A: Tractability, model-theoretic B: Tree-like models & tractability C: Approximations in finite covers

Tractable Finite Models

Martin Otto, Dpt of Mathematics, TU Darmstadt

Tractability can mean many things

computational/algorithmic tractability:

- tractable instances of (hard) problems
 - e.g. satisfiability/formula evaluation/theories
 - → tractable (fragments of) logics, tractable classes of structures

here is one more:

model-theoretic tractability (of structures):

- low-level logic determines high-level behaviour
 - e.g. determination of FO_{∞} -theory by FO-theory
 - ... and in finite model theory ?

A: Tractability – model-theoretic

classical example: ω -saturated models

FO-types determine FO_{∞} -types

shorthand

$$\begin{array}{ccc} \mathsf{FO} & \blacktriangleright & \mathsf{FO}_{\infty} \\ \equiv & \blacktriangleright & \simeq_{\mathrm{part}} \end{array}$$

elementary equivalence class determines partial isomorphy class

tractable representatives of \equiv -classes

available by compactness

sample application: **expressive completeness proofs** like Lyndon–Tarski, Łos–Tarski, ...

expressive completeness proofs, example

Lyndon–Tarski Theorem $FO/_{hom} \equiv pos \exists FO$ crux (modulo compactness): φ preserved under φ preserved under pos \exists FO transfer homomorphisms $\mathfrak{N} \xrightarrow{\mathrm{hom}} \mathfrak{B}$ $\mathfrak{A} \Rightarrow_{\mathsf{pos}} \exists \mathfrak{B}$ to upgrade $\Rightarrow_{\mathsf{pos}} \exists$ to $\xrightarrow{\hom}$ can use **tractability:** pos \exists FO \triangleright pos \exists FO_{∞} in ω -saturated models $= \operatorname{pos} \exists \Longrightarrow \mathfrak{B}$ $\mathfrak{A}, \mathfrak{B}$ ctbl \mathfrak{A} hom \mathfrak{B}^* $\mathfrak{B}^* \omega$ -saturated

aside: related expressive completeness results in fmt

Lyndon–Tarski: Rossman (2005) $FO/_{hom} \equiv pos \exists FO$ in the sense of finite model theory $FO^m/_{hom} \equiv pos \exists FO^m$ classical + parameter-awareness (!)Lyndon–Tarski: Atserias–Dawar–Kolaitis (2004) $FO/_{hom} \equiv pos \exists FO$ in restricted classes of finite models Los–Tarski: Atserias–Dawar–Grohe (2005)

 $FO/_{ext} \equiv \exists FO$ in restricted classes of finite models

fails over the class of all finite structures: Gurevich-Tait

plan for parts B & C

B: Tree-like models & tractability

- (1) graphs & trees
- (2) hypergraphs & tree decompositions

C: Approximations in finite covers

- (1) finite graph covers
- (2) finite hypergraph covers

\rightarrow tractability w.r.t. modal logics (1) and guarded logics (2)

B: Tree-like models and tractability

(1) transition systems, game graphs & trees

computational behaviour of transition systems	Ì	\rightarrow	bisimilar unfolding into
strategy analysis in game graphs	Ĵ	,	<i>infinite</i> trees

bisimulation equivalence \sim (= modal back&forth equivalence) has

tree models as tractable representatives

- well understood algorithmic model theory
- automata and MSO over trees
- tractability of modal logics

expressive completeness proof, example

Janin–Walukiewicz (1996)

 $MSO/\sim \equiv L_{\mu}$

crux: preservation under $\sim \Rightarrow$ preservation under \equiv_{μ}^{m}

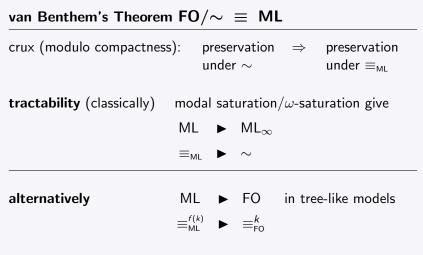
tractability

$$\begin{array}{c} \mathsf{L}_{\mu} \models \mathsf{MSO} \\ \equiv_{\mu} \models \equiv_{\mathsf{MSO}} \\ \equiv_{\mu}^{f(k)} \models \equiv_{\mathsf{MSO}}^{k} \end{array} \right)$$

without compactness (!) need finite index approx.

in ω -tree unfoldings

expressive completeness proof, example



yields fmt analogue (Rosen 1997) \rightarrow part C

B: Tree-like models and tractability

(2) hypergraphs & tree decompositions

hypergraph: $\mathbf{H} = (A, S)$, $S \subseteq \mathcal{P}(A)$: set of hyperedges with induced graph $\mathbf{G}(\mathbf{H}) = (A, \{e \in \mathcal{P}_2(A) : e \subseteq s \in S\})$

example: hypergraph of guarded sets of a relational structure $\mathfrak{A} = (A, R^{\mathfrak{A}})$ $H(\mathfrak{A}) = (A, \{ [a] : a \in R^{\mathfrak{A}} \})$ $[a]:=\{a_i: 1 \leq i \leq k\}$ if $a=(a_1,...,a_k)$ whose induced graph is the Gaifman graph $G(\mathfrak{A})$ of \mathfrak{A}

hypergraph acyclicity

hypergraph acyclicity = tree decomposability

Graham's decomposition:

- delete simply covered verticesdelete ⊆-covered hyperedges

hypergraph acyclicity = conformality + chordality

- conformal: every Gaifman clique covered by some hyperedge
- chordal: no chordless cycles in Gaifman graph

hypergraph acyclicity

hypergraph acyclicity = conformality + chordality

- conformal: every Gaifman clique covered by some hyperedge
- chordal: no chordless cycles in Gaifman graph

acyclicity achievable in *infinite* guarded unfoldings (tree unfoldings w.r.t. intersection graph of $H(\mathfrak{A})$)

tractable representatives up to guarded bisimulation \approx

guardedness

the guarded fragment (Andreka, van Benthem, Nemeti, 1998)

restriction/relativisation of FO-quantification to guarded tuples induces the *guarded fragment*

$\mathbf{GF}\subseteq\mathbf{FO}$

with quantification patterns

$$\begin{split} \varphi(\mathbf{x}) &= \ \forall \mathbf{y} \big(\alpha(\mathbf{x}\mathbf{y}) \to \psi(\mathbf{x}\mathbf{y}) \big) \\ \varphi(\mathbf{x}) &= \ \exists \mathbf{y} \big(\alpha(\mathbf{x}\mathbf{y}) \land \ \psi(\mathbf{x}\mathbf{y}) \big) \end{split}$$

a generalisation of modal logic

with further variations like CGF: clique guarded fragment

guardedness and GF

properties of guarded logics

- finite model property for GF (and CGF) using Herwig's EPPA construction
 → Hrushovski–Herwig–Lascar
- decidability of SAT (= FINSAT)
- expressive completeness

 $FO/\approx \equiv GF$

classical: via saturation % (Andreka, van Benthem, Nemeti) open in fmt until recently $\rightarrow \mbox{ part }C$

C: Approximations to tree-likeness in finite covers

(1) graph structures

- tree unfoldings of cyclic graph structures are infinite
- finite locally acyclic bisimilar covers obtainable as products with Cayley groups of large girth

every finite graph
$$\mathfrak{A} = (A, E^{\mathfrak{A}})$$
 admits a finite bisimilar cover
 $\pi \colon \mathfrak{A}^* \stackrel{\sim}{\longrightarrow} \mathfrak{A}$

by a finite graph \mathfrak{A}^* that is *N*-locally acyclic.

• suitable Cayley groups: combinatorial group action on regularly coloured acyclic graphs (Biggs, Alon)

example: tractability in locally acyclic covers

van Benthem–Rosen: $FO/\sim \equiv ML$

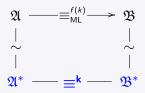
uniform proof based on locally acyclic covers (of high branching)

 $\mathsf{crux:} \quad \varphi \in \mathsf{FO}^k \text{ preserved under} \sim \ \Rightarrow \ \varphi \text{ preserved under} \equiv_{\mathsf{ML}}^{\mathit{f}(k)}$

tractability
$$\mathsf{ML}^{f(k)} \models \mathsf{FO}^k$$

 $\equiv_{\mathsf{ML}}^{f(k)} \models \equiv^k$ in covers $\pi \colon \mathfrak{A}^* \xrightarrow{\sim} \mathfrak{A}$

tractability argument provides this upgrading, classically and fmt parameter-aware (!)



C: Approximations to tree-likeness in finite covers

(2) hypergraph covers w.r.t. pprox

recall: acyclic = conformal & chordal

• acyclic bisimilar covers of hypergraphs may necessarily be 1-locally infinite

but one still does have

• finite conformal bisimilar covers (Hodkinson, O_'03)

tractability: GF ► CGF

model theoretic consequences:

- \rightarrow reductions from CGF to GF (fmp and small finite models)
- $\rightarrow\,$ generalisations of Herwig–Lascar EPPA Theorem

C: Approximations to tree-likeness in finite covers

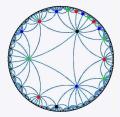
(2) hypergraph covers w.r.t. pprox

recall: acyclic = conformal & chordal

• acyclic bisimilar covers of hypergraphs may necessarily be 1-locally infinite

need to relax chordality requirement:

no bad cycles locally (impossible)
→ no *short* bad cycles (?)



acyclicity in finite hypergraph covers

N-acyclicity:chordality requirements for cycles up to length Ntwo kinds:

 weakly N-acyclic bisimilar covers (Barany, Gottlob, O_'10) guarantee 'chordality in projection' for all cycles up to length N tractability: GF ► pos ∃ FO

model theoretic consequences:

- $\rightarrow~\mbox{fmp}$ for GF w.r.t. classes with forbidden homomorphisms
- $\rightarrow~$ optimal size bounds on small models for GF and CGF
- $\rightarrow\,$ polynomial canonisation & capturing $\mathrm{Ptime}/{\approx}$

acyclicity in finite hypergraph covers

N-acyclicity:chordality requirements for cycles up to length Ntwo kinds:

 fully N-acyclic bisimilar covers (O_'10) guarantee chordality in cover for all cycles up to length N tractability: GF ► FO

model theoretic consequences:

- $\rightarrow~\mbox{fmp}$ w.r.t. classes with forbidden cyclic substructures
- $\rightarrow~{\rm expressive}$ completeness proof for GF in fmt

acyclicity in finite hypergraph covers

summary of tractabilities in finite hypergraph covers

kind of (finite) cover	tractability	
conformal Hodkinson, O_	GF ► CGF	nat & can
weakly <i>N</i> -acyclic Barany, Gottlob, O_	GF ► pos ∃ FO	nat & can polynomial
fully N-acyclic	GF ► FO	*

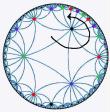
* combinatorial challenge: current construction does not support EPPA generalisations

N-acyclicity in finite hypergraph covers

ingredients

finite Cayley groups of large girth w.r.t. *discounted distance measure*

idea: count no. of non-trivial transitions between cosets w.r.t. subgroups



used in local-to-global glueing of layers to mend defects in partial locally finite covers

• new & universal construction of these Cayley groups: iteration of combinatorial group action & amalgamation

aside: acyclicity in Cayley groups/graphs

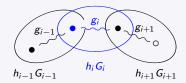
G a Cayley group with involutive generators $e \in E$

N-acyclic (= large girth):

no generator cycles of length up to N; $e_1 \circ \cdots \circ e_k \neq 1$ for short non-trivial generator sequences $(e_i), k \leq N$

strongly N-acyclic (new):

 $g_1 \circ \cdots \circ g_k \neq 1$



for short non-trivial coset sequences $(h_i G_i)$, $k \leq N$ where $g_i = h_{i+1} \circ h_i^{-1}$, $G_i = G(E_i)$

N-acyclicity in finite hypergraph covers

tractability of N-acyclic models

in finite, sufficiently acyclic covers (of high branching):

- convex hulls w.r.t. short chordless paths are of bounded size,
 - hence acyclic
 - hence controlled by GF-types
- tractability: $GF \rightarrow FO$ $\equiv_{CF}^{f(k)} \rightarrow \equiv^{k}$

yields expressive completeness of GF for FO/ \approx in fmt ${\rm FO}/\approx~\equiv~{\rm GF}~({\rm fmt})$

summary

- there is a purely *model-theoretic flavour of tractability*, often subsumed in notions of "well-behaved classes"
- basic idea is common in model-theoretic constructions, notably in *expressive completeness* arguments, and
- lends itself to concrete and parameter-aware constructions also in non-classical settings, esp. in *finite* and *algorithmic model theory*.