Finite Model Constructions for Guarded Logics

FMT in Les Houches 2012

Martin Otto

- guardedness and guarded logics
- hypergraph/guarded bisimulation
- finite model properties
- expressive completeness

the hypergraph of guarded subsets

of a relational structure $\mathcal{A} = (\mathcal{A}, (\mathcal{R}^{\mathcal{A}})_{\mathcal{R} \in \tau})$:

$\mathsf{H}(\mathcal{A})=(\mathsf{A},\mathsf{S}[\mathcal{A}])$

with hyperedges generated by subsets $[\mathbf{a}] \subseteq A$ for $\mathbf{a} \in R^A$, $R \in \tau$ closed under subsets & singleton sets

hypergraph terminology:

- H = (A, S), $S \subseteq \mathcal{P}(A)$ the set of hyperedges
- G(H) = (A, E), associated graph: hyperedges \rightsquigarrow cliques
- $G(\mathcal{A}) = G(H(\mathcal{A}))$, the Gaifman graph of \mathcal{A}

guarded sets & link structure

relational content vs. hypergraph link structure (topology) guarded links: local overlaps,

hyperedge incidence local & global aspects 3/32

tuples $a \in R$

different mixes for different purposes, but

- hypergraph 'topology' matters
- tree-likeness is good, locally or globally, if available
- e.g., in relation to databases or CSP active domain, conjunctive queries, tgd, ... ON THE DESIRABILITY OF ACYCLIC DATABASE SCHEMAS Beeri–Fagin–Maier–Yannakakis 1983

4/32

attention to link structure (topology)

discrete mathematics: analogies between hypergraphs and graphs **logic, model theory:** analogies between guarded and modal logics **databases:** analogies between databases and transition systems

e.g., tree-decompositions play on such analogies

key question: how far do these analogies carry?

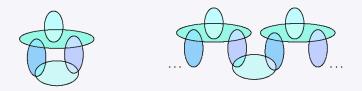
- global acyclicity not usually available in finite unfoldings
- combinatorics and model theory of hypergraphs

5/32

hypergraph acyclicity = tree decomposability

equivalent characterisations:

- H = (A, S) admits reduction $H \rightsquigarrow \emptyset$ through deletion of $\begin{cases} a & \text{if } |\{s \colon a \in s\}| \leq 1 \\ s & \text{if } s \subsetneq s' \in S \end{cases}$
- **H** has tree decomposition $\delta \colon \mathcal{T} \to S$ with bag set S
- H is conformal & chordal (later)



NB: hypergraph tree-decompositions of H(A)induce special tree-decompositions of A

guarded logics

guarded subsets/tuples as basic observables

access to links and relational content in various protocols

with different levels of expressive power, e.g.

FO existential & tree-like general FO existential FO with alternation, link-based fixpoints second-order

- \rightsquigarrow acyclic conjunctive queries
 - \rightsquigarrow conjunctive queries CQ
 - $\rightsquigarrow \quad \text{guarded fragment GF}$

6/32

- $\rightsquigarrow~$ guarded fixpoint logic $\mu {\rm GF}$
- $\rightsquigarrow \quad \text{guarded second-order GSO}$

guiding idea (A): relational analogues of modal logics

the guarded fragment GF:

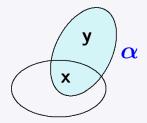
atomic formulae of FO, booleans, and

guarded quantification

 $\exists \mathbf{y} (\alpha(\mathbf{x}\mathbf{y}) \land \varphi(\mathbf{x}\mathbf{y})) \\ \forall \mathbf{y} (\alpha(\mathbf{x}\mathbf{y}) \rightarrow \varphi(\mathbf{x}\mathbf{y}))$

with guard atom lpha s.t.

 $\operatorname{free}(\varphi) \subseteq \operatorname{free}(\alpha) = \operatorname{var}(\alpha)$



example: $\forall x(Rx \rightarrow \exists y(Wxy \land \neg Qy)) \sim \Box_{\forall}(r \rightarrow \Diamond_{W} \neg q)$

$\mathsf{ML}\varsubsetneq\mathsf{GF}\varsubsetneq\mathsf{FO}$

guiding idea (B): guard against negation

Barany, ten Cate, Segoufin 2011

8/32

the guarded negation fragment GNF:

existential positive FO augmented by

guarded negation

$$\exists \mathbf{y} (\alpha(\mathbf{x}\mathbf{y}) \land \neg \varphi(\mathbf{x})) \\ =: \operatorname{gdd}(\mathbf{x}) \land \neg \varphi(\mathbf{x})$$

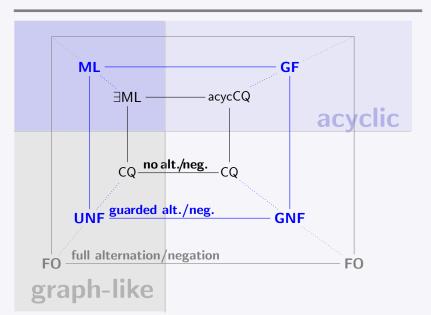
 $\begin{aligned} \mathbf{GF} &\subseteq_{\mathbf{g}} \mathbf{GNF} \text{ (for guarded free variables!):} \\ \mathrm{gdd}(\mathbf{x}) \land \forall \mathbf{y} \big(\alpha(\mathbf{x}\mathbf{y}) \to \varphi(\mathbf{x}\mathbf{y}) \big) &\equiv \mathrm{gdd}(\mathbf{x}) \land \neg \exists \mathbf{y} \big(\alpha(\mathbf{x}\mathbf{y}) \land \neg \varphi(\mathbf{x}) \big) \end{aligned}$

- **GF** = acycGNF (with acyclic templates)
- **GNF** \supseteq **UNF** generalises unary negation (ten Cate, Segoufin)

alternative picture (C): variation along three axes

• •	hypergraphs general relational structures
ML UNF	GF GNF
-	\exists / \forall alternation (guarded or full) based on guarded or full negation GNF or FO
acycCQ	general templates CQ GNF

where GF and GNF fit



bisimulation - the quintessential back&forth

- modal (two-way, global) bisimulation / graph bisimulation
- guarded bisimulation / hypergraph bisimulation
- guarded negation bisimulation / homomorphism bisimulation protocol mixing local homomorphisms with bisimulation

graph and hypergraph bisimulation:

local matches between local states (nodes or hyperedges) maintained by player **II** against

challenge/response w.r.t. links

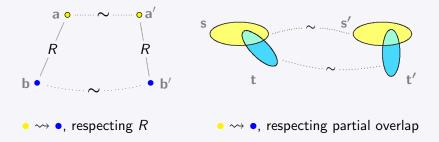
(edges or overlaps)

homomorphism bisimulation:

challenge/response w.r.t. (size-bounded) homomorphisms

graph and hypergraph bisimulation \sim

challenge/response — in graph and hypergraph bisimulation



with relational content:

replace local bijections by local isomorphisms to obtain modal and guarded bisimulation

mutatis mutandis: clique guarded bisimulation for CGF

homomorphism bisimulation $\sim_{\scriptscriptstyle hom}$

local matches: bijections $s \leftrightarrow s'$ between guarded subsets challenge/response:

- player I proposes subset $p \subseteq A$ (or $p' \subseteq A'$)
- player II chooses homomorphism $h: p \rightarrow A'$ compatible with $s \leftrightarrow s'$

h needs to be bijective on guarded subsets:

 player I chooses guarded t ⊆ dom(h) new t ↔ t': the restriction of h to t

k-size-bounded variants ($|h| \leq k$): (A, S) $\sim_{hom[k]}$ (A', S')

with relational content: $\mathcal{A} \sim_{gn[k]} \mathcal{A}'$ guarded negation bisimulation

Ehrenfeucht-Fraïssé and classical characterisations

bismulation invariance: \sim_{g} preserves GF $\sim_{gn[k]}$ preserves GNF[k]

Ehrenfeucht-Fraïssé correspondences, as expected

$\sim^{\rm m}_{\rm g}$		\equiv^m_{GF}
$\sim^{\rm m}_{_{\rm gn[k]}}$	—	≡ ^m _{GNF[k]}

for relational structures with guarded tuples

characterisations of expressiveness, classically as expected

${ m FO}/{\sim_{ m g}}$	\equiv_{g}	GF
-------------------------	--------------	----

${ m FO}/{\sim_{ m gn[k]}}$	$\equiv_{\mathbf{g}}$	GNF[k]
-----------------------------	-----------------------	--------

over relational structures with guarded tuples

bisimulation invariance

generalised tree model properties

(Grädel 1999 for GF)

tree-like unfoldings yield special (infinite) models of bounded treewidth for guarded logics like GF, GNF[k]

of importance for:

- $\longrightarrow\,$ automata and model-checking games on trees
- \longrightarrow via interpretations, reductions to MSO on trees
- \rightarrow characterisations of fixpoint extensions (classically) via reduction to MSO/ $\sim \equiv L_{\mu}$ (Janin–Walukiewicz 1996)

bisimilar covers - of graphs, hypergraphs & structures

graph and hypergraph covers:

$$\pi \colon \hat{\mathsf{G}} \xrightarrow{\sim} \mathsf{G}$$

$$\pi \colon \hat{\mathsf{H}} \xrightarrow{\sim} \mathsf{H}$$

graph homomorphism inducing graph bisimulation of local matches $(\hat{a}, \pi(\hat{a}))$ hypergraph homomorphism inducing hypergraph bisimulation of local bijections $\hat{s} \leftrightarrow \pi(\hat{s})$

homomorphisms with back-property w.r.t. link pattern

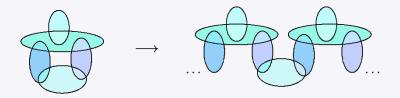
modal and guarded covers:

the same, with relational content

guarded covers are relational homomorphisms with back-property with induced hypergraph and guarded bisimulations

tree unfoldings as acyclic covers

observation: natural tree unfoldings w.r.t. link structure of graphs, hypergraphs & structures yield acyclic, albeit infinite, acyclic covers



fact: tree unfoldings of cyclic structures are infinite, all acyclic covers of cyclic structures are infinite

how much acyclicity is possible in finite covers? combinatorial challenge

(I) finite model constructions & fmp for guarded logics

- emphasis on hypergraph covers in model construction
- relational Skolemisation + suitable covers = fmp

examples:

- (1) conformal covers
- (2) covers with forbidden homomorphisms
- (3) covers with forbidden cyclic configurations

reap fmp for CGF and GNF through Skolemisation and the elimination of incidental links

first: finite hypergraphs and degrees of acyclicity

no

acyclicity = conformality + chordality

alternative characterisation of hypergraph acylicity:

conformality: every clique in G(H) guarded

chordality:

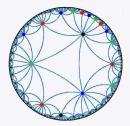
every cycle of length $\geqslant 4$ in G(H) has a chord

conformality can be achieved in finite covers, chordality cannot !

levels of acyclicity

conformality can be achieved in finite covers, chordality cannot ! even 1-local chordality may not be available in finite covers

locally finite cover of tetrahedron on $\bullet, \bullet, \bullet, \bullet$



relaxations:

N-chordality:

chordality for short cycles

(of length $\leq N$)

N-acyclicity:

acyclicity for small substructures (of size $\leq N$)

conformal covers and fmp for CGF

conformal covers

(Hodkinson-O 2003)

every finite hypergraph $\mathbf{H} = (\mathbf{A}, \mathbf{S})$ admits a finite conformal cover $\pi: (\hat{\mathbf{A}}, \hat{\mathbf{S}}) \xrightarrow{\sim} (\mathbf{A}, \mathbf{S})$

analogously, for finite relational structures \mathcal{A} : finite conformal guarded covers $\pi : \hat{\mathcal{A}} \xrightarrow{\sim_{g}} \mathcal{A}$

application: reduction of FINSAT(CGF) to FINSAT(GF)

- expand by guards for required cliques force positive CGF-assertions
- eliminate incidental cliques in cover preserve negative CGF-assertions

covers and forbidden homomorphisms

weakly	Ν	-acyclic	covers
--------	---	----------	--------

(Barany–Gottlob–O 2010)

every finite hypergraph $\mathbf{H} = (\mathbf{A}, \mathbf{S})$ admits finite weakly N-acyclic covers $\pi : (\hat{\mathbf{A}}, \hat{\mathbf{S}}) \xrightarrow{\sim} (\mathbf{A}, \mathbf{S})$

similarly for finite relational structures

weak N-acyclicity:

short cycles (length $\leq N$) in cover may not be chordal but acquire chords in projection s.t.

small homomorphic images in cover are acyclic in projection

application: small finite models of $\varphi \in \mathbf{GF}$ avoiding given homomorphisms/UCQ

covers and forbidden cyclic configurations

N-acyclic covers

(O 2010)

every finite hypergraph $\mathbf{H} = (\mathbf{A}, \mathbf{S})$ admits finite N-acyclic covers $\pi: (\hat{\mathbf{A}}, \hat{\mathbf{S}}) \xrightarrow{\sim} (\mathbf{A}, \mathbf{S})$

similarly for finite relational structures

N-acyclicity:

all small induced sub-configurations are acyclic

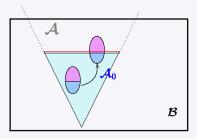
 \rightarrow interesting structure theory based on local convex hulls

application: finite models of $\varphi \in \mathbf{GF}$ avoiding given set of cyclic substructures

fmp for GF

• Grädel 1999, based on Herwig's EPPA Hrushovski-Herwig-Lascar ...

extension of partial isomorphisms to automorphisms after relational Skolemisation (\rightsquigarrow guarded $\forall \exists$) from finite part of regular infinite model



 Barany–Gottlob–O 2010, based on weakly N-acyclic covers from pre-model: finite quotient of regular (infinite) model

summary of applications (so far)

positive link requirements covered by guarded $\forall \exists$ conditions — after relational Skolemisation with extra guards

finite models for CGF

conformal covers break up false cliques

finite models for GNF and for GF avoiding UCQ

weakly N-acyclic covers break up false positives for CQ

small finite models and Ptime canonisation for GF

weakly N-acyclic covers break up relational inconsistencies

finite models for GF avoiding given cyclic configurations

N-acyclic covers break up false cyclic positives for CQ without ruling out acyclic positives !

(II) finite covers & expressive completeness/FO

expressive completeness thms: $FO/\sim_L \equiv L$ (fmt)

where \sim_{L} is full L-bisimulation equivalence partial L-isomorphy

> ~^m_L corresponds to L^m-equivalence L-Ehrenfeucht–Fraïssé

crux: a compactness property

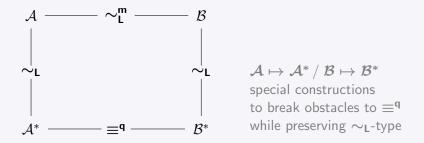
if, for $\varphi \in \text{FO}$ there is $m \in \mathbb{N}$ such that $\varphi \sim_{\mathsf{L}}$ -invariant $\Rightarrow \varphi \sim_{\mathsf{L}}^{\mathsf{m}}$ -invariant, then $\text{FO}/\sim_{\mathsf{L}} \equiv \mathsf{L}$ follows

focus here on GF and GNF

compactness property for expressive completeness

to show
$$\left| arphi \sim_{\mathsf{L}} -invariant \ \Rightarrow \ arphi \sim^{\mathsf{m}}_{\mathsf{L}} -invariant
ight|$$
 for $arphi \in \mathsf{FO}^q$

upgrade \sim^m_L to \equiv^q in \sim_L -equivalent finite companions:



obtacles: small multiplicities, small cliques, and short cycles

expressive completeness for GF

thm: $FO/{\sim_g} \equiv_g GF$ (fmt)

- upgrading uses N-acyclic covers and finitary saturation both based on highly acyclic Cayley groups
- over these richly branching covers: E–F game analysis based on structure theory of N-acyclic hypergraphs

two core ingredients:

Cayley groups that have no short cycles even w.r.t. non-trivial transitions between cosets

size-bounded local convex hulls of small configurations so that GF determines isomorphism types, due to acyclicity

expressive completeness for GNF

thm: FO/ $\sim_{gn[k]} \equiv_{g} GNF[k]$ (fmt)

new obtacle for upgrading: non-isomorphic realisations of CQ

• local saturation w.r.t. distinct isomorphism types of small CQ



- relational Skolemisation to force positive CQ requirements
- N-acyclic covers to break false positives for CQ

upgrading through
$$\sim^{\mathsf{m}}_{{}_{\mathsf{gn}[k]}} \rightsquigarrow \sim^{\mathsf{m}}_{\mathsf{g}} \rightsquigarrow \equiv^{\mathsf{q}}$$

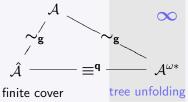
intricate reduction to GF:

currently with detour through infinite tree-like models + fmp for GNF from Barany-ten Cate-Segoufin 2011

Skolemisation and upgrading for GNF

obeservation (for GF)

 finitely saturated, N-acyclic covers can serve as finite analogues of infinite ω-tree-unfoldings

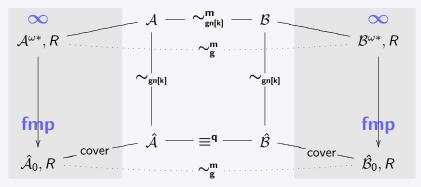


- use ω -unfoldings that branch on isomorphism types of small CQ ∞
- fmp for GNF (with Skolemisation for small CQ) generates finite pre-model, then N-acyclic covers ...

expressive completeness for GNF

a glimpse of the complications:

core: upgrading in finite covers that behave like trees



summary & outlook

model-theoretic and algorithmic well-behavedness of guarded logics

nice model properties

expressive completeness through upgrading

approximations/counterparts of tree-like unfoldings

finite hypergraph constructions especially finite bisimilar covers

interesting problems, regarding new methods, constructions, applications

- \rightarrow work with Vince and Balder (GN DATALOG), ...
- \rightarrow new dedicated project (DFG)

discrete mathematics - combinatorics - logic - and ...