yet undecided (e.g. Goldbach’s con-
jecture or formerly Fermat’s Last Theorem before it was proved by Wiles). As
Brouwer developed this sort of argument before Gödel’s Incompletness Theorems
and the advent of recursion theory he had to make use of “yet undecided propo-
sitions”. Today we know by Gödel that for any formal system such propositions
A exists and are of the form ∀n.P (n) for some primitive recursive predicate20.
From Theorem 7.1 it follows immediately that the apartness relation is not de-
cidable either as x#y ∨ ¬x#y implies x=y ∨ ¬x=y by (AP1) of Lemma 7.2.
This failure of decidability of apartness is also “empirically” true in the following
sense. If real numbers x and y are given by nestings of intervals then one may
observe in finite time that x and y are different by observing that eventually the
intervals of x and y get disjoint. However, that they always overlap cannot be
observed in finite time! Moreover, notice that decidability of apartness, i.e.

∀x, y ∈ R. x#y ∨ ¬x#y

is equivalent to the “trichotomy law”

∀x, y ∈ R. x<y ∨ y<x ∨ x=y

for reals as x#y is equivalent to x<y ∨ y<x by definition and x=y is equivalent
to ¬x#y by (AP1) of Lemma 7.2.

19where ¬∀x.A(x) is understood as “true” iff ¬A(n0) holds for some natural number n0
20take for example the predicate “n is not a code of a derivation of ⊥ in the formal system

under consideration”

35

We further notice that ∀x, y∈R. x≤y ↔ (x=y∨x<y) does not hold constructively
as it would entail decidability of apartness because we have 0≤|x−y|, 0=|x−y| →
x=y and 0<|x−y| → x#y for all x, y ∈ R.
All these consideration show that constructive analysis is much more different
from classical analysis than is constructive arithmetic from classical arithmetic.
Of course, much much more can be said about real numbers and real analysis
from a constructive point of view. But this would go beyond the scope of our aims
which are mainly logical in character. For a deeper investigation of constructive
analysis we refer the reader to [TvD] and in particular [BiBr].

8 Basic Recursion Theory in HA

We will not give a leisurely introduction to recursion theory21. Instead we recall
some basic facts and introduce some notation.

Definition 8.1 The partial recursive functions are the subset of
⋃

k∈N Nk ⇀ N
(where A ⇀ B stands for the set of all partial functions from A to B) defined
inductively by the clauses of Definition 6.1 together with the clause

(6) If f : Nk+1 ⇀ N is partial recursive then the function µ(f) : Nk ⇀ N defined
as

µ(f)(~x) '
{
n if f(~x, n) = 0 and ∀m < n. f(~x,m) > 0
↑ otherwise

is partial recursive, too. ♦

The most important fact about the unary partial recursive functions is that they
can be Gödelized in the following most pleasant way.

Theorem 8.1 There is a surjective map φ from N to the unary partial recursive
functions satisfying the following conditions.

(1) The function
u : N2 ⇀ N : (e, n) 7→ φe(n)

is partial recursive.

(2) For every k ∈ N and k+1–ary partial recursive function f there is a k–ary
primitive recursive function h such that

φh(~n)(m) ' f(~n,m)

for all ~n ∈ Nk and m ∈ N.

21For that purpose see for example my lecture notes on the course “Logik II : Berechen-
barkeitstheorie und Unvollständigkeit formaler Systeme” or e.g. N. Cutland’s excellent textbook
“Computability” (Cambridge University Press, 1980)

36

Moreover, there is a ternary primitive recursive function T and a unary primitive
recursive function U such that

φn(m) = U(µk. T (n,m, k))

where T is called Kleene’s T–predicate and U is called the result extraction func-
tion. Moreover, for the predicate T it holds that T (n,m, k)∧T (n,m, k′) → k = k′.

Proof: For details see e.g. [TvD].
We just mention the idea behind T and U . The intuitive reading of T (n,m, k) is
that k is a code for a (successful) computation of the algorithm with number n
applied to argument m and U(k) is the result of this computation. As for given
n and m there exists at most one (code of a) computation “single–valuedness” of
T is obvious. 2

Convention 8.1 For reasons of tradition we write {n} instead of φn. Whether
{n} means the n–th partial recursive function or the singleton set containing n will
always be clear from the context as e.g. in {n}(m) where {n} means the partial
function as it is applied to an argument. If A(x) is a predicate then we write
A({n}(m)) as an abbreviation for ∃k.T (n,m, k)∧A(U(k)) which is equivalent to
∃k. T (n,m, k) ∧ ∀k.T (n,m, k) → A(U(k)) as k is determined uniquely by n and
m. The partial operation {.}(.) is called Kleene application and will be used freely
for building terms.
Let e be an expression describing a partial recursive function in the free variables
of e. Then by Theorem 8.1(2) there exists a primitive recursive term Λx.e with
{Λx.e}(n) ' e[n/x] for all n ∈ N.

As shown in [TvD] all these constructions and their relevant properties can be
expressed and verified in HA.

We now discuss a few basic recursion–theoretic notions and facts which will be
used later.

Definition 8.2 A total recursive function is a partial recursive function which
is total, i.e. defined for all arguments.
Let A ⊆ N. A is called recursively enumerable22 (r.e.) iff there is a unary partial
recursive function f such that n ∈ A iff f(n)↓ and A is called decidable iff there
is a unary total recursive function f such that n ∈ A iff f(n) = 0. ♦

Obviously, every decidable set is also recursively enumerable but the reverse in-
clusion does not hold.

22This terminology may be surprising at first sight but it isn’t as one can show that a set
A of natural numbers is r.e. iff A is empty or there exists a total recursive function f with
A = {f(n) | n ∈ N}.

37

Theorem 8.2 The set K := {n ∈ N | {n}(n)↓} is recursively enumerable but
not decidable.

Proof: If K were decidable then N \ K = {n ∈ N | {n}(n)↑} were recursively
enumerable, i.e. there were an e ∈ N with

{e}(n)↓ ⇔ {n}(n)↑

but then (putting n = e) it would hold that

{e}(e)↓ ⇔ {e}(e)↑

which clearly is impossible. 2

Consequently, the halting set H := {〈n,m〉 | {n}(m)↓} is not decidable as other-
wise K were decidable in contradiction to Theorem 8.2.
Notice that n 6∈ K can be expressed in HA by the formula ∀k.¬T (n, n, k).
Thus, no formal system can prove all true formulas of the form ∀k.¬T (n, n, k)
as otherwise K were decidable.
An important consequence of this observation is that no axiomatic system whose
set of theorems is recursively enumerable can derive all true Π1-sentences where
Π1-sentences are the sentences of the form ∀n.A(n) for a (primitive) recursive
predicate A(x).

Theorem 8.3 Let Ai = {n ∈ N | {n}(n)=i} for i = 0, 1. Then there is no total
recursive function f with f(n) = i whenever n ∈ Ai for i = 0, 1.

Proof: If there were such a recursive f then there would exist a total recursive g
with g[N] ⊆ {0, 1} and

n ∈ A0 ⇒ g(n) = 1 and n ∈ A1 ⇒ g(n) = 0

for all n ∈ N. Let g = {e}. Then {e}(e) ∈ {0, 1} and, therefore, e ∈ A0 ∪ A1.
But this is impossible as if e ∈ A0 then 0 = {e}(e) = g(e) = 1 and if e ∈ A1 then
1 = {e}(e) = g(e) = 0. 2

One also says that A0 and A1 are recursively inseparable as there does not exist
a recursive set P such that A0 ⊆ P and A1 ⊆ N\P .

We conclude this section by fixing some notation concerning the primitive recur-
sive coding of finite sequences of natural numbers by natural numbers. Such an
encoding can be obtained via the coding of pairs 〈−,−〉 and its projections pr0
and pr1 in the following way: the natural number n is the (unique) code of the
sequence

pr0(pr1(n)), . . . , pr0(pr
pr0(n)−1
1 (n)), pr

pr0(n)
1 (n) .

38

We write 〈n0, . . . , nk−1〉 for the code of the sequence n0, . . . , nk−1 ∈ N∗. Moreover,
there exists a primitive recursive concatenation function ∗ satisfying

〈s〉∗〈t〉 = 〈s, t〉

for all s, t ∈ N∗. A primitive recursive length function `h with `h(〈n0, . . . , nk−1〉) =
k is given by first projection. For n = 〈m0, . . . ,mk−1〉 and i ∈ N we define

ni =

{
mi if i < k
0 otherwise

which mapping is primitive recursive.
We write 〈s〉 � 〈t〉 iff s is a prefix of t and 〈s〉 ≺ 〈t〉 iff s is a proper prefix of t.
Obviously, � and ≺ are primitive recursive predicates on codes of sequences.
Furthermore, for a function α from N to N we write α(n) for (the code of) the
finite sequence 〈α(0), . . . , α(n−1)〉. This operation is primitive recursive in α.

9 Kleene’s Number Realizability

Kleene’ number realizability from 1945 can be considered as a mathematically
precise version of the BHK interpretation of constructive logic. The idea is to
consider the meaning of a proposition A as the set of “proofs” or “realizers” of A
which are coded by natural numbers. Accordingly, the meaning of a proposition
A is the set of natural numbers which realize A. We use n rnA as notation for
“n realizes A”.
Just as the truth–value of a compound statement depends functionally on the
truth–values of its constituent parts the condition that a number realizes a com-
pound statement can be formulated in terms of the realizability conditions for its
constituent parts:

• n realizes t = s iff t = s

• n realizes A ∧B iff pr0(n) realizes A and pr1(n) realizes B

• n realizes A → B iff for every m realizing A the computation {n}(m)
terminates and its result realizes B

• n realizes A∨B iff pr0(n) = 0 and pr1(n) realizes A or pr0(n) 6= 0 and pr1(n)
realizes B

• n realizes ∀x.A(x) iff for all numbers m the computation {n}(m) terminates
and its result realizes A(m)

• n realizes ∃x.A(x) iff pr1(n) realizes A(pr0(n)).

39

Notice that in arithmetic disjunction of A and B can be expressed in terms of
existential quantification as

∃n. (n=0→A)∧(n 6=0→B)

for arbitrary propositions A and B. Then e realizes ∃n. (n=0→A)∧(n 6=0→B)
iff pr1(e) realizes (pr0(e)=0→A)∧(pr0(e)6=0→B), i.e. {pr0(pr1(e))}(n) realizes A
for all n if pr0(e)=0 and {pr1(pr1(e))}(n) realizes B for all n if pr0(e)6=0. Thus,
∃n. (n=0→A)∧(n 6=0→B) is realized by 〈0, {pr0(pr1(e))}(0)〉 if pr0(e)=0 and by
〈1, {pr1(pr1(e))}(0)〉 otherwise. On the other hand from a realizer for A∨B one
easily can construct a realizer for ∃n. (n=0→A)∧(n 6=0→B) (exercise!).
Let P (x) be a primitive recursive predicate. Then e realizes ∀n.P (n) iff {e} is
a total recursive function and ∀n.P (n) is true and e realizes ∃n.P (n) iff pr1(e)
realizes P (pr0(e)), i.e. iff P (pr0(e)) is true. From these considerations it follows
that there cannot exist a realizer e for the classically valid proposition

∀n. (∃k.T (n, n, k)) ∨ (∀k.¬T (n, n, k))

as Λn.pr0({e}(n)) would decide the set K = {n∈N | ∃k.T (n, n, k)}. Accordingly,
every number realizes the classically wrong proposition

¬∀n. (∃k.T (n, n, k)) ∨ (∀k.¬T (n, n, k))

Thus, realizability provides us with a semantics for constructive arithmetic which
is perfectly understandable from a purely classical point of view and under which
classically wrong propositions get valid, i.e. realizable. Moreover, realizability
semantics is consistent23 as for example by definition the proposition ⊥ is not
realizable.
Although there are classically valid formulas which are not realizable one easily
shows that for propositions of the form ∀n.P (n) and ∃n.P (n) with P a primitive
recursive predicate it holds that they are realizable iff they are true (exercise!).
(Such propositions are called Π1 and Σ1, respectively.) But realizability and
classical validity coincide as well for Π2 and Σ2 propositions, i.e. propositions of
the form ∀n.∃m.R(n,m) and ∃n.∀m.R(n,m), respectively, where R is a primitive
recursive predicate.
Notice that quite generally a number e realizes ∀n.∃m.A(n,m) iff pr1({e}(n))
realizes A(n, pr0({e}(n))) for all numbers n. In case that truth and realizability
coincide for all instances of A we then get that the total recursive function f with
f(n) := pr0({e}(n)) satisfies ∀n.A(n, f(n)).

Next we consider formalized number realizability where to every formula A of HA
one associates a new formula n rnA in HA with n 6∈ FV (A) which expresses in
the language of HA which n realize A.

23Consistent means that not all formulas are valid. This entails and is actually equivalent to
the maybe more well–known requirement that for no proposition A and ¬A are valid.

40

Definition 9.1 The realizability relation n rn A is defined by induction on the
structure of A via the following clauses

n rnP ≡ P where P is primitive

n rnA ∧B ≡ pr0(n) rnA ∧ pr1(n) rnB

n rnA→ B ≡ ∀m.m rnA→ {n}(m) rnB

n rnA ∨B ≡ (pr0(n) = 0 → pr1(n) rnA) ∧ (pr0(n) 6= 0 → pr1(n) rnB)

n rn∀x.A(x) ≡ ∀m.{n}(m) rnA(m)

n rn∃x.A(x) ≡ pr1(n) rnA(pr0(n)) . ♦

Notice that when expanding the defining clauses for implication and universal
quantification according to Convention 8.1 we get

n rnA→ B ≡ ∀m.m rnA→ ∃k. T (n,m, k) ∧ U(k) rnB

n rn∀x.A(x) ≡ ∀m.∃k. T (n,m, k) ∧ U(k) rnA(m)

which are more precise but also less readable.

Next we show that for formulas provable in HA one may find a realizer by
recursion on the structure of derivations.

Theorem 9.1 (Soundness of Number Realizability)
If a closed formula A can be derived in HA then there is a term e possibly
containing Kleene application for which e rnA can be derived in HA.

Proof: As we want to prove soundness by induction on the structure of derivations
in HA we have to generalise the claim of the Theorem as follows: whenever
A1, . . . , An ` A is derivable in HA then there is a term e such that HA proves

u1 rnA1 ∧ . . . ∧ un rnAn ` e rnA

where the variables ui are fresh and e is built from the usual primitive recursive op-
erations and the partial application operation {.}(.) according to Convention 8.1
and FV (e) ⊆ FV (A1, . . . , An, A) ∪ {u1, . . . , un}.
For the sake of readability we often write ~u rnΓ when Γ ≡ A1, . . . , An instead of
u1 rnA1 ∧ . . . ∧ un rnAn .
It is simple to show that the generalised claim holds for the structural rules (ax),
(ex), (w) and (c) as primitive recursive functions contain all projections and
are closed under permutation of arguments, addition of dummy arguments and
identification of arguments.
(∧I) If HA proves ~u rnΓ ` e1 rnA1 and ~u rnΓ ` e2 rnA2 then HA proves
~u rnΓ ` 〈e1, e2〉 rnA1∧A2.

41

(∧E) If HA proves ~u rnΓ ` e rnA0∧A1 then HA proves ~u rnΓ ` pri(e) rnAi

for i = 0, 1.
(→I) If HA proves ~u, v rnΓ, A ` e rnB then HA proves ~u rnΓ ` Λv.e rnA→B.
(→E) If HA proves ~u rnΓ ` e1 rnA→B and ~u rnΓ ` e2 rnA then HA proves
~u rnΓ ` {e1}(e2) rnB.
(⊥E) Suppose that HA proves ~u rnΓ ` e rn⊥. Then HA proves ~u rnΓ ` ⊥
because e rn⊥ is provably equivalent to ⊥. Thus HA proves also ~u rnΓ ` 0 rnA.
(∀I) Suppose that HA proves ~u rnΓ ` e rnA(x) where x 6∈ FV (Γ). Then HA
proves ~u rnΓ ` Λx.e rn∀x.A(x).
(∀E) If HA proves ~u rnΓ ` e rn∀x.A(x) then HA proves ~u rnΓ ` {e}(t) rnA(t).
(∃I) If HA proves ~u rnΓ ` e rnA(t) then HA proves ~u rnΓ ` 〈t, e〉 rn∃x.A(x).
(∃E) Suppose that HA proves ~u rnΓ ` e1 rn∃x.A(x) and ~u, u rnΓ, A(x) `
e2 rnB where x 6∈ FV (B). Then HA proves ~u rnΓ ` e2[pr0(e1), pr1(e1)/x, u] rnB.
(∨I) and (∨E) are left as exercises.
It remains to check that the axioms of HA are realized. This is trivial for the
equations as these are realized by any number (e.g. 0). The axiom ¬ succ(x) = 0
is realized e.g. by Λn.0.
Next we consider instances of the induction scheme. First of all notice that there
exists24 a number r such that

{{r}(〈e0, e1〉)}(0) = e0 {{r}(〈e0, e1〉)}(k+1) ' {{e1}(k)}({{r}(〈e0, e1〉)}(k))

holds for all numbers e0, e1 and k and these properties can be verified in HA.
Now, for a predicate A(x) with free variables ~z besides x one can prove in HA
that

r rnA(0) ∧ (∀x.(A(x) → A(succ(x)))) → ∀x.A(x)

i.e. that r realizes A(0) ∧ (∀x.(A(x) → A(succ(x)))) → ∀x.A(x). 2

Now one might hope that for every formula A one can prove in HA the equiva-
lence A ↔ ∃x.x rnA or at least that25 HA ` A iff HA ` ∃x.x rnA. Alas, this
hope is in vain as for

CT0 (∀x.∃y.A(x, y)) → ∃e.∀x.A(x, {e}(x))

we have that HA ` ∃x. x rnCT0. But, obviously, CT0 cannot be proved in HA
as CT0 cannot be proved in PA as for some instance of CT0 its negation can
be proved in PA (Exercise!). However, for an Extended Church’s Thesis ECT0

defined subsequently we can achieve our goal, namely to prove that

24This is a typical argument by appeal to Church’s Thesis. One can easily exhibit an al-
gorithm for the primitive recursion operator R in any programming language whatsoever and,
therefore, this algorithm has a Gödel number, say r.

25We employ the notation HA ` A for the meta–mathematical statement that HA proves
the sequent ` A

42

Theorem 9.2 (Characterisation of Number Realizability)
For all formulas A of HA it holds that

(1) HA + ECT0 ` A↔ ∃x. x rnA

(2) HA + ECT0 ` A⇐⇒ HA ` ∃x. x rnA.

In order to formulate ECT0 we have to introduce the following notion.

Definition 9.2 The almost negative or almost ∃–free formulas are those which
can be built from primitive formulas and formulas of the form ∃x. t = s by ∧, →
and ∀. ♦

Now we can formulate the Extended Church’s Thesis

ECT0 (∀x.A(x) → ∃y.B(x, y)) → ∃e.∀x.A(x) → ∃z. T (e, x, z)∧B(x, U(z))

for almost negative A. However, for proving Theorem 9.2 we have to establish
some useful properties of almost negative formulas before.
By inspection of the defining clauses for number realizability (Def. 9.1) it is evi-
dent that for all formulas A the formula x rnA is equivalent to an almost negative
formula (by eliminating all occurrences of {n}(m) as described in Convention 8.1.
Next we show that almost negative formulas A are equivalent to ∃x. x rnA and
that this equivalence can be proved in HA.

Lemma 9.1 For almost negative formulas A it holds that

(1) HA ` (∃x. x rnA) → A and

(2) there is a term ψA with HA ` A→ ψA rnA.

and, therefore, that HA ` A↔ ∃x. x rnA.

Proof: We prove (1) and (2) simultaneously by induction on the structure of
almost negative formulas.
For primitive formulas t=s we have that ∃x. x rn t=s equals ∃x. t=s which is
equivalent to t=s as x is not free in t=s. Thus, (1) holds for t=s. Claim (2)
holds for t=s by putting ψt=s ≡ 0.
For formulas of the form ∃x. t=s we have that

x rn∃x. t=s ≡ pr1(x) rn t=s[pr0(x)/x]

and, therefore, one easily proves x rn∃x. t=s → ∃x. t=s. For claim (2) one
puts ψ∃x.t=s ≡ 〈µx.t=s, 0〉 where µx.t=s is the (Gödel number of an) algorithm
searching for the least x satisfying the decidable condition t=s. Obviously,
µx.t=s terminates if ∃x.x rn t=s and, therefore, HA proves that ∃x. t=s →

43

0 rn t=s[µx.t=s/x]. But as 0 rn t=s[µx.t=s/x] is easily seen to be equivalent
to 〈µx.t=s, 0〉 rn∃x. t=s it follows that HA ` ∃x. t=s→ ψ∃x.t=s rn∃x. t=s.
Suppose as induction hypothesis that the almost negative formulas A and B
satisfy the claims (1) and (2).
Then claim (1) holds for A ∧ B as y rnA → A and z rnB → B hold by in-
duction hypothesis and, therefore, also (pr0(x) rnA ∧ pr1(x) rnB) → A∧B, i.e.
x rnA∧B → A∧B. Claim (2) for A ∧ B follows readily by putting ψA∧B ≡
〈ψA, ψB〉.
Now we show (1) for A→B. Suppose x rnA→B, i.e. ∀y. y rnA → {x}(y) rnB.
As by induction hypothesis A → ψA rnA we get that A → {x}(ψA) rnB and
as z rnB → B by induction hypothesis for B it follows that A→B. As this
argument can be formalised in HA it follows that HA ` x rnA→B → A→B
and we have established claim (1) for A→B. Claim (2) for A→B follows by
putting ψA→B ≡ Λx.ψB using that by induction hypothesis we have x rnA→ A
and B → ψB rnB.
We leave the case of the universal quantifier as an exercise.
As (2) entails in particular that HA ` A → ∃x. x rnA for almost negative A it
follows from (1) and (2) that HA ` A↔ ∃x. x rnA for almost negative A. 2

The following idempotency of formalized realizability appears as a corollary.

Corollary 9.1 For every formula A in the language of HA it holds that HA `
∃x. x rnA↔ ∃x. x rn (∃x. x rnA).

Proof: Straightforward exercise using Lemma 9.1 and that x rnA is provably
equivalent to an almost negative formula. 2

Using Lemma 9.1 one can now show that

Lemma 9.2 For every instance A of ECT0 we have HA ` ∃e. e rnA.

Proof: Let A be almost negative. Suppose that e rn∀x(A(x) → ∃y.B(x, y)), i.e.
that

∀x, n.(n rnA(x) → ∃z. T ({e}(x), n, z) ∧ U(z) rn∃y.B(x, y))

Substituting ψA for n we get

∀x.(ψA rnA(x) → ∃z. T ({e}(x), ψA, z) ∧ U(z) rn∃y.B(x, y))

As A is almost negative from Lemma 9.1 we get n rnA(x) → ψA rnA(x) and,
therefore, we have

∀x, n.(n rnA(x) → ∃z. T ({e}(x), ψA, z) ∧ U(z) rn∃y.B(x, y))

i.e.

∀x, n.(n rnA(x) → ∃z. T ({e}(x), ψA, z) ∧ pr1(U(z)) rnB(x, pr0(U(z))))

44

Let t1[e] ≡ Λx.pr0({{e}(x)}(ψA)). As

∀x(A(x) → ∃z. T (t1[e], x, z) ∧B(x, U(z)))

is realized by t2[e] ≡ Λx.Λn.〈µz.T (t1[e], x, z), 〈0, pr1({{e}(x)}(ψA))〉〉 we finally
get that Λe.〈t1[e], t2[e]〉 realizes

∀x.(A(x)→∃y.B(x, y)) → ∃e.∀x.(A(x)→∃z. T (e, x, z)∧B(x, U(z)))

as desired.
As the whole argument can be formalized within HA the claim follows. 2

The assumption that A is almost negative has been used for making the choice of
y with B(x, y) independent from the realizer of the premiss A. Actually, adding
the unrestricted26 scheme

ECT∗
0 (∀x.A→ ∃y.B(x, y)) → ∃e.∀x.A→ ∃z.T (e, x, z)∧B(x, U(z))

to HA is inconsistent as can be seen when instantiating A by ∃z. T (x, x, z) ∨
¬∃z. T (x, x, z) and B(x, y) by (y=0∧∃z.T (x, x, z))∨ (y=1∧¬∃z. T (x, x, z)) (cf.
the Remark on p.197 of [Tr73]).27

Now we are ready to give the

Proof (of Theorem 9.2):
(1) We show that HA + ECT0 ` A ↔ ∃x. x rnA by induction on the structure
of formulas A in HA.
Condition (1) is obvious for atomic formulas.
(∧) Obviously, ∃x. x rnA∧B ↔ ∃x.x rnA ∧ ∃x.x rnB is provable in HA. Thus,
as by induction hpothesis HA + ECT0 ` A ↔ ∃x. x rnA and HA + ECT0 `
B ↔ ∃x. x rnB it follows that HA + ECT0 ` A∧B ↔ ∃x.x rnA∧B.
(→) By induction hypothesis A and B satisfy (1). Therefore, A→B is equivalent
to ∀x. x rnA → ∃y. y rnB which by ECT0 (as x rnA is almost negative) is
equivalent to ∃z.∀x. x rnA→ {z}(x) rnB, i.e. ∃z. z rnA→B.

26i.e. there are no restrictions on the syntactic form of A
27For this choice of A and B the premiss of ECT∗

0 is obviously provable in HA. Thus, by
ECT∗

0 it follows that ∃e.∀x.A(x) → {e}(x)↓ ∧ B(x, {e}(x)). As ¬¬A(x) is provable in HA it
follows from ECT∗

0 that ∃e.∀x.¬¬({e}(x)↓ ∧B(x, {e}(x)), i.e. more explicitly that

(1) ∀x.¬¬
(
{e}(x)↓ ∧

(
({e}(x)=0 ∧ {x}(x)↓) ∨ ({e}(x)=1 ∧ ¬{x}(x)↓)

))
for some e. Let e0 be a Gödel number of an algorithm such that {e0}(x)↓ iff {e}(x)=1. Now
instantiating (1) by e0 it follows that

(2) ¬¬
(
{e}(e0)↓ ∧

(
({e}(e0)=0 ∧ {e0}(e0)↓) ∨ ({e}(e0)=1 ∧ ¬{e0}(e0)↓)

))
which, however, is contradictory as due to the nature of e0 if {e}(e0)=0 then ¬{e0}(e0)↓ and
if {e}(e0)=1 then {e0}(e0)↓.

45

(∀) By induction hypothesis A(y) satisfies (1). Therefore, ∀y.A(y) is equivalent
to ∀y.∃x. x rnA(y) which by ECT0 is equivalent to ∃z.∀y. {z}(y) rnA(y), i.e.
∃z. z rn∀y.A(y).
(∃) Assume as induction hypothesis that HA + ECT0 ` A(x) ↔ ∃z. z rnA(x).
By definition x rn∃x.A(x) ≡ pr1(x) rnA(pr0(x)). Thus, we have HA + ECT0 `
x rn∃x.A(x) → A(pr0(x)) as it follows from the induction hypothesis (by sub-
stituting pr0(x) for x) that HA + ECT0 ` pr1(x) rnA(pr0(x)) → A(pr0(x)).
But from HA + ECT0 ` x rn∃x.A(x) → A(pr0(x)) it follows immediately that
HA + ECT0 ` x rn∃x.A(x) → ∃x.A(x) and, therefore, also that HA + ECT0 `
∃x. x rn∃x.A(x) → ∃x.A(x).
On the other hand by induction hypothesis we have HA + ECT0 ` A(x) →
∃z. z rnA(x). As HA ` z rnA(x) → 〈x, z〉 rn∃x.A(x) and, therefore, also
HA ` z rnA(x) → ∃x. x rn∃x.A(x) it follows that HA ` ∃z. z rnA(x) →
∃x. x rn∃x.A(x). Thus, HA + ECT0 ` A(x) → ∃x. x rn∃x.A(x) from which
it readily follows that HA + ECT0 ` ∃x.A(x) → ∃x. x rn∃x.A(x).
(∨) This case is redundant as disjunction can be expressed in terms of the other
connectives and quantifiers.

(2) Suppose that HA ` ∃e. e rnA. Then even more HA + ECT0 ` ∃e. e rnA
from which it follows by the already established claim (1) that HA+ ECT0 ` A.
Suppose that HA+ECT0 ` A. Then HA ` B1∧ . . .∧Bn → A where the Bi are
instances of ECT0. By Theorem 9.1 we have HA ` ∃e. e rn (B1 ∧ . . . ∧Bn → A)
from which it follows that HA ` ∃e. e rnA as for the Bi we have HA ` ∃e. e rnBi

by Lemma 9.2. 2

In the next subsection we consider a variant of Kleene’s number realizability
where realizability of A entails A. This will be used to establish the Disjunc-
tion and Existence Property of HA which after all was our main motivation for
constructive logic in section 1.

Disjunction and Existence Property via rnt –Realizability

It may be considered as a defect of Kleene’s number realizability that in general
one cannot prove (∃x. x rnA) → A in HA. Even worse for particular instances
A of CT0 one can prove ∃x. x rnA in HA but not A itself. This ‘defect’ can
be remedied by introducing a notion of number realizability combined with truth
(denoted by n rntA). The defining clauses for number realizability combined
with truth will be like those for number realizability with a single, but crucial
exception: n rntA→B iff the algorithm with Gödel number n sends rnt –realizers
of A to rnt –realizers of B and A implies B. This little ammendment will render
it a triviality to show that n rntA implies A provably in HA.

Definition 9.3 (rnt –realizability)
The realizability relation n rnt A is defined by induction on the structure of A

46

via the following clauses

n rntP ≡ P where P is primitive

n rntA ∧B ≡ pr0(n) rntA ∧ pr1(n) rntB

n rntA→ B ≡ (∀m.m rntA→ {n}(m) rntB) ∧ (A→ B)

n rntA ∨B ≡ (pr0(n) = 0 → pr1(n) rntA) ∧ (pr0(n) 6= 0 → pr1(n) rntB)

n rnt∀x.A(x) ≡ ∀m.{n}(m) rntA(m)

n rnt∃x.A(x) ≡ pr1(n) rntA(pr0(n)) . ♦

Now we show that rnt –realizability entails truth and based on that a soundness
theorem for rnt -realizability.

Theorem 9.3 For all formulas A in the language of HA it holds that

(1) HA ` (∃x. x rntA) → A

(2) If HA ` A then there is a number e with HA ` {e}(〈~x〉) rntA where ~x
contains all free variables of A.

Proof: Claim (1) is established by straightforward induction on the structure of A.
The case of implication (which prevents an anlogous result for rn –realizability
to hold) is trivial for rnt –realizability as

(∀m.m rntA→ {n}(m) rntB) ∧ (A→ B) → A→ B

is a logical triviality.
The proof of claim (2) is quite similar to the proof of the Correctnes Theorem 9.1
for rn –realizability. 2

As a consequence of Theorem 9.3 we can establish for HA the Disjunction and
Existence Property which in the introduction we advocated as the criterion for
constructivity.

Theorem 9.4 (Disjunction and Existence Property)

(1) If HA ` A ∨B with A and B closed then HA ` A or HA ` B

(2) If HA ` ∃x.A(x) and ∃x.A(x) is closed then there exists a number n such
that HA ` A(n).

Proof: First notice that from Theorem 9.3(2) it follows that for every closed
formula A with HA ` A there exists a number n with HA ` n rntA.
Suppose HA ` A ∨ B for closed formulas A and B. Then for some n we have
HA ` n rntA∨B. If pr0(n)=0 then HA ` pr1(n) rntA from which it follows by
Theorem 9.3(1) that HA ` A. Analogously, if pr0(n)>0 one shows that HA ` B.
The proof of the second claim is analogous and left to the reader (exercise!). 2

47

10 Markov’s Principle

There is a logical principle called Markov’s Principle which is somewhat dubious
from the point of view of the BHK interpretation but nevertheless valid from the
point of view of Kleene’s number realizability. Markov’s Principle

MP (∀x.A(x)∨¬A(x)) → ¬¬∃x.A(x) → ∃x.A(x)

says that for decidable predicates A(x) the existence statement ∃x.A(x) is ¬¬–
closed.
The realizability of MP can be seen as follows. One easily sees that HA proves
the realizability of

(∀x.A(x)∨¬A(x)) → ∃e.∀x. [{e}(x)↓ ∧ (A(x)↔{e}(x)=0)]

and, therefore, also that

(∀x.A(x)∨¬A(x)) → ∃e.∀x. [A(x)↔∃y.T (e, x, y)] .

Thus, for showing that MP is realizable it suffices (exercise!) to show that

MP0 ¬¬∃z.T (x, y, z) → ∃z.T (x, y, z)

is realizable. But this is the case as a realizer for MP0 can be found easily
using unbounded search by taking for example Λu.Λv.〈µz. T (pr0(u), pr1(u), z), 0〉.
This works as ¬¬∃z.T (n,m, z) has a realizer if and only if there is a k with
T (n,m, k) and this (unique) k can be found by stupid search via µ as T (n,m,)
is a (primitive recursively) decidable predicate.
Notice that often instead of the somewhat peculiar axiom MP0 one postulates
the schema

MPPR ¬¬∃x.A(x) → ∃x.A(x) (A primitive recursive)

which under assumption of CT0 is equivalent to MP (by considerations similar
to the ones above).
The pragmatic relevance of MP in CRM (Constructive Recursive Mathematics)
axiomatized by HA + ECT0 + MP is that one uses the instance MP0 of MP
for showing the termination of computations by contradiction (“if a computation
cannot diverge then it must terminate”). This was precisely Markov’s motivation
for introducing the principle called after him !
We conclude this section by observing that in presence of MP Kleene’s number
realizability can be axiomatized using the schema

ECT′
0 (∀x.(¬A(x) → ∃y.B(x, y))) → ∃e.∀x.(¬A(x) → B(x, {e}(x)))

48

without any restriction on A(x). In presence of MP every almost negative formula
is provably equivalent to a negative one, i.e. a formula without ∃ and ∨, since for
primitive recursive P (x) the formula ∃x.P (x) is equivalent by MP to ¬¬∃x.P (x)
which in turn is provably equivalent to the negative formula ¬∀x.¬P (x). Using
this observation one can show easily using Theorem 9.2 (exercise!) that under
HA + MP the principles ECT0 and ECT′

0 are provably equivalent from which it
follows that

Theorem 10.1 For all formulas A of HA it holds that

(1) HA + MP + ECT′
0 ` A↔ ∃x. x rnA

(2) HA + MP + ECT′
0 ` A⇐⇒ HA + MP ` ∃x. x rnA.

This axiomatization of realizability may be considered as simpler than the one
of Theorem 9.2 as ECT′

0 is simpler than ECT0 in the sense that it avoids the
somewhat clumsy syntactic notion ‘almost negative’.

11 Kleene’s Function Realizability

For the language EL one can define a notion of function realizability, i.e. spec-
ify for every proposition A a predicate on functions saying which α realize A
(notation α rf A). Function realizability was introduced originally in [KV] for
the purpose of giving an mathematical model of a (formalization of) Brouwerian
Intuitionism.
In order to formulate the realizability conditions for implication and universal
quantification (over functions) we need to specify in which sense functions can
be applied to functions giving as result a number or a function:

α(β) = x ⇔ ∃n. α(β(n)) = x+ 1 ∧ ∀m < n. α(β(m)) = 0
α|β = γ ⇔ ∀x. α(〈x〉∗β) = γ(x) .

The operational intuition behind the definition of α(β) is that one ‘scan’s through
the list α(0), α(1), . . . , α(n), . . . until one has found the first (code of a) prefix
β(n) with α(β(n)) > 0 and the result of the computation will be α(β(n))− 1. Of
course, α(β) will be defined for all β if and only if ∀β.∃n.α(β(n)) > 0. Obviously,
this condition is also necessary and sufficient for α|β being defined for all β.
Notice that the functionals from NN to N induced by some α are precisely(!) the
continuous functionals when N is endowed with the discrete toplogy and NN is
endowed with the so–called Baire topology whose open sets are arbitray unions
of sets of the form

Us := {α ∈ NN | ∃n. α(n) = s}

for codes s of finite sequence of natural numbers. Thus, a functional F : NN → N
is continuous iff for all α there exists a natural number n such that F (β) = F (α)

49

for all β with α(i) = β(i) for all i < n. For ease of notation we write B for NN

endowed with the Baire topology.
Notice that B and B × B are isomorphic as topological spaces by sending α to
(λn.pr0(α(n)), λn.pr1(α(n))). The inverse is given by sending the pair (α, β) to
〈α, β〉 := λn.〈α(n), β(n)〉 ∈ B. Accordingly, we have for all k ∈ N that B ∼= Bk

where the isomorphism is given by argumentwise coding of k–tuples

〈α1, . . . , αk〉 := λn.〈α1(n), . . . , αk(n)〉 .

We write α(β1, . . . , βk) and α|(β1, . . . , βk) for α(〈β1, . . . , βk〉) and α|(〈β1, . . . , βk〉),
respectively.
On B one may develop a certain amount of “recursion theory” which suffices for
studying function realizability.

Theorem 11.1 There are functions υ, σ, ρ ∈ B such that for all α, β, γ ∈ B

(1) υ|(α, β) ' α|β

(2) (σ|(α, β))|γ ' α|(β, γ)

(3) ρ|(α, β, γ) ' α if γ(0) = 0 and
ρ|(α, β, γ) = α|(γ, ρ|(α, β, γ′)) if γ′(0) + 1 = γ(0) and γ′(n+ 1) = γ(n+ 1)
for all n ∈ N.

Proof: A straightforward, but lengthy and tedious programming exercise which
doesn’t give new insight. For details see Ch. 3 Sect. 7 of [TvD]. 2

Obviously, υ is a universal function, σ provides functional abstraction on the level
of codes in Baire space and ρ provides a primitive recursor.

Now we have assembled enough machinery for defining the notion of function
realizability à la Kleene.

Definition 11.1 The realizability relation α rf A is defined by induction on the
structure of A via the following clauses

α rf P ≡ P where P is primitive

α rf A ∧B ≡ pr0(α) rf A ∧ pr1(α) rf B

α rf A→ B ≡ ∀β. β rf A→ α|β rf B

α rf A ∨B ≡ (pr0(α)(0) = 0 → pr1(α) rf A) ∧ (pr0(α)(0) 6= 0 → pr1(α) rf B)

α rf ∀x.A(x) ≡ ∀x. α|λn.x rf A(x)

α rf ∀β.A(β) ≡ ∀β. α|β rf A(β)

α rf ∃x.A(x) ≡ pr1(α) rf A(pr0(α)(0))

α rf ∃β.A(β) ≡ pr1(α) rf A(pr0(α)) . ♦

50

As in Section 9 for number realizability one may show that propositions derivable
in EL are realized by an element of Baire space. When proving this soundness
theorem by induction on the structure of derivations one easily observes that the
desired realizer can always most naturally be chosen as a recursive element of
Baire space.
Also analogously to section 9 (Theorem 9.2) one may show that function realiz-
ability can be axiomatized by EL + GC where GC is the schema of Generalised
Continuity

GC (∀α. A(α) → ∃β.B(α, β)) → ∃γ.∀α. (A(α) → B(α, γ|α))

for almost negative A. Analogous to Section 9 the almost negative formulas of
EL are those built up from formulas of the form ⊥, t = s, ∃x.t = s or ∃α.t = s
by ∧, → and ∀.
Notice that GC entails in particular the following Choice Principle for Baire
Space

AC11 ∀α.∃β.A(α, β) → ∃γ.∀α.A(α, γ|α))

which in turn implies

AC10 ∀α.∃n.A(α, n) → ∃γ.∀α.A(α, γ(α))

and axiom of choice for numbers

AC00 ∀n.∃m.A(n,m) → ∃α.∀x.A(n, α(n)) .

Notice that AC10 is inconsistent with Church’s Thesis as one cannot read off a
Gödel number of a function from an initial segment of the function (exercise!).
One can say that whereas CRM (Constructive Recursive Mathematics) is based
on choice principles combined with the assumption that all functions are com-
putable BIM (Brouwer’s Intuitionistic Mathematics) is based on choice principles
combined with the assumption that all function(al)s on Baire space are continu-
ous and the principle of Bar Induction

BI (∀α.∃n.P (α(n))) → (∀n.(P (n) → ∀m.P (n∗m))) → (∀n.P (n) → Q(n))
→ (∀n. (∀m.Q(n∗〈m〉)) → Q(n)) → Q(〈〉)

i.e. a principle of (transfinite) induction over well–founded countably branching
trees.28

28From a classical point of view the tree T consists of all (codes of) finite sequences of numbers
which do not satisfy the predicate P . Classically, the well–foundedness of T is equivalent to
the the following induction principle for T : for every predicate Q on (the nodes of) T the root
〈〉 satisfies Q provided Q holds for a node s whenever Q holds for all sons of s.
Constructively, the validity of this induction principle entails well-foundedness but the reverse
implication is highly nonconstructive as we shall see later!

51

There are no direct applications of general Bar Induction but one of its con-
sequences is most important for intuitionistic analysis, namely König’s Lemma
saying that a well–founded finitely branching tree is always finite. From König’s
Lemma (called “Fan Theorem” by Brouwer) one can show that all functions from
[0, 1] to R are bounded which fails in CRM (cf. [TvD]).

We conclude this section by showing that

Church’s Thesis and König’s Lemma are Incompatible

That König’s Lemma is inconsistent with Church’s Thesis and, therefore, wrong
in CRM follows from the existence of the so–called Kleene tree, an infinite binary
tree containg no computable infinite paths.

Theorem 11.2 There is a prefix–closed decidable subset TK of {0, 1}∗ which is
infinite but for every recursive α ∈ {0, 1}N there is an n ∈ N with α(n) 6∈ TK.

Proof: The set TK is defined as follows

〈b0, . . . , bn−1〉 ∈ TK :⇔ ∀m, k<n. T (m,m, k) → (bm=0 ↔ U(k)>0) .

Obviously, the set TK is prefix–closed, decidable and contains elements of arbi-
trary finite length.
For the purpose of showing that TK contains no infinite recursive path recall
from Theorem 8.3 that the sets A0 and A1 are recursively where Ai = {n ∈ N |
{n}(n) = i} for i = 0, 1.
Suppose that α ∈ {0, 1}N is recursive and α(n) ∈ TK for all n ∈ N. Then

α(m) = 1 if m ∈ A0 and
α(m) = 0 if m ∈ A1

from which it follows that A0 and A1 were recursively separable in contradiction
to Theorem 8.3. Thus, TK does not contain an infinite recursive path. 2

Thus, König’s Lemma fails in presence of Church’s Thesis as we can quite ex-
plictely exhibit a binary well-founded tree TK , the Kleene tree, which, neverthe-
less, is infinite as one easily constructs finite paths of arbitrary length.
The Kleene tree was constructed by Kleene in [KV] in order to show that number
realizability does not model Brouwer’s Intuitionistic Mathematics.

12 Higher Type Arithmetic

The aim of this section is to present a higher type extension HAω of HA, namely
an extension which allows one to speak about (constructive) functionals of higher
type. The higher types are built inductively from base type 0 via the binary type

52

forming operators × and → . The elements of type σ×τ are thought of as pairs
〈a, b〉 where a is of type σ and b is of type τ . The elements of type σ→τ are
thought of as (constructive) functions mapping objects of type σ to objects of
type τ .
There are various motivations for such an extension. First of all when developing
constructive analysis in order to speak about functions on constructive reals one
needs function(al)s sending objects of type 1 := 0→0 to objects of type 1 as
fundamental sequences are given by functions from 0 to 0 (implicitly using an
effective coding of Q by N). Accordingly, for representing real–valued function-
als on function spaces (as e.g. definite integrals) one needs functionals of type
((0→0)→0→0)→0→0. Of course, one can speak about such objects in HA or
EL by using numbers or first order functions as codes or realizers for higher type
objects. However, it is often more convenient to have a term language available
by which one may directly speak about higher type objects. This term language
(usually called Gödel’s T after its inventor K. Gödel) may also be considered as
a (rudimentary) functional programming language for higher type programs over
the natural numbers. Gödel’s T will turn out as fairly expressive though not
Turing complete as not all total recursive functions can be implemented within
Gödel’s T . However, Gödel’s T will have the advantage that it allows one to
define only total functionals which terminate for all arguments. The higher type
features of T will turn out as necessary for expressing “realizers” of propositions
which can be formulated already in HA. These aspects will be studied en de-
tail in the sections about Kreisel’s Modified Realizability and Gödel’s Dialectica
Interpretation.
Before presenting HAω in detail we want to remark that HAω is not higher order
as it does not allow one to quantify over predicates. That it allows one to quantify
over functions is expressed by the phrase “higher type”. This distinction might be
confusing for the novice as in current mathematical practice subsets of a set A are
identified with their characteristic functions, i.e. with functions from A to {0, 1}
and, therefore, may be identified with those functions from A to N whose image
is contained in {0, 1} and these latter are available within the ontology of HAω

just sketched. However, not for every predicate A on type σ there has to exist a
corresponding characteristic function p satisfying A(x) ↔ p(x)=0. Usually one
argues in favour of such a function p as follows.

“Obviously, for every x ∈ σ there exists an n ∈ {0, 1} such that n=0
if and only if A(x). Of course, this n is determined uniquely by x
and, therefore, the relation R(x, n) ≡ (n=0↔A(x)) ∧ (n=1↔¬A(x))
is single–valued and total. Then the function p with graph R is the
characteristic function for the predicate A(x).”

This arguments sounds quite reasonable but makes the following two assumptions

(1) A(x)∨¬A(x) for all x ∈ σ

53

(2) identification of functions and single–valued, total relations

which in general need not hold. Assumption (1) hinges on classical logic which we
typically do not presuppose in our context. Assumption (2) implicitly postulates
the Axiom of Unique Choice

∀x:σ.∃!y:τ.R(x, y) → ∃f :σ→τ.∀x:σ.A(x, f(x))

which need not hold when we assume classical logic but want to restrict functions
to computable or continuous ones (as is done typically in logics for reasoning
about (functional) programs as e.g. the language LCF studied in Dana Scott’s
seminal paper [Sc69]).

12.1 Description of HAω

The set T of finite type symbols is defined inductively as follows

(1) 0 ∈ T (type of natural numbers)

(2) if σ, τ ∈ T then σ×τ ∈ T (formation of product types)

(3) if σ, τ ∈ T then σ→τ ∈ T (formation of function types).

We use σ, τ, ρ possibly decorated with primes and subscripts as metavariables for
type symbols.
The language of HAω is a many–sorted language with variables (xσ, yσ, zσ, . . .)
for every type symbol σ ∈ T . For every σ ∈ T there is a binary equality predicate
=σ on σ. For all σ, τ ∈ T there is an application operation Appσ,τ from σ→τ and σ
to τ . Usually, we simply write t(s) or even ts instead of Appσ,τ (t, s) as the types σ
and τ can be read off from the terms t and s, respectively. Moreover, application is
left–associative in the sense that t1t2 . . . tn stands for (. . . (t1t2) . . . tn). Moreover,
we often write t(s1, . . . , sn) instead of ts1 . . . sn for sake of readability. If t is a
term of type τ then λxσ. t is a term of type σ→τ . We often write λx:σ. t instead
of λxσ. t and simply write x instead of xσ if the variable x occurs within the scope
of the binder λx:σ. Furthermore, there are the following constants

0 : 0 succ : 0→0 Rσ : σ→(0→σ→σ)→0→σ
pσ,τ : σ → τ → σ×τ prσ,τ

0 : σ×τ → σ prσ,τ
1 : σ×τ → τ

listed together with their types.
For subsequent use we notice that for every type σ there is a distinguished closed
term 0σ of type σ. The distinguished terms are defined inductively as follows:
00 := 0 and 0σ×τ := p(0σ, 0τ) and 0σ→τ := λx:σ.0τ .
The logical basis of HAω is many–sorted intuitionistic predicate logic with equal-
ity where the replacement schema A(t) ∧ t=s → A(s) is restricted to those in-
stances where t and s do not occur within the scope of a λ–abstraction, i.e. one
must not replace equals under a λ. On top of this we postulate the following
axioms

54

¬ 0 = succ(x)

(β) (λx:σ. t)(s) = t[s/x]

(P) pr0(p(x, y)) = x, pr1(p(x, y)) = y and p(pr0(z), pr1(z)) = z

(A) Rxy0 = x and Rxy(succ(z)) = yz(Rxyz).

together with the induction schema

A(0) → (∀x.A(x) → A(succ(x))) → ∀x.A(x)

for all predicates A(x) in the language of HAω.
Notice, however, that the term language of HAω is not first order due to λ–
abstraction. Thus, the intricacies of bound variables occur already on the level
of terms and are resolved the same way as for formulas, i.e. substitution has to
be defined appropriately in order to avoid capture of free variables.
In the literature one often finds strengthenings of HAω concerning equality.
The system I−HAω is obtained from HAω by postulating for all σ ∈ T a function
symbol eσ : σ→σ→0 satisfying the axioms

exy ≤ 1 and exy = 0 ↔ x=y

for all types σ. In other words eσ is a decision function for equality on σ.
On the other hand E−HAω is obtained from HAω by postulating the following
extensionality axiom

(∀z:σ. x(z) =τ y(z)) ↔ x =σ→τ y

for all σ, τ ∈ T . Accordingly, the system E−HAω is often called extensional
higher type arithmetic. Notice, that one may formulate E−HAω equivalently by
stipulating an equality predicate just for base type 0 and defining it at compund
types via the axioms

x =σ→τ y ↔ ∀z:σ. x(z) =τ y(z)
x =σ×τ y ↔ pr0(x) =σ pr0(y) ∧ pr1(x) =τ pr1(y)

Notice that E−HAω validates the principle

(ζ) (∀x:σ.t=s) → λx:σ. t=λx:σ. s .

The system I−HAω is often called intensional higher type arithmetic as the exis-
tence of computable functionals deciding equality of function types is in conflict29

with extensionality.

29Actually, extensionality is inconsistent with decidable equality in presence of continuity or
effectivity axioms.

55

When discussing Gödel’s functional (“Dialectica”) interpretation one notices (see
[Tr73]) that it does not validate the extensionality axiom (∀z:σ. x(z) =τ y(z)) →
x =σ→τ y. But it works for I−HAω a shown in [Tr73]. Since the decidabil-
ity of higher type equality may appear as undesirable form a mathematical
point of view the problem can be remedied also by considering a weaker ver-
sion of E−HAω called WE−HAω which we describe next. The language of
WE−HAω is different from the language of HAω in that we only assume an
equality predicate for base type 0 and define equality for compomd types in
term of this basic equality. For ease of exposition we omit product types when
discussing WE−HAω. For type σ ≡ σ1 → . . . σn → 0 we define x =σ y as
∀z1:σ1, . . . , zn:σn. xz1 . . . zn = yz1 . . . zn. Furthermore one has to work with typed
combinators K and S instead of λ-abstraction and has to reformulate correspond-
ing conversion rules of the form t =σ s as tz1 . . . zn = sz1 . . . zn where the zi are
fresh variables of type σi. Instead of the extensionality principle for functions we
instead postulate the following weak extensionality rule

P → tz1 . . . zn = sz1 . . . zn
(QF-ER)

P → r[t/x] =σ r[s/x]

where P is a quantifier-free formula from which one may derive the rule

P → tz1 . . . zn = sz1 . . . zn
(ER)

P → A[t/x] → A[s/x]

where P is still quantifier-free but A is an arbitrary formula and s and t are free
for x in A.

12.2 Models of HAω

Now we will construct some classical models for HAω. First of all there exists
the usual set theoretic model M with

M0 = N Mσ×τ = Mσ ×M τ Mσ→τ = Mσ →M τ

where the constants receive their obvious interpretations. In particular App(f, a) =
f(a), i.e. App is interpreted as ordinary function application. This model has the
disadvantage that it contains a lot of non–computable objects. This defect is
avoided by the following models.

Hereditary Recursive Operations

By structural recursion over T we define

HRO0 := N
HROσ×τ := {e ∈ N | pr0(e) ∈ HROσ ∧ pr1(e) ∈ HROτ}
HROσ→τ := {e ∈ N | ∀n ∈ HROσ. {e}(n) ∈ HROτ}

56

App is interpreted as partial recursive application which appears as total due to
the definition of function types. The other codes get their obvious meaning where
R is interpreted by some Gödel number for the primitive recursor.
This way HRO gets a model for I−HAω when interpreting e as the code of
some algorithm deciding equality of natural numbers. Moreover, the HRO–model
validates Church’s Thesis claiming that all functions of type 0→0 are recursive.

Hereditary Effective Operations

By structural recursion we define a partial equivalence relation ∼σ on N, i.e. a
symmetric and transitive but not necessarily reflexive binary relation on N, for
every σ ∈ T via the following clauses

x ∼0 y := x=y
x ∼σ×τ y := (pr0(x) ∼σ pr0(y)) ∧ (pr1(x) ∼τ pr1(y))
x ∼σ→τ y := ∀z, z′. z ∼σ z

′ → {x}(z) ∼τ {y}(z′)

and we define30

HEOσ := N/∼σ

for σ ∈ T .
Now function application is defined as App([e], [n]) = [{e}(n)] and the constants
of HAω get their obvious meaning as in the case of HRO.
Notice that HEO is a model of E−HAω due to the way how ∼ is defined for
function types. But HEO does not model I−HAω as the relations ∼ are not
decidable for function types.

Continuous Function Models

Notice that there are also variants of HRO and HEO based on Baire space B
and continuous function application as introduced in Section 11. For example
one may define in analogy to HRO a hierarchy ICF of Intensional Continuous
Functionals in the following way

ICF0 := N
ICF0→0 := B
ICF0→σ := {α ∈ B | ∀x. (λn.α(〈x〉∗n) ∈ ICFσ)} (σ 6≡ 0)
ICFσ→0 := {α ∈ B | ∀β ∈ ICFσ. α(β)↓} (σ 6≡ 0)
ICFσ→τ := {α ∈ B | ∀β ∈ ICFσ. α|β ∈ ICFτ} (σ, τ 6≡ 0)

which can be organized into a model of I−HAω. In analogy to HEO one may
define a hierarchy ECF of Extensional Continuous Functionals which can be
organized into a model of E−HAω.

30If R is a partial equivalence relation on N then we understand N/R as a shorthand for
{n∈N|nRn}/R as R is an equivalence relation in the proper sense on the carrier set {n∈N|nRn}
of R.

57

13 Kreisel’s Modified Realizability

The basic idea of Kreisel’s Modified Realizability as introduced by him in 1959 is
to replace Gödel numbers by terms of Gödel’s system T . An obvious advantage
of this change is that realizers extracted from proofs are already programs (of
Gödel’s T) and, therefore, much easier to grasp and handle than the somewhat
awkward Gödel numbers. Moreover, such a method works for arbitrary models
of Gödel’s T . Besides these simplifications other a priori unexpected benefits are
that the modified realizability interpretation does not validate Markov’s Principle
but instead the principle of Independence of existence–free Premiss

IPef (A→ ∃x:σ.B(x)) → ∃x:σ. (A→ B(x)) A ∃–free, x 6∈ FV (A)

where a formula is ∃–free if it does not contain occurrences of ∃ and ∨. This
together with the axiom of choice for arbitrary types

AC ∀x:σ.∃y:τ.A(x, y) → ∃z:σ→τ.∀x:σ.A(x, z(x))

will give rise to a very convenient axiomatisation of modified realizability.

Now we give the precise definition of modified realizability. We consider A∨B as
an abbreviation (or ‘macro’) for ∃n:0. (n=0 → A) ∧ (n 6=0 → B) and, therefore,
can omit the clause for disjunction.

Definition 13.1 (Modified Realizability)
With every formula A of HAω there is asscoiated a type tp(A) of potential real-
izers via the following clauses

tp(t=s) = 0

tp(A∧B) = tp(A)× tp(B)

tp(A→B) = tp(A) → tp(B)

tp(∀z:σ.A) = σ → tp(A)

tp(∃z:σ.A) = σ × tp(A) .

The modified realizability relation xmrA with x of type tp(A) is defined by in-
duction on the structure of A via the following clauses

xmr t=s ≡ t=s

xmrA ∧B ≡ pr0(x)mrA ∧ pr1(x)mrB

xmrA→ B ≡ ∀y:tp(A). ymrA→ x(y)mrB

xmr∀z:σ.A(z) ≡ ∀z:σ. x(z)mrA(z)

xmr∃z:σ.A(z) ≡ pr1(x)mrA(pr0(x)) .

The predicate xmrA specifies the actual realizers of A within the type tp(A) of
potential realizers of A. ♦

58

Notice that the main difference between modified realizability and Kleene’s num-
ber realizability (besides the nature of the realizers) is that an actual realizer
of A→B has to send potential realizers of A to potential realizers of B besides
sending actual realizers of A to actual realizers of B.
To get familiar with the notion and for subsequent use let us consider what it
means that xmr¬A. As ¬A ≡ A→ ⊥ we have xmr¬A ≡ ∀y:tp(A). ymrA→
x(y)mr⊥ ≡ ∀y:tp(A). ymrA → ⊥ ≡ ∀y:tp(A).¬ ymrA. Thus, ymrA is
logically equivalent to ¬∃y. ymrA.

Next we prove a Soundness Theorem for Modified Realizability.

Theorem 13.1 (Soundness for Modified Realizability)
If HAω proves A then there is a term t of type tp(A) such that HAω proves
tmrA.

Proof: We prove more generally that for every sequence Γ ` A derivable in HAω

there is a term t of type tp(A) such that

~umrΓ ` tmrA

is derivable in HAω where ~umrΓ stands for u1 mrA1∧. . .∧un mrAn. Moreover,
the free variables of t are contained in FV (Γ, A)∪{u1, . . . , un}. This generalised
claim is proved by induction on the structure of derivations in HAω.
The cases of structural rules are trivial and, therefore, left to the reader.
(∧I) If HAω proves ~umrΓ ` tmrA and ~umrΓ ` smrB then ~umrΓ `
p(t, s)mrA∧B.
(∧R) If HAω proves ~umrΓ ` tmrA∧B then HAω proves ~umrΓ ` pr0(t)mrA
and ~umrΓ ` pr1(t)mrB.
(→ I) If HAω proves ~umrΓ ∧ umrA ` tmrB then HAω proves ~umrΓ `
λu.tmrA→B.
(→ E) If HAω proves ~umrΓ ` tmrA→B and ~umrΓ ` smrA then HAω

proves ~umrΓ ` t(s)mrB.
(⊥E) Suppose that HAω proves ~umrΓ ` tmr⊥. Then as tmr⊥ ≡ ⊥ it follows
that HAω proves ~umrΓ ` ⊥ and, therefore, also ~umrΓ ` 0tp(A) mrA.
(∀I) If HAω proves ~umrΓ ` tmrA(x) and x does not occur in Γ then HAω

proves ~umrΓ ` λx.tmr∀x.A(x).
(∀E) If HAω proves ~umrΓ ` tmr∀x:σ.A(x) then it follows that HAω proves
~umrΓ ` t(s)mrA(s) for all terms s of type σ.
(∃I) If HAω proves ~umrΓ ` tmrA(s) then it follows that HAω proves ~umrΓ `
p(s, t)mr∃x.A(x) as p(s, t)mr∃x.A(x) ≡ pr1(p(s, t))mrA(pr0(p(s, t))) and HAω

proves pr0(p(s, t)) = s and pr1(p(s, t)) = t.
(∃E) Suppose as induction hypotheses that HAω proves ~umrΓ ` tmr∃x.A(x)
and ~umrΓ ∧ vmrA(x) ` smrB where x is not free in Γ or B. Then as by
definition tmr∃x.A(x) ≡ pr1(t)mrA(pr0(t)) it follows from the first induction
hypothesis that

59

(1) ~umrΓ ` pr1(t)mrA(pr0(t))

can be proved in HAω. From the second induction hypothesis it follows that

(2) ~umrΓ ∧ pr1(t)mrA(pr0(t)) ` s[pr0(t), pr1(t)/x, v]mrB

can be proved in HAω. As (1) and (2) can be proved in HAω it follows by purely
logical reasoning that ~umrΓ ` s[pr0(t), pr1(t)/x, v]mrB can be proved in HAω.
(Axioms) For very equational axiom t=s of HAω it proves 0mr t=s. Fur-
thermore, HAω proves that λx:0.0mr¬ 0=succ(x). Let A(0) → (∀x.A(x) →
A(succ(x))) → ∀x.A(x) be an instance of the induction schema. Then HAω

proves
Rtp(A) mrA(0) → (∀x.A(x) → A(succ(x))) → ∀x.A(x)

as from umrA(0) and ∀x:0.∀u:tp(A). umrA(x) → v(x)(u)mrA(succ(x))) one
can derive via the induction principle of HAω that ∀x:0. RuvxmrA(x). 2

Next we are heading for an axiomatization of Modified Realizability for which we
need the following notion.

Definition 13.2 A formula A of HAω is ∃–free iff it does not contain occur-
rences of ∃ and, therefore, also not of ∨. ♦

Notice that all formulas of the form xmrA are ∃–free.

Lemma 13.1 For every ∃-free formula A of HAω

(1) (∃x:tp(A). xmrA) → A is provable in HAω and

(2) A→ 0tp(A) mrA is provable in HAω.

Proof: We prove (1) and (2) simultaneously by induction on the structure of A.
Notice also that condition (1) for A is logically equivalent to xmrA→ A.
If A is an atomic formula then (1) and (2) are obvious as ∃x. xmrA and 0mrA
are provably equivalent to A itself.
(∧) In HAω one can show that ∃x. xmrA∧B is equivalent to ∃x. xmrA ∧
∃x. xmrB. As by induction hypothesis HAω proves ∃x. xmrA → A and
∃x. xmrB → B it follows that ∃x. xmrA∧B → A∧B, i.e. that A∧B satis-
fies (1). As by induction hypothesis HAω proves A → 0tp(A) mrA and B →
0tp(B) mrB it follows that HAω proves A∧B → p(0tp(A), 0tp(B))mrA∧B. As
0tp(A∧B) ≡ p(0tp(A), 0tp(B)) we have that HAω proves A∧B → 0tp(A∧B) mrA∧B,
i.e. that A∧B satisfies (2).
(→) Suppose as induction hypotheses that A and B satisfy the conditions (1)
and (2). As by definition xmrA→B ≡ ∀y. ymrA → x(y)mrB and HAω

proves A→ 0tp(A) mrA by induction hypothesis it follows that HAω proves also
xmrA→B → A → x(0tp(A))mrB and, therefore, also xmrA→B → A → B

60

as by induction hypothesis HAω proves x(0tp(A))mrB → B. Thus, in HAω

one can prove ∃x. xmrA→B → A→B, i.e. A→B satisfies (1). As by defini-
tion 0tp(A→B) ≡ λx:tp(A). 0tp(B) HAω proves that 0tp(A→B) mrA→B is equiva-
lent to ∀x:tp(A). (xmrA → 0tp(B) mrB) and hence also to ∃x:tp(A). xmrA →
0tp(B) mrB. As by induction hypothesis HAω proves ∃x. xmrA → A and
B → 0tp(B) mrB it follows that HAω proves (A→B) → (∃x:tp(A). xmrA) →
0tp(B) mrB hence (A→B) → 0tp(A→B) mrA→B. Thus A→B satisfies (2) as
desired.
(∀) Assume as induction hypothesis that A(z) satisfies (1) and (2). By definition
xmr∀z:σ.A(z) ≡ ∀z:σ. x(z)mrA(z). As by induction hypothesis HAω proves
x(z)mrA(z) → A(z) it follows that HAω proves xmr∀z:σ.A(z) → ∀z:σ.A(z)
from which it follows immediately that ∀z:σ.A(z) satisfies (1). By induction
hypothesis HAω proves A(z) → 0tp(A(z)) mrA(z) and hence also ∀z.A(z) →
∀z.0tp(A(z)) mrA(z). Thus, as by definition 0∀z:σ.A(z) ≡ λz:σ.0tp(A(z)) it follows
that HAω proves ∀z.A(z) → 0∀z:σ.A(z) mr∀z.A(z). Thus ∀z.A(z) satisfies (2). 2

Corollary 13.1 For every formula A of HAω

(1) ∃x. xmr (∃y. ymrA) ↔ ∃y. ymrA is provable in HAω

(2) A ↔ ∃x. xmrA is provable in HAω iff HAω proves that A is equivalent
to an existential quantification of an ∃–free formula in HAω.

Proof: (1) By definition xmr (∃y. ymrA) ≡ pr1(x)mr (pr0(x)mrA). As the
formula pr0(x)mrA is ∃–free it follows from Lemma 13.1(1) that HAω proves
pr1(x)mr (pr0(x)mrA) → pr0(x)mrA and, therefore, also xmr (∃y. ymrA) →
∃y. ymrA. Thus, HAω proves ∃x. xmr (∃y. ymrA) → ∃y. ymrA. As ymrA is
∃–free it follows by Lemma 13.1(2) that HAω proves ymrA→ 0y mrA mr (ymrA)
and, therefore, also ymrA → p(y, 0y mrA)mr (∃y. ymrA). Thus, it follows
that HAω proves ymrA→ ∃x. xmr (∃y. ymrA) and, therefore, also that HAω

proves ∃y. ymrA→ ∃x. xmr (∃y. ymrA).
(2) The implication from left to right is immediate as xmrA is ∃–free. For
the reverse direction first observe that it follows (almost) immediately from the
Soundness Theorem 13.1 that if HAω proves A1 ↔ A2 then HAω proves also
∃x. xmrA1 ↔ ∃x. xmrA2. Thus, it suffices to show for ∃–free formulas B(y)
that HAω proves ∃y.B(y) ↔ ∃x. xmr (∃y.B(y)).
From Lemma 13.1(2) it follows that HAω proves B(y) → 0tp(B(y)) mrB(y) and,
therefore, also B(y) → p(y, 0tp(B(y)))mr∃y.B(y). Thus, HAω proves B(y) →
∃x. xmr∃y.B(y) and hence also ∃y.B(y) → ∃x. xmr∃y.B(y).
On the other hand by definition xmr∃y.B(y) ≡ pr1(x)mrB(pr0(x)) and from
Lemma 13.1(1) it follows that HAω proves pr1(x)mrB(pr0(x)) → B(pr0(x)) as B
is ∃–free by assumption. Thus, HAω proves pr1(x)mrB(pr0(x)) → ∃y.B(y) and,

61

therefore, also xmr∃y.B(y) → ∃y.B(y). Hence HAω proves ∃x. xmr∃y.B(y) →
∃y.B(y). 2

Theorem 13.2 (Axiomatization of Modified Realizability)
For arbitrary formulas A of HAω

(1) HAω + AC + IPef ` A ↔ ∃x. xmrA

(2) HAω + AC + IPef ` A iff HAω ` tmrA for some term t of type tp(A).

Proof: Claim (1) is proved by induction on the structure of A.
For basic formulas claim (1) is obviously true.
(∧) This case is trivial as already in HAω ∃x. xmrA ∧ ∃x. xmrB is provably
equivalent to ∃x. xmrA∧B.
(→) Assume as induction hypothesis that HAω + AC + IPef proves that A ↔
∃y. ymrA and B ↔ ∃z. zmrB. Thus, by AC and IPef (as xmrA is ∃–
free) one can show that A→B is equivalent to ∃x.∀y. ymrA → x(y)mrB, i.e.
∃x. xmrA→B.
(∀) Assume as induction hypothesis that HAω + AC + IPef proves that A(z) ↔
∃y. ymrA(z). Thus, using AC one can show that HAω + AC + IPef proves the
equivalence of ∀z. A(z) and ∃x.∀z. x(z)mrA(z), i.e. ∃x. xmr∀z. A(z).
(∃) Suppose as induction hypothesis that (1) holds for A(z). We have to show
that (1) also holds for ∃z:σ.A(z).
Obviously, one can derive already in HAω that xmrA(z) → p(x, z)mr∃z:σ.A(z)
from which it follows already in constructive predicate logic that xmrA(z) →
∃x. xmr∃z:σ.A(z) and hence that ∃x. xmrA(z) → ∃x. xmr∃z:σ.A(z). But
as by assumption we have that HAω + AC + IPef ` A(z) → ∃x. xmrA(z) it
follows that HAω + AC + IPef ` A(z) → ∃x. xmr∃z:σ.A(z) and, therefore, also
HAω + AC + IPef ` ∃z.A(z) → ∃x. xmr∃z:σ.A(z).
By induction hypothesis one can derive in HAω + AC + IPef that ymrA(z) →
A(z) for y 6∈ FV (A) and, therefore, also that ymrA(z) → ∃z.A(z). Substituting
pr0(x) and pr1(x) for z and y, respectively, we get that HAω + AC + IPef proves
pr1(x)mrA(pr0(x)) → ∃z.A(z) and, therefore, also xmr∃z.A(z) → ∃z.A(z), i.e.
∃x. xmr∃z.A(z) → ∃z.A(z).

(2) If HAω ` tmrA then HAω and, therefore, also HAω + AC + IPef prove
∃x. xmrA. From this it follows by the already established claim (1) that HAω +
AC + IPef ` A.
For the reverse direction first observe (exercise!) that one can construct for each
instance C of AC and IPef a term t such that HAω ` tmrC. If HAω+AC+IPef `
A then there exist instances C1, . . . , Cn of AC or IPef such that HAω ` C1 →
. . .→ Ck → A. By the Soundness Theorem for Modified Realizability there is a

62

term t with HAω ` tmrC1→ . . .→Ck→A. Let ti be a term with HAω ` ti mrCi

for i = 1, . . . , k. Then obviously HAω ` t(t1) . . . (tk)mrA as desired. 2

From this characterization it follows that HAω + AC + IPef actually proves the
following strengthening of IPef

IP (¬A→ ∃y.B(y)) → ∃y.(¬A→ B(y)) y 6∈ FV (A)

where A is an arbitrary formula.

Corollary 13.2 In HAω + AC + IPef one can derive all instances of IP.

Proof: Let A and B(y) be arbitrary formulas of HAω with y 6∈ FV (A). By
Theorem 13.2 in HAω + AC + IPef one can prove the equivalence of A and
∃x. xmrA and hence also the equivalence of ¬A and ∀x.¬xmrA. Thus, for
showing that HAω + AC + IPef proves (¬A → ∃y.B(y)) → ∃y.(¬A → B(y)) it
suffices to show that HAω + AC + IPef proves ((∀x.¬xmrA) → ∃y.B(y)) →
∃y.((∀x.¬xmrA) → B(y)). But, this trivially is the case as the formula
((∀x.¬xmrA) → ∃y.B(y)) → ∃y.((∀x.¬xmrA) → B(y)) is an instance of
IPef because ∀x.¬xmrA is ∃–free. 2

Next we show via modified realizability—as already announced—that in HAω

one cannot derive Markov’s Principle.

Theorem 13.3 (Independence of Markov’s Principle)
Relative to HAω + AC + IPef Markov’s Principle MPPR is inconsistent with
Church’s Thesis

CT ∀f :0→0.∃x:0.∀y:0. f(y)={x}(y) .

Thus, in HAω one cannot prove MPPR nor its modified realizability.

Proof: From the previous Corollary 13.2 we know that HAω + AC + IPef proves
IP. Assume that ¬¬∃y. T (x, x, y) → ∃y.T (x, x, y) which is an instance of MPPR

as Kleene’s T–predicate is primitive recursive. Then from IP it follows that
∀x.∃y.¬¬∃y. T (x, x, y) → T (x, x, y). Thus, by AC it follows that

∃f :0→0.∀x:0.¬¬∃y. T (x, x, y) → T (x, x, f(x))

and, therefore, also

∃f :0→0.∀x:0.¬T (x, x, f(x)) → ¬∃y. T (x, x, y)

by contraposition. Thus, we have

∃f :0→0.∀x:0. T (x, x, f(x)) ↔ ∃y.T (x, x, y)

63

from which it follows that K={x|∃y.T (x, x, y)} is decided by the function g with
g(x)=0 iff T (x, x, f(x)). But as such a g cannot be recursive we have shown that
HAω + AC + IPef + MPPR proves the negation of Church’s Thesis.
If HAω proves MPPR or its modified realizability then HAω + AC + IPef proves
the modified realizability of MPPR and, therefore, also MPPR itself by Theo-
rem 13.2(1). Thus, it follows that HAω + AC + IPef ` ¬CT and, therefore, by
Theorem 13.2(2) that HAω ` ∃x. xmr¬CT. But as ∃x. xmr¬CT is provably
equivalent to ¬∃x.xmrCT it follows that HAω ` ¬∃x.xmrCT which is impos-
sible as HAω +CT ` ∃x.xmrCT and HRO and HEO are models for HAω +CT.

2

We remark that the underivability of MPPR in HAω can be shown more directly
without using Corollary 13.2. Suppose that HAω proves ¬¬∃y. T (x, x, y) →
∃y.T (x, x, y). Then by the Soundness Theorem 13.1 there is a term t for which
HAω proves tmr¬¬∃y.T (x, x, y)→∃y.T (x, x, y). We leave it as an exercise
to show that from this t one may construct a closed term t̃ for which HAω

proves ∀x.¬¬∃y. T (x, x, y) → T (x, x, t̃(x)) and thus also ∀x.(∃y.T (x, x, y) ↔
T (x, x, t̃(x)). But this program t̃ would decide the halting problem which is
known to be impossible.

We conclude this section by noticing that just as for number realizability one may
define a variant of modified realizability “combining it with truth”, i.e. one defines
a relation xmrtA just as in Definition 13.1 but with the clause for implication
replaced by

xmrtA→B ≡ (∀y:tp(A). ymrtA→ x(y)mrtB) ∧ (A→B) .

This modification allows one to prove in HAω that

∃x. xmrtA→ A

for all propositions A. This allows one to establish the following metamathemat-
ical facts.

Theorem 13.4 (Applications of Modified Realizability combined with Truth)
Let H be one of the systems HAω, I−HAω, E−HAω possibly extended by the
principles AC and/or IPef . Then

(1) H is consistent relative to HAω.

(2) For closed A and B it follows from H ` A∨B that H ` A or H ` B.

(3) If H ` ∃x.A(x) then H ` A(t) for some term t with FV (t) ⊆ FV (∃x.A(x)).

(4) If H ` ∀x:σ.∃y:τ.A(x, y) then H ` ∃z:σ→τ.∀x:σ.A(x, z(x)).

(5) If H ` A→∃x.B(x) then H ` ∃x.(A→B(x)) if A is ∃–free and x 6∈ FV (A).

64

14 Gödel’s Functional Interpretation

Already in 1941 Kurt Gödel has devised a method for proof extraction by as-
sociating constructive functionals as witnesses or realizers to proofs in HA or
HAω. It was not until 1958 that this work was published (in German31) in the
philosophical journal Dialectica under the title “Über eine bisher nicht benützte
Erweiterung des finiten Standpunktes”. That is the reason why Gödel’s func-
tional interpretation has become known under the name “Dialectica interpreta-
tion”. According to the foundationalist ideology which was still32 very influential
in the 40ies and 50ies as a consequence of the Grundlagenkrise of the time be-
tween the two World Wars Gödel ‘sold’ his functional interpretation of arithmetic
as a consistency proof. But, actually, its relevance rather is that it allows one to
extract from proofs programs in Gödels’s T which was introduced by him for this
purpose. Though Gödel’s Functional Interpretation is the oldest such technique
it appears as the most complex in this vein. But, despite its intriguing character
and inherent (conceptual) complexity it is still of quite some interest because it
simultaneously validates a strong form of Markov’s Principle and a sufficiently
strong version of the principle of Independence of Premiss.
The basic idea of Gödel’s Functional Interpretation is to associate with every
proposition A a proposition AD ≡ ∃x.∀u.AD(x, u) where AD(x, u) is a primitive
recursive(sic!) relation between x and u of appropriate finite type. One may
think of x as a ‘strategy’ and u as a ‘counterstrategy’ and of AD(x, u) as “x wins
against u”.
In order to simplify notation instead of x and u we consider finite lists x and u

of variables of appropriate type.33 We use x, y, z, u, v,w,X,Y,Z,U,V,W . . . as
meta–variables for finite list of variables and s, t as metavariables for finite lists
of terms. If t ≡ t1, . . . , tn then we write ts as an abbreviation for t1s, . . . , tns
whenever the tis are well–formed. Moreover, if x ≡ x1, . . . , xn then we write ∀x
and ∃x as shorthand for ∀x1. . . .∀xn. and ∃x1. . . .∃xn. , respectively.
Next we consider how the implication ∃x.∀u.AD(x, u) → ∃y.∀v.BD(y, v) can be

31An English translation of this paper can be found in Gödel’s Collected Works published by
Oxford University Press

32This situation changed dramatically in the 60ies under the influence of G. Kreisel who
strongly propagated the view that the significance of the proof–theoretic techniques developed
for ‘foundationalist’ purposes does not lie in their contribution to these very “foundations”.
His argument was that consistency proofs for, say, arithmetic use principles more dubious than
those postulated by arithmetic itself. For example Gentzen used ε0–induction to show the
consisteny of induction over natural numbers! This necessarily has to be case as by Gödel’s
2nd Incompleteness Theorem no formal system containing a modicum of arithmetic can prove
its own consisteny. Instead, as Kreisel emphasized, the relevance of proof–theoretic methods
is that they provide techniques for explicitating or “unwinding” (as he preferred to say) the
constructive contents of formal proofs like algorithms or bounds.

33This notational trick could have been used in the formalization of modified realizability,
too. It would have had the nice effect that for ∃–free formulas A we would get xmrA ≡ A
when defining xmrP ≡ P for atomic P .

65

transformed into an equivalent formula of the form ∃z.∀w.(A→B)D(z,w) as mo-
tivation for the subsequent definition of functional interpretation of implications.
We have

∃x.∀u.AD(x, u) → ∃y.∀v.BD(y, v) ↔
∀x.(∀u.AD(x, u) → ∃y.∀v.BD(y, v)) ↔
∀x.∃y.(∀u.AD(x, u) → ∀v.BD(y, v)) ↔
∀x.∃y.∀v(∀u.AD(x, u) → BD(y, v)) ↔
∀x.∃y.∀v.∃u(AD(x, u) → BD(y, v)) ↔
∃Y,U.∀x, v.(AD(x,Uxv) → BD(Yx, v))

where the second and the fourth equivalence are valid only classically and the fifth
equivalence presupposes AC. In principle classical logic would permit other ways
of prenexing but the ensuing functional interpretations would not be sufficiently
well–behaved w.r.t the purposes of program instruction.
As for atomic formulas P we want to put PD ≡ P we have to restrict consideration
to systems like I−HAω or WE−HAω where atomic formulas are decidable34. In
the following we use H as a variable ranging over {I−HAω,WE−HAω}.

Definition 14.1 (Gödel’s Functional Interpretation)
For atomic formulas P we put

PD ≡ PD ≡ P

and if AD ≡ ∃x.∀u. AD(x, u) and BD ≡ ∃y.∀v. BD(y, v) then we put

(A∧B)D ≡ ∃xy.∀uv. (A∧B)D(x, y, u, v) where
(A∧B)D(x, y, u, v) ≡ AD(x, u)∧BD(y, v)

(A→B)D ≡ ∃YU.∀xv. (A→B)D(Y,U, x, v) where
(A→B)D(Y,U, x, v) ≡ AD(x,Uxv)→BD(Yx, v)

(∀z.A(z))D ≡ ∃X.∀zu. (∀z.A(z))D(X, z, u) where
(∀z.A(z))D(X, z, u) ≡ AD(z,Xz, u)

(∃z.A(z))D ≡ ∃zx.∀u.∃z.A(z))D(z, x, u) where
(∃z.A(z))D(z, x, u) ≡ AD(z, x, u) .

We say that functional interpretation validates A iff H ` ∃x.∀u.AD(x, u). ♦

34We shall see subsequently that decidability of AD is needed for showing that A→A∧A is
validated by functional interpretation in the sense of Definition 14.1. But, moreover, there are
formulas provable in HAω which are not validated by functional interpretation as for example
∀u, v: 0→0.¬∀z: 0.¬(z=0↔x=y). This formula is provable in HAω as it appears as the ¬¬–
translation of ∀u, v: 0→0.∃z: 0.(z=0↔x=y) which, obviously, is provable in HAω + PEM. But
if ∀u, v: 0→0.¬∀z: 0.¬(z=0↔x=y) were validated by functional interpretation there would exist
a closed term of type 2 deciding whether ¬x=y or ¬¬x=y. But this is impossible as otherwise
equality of total recursive functions were decidable.

66

As in arithmetic A∨B may be considered as an abbreviation for the formula
∃n. (n=0→A)∧(n 6=0→B) whose functional interpretation is given by

(A∨B)D ≡ ∃nxy.∀uv. (A∨B)D(n, x, y, u, v) where
(A∨B)D(n, x, y, u, v) ≡ (n=0→AD(x, u))∧(n 6=0→BD(y, v)) .

Next we consider how functional interpretation treats negations. As by definition
¬A ≡ A→⊥ we have

(¬A)D ≡ ∃U.∀x.¬AD(x,Ux)

when AD ≡ ∃x.∀u.AD(x, u). Thus, as special cases we get

(¬A)D ≡ ∀x.¬AD(x)

if u is empty and
(¬A)D ≡ ∃u.¬AD(u)

if x is empty. Accordingly, we have

(¬¬∃x.P (x))D ≡ ∃x.¬¬P (x)

for every atomic formula P (x) as (¬∃x.P (x))D ≡ ∀x.¬P (x). As a consequence
we get that a rather strong form of Markov’s principle is validated by functional
interpretation.

Lemma 14.1 Functional interpretation validates

M′ ¬¬∃x.P (x) → ∃x.P (x) for P (x) atomic.

Proof: Immediate from the fact that (¬¬∃x.P (x))D ≡ ∃x.¬¬P (x) is provably
equivalent to ∃x.P (x) as P (x) is decidable and hence ¬¬–closed. 2

This together with the following lemma will be useful for axiomatizing Functional
Interpretation.

Lemma 14.2 Functional interpretation validates

IP′
0 (∀x.P (x)→∃y.A(y)) → ∃y.(∀x.P (x)→A(y)) for P (x) atomic.

Proof: Let A(y)D ≡ ∃u.∀v.AD(y, u, v). As (∀x.P (x))D ≡ ∀x.P (x) we observe that
both (∀x.P (x)→∃y.A(y))D and (∃y.(∀x.P (x)→A(y)))D are syntactically equal to
∃y, u,X.∀v. (AD(Xv)→BD(y, u, v)) from which it readily follows that functional
interpretation validates the schema IP′

0. 2

Functional interpretation is sound in the following sense.

Theorem 14.1 (Soundness of Functional Interpretation)
If H ` A then there is a list t of terms such that H ` ∀u.AD(t, u).

67

Proof: As usual we proceed by induction on the structure of derivations in H.
Almost everything goes through without any surprises. The only exception is the
verification of the correctness of the contraction rule. This requires to show that
for every formula A functional interpretation validates A→A∧A, i.e. we have to
show that there are X1, X2 and Y such that H proves

AD(x,Yxu1u2) → AD(X1x, u1) ∧ AD(X2x, u2) .

The following turns out as a good choice: put X1x = x = X2x and

Yu1u2 =

{
u1 if txu1 6= 0
u2 if txu1 = 0

where t is a primitive recursive term deciding AD, i.e. txu = 0 iff AD(x, u).
Notice that for I−HAω it is no problem to show that the axioms exy ≤ 1 and
exy = 0 ↔ x=y have a functional interpretation because they are quantifier-free.
For WE−HAω it is easy to verify the correctness of the rule QF-ER because
its premiss is quantifier-free and its conclusion is equivalent to its functional
interpretation (because the premiss of the implication is quantifier-free). 2

Notice that we have used intrinsically that the atomic formulas of H are decidable
by primitive recursive terms of the language.
Moreover, one can show that AD(t, u) can be proved in the quantifier–free frag-
ment QF–H of H augmented with an induction rule. Thus, as the proof of the
Soundness Theorem 14.1 is purely combinatorial in character and, therefore, can
be performed in a very weak system (as e.g. PRA) it can be considered as a
‘finitistic’ reduction of the consistency of H to the consistency of QF–H. The
latter was considered by Gödel as evident due to the constructive nature of the
notion of primitive recursive functionals of finite type. Thus, Gödel thought of
his result as a consistency proof for intuitionistic (and, therefore, also) classical
arithmetic by “essentially35 finitistic” means.

Now we are going to axiomatize functional interpretation which this time will
be easier as there is no need for considering a syntactically restricted class of
formulas.

Lemma 14.3 The system H+ AC + IP′
0 + M′ proves A↔ ∃x.∀u.AD(x, u) for all

formulas A.

Proof: We proceed by induction on the structure of A. The only crucial case is
implication. Suppose as induction hypothesis that H + AC + IP′

0 + M′ proves
A↔ ∃x.∀u.AD(x, u) and B ↔ ∃y.∀v.AD(y, v).

35Hilbert’s notion of ‘finitistic’ did not encompass the notion of primitive recursive functionals
of finite type. But ‘finitistic’ was (and still is) an open concept and Gödel definitely thought
that it should encompass the primitive recursive functionals of finite type.

68

Then A→B is equivalent to ∃x.∀u.AD(x, u) → ∃y.∀v.BD(y, v) which in turn (using
IP′

0) is equivalent to ∀x.∃y.∀v. (∀u.AD(x, u) → BD(y, v)). Now if we can show
that ∀u.AD(x, u) → BD(y, v) is equivalent to ∃u.(AD(x, u) → BD(y, v)) it follows
that A→B is equivalent to ∀x.∃y.∀v.∃u. (AD(x, u) → BD(y, v)) which by AC is
equivalent to (A→B)D.
The desired equivalence of ∀u.AD(x, u) → BD(y, v) and ∃u.(AD(x, u) → BD(y, v))
can be seen as follows

∀u.AD(x, u) → BD(y, v) ↔ BD(y, v) ∨ (¬BD(y, v) ∧ ¬∀u.AD(x, u)) ↔
↔ BD(y, v) ∨ (¬BD(y, v) ∧ ¬∀u.¬¬AD(x, u)) ↔
↔ BD(y, v) ∨ (¬BD(y, v) ∧ ¬¬∃u.¬AD(x, u)) ↔ (by M′)
↔ BD(y, v) ∨ (¬BD(y, v) ∧ ∃u.¬AD(x, u)) ↔
↔ ∃u.(BD(y, v) ∨ (¬BD(y, v) ∧ ¬AD(x, u)) ↔
↔ ∃u.(AD(x, u) → BD(y, v))

using intrinsically the decidability of AD and BD. Notice that for applying M′

correctly we have used (implicitly) that the quantifier–free formula ¬AD is equiv-
alent to an atomic formula. 2

Now we can axiomatize Gödel’s functional interpretation by AC and the principles

IPω
0 (∀x. A(x)∨¬A(x)) → (∀x.A(x)→∃y.B(y)) → ∃y.(∀x.A(x)→B(y))

Mω (∀x. A(x)∨¬A(x)) → ¬¬∃x.A(x) → ∃x.A(x)

for arbitrary formulas A and B.

Theorem 14.2 (Axiomatisation of Functional Interpretation)
For all formulas A of H we have

(1) H + AC + IPω
0 + Mω ` A ↔ ∃x.∀u.AD(x, u)

(2) H + AC + IPω
0 + Mω ` A iff H ` ∃x.∀u.AD(x, u) .

Proof: First notice that in H + AC one easily proves the equivalence of IP′
0 and

IPω
0 and of M′ and Mω as atomic predicates of H are decidable and in H + AC

every decidable predicate can be shown to be equivalent to an atomic predicate
as AC guarantees the existence of a decision function. Thus, claim (1) follows
immediately from Lemma 14.3.
The direction from right to left of (2) follows immediately from (1). One easily
shows that AC is validated by functional interpretation. As we already know
that w.r.t. H + AC the principles IPω

0 and Mω are equivalent to IP′
0 and M′,

respectively, it follows immediately from the Soundness Theorem 14.1 and the
Lemmas 14.1 and 14.2 that IPω

0 and Mω are validated by functional interpretation.

69

Thus, the direction from left to right of (2) follows from these observations by
the Soundness Theorem 14.1. 2

We conclude this section by remarking that there exists the so–called Diller–
Nahm variant of Gödel’s functional interpretation which allows one to get rid of
the requirement that atomic formulas are decidable and, accordingly, extends to
HAω with or without the extensionality principle.

70

References

[Bar] J. Barwise (ed.) Handbook of Mathematical Logic North Holland, 1977.

[BiBr] E. Bishop, D. Bridges Constructive Analysis Grundlehren der mathema-
tischen Wissenschaften 279, Springer, 1985.

[Dum] M. Dummett Elements of Intuitionism Oxford University Press, 2000.

[KV] S. C. Kleene, R. Vesley The Foundations of Intuitionistic Mathematics
North Holland, 1965.

[Sc69] D. Scott A type theoretical alternative to ISWIM, CUCH, OWHY Theo-
retical Computer Science 121, pp.411–440, 1993 (Reprint of a manuscript
written at Oxford University in 1969).

[Tr73] A. Troelstra (ed.) Metamathematical Investigations of Intuitionistic Arith-
metic and Analysis SLNM 344, Springer Verlag, 1973.

[Tr77] A. Troelstra Aspects of Constructive Mathematics pp. 973-1052 of [Bar].

[TvD] A. Troelstra, D. vanDalen Constructivism in Mathematics 2 vol.’s, North
Holland, 1988.

71

