Groupoids, Hypergraphs, and **Symmetries in Finite Models**

Martin Otto TU Darmstadt

local

isomorphism types of

local substructures

transition patterns

for bisimulation types

partial isomorphisms

as local symmetries

inverse

Martin Otto LICS 2013

semigroups

& their overlaps

global

realisations in (finite) relational structures

acyclicity conditions for realisations in models

> global automorphisms as global symmetries

motivation overlap patterns groups/groupoids graphs/hypergraphs reduced products 2/19

groupoids

groups

Martin Otto LICS 2013

motivation overlap patterns groups/groupoids graphs/hypergraphs reduced products

graphs

transition systems & graph-like structures modal logics

hypergraphs

LICS 13. New Orleans

relational structures with hypergraph of guarded sets guarded logics

full acyclicity in infinite tree-like unfoldings! counterparts for finite model constructions?

local acyclicity

acyclicity of small sub-configurations

in direct products with Cayley graphs of N-acyclic groups

in new reduced products with Cayley graphs of **N-acyclic groupoids**

combinatorial questions for hypergraphs:

- is every overlap pattern of hyperedges realisable in some finite hypergraph?
- does every finite hypergraph admit finite covers of any degree of acyclicity?
- how faithful can finite realisations/covers be w.r.t. symmetries of the specification?

hypergraphs $\mathcal{A} = (A, S)$, $S \subset \mathcal{P}(A)$ occur as

- abstractions of relational structures/data bases,
- specifications of clusters of variables in CSP,
- combinatorial patterns of structural decompositions, ...

1/19

local overlap specifications

concrete specification as in given hypergraph

intersection pattern of given $\mathcal{A} = (A, S)$ I(\mathcal{A}) = (S, E), E = {(s, s'): $s \cap s' \neq \emptyset$ }

 V_s

 $V_{s'}$

abstract specification via local matchings

disjoint patches V_s for $s \in S$ with partial matchings $R_e \subseteq V_s \times V_{s'}$ for $e \in E_{ss'}$ according to given incidence pattern $I = (S, (E_{ss'}))$ (multigraph)

challenge: generic construction of finite global realisations under acyclicity constraints

Martin Otto LICS 2013 motivation overlap patterns groups/groupoids graphs/hypergraphs reduced products 5/19

example: hypergraph coverings $\pi \colon \hat{\mathcal{A}} \to \mathcal{A}$

- π a covering of $\mathcal{A} = (A, S)$ by $\hat{\mathcal{A}} = (\hat{A}, \hat{S})$
- (forth): π is a hypergraph homomorphism (local bijections between hyperedges)
- **(back):** π lifts overlaps $s \cap s'$ to all \hat{s} above s:

i.e., realisations of overlap specification $H(\mathcal{A})$ w.r.t. $I(\mathcal{A}) := (S, E), E = \{(s, s') : s \cap s' \neq \emptyset\}$

issues: degrees of acyclicity, saturation and symmetry

abstract overlap patterns & realisations: definitions

incidence pattern: template for sites and links

$$\label{eq:intermediate} \begin{split} \mathbf{I} &= (\mathbf{S}, \mathbf{E}) \text{ multigraph, } \mathbf{E} = (\mathsf{E}_{ss'} \colon s, s' \in \mathsf{S}) \\ \text{with involution } e \in \mathsf{E}_{ss'} \longmapsto e^{-1} \in \mathsf{E}_{s's} \end{split}$$

I-graph: specification of local overlap pattern

 $\mathsf{H} = (\mathsf{V}, (\mathsf{V}_s)_{s \in \mathsf{S}}, (\mathsf{R}_e)_{e \in \mathsf{E}})$

V partitioned into patches V_s , linked through partial matchings $R_e \subseteq V_s \times V_{s'}$ for $e \in E_{ss'}$

realisation: global realisation of local specification

hypergraph $\hat{\mathcal{A}} = (\hat{\mathbf{A}}, \hat{\mathbf{S}})$ realising matchings as overlaps via projection $\pi: \hat{\mathbf{S}} \longrightarrow \mathbf{S}$ and local bijections $\pi_{\hat{\mathbf{S}}}: \hat{\mathbf{S}} \longrightarrow V_{\pi(\hat{\mathbf{S}})}$

example: extension of partial isomorphisms

Hrushovski-Herwig-Lascar EPPA

for finite relational structure \mathcal{A} and partial isomorphism p of \mathcal{A} find *finite* extension $\hat{\mathcal{A}} \supseteq \mathcal{A}$ such that p extends to $\hat{p} \in Aut(\hat{\mathcal{A}})$

generic realisation of overlap pattern between copies of ${\cal A}$ with identifications according to p

issue: extending local to global symmetry, consistency

Martin Otto LICS 2013 motivation overlap patterns groups/groupoids graphs/hypergraphs reduced products 9/19

Cayley groups & graphs without short cycles

Cayley group & graph:

group $\mathbb{G} = \mathbb{G}[\mathsf{E}] = (\mathsf{G}, \cdot, 1)$ with generators $e \in \mathsf{E}$ \rightsquigarrow edge relations $\mathsf{R}_e = \{(g, g \cdot e) \colon g \in \mathsf{G}\}$ for $e \in \mathsf{E}$

generator cycles & large girth:

minimal length of generator cycle $e_1 \cdots e_n = 1$ \rightsquigarrow large girth in Cayley graphs from permutation group action on suitably acyclic graphs

coset cycles & more than large girth:

in $\mathbb{G} = \mathbb{G}[\mathsf{E}]$ consider components w.r.t. $\alpha \subseteq E$ \rightsquigarrow avoid even short *coset cycles* in Cayley graph

here now:

focus on graph/hypergraph coverings

- degrees of acyclicity in products with groups/groupoids
- genericity and symmetry of these constructions

& a glimpse of application to Herwig–Lascar

main tool: Cayley graphs of finite groups and groupoids, their degrees of acyclicity & use in products

motivation overlap patterns groups/groupoids graphs/hypergraphs reduced products 10/19

groups & groupoids

Martin Otto LICS 2013

group $\mathbb{G}[E]$ **generated by E:** each transition $e \in E$ applicable everywhere

incidence pattern $I = (S, E) = (S, (E_{ss'}))$ specifies which transitions are required locally \rightarrow and a group may be too homogeneous

I-groupoid $\mathbb{G}[\mathsf{E}] = (\mathsf{G}, (\mathsf{G}_{\mathsf{st}}), \cdot, (\lambda_{\mathsf{s}}), {}^{-1})$ generated by E

with partial operation $\mathsf{G}_{\mathit{st}}\times\mathsf{G}_{\mathit{tu}}\longrightarrow\mathsf{G}_{\mathit{su}}$ modelled on the path monoid of I

 $e \in E_{ss'}$ applicable in s-nodes, $e' \in E_{s's''}$ in s'-nodes

motivation overlap patterns groups/groupoids graphs/hypergraphs reduced products 12/19

combinatorial paths to good finite group(oid)s

A (Alon–Biggs 1989)

finite Cayley groups without short generator cycles

permutation group action on acyclic graphs

B (O_2010)

finite Cayley groups without short coset cycles

permutation group action on amalgamated sub-groups/graphs

C (new here)

finite Cayley groupoids without short coset cycles

amalgamation technique (B) lifted to finite groupoids

Martin Otto LICS 2013 motivation overlap patterns groups/groupoids graphs/hypergraphs reduced products 13/19

from graphs to hypergraphs

hypergraph acyclicity

equivalent criteria for finite A = (A, S)in terms of \mathcal{A} and its Gaifman graph $G(\mathcal{A})$:

- \mathcal{A} has tree decomposition with bag set S
- A trivialises through retractions
- A conformal & chordal

conformal: every clique in G(A) induced by individual $s \in S$ **chordal:** every cycle in G(A) of length > 3 has a chord

approximation: N-acyclicity (N-conformality & N-chordality) guarantees acyclicity of sub-hypergraphs of size up to N

groups for graph coverings

$\pi: \hat{\mathcal{A}} \to \mathcal{A}$ a graph covering:

 π a homomorphism (forth) with lifting property (back)

thm (O_2002)

finite graphs $\mathcal{A} = (\mathsf{A}, \mathsf{E})$ admit, for $\mathsf{N} \in \mathbb{N}$, finite coverings $\pi: \mathcal{A} \otimes \mathbb{G} \longrightarrow \mathcal{A}$ by direct products with Cayley graphs of group $\mathbb{G}[\mathsf{E}]$ of large girth s.t. $\mathcal{A} \otimes \mathbb{G}$ is N-locally acyclic

unbranched coverings, fully symmetric by construction

motivation overlap patterns groups/groupoids graphs/hypergraphs reduced products 14/19

hypergraph coverings must be different

- non-trivial covers cannot preserve incidence degrees \rightarrow no unbranched coverings
- non-trivial locality phenomena
 - \longrightarrow need to control coset cycles
 - \rightarrow groupoids rather than groups

reduced products $\mathcal{A}\otimes\mathbb{G}$, $H\otimes\mathbb{G}$, ...

simple generic idea:

use disjoint union of copies of patches associated with $s \in S$ indexed by elements $g \in G_{*s} \subseteq \mathbb{G}$

a direct product

and factor out equivalence \approx induced by specified local overlaps (R_e, matchings ρ_e)

e.g., in $H \otimes \mathbb{G}$ for $e \in E_{ss'}$ and R_e/ρ_e of $H = (V, (V_s), (R_e))$: $(v,g) \approx (v',g \cdot e)$ if $\rho_e(v) = v'$

in $\mathcal{A} \otimes \mathbb{G}$: a in layer g is identified with a in layer g' precisely if $g' \in g\mathbb{G}[\alpha_a]$ for $\alpha_a = \{(s, s') : a \in s \cap s'\}$ — this is why coset cycles matter for acyclicity

Martin Otto LICS 2013 motivation overlap patterns groups/groupoids graphs/hypergraphs reduced products 17/19

extending local to global symmetry

for classes C of relational structures defined in terms of finitely many forbidden homomorphisms:

theorem (Herwig–Lascar 1999)

if finite $\mathcal{A} \in \mathcal{C}$ has extension $\hat{\mathcal{A}} \supseteq \mathcal{A}$ in \mathcal{C} that extends the partial isomorphism p of \mathcal{A} to automorphism of $\hat{\mathcal{A}}$, then there is also a *finite* $\hat{\mathcal{A}}$ with these properties

new route: find $\hat{\mathcal{A}}$ as sufficiently acyclic, symmetric finite realisation of *p*-overlaps between copies of \mathcal{A}

acyclicity in reduced products

covering lemma:

for hypergraph \mathcal{A} and suitable I-groupoid $\mathbb{G} = \mathbb{G}(\mathsf{E})$ based on the overlap pattern $\mathsf{I} = (\mathsf{S},\mathsf{E}) = \mathsf{I}(\mathcal{A})$ of \mathcal{A} :

- $\pi: \mathcal{A} \otimes \mathbb{G} \longrightarrow \mathcal{A}$ is a covering;
- $\mathcal{A} \otimes \mathbb{G}$ respects all symmetries of \mathbb{G} and \mathcal{A} ;
- if $\mathbb G$ has no coset cycles of length up to N, then $\mathcal A\otimes \mathbb G$ is an N-acyclic hypergraph

further applications:

- generic, symmetry-preserving, N-acyclic realisations $H\otimes \mathbb{G}$ for any abstract overlap specification H
- new combinatorial proof of Herwig-Lascar extension theorem

Martin Otto LICS 2013 motivation overlap patterns groups/groupoids graphs/hypergraphs reduced products 18/19