

Highly Acyclic Groups Hypergraph Covers Guarded Fragment

Martin Otto

TU Darmstadt

・ロン ・日本 ・モン・・モン・

hyperbolic tesselation examples generated from sources at http://aleph0.clarku.edu/~djoyce/poincare/poincare.html

LICS 2010

M Otto

Acyclic Groups // Hypergraph Covers // GF

1/16

motivation - from a guarded perspective

relational structure ຊ hypergraph of guarded subsets $H = H(\mathfrak{A})$ Gaifman graph: superposition of cliques $G(\mathfrak{A}) = G(H)$

・ロト ・日ト ・ヨト ・ヨト

motivation - from a guarded perspective

 $\begin{array}{l} \text{relational} \\ \text{structure} \ \mathfrak{A} \end{array}$

hypergraph of guarded subsets $H = H(\mathfrak{A})$ Gaifman graph: superposition of cliques $G(\mathfrak{A}) = G(H)$

イロン イヨン イヨン イヨン

guarded fragment GF: quantification over guarded subsets/tuples governed by overlap pattern of $H(\mathfrak{A})$

motivation - from a guarded perspective

relational structure \mathfrak{A}

hypergraph of
guarded subsets
$$H = H(\mathfrak{A})$$

Gaifman graph: superposition of cliques $G(\mathfrak{A}) = G(H)$

イロン イヨン イヨン イヨン

the game equivalence for GF:

{guarded bisimulation hypergraph bisimulation

motivation – from a guarded perspective

relational structure \mathfrak{A}

hypergraph of
guarded subsets
$$H = H(\mathfrak{A})$$

Gaifman graph: superposition of cliques $G(\mathfrak{A}) = G(H)$

the game equivalence for GF:

∫guarded bisimulation hypergraph bisimulation

tree-like unfoldings yield tree decomposable models

of bounded tree-width

motivation – from a guarded perspective

relational structure ຊ hypergraph of guarded subsets $H = H(\mathfrak{A})$ Gaifman graph: superposition of cliques $G(\mathfrak{A}) = G(H)$

・ロト ・日本 ・ヨト ・ヨト

the game equivalence for GF:

{guarded bisimulation hypergraph bisimulation

tree-like unfoldings yield tree decomposable models not in FMT of bounded tree-width

motivation – from a guarded perspective

 $\begin{array}{c} \text{relational} \\ \text{structure} \ \mathfrak{A} \end{array}$

hypergraph of guarded subsets $H = H(\mathfrak{A})$ Gaifman graph: superposition of cliques $G(\mathfrak{A}) = G(H)$

・ロト ・日ト ・ヨト ・ヨト

the game equivalence for GF:

{guarded bisimulation hypergraph bisimulation

theorem (Andreka, van Benthem, Nemeti)

 ${\rm GF} \equiv {\rm FO}/{\sim_{\rm g}} \qquad \qquad {\rm also \ in \ FMT \ ??}$

analogy: ML and GF / graphs and hypergraphs

ŧ	graphs transition systems	hypergraphs relational structures		
ז 	modal logic ML ⊆ FO	guarded logic GF ⊆ FO		
I	bisimulation	guarded bisimulation hypergraph bisimulation		
	${\sf ML}\equiv{\sf FO}/{\sim}$	${ m GF}\equiv{ m FO}/{\sim_{ m g}}$??	FMT	
ä	acylicity: trees	tree-decomposable hyper	graphs	
i	N-local acyclicity n finite models	??	(a) < 2) < 3	
LICS 2	010 M Otto	Acyclic Groups // Hypergraph Covers	; // GF	

analogy: ML and GF / graphs and hypergraphs

graphs transition systems

modal logic $ML \subseteq FO$

bisimulation

 $ML \equiv FO/\sim$

acylicity: trees

N-local acyclicity in finite models

hypergraphs relational structures

 $\begin{array}{c} \mathsf{guarded} \ \mathsf{logic} \\ \mathsf{GF} \subseteq \mathsf{FO} \end{array}$

guarded bisimulation hypergraph bisimulation

 $GF \equiv FO/\sim_g$?? FMT

tree-decomposable hypergraphs

N-acyclicity in finite hypergraphs

・ロン ・雪 と ・ ヨ と ・

basics: hypergraphs, hypergraph acyclicity

hypergraphs $\mathfrak{A} = (A, S)$ set of nodes A set of hyperedges $S \subseteq \mathcal{P}(A)$ width $w(\mathfrak{A}) = \max\{|s|: s \in S\}$

hypergraph acyclicity = hypergraph tree decomposability

200

4/16

basics: hypergraphs, hypergraph acyclicity

hypergraphs $\mathfrak{A} = (A, S)$ set of nodes A set of hyperedges $S \subseteq \mathcal{P}(A)$ width $w(\mathfrak{A}) = \max\{|s|: s \in S\}$

hypergraph acyclicity = hypergraph tree decomposability

(ロ) (同) (E) (E) (E)

basics: hypergraphs, hypergraph acyclicity

hypergraphs $\mathfrak{A} = (A, S)$ set of nodes A set of hyperedges $S \subseteq \mathcal{P}(A)$ width $w(\mathfrak{A}) = \max\{|s|: s \in S\}$

hypergraph acyclicity = hypergraph tree decomposability

4/16

LICS 2010	M Otto	Acyclic Groups // Hypergraph Covers // GF
		· · · · · · · · · · · · · · · · · · ·

example: one of the simplest non-trivial hypergraphs

H³₄ the full width 3 hypergraph on 4 nodes;= tetrahedron with faces as hyperedges

irreducible: chordal but not conformal

example: one of the simplest non-trivial hypergraphs

H³₄ the full width 3 hypergraph on 4 nodes;= tetrahedron with faces as hyperedges

irreducible: chordal but not conformal

A (B) > A (B) > A (B) >

unfolds into acyclic hypergraph, with typical 1-neighbourhood

even 1-locally infinite,

example: one of the simplest non-trivial hypergraphs

H³₄ the full width 3 hypergraph on 4 nodes;= tetrahedron with faces as hyperedges

irreducible: chordal but not conformal

unfolds into acyclic hypergraph, with typical 1-neighbourhood

even 1-locally infinite,

or into *locally finite* hypergraph without *short* chordless cycles

Acyclic Groups // Hypergraph Covers // GF

definition: bisimilar (hypergraph) covers

 $\begin{array}{ccc} \pi \colon \hat{\mathfrak{A}} & \stackrel{\sim}{\longrightarrow} \mathfrak{A} & \text{ locally bijective, strict homomorphism} \\ & \text{with } back \text{ property w.r.t. hyperedges} \end{array}$

example: (guarded) tree unfolding over base structure

definition: bisimilar (hypergraph) covers

 $\begin{array}{ccc} \pi \colon \hat{\mathfrak{A}} & \stackrel{\sim}{\longrightarrow} \mathfrak{A} & \text{ locally bijective, strict homomorphism} \\ & \text{with } back \text{ property w.r.t. hyperedges} \end{array}$

example: (guarded) tree unfolding over base structure question: how much acyclicity in finite covers? key to relating GF to FO in FMT

イロン イヨン イヨン イヨン

definitions: degrees of acyclicity in (hyper)graph covers

the cover $\pi: \hat{\mathfrak{A}}$	$\stackrel{\sim}{\longrightarrow} \mathfrak{A}$ is	
acyclic	if $\hat{\mathfrak{A}}$ is acyclic	
N-locally acyclic	if for all $\hat{a} \in \hat{\mathfrak{A}}$, $\ell \leqslant N$:	Â⊺N ^ℓ (â) acyclic
N-acyclic	$\text{ if for } \hat{B} \subseteq \hat{A} \text{, } \hat{B} \leqslant \textit{N} \text{:}$	Â⊺Ê acyclic

æ

・ロト ・回ト ・ヨト ・ヨト

definitions: degrees of acyclicity in (hyper)graph covers

the cover π	: Â	$\xrightarrow{\sim}$	A	is			
acyclic		if Âi	s ac	cyclic			
N-locally acyclic		if for all $\hat{\mathbf{a}} \in \hat{\mathfrak{A}}$, $\ell \leqslant N$:			Â⊧N ^ℓ (â) acyclic		
N-acyclic		if for	Â⊆	Â, Ê	<i>≼ N</i> :	Â⊺Ê acyo	clic
		forbidding small cyclic configurations!			ns!		

 H_4^3 : even 1-locally acyclic hypergraph covers may be necessarily infinite

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・

finite covers & limited forms of acyclicity

• N-locally acyclic graph covers (width 2) O_'02

appl.: $ML \equiv FO/\sim$ in non-classical contexts/FMT

conformal hypergraph covers Hodkinson/O_'03

appl.: fmp for GF \rightarrow fmp for CGF extns of Herwig–Hrushovski–Lascar EPPA

• weakly N-acyclic covers Barany/Gottlob/O_'10

appl.: fmp for GF in classes with forbidden homs smp for GF \rightarrow smp for CGF PTIME canonisation for $\sim_{g} \&$ capturing PTIME/ \sim_{g}

N-acyclic covers

new here

appl.: fmp for GF in classes with forbidden cyclic configs ${\rm GF}\equiv {\rm FO}/{\sim_{\rm g}}$ in FMT

LICS 2010

groups without short cycles can be used

- in a straightforward product construction (graph case, width 2)
- in glueing of layers of local covers (hypergraph case, width > 2)

groups without short cycles can be used

- in a straightforward product construction (graph case, width 2)
- in glueing of layers of local covers (hypergraph case, width > 2)

graph case: plain Cayley graphs of large girth (available)

groups without short cycles can be used

- in a straightforward product construction (graph case, width 2)
- in glueing of layers of local covers (hypergraph case, width > 2)

graph case: plain Cayley graphs of large girth (available)

hypergraphs: need Cayley graphs without short cycles w.r.t. to a discounted distance measure (new)

groups without short cycles can be used

- in a straightforward product construction (graph case, width 2)
- in glueing of layers of local covers (hypergraph case, width > 2)

graph case: plain Cayley graphs of large girth (available)

hypergraphs: need Cayley graphs without short cycles w.r.t. to a discounted distance measure (new)

reason: sequences of hyperedge transitions may fix common node

in a nut-shell: Cayley groups of large girth

find Cayley group G with involutive generators $e \in E$, of girth > N:

on regularly *E*-edge-coloured tree \mathbf{T} of depth *N*,

let $e \in E$ operate through swaps of nodes in *e*-edges:

in a nut-shell: Cayley groups of large girth

find Cayley group G with involutive generators $e \in E$, of girth > N:

on regularly E-edge-coloured tree **T** of depth N,

let $e \in E$ operate through swaps of nodes in *e*-edges:

$$\bullet \underbrace{\frac{e}{e}}_{e} \bullet$$

 $G := \langle E \rangle^{\text{Sym}(T)} \subseteq \text{Sym}(T)$ subgroup generated by the permutations $e \in E$

no short cycles: $e_1 \circ e_2 \circ \cdots \circ e_k \neq 1$ for $k \leq N$

from 'no short cycles' to 'no cycles with short colourings'

convention: $\alpha \subseteq E$: colour classes/generators of subgroups G_{α}

from 'no short cycles' to 'no cycles with short colourings'

convention: $\alpha \subseteq E$: colour classes/generators of subgroups G_{α}

an n-colouring of some cycle in G is a tuple $(g_i)_{i\in\mathbb{Z}_n}$ s.t.

•
$$g_0 \circ \cdots \circ g_{n-1} = 1$$

• f.a. *i*:
$$g_i \in G_{\sigma(i)}$$
 but $g_i \notin G_{\sigma(i-1)\cap\sigma(i)} \circ G_{\sigma(i)\cap\sigma(i+1)}$

non-trivial colour changes

from 'no short cycles' to 'no cycles with short colourings'

convention: $\alpha \subseteq E$: colour classes/generators of subgroups G_{α}

an n-colouring of some cycle in G is a tuple $(g_i)_{i\in\mathbb{Z}_n}$ s.t.

•
$$g_0 \circ \cdots \circ g_{n-1} = 1$$

• f.a. *i*:
$$g_i \in G_{\sigma(i)}$$
 but $g_i \notin G_{\sigma(i-1)\cap\sigma(i)} \circ G_{\sigma(i)\cap\sigma(i+1)}$

non-trivial colour changes

discounted distance measure: n-colouring does not imply length bound!

・ロン ・雪 と ・ ヨ と ・

theorem (N-acyclic groups)

For all $k, N \in \mathbb{N}$, there is a finite Cayley group with k involutive generators and without any *n*-coloured cycles for $n \leq N$.

・ロン ・四 と ・ ヨ と ・ ヨ と

theorem (N-acyclic groups)

For all $k, N \in \mathbb{N}$, there is a finite Cayley group with k involutive generators and without any *n*-coloured cycles for $n \leq N$.

construction: inductively obtain groups

$$\{1\} = G^{(0)}, G^{(1)}, \dots, G^{(k)} = G$$

- for $|\alpha| \leqslant i$, $G_{\alpha}^{(i)}$ has no *n*-coloured cycles
- $G^{(i+1)}$ a subgroup of Sym(H) for *E*-coloured graph *H* obtained by amalgamation of copies of $G_{\alpha}^{(i)}$ for smaller α

・ロト ・日ト ・ヨト ・ヨト

in a nut-shell: N-acyclic covers

idea: use *N*-acyclic group to glue copies of some *locally finite N*-acyclic cover

along some peripheral finite boundary to mend defects without introducting new bad cycles/cliques

in a nut-shell: N-acyclic covers

idea: use *N*-acyclic group to glue copies of some *locally finite N*-acyclic cover

・ロト ・日本 ・ヨト ・ヨト

along some peripheral finite boundary to mend defects without introducting new bad cycles/cliques

theorem (N-acyclic covers)

For all finite \mathfrak{A} , $N \in \mathbb{N}$, there is a cover $\pi: \hat{\mathfrak{A}} \xrightarrow{\sim} \mathfrak{A}$

by some *N*-acyclic and conformal $\hat{\mathfrak{A}}$.

some special features

 $N \gg n$ large enough:

・ロン ・雪 と ・ ヨ と ・

some special features

 $N \gg n$ large enough:

 uniform bound on the size of the union of all shortest connecting paths between a and a', for d(a, a') ≤ n

ヘロン 人間 とくほど くほとう

some special features

 $N \gg n$ large enough:

- uniform bound on the size of the union of all shortest connecting paths between a and a', for d(a, a') ≤ n
- similarly for 'direct connecting paths' = short chordless paths

・ロト ・日ト ・ヨト ・ヨト

some special features

 $N \gg n$ large enough:

- uniform bound on the size of the union of all shortest connecting paths between a and a', for d(a, a') ≤ n
- similarly for 'direct connecting paths' = short chordless paths
- and even uniform size bounds for

finitary closure operation w.r.t. 'direct connecting paths'

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・

how to?

pass to guarded covers $\mathfrak{A}^* \sim_{\sigma}^{\ell} \mathfrak{B}^*$

suitably saturated w.r.t. multiplicities and sufficiently acyclic to imply $\mathfrak{A}^* \equiv_q \mathfrak{B}^*$

(日) (部) (目) (E)

summary finite covers & limited forms of acyclicity

N-locally acyclic graph covers

appl.: $ML \equiv FO/\sim$ in non-classical contexts/FMT

conformal hypergraph covers Hodkinson/O_'03

appl.: fmp for GF \rightarrow fmp for CGF extns of Herwig–Hrushovski–Lascar EPPA

weakly N-acyclic covers

Barany/Gottlob/O_'10

appl.: fmp for GF in classes with forbidden homs smp for GF \rightarrow smp for CGF PTIME canonisation for $\sim_{\mathbf{g}} \&$ capturing PTIME/ $\sim_{\mathbf{g}}$

• N-acyclic covers

new here

O '02

appl.: fmp for GF in classes with forbidden cyclic configs ${\rm GF}\equiv {\rm FO}/{\sim_{\rm g}}$ in FMT

LICS 2010

summaryfinite covers & limited forms of acyclicity• N-locally acyclic graph covers $O_'02$ appl.: ML \equiv FO/ \sim in non-classical contexts/FMT• conformal hypergraph coversHodkinson/O_'03appl.: fmp for GF \rightarrow fmp for CGF
extns of Herwig-Hrushovski-Lascar EPPA

weakly N-acyclic covers
 Barany/Gottlob/O_'10

appl.: fmp for GF it dates with foreigner plexity! smp for CF \rightarrow smp for CGF PTIME canonisation for $\sim_g \&$ capturing PTIME/ \sim_g

• N-acyclic covers

new here

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・

appl.: fmp for Grinalas smithin bid ancyclic risity $GF \equiv FO/\sim_{\rm g}$ in FMT

LICS 2010