The Freedoms of Guarded Bisimulation

Martin Otto, Dpt of Mathematics, TU Darmstadt

- what is bisimulation good for?
- how does bisimulation generalise to hypergraphs?
- what is guarded bisimulation good for?
- which features of bisimulation generalise?
- what are the combinatorial challenges?

bisimulation - the quintessential back & forth

state-transition systems

transition systems: coloured directed graphs Kripke structures: possible worlds, accessibility relations temporal structures: states, flow of time epistemic structures: knowledge states, uncertainty equivalences game graphs: positions and possible moves

notions of behaviour

sequences of transitions (between observable states) interactive behaviour: challenge/response instead of traces embeddable trees of action sequences (up to multiplicities) **bisimulation classes**

the bisimulation game

back & forth in transition systems

with binary (transition) relations $\mathbf{R} = (R_1, ...)$ and unary (state) predicates $\mathbf{P} = (P_1, ...)$

two players on two structures:

$$\mathcal{A} = (\mathcal{A}, (\mathbf{R}^{\mathcal{A}}), (\mathbf{P}^{\mathcal{A}}))$$
 vs. $\mathcal{A}' = (\mathcal{A}', (\mathbf{R}^{\mathcal{A}'}), (\mathbf{P}^{\mathcal{A}'}))$

game positions:

 $(a, a') \in A \times A'$ pebbles on a in \mathcal{A} and on a' in \mathcal{A}'

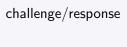
single round, challenge/response:

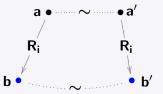
player I makes a transition from a or from a' player II needs to match this transition on opposite side

the bisimulation game

back & forth

single round:





winning/losing:

- player II needs to maintain local equivalence between states
- player I or II lose when stuck

winning strategies and back & forth systems

winning strategies for player II:

$$\mathcal{A}, \mathbf{a} \sim^{\ell} \mathcal{A}', \mathbf{a}'$$
 player II has winning strategy
in ℓ -round game from position (*a*; *a*')

 $\mathcal{A}, \mathbf{a} \sim \mathcal{A}', \mathbf{a}'$ player II has winning strategy in unbounded game from position (a, a')

winning regions as relations:

$$\begin{aligned} & Z_\ell & := \; \{(a,a') \in A \times A' \; : \; \mathcal{A}, a \sim^\ell \mathcal{A}', a' \; \} \\ & Z_\infty & := \; \{(a,a') \in A \times A' \; : \; \mathcal{A}, a \sim \mathcal{A}', a' \; \} \end{aligned}$$

(nondet.) winning strategies as back & forth systems: graded by no. of remaining rounds for \sim^{ℓ} / flat for \sim

basic modal logic ML

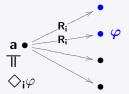
with binary (transition) relations $\mathbf{R} = (R_1, \ldots) \longrightarrow \text{modalities} \diamond_i / \Box_i$ and unary (state) predicates $\mathbf{P} = (P_1, \ldots)$

 \rightarrow basic propositions p_i

atomic formulae: \bot , \top and p_i closure under booleans and modal quantification:

$$\diamondsuit_i \varphi \equiv \exists y (R_i x y \land \varphi(y)) \Box_i \varphi \equiv \forall y (R_i x y \to \varphi(y))$$

relativised FO guant.



example: $\Diamond_1 \Box_2 \Diamond_1 \Box_2 p$

bisimulation equivalence - modal Ehrenfeucht-Fraïssé

the modal Ehrenfeucht-Fraïssé thm

t.f.a.e. for any \mathcal{A}, a and \mathcal{A}', a' : (i) $\mathcal{A}, a \sim^{\ell} \mathcal{A}', a'$ (ii) $\mathcal{A}, a \equiv^{\ell}_{ML} \mathcal{A}', a'$ (equivalence w.r.t. ML up to depth ℓ)

consequences:

- invariance/preservation: ML^{ℓ} preserved under \sim^{ℓ} ML preserved under \sim
- tree model property of modal logics (!!)

bisimulation equivalence - modal Ehrenfeucht-Fraïssé

the modal Karp thm:

t.f.a.e. for any \mathcal{A}, a and \mathcal{A}', a' : (i) $\mathcal{A}, a \sim \mathcal{A}', a'$ (ii) $\mathcal{A}, a \equiv_{ML}^{\infty} \mathcal{A}', a'$ (equivalence w.r.t. infinitary ML)

consequences:

- \bullet invariance/preservation: $\ ML_{\infty}$ preserved under \sim
- Hennessy–Milner thm: $\equiv_{\rm ML}$ coincides with $\sim / \equiv_{\rm ML}^{\infty}$ on 'saturated' models
- classical proof of van Benthem's characterisation of ML

modal characterisation thm (van Benthem)

${ m FO}/{\sim}~\equiv~{ m ML}$

for $\varphi(x) \in \mathsf{FO}$: φ preserved under $\sim \ \Leftrightarrow \ \varphi \equiv \varphi'$ with $\varphi' \in \mathsf{ML}$

ML captures precisely those FO properties that are bisimulation-invariant

finite model theory (fmt) analogue (Rosen)

 $FO/\sim~\equiv~ML~(fmt)$

for $\varphi(x) \in \mathsf{FO}$: $\begin{array}{c} \varphi \text{ preserved under } \sim \\ \text{over finite structures} \end{array} \Leftrightarrow$

$$\Leftrightarrow \ \varphi \equiv_{\mathrm{fin}} \varphi' \ \text{with} \ \varphi' \in \mathsf{ML}$$

guardedness

observable configurations in relational structures

examples:

- tuples in relational database,
- clusters of variables in CSP and conjunctive queries,
- higher-arity roles (as in description logics)

so as to model: clustering of states non-binary link structures restrictions on (simultaneous) access

guardedness

observable configurations in relational structures

examples:

- tuples in relational database,
- clusters of variables in CSP and conjunctive queries,
- higher-arity roles (as in description logics)

the essence of the generalisation

from graphs to hypergraphs

 $transition \ systems/graphs \ \longrightarrow \ relational \ structures/hypergraphs$

modal logic \longrightarrow guarded logic

bisimulation \longrightarrow guarded bisimulation

guardedness

the hypergraph of guarded subsets

of a relational structure $\mathcal{A} = (\mathcal{A}, \mathbf{R}^{\mathcal{A}})$:

$$\mathsf{H}(\mathcal{A}) = (\mathsf{A},\mathsf{S}[\mathcal{A}])$$

with hyperedges $[\mathbf{a}] \subseteq A$ for every $\mathbf{a} \in R^{\mathcal{A}}$, $R \in \mathbf{R}$

$$[\mathbf{a}] = \{a_1, \dots, a_r\}$$
 if $\mathbf{a} = (a_1, \dots, a_r)$
 \pm closure under subsets and singleton

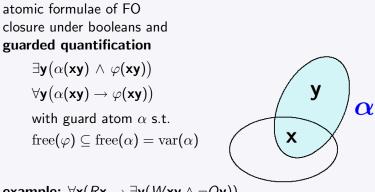
+ closure under subsets and singleton sets

general terminology:

• hypergraph H = (A, S) $S \subseteq \mathcal{P}(A)$ the set of hyperedges $s \in S$

the guarded fragment

GF: quantification relativised to guarded tuples



example: $\forall x(Rx \rightarrow \exists y(Wxy \land \neg Qy))$

$\mathsf{ML}\varsubsetneq\mathsf{GF}\varsubsetneq\mathsf{FO}$

the natural extension of modal pattern to arbitrary relations

the guarded fragment

key properties of GF

- finite model property
- decidable for SAT = FINSAT
- bounded tree width property (and more)
- preservation/characterisation (guarded bisimulation)

in striking analogy with ML

well-behaved extensions:

CGF: allow Gaifman cliques as guards

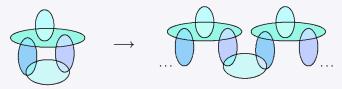
- μ **GF**: GF + least fixed points (Grädel–Walukiewicz 99)
- **GNF**: guarded negation fragment (Barany-ten Cate-Segoufin 11)

from graphs to hypergraphs

hypergraph tree unfoldings

based on tree unfolding of intersection graph between hyperedges for identifications of nodes in overlaps

result: a tree-decomposable hypergraph $\hat{H} \sim H$



 \longrightarrow generalised tree-model property (Grädel)

hypergraph bisimulation & guarded bisimulation

hypergraph bisimulation ${\sf H}, {\sf s} \sim {\sf H}', {\sf s}' \mbox{ and } {\sf H}, {\sf s} \sim^\ell {\sf H}', {\sf s}'$

idea: bisimulation of the intersection graphs moves between hyperedges respecting the overlap

position in game on H = (A, S) vs. H' = (A', S'):

bijections $s \leftrightarrow s'$, $s \in S, s' \in S'$

single round, challenge/response:

player I selects $t \in S$ or $t' \in S'$ player II needs to complete to new bijection $t \leftrightarrow t'$ compatible with $s \leftrightarrow s'$ on $s \cap t$ (on $s' \cap t'$)

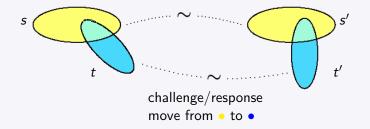
II loses when stuck

hypergraph bisimulation & guarded bisimulation

hypergraph bisimulation $H, s \sim H', s'$ and $H, s \sim^{\ell} H', s'$

single round, challenge/response:

player I selects $t \in S$ or $t' \in S'$ player II needs to complete to new bijection $t \leftrightarrow t'$ compatible with $s \leftrightarrow s'$ on $s \cap t$ (on $s' \cap t'$)



hypergraph bisimulation & guarded bisimulation

guarded bisimulation $\mathcal{A}, a \sim_g \mathcal{A}', a'$ and $\mathcal{A}, a \sim_g^{\ell} \mathcal{A}', a'$

idea 1: bisimulation of hypergraphs of guarded subsets that locally respects relations

idea 2: pebble game with guarded pebble configurations

the two are equivalent

both captured by a bisimulation game on associated transition system of guarded tuples (Grädel-Hirsch-O_)

guarded bisimulation – guarded Ehrenfeucht-Fraïssé

the guarded Ehrenfeucht-Fraïssé thm

t.f.a.e. for any \mathcal{A}, \mathbf{a} and $\mathcal{A}', \mathbf{a}'$: (i) $\mathcal{A}, \mathbf{a} \sim_{g}^{\ell} \mathcal{A}', \mathbf{a}'$ (ii) $\mathcal{A}, \mathbf{a} \equiv_{GF}^{\ell} \mathcal{A}', \mathbf{a}'$ (equivalent w.r.t. GF up to depth ℓ) ... with Karp-style extension relating \sim_{g} and \equiv_{GF}^{∞}

consequences:

- invariance/preservation: GF^{ℓ} preserved under \sim_{g}^{ℓ} GF preserved under \sim_{g}
- generalised tree model property of guarded logics (Grädel)
- characterisation thm, classical (Andreka-van Benthem-Nemeti)

guarded and modal, one more example

guarded characterisation thm (Andreka-van Benthem-Nemeti)

$$\rm FO/{\sim_g}~\equiv~\rm GF$$

for $\varphi(x) \in \mathsf{FO}$: φ preserved under $\sim_{\mathsf{g}} \Leftrightarrow \varphi \equiv \varphi'$ with $\varphi' \in \mathsf{GF}$

GF captures precisely those FO properties that are guarded bisimulation-invariant

remark: fmt version open until recently (more below)

 $\begin{array}{l} {\rm GSO}/{\sim_{\sf g}} \equiv \mu {\rm GF} \mbox{ (Grädel-Hirsch-O_)} \\ {\rm MSO}/{\sim} \ \equiv \ {\rm L}_{\mu} \mbox{ (Janin-Walukiewicz)} \end{array} \right\} \ \mbox{both open in fmt}$

further themes:

- (1) tree-like models: acyclicity and its finite approximations
- (2) finite model properties
- (3) expressive completeness in fmt
- (4) bisimulation quotients, canonisation and capturing

hypergraph acyclicity

acyclicity of H = (A, S) three equivalent characterisations:

• **H** admits reduction **H** $\rightsquigarrow \emptyset$

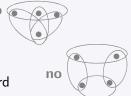
via decomposition steps:

 $\begin{cases} \text{delete } a \text{ if } a \in s \text{ for single } s \in S \\ \text{delete } s \text{ if } s \subsetneq s' \in S \end{cases}$

- **H** has tree decomposition $\delta \colon \mathcal{T} \to \mathcal{S}$
- H is conformal & chordal

conformality: every clique in G(H) guarded chordality:

every cycle of length \geqslant 4 has a chord



bisimilar covers

hypergraph cover:

 $\pi \colon \hat{\mathsf{H}} \to \mathsf{H}$

hypergraph homomorphism inducing hypergraph bisimulation of bijections $(\hat{s} \leftrightarrow \pi(\hat{s}))$

local bijections with back-property w.r.t. overlap pattern

guarded cover:

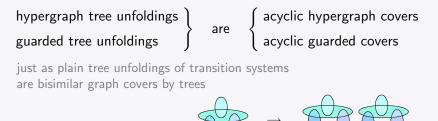
$$\pi\colon \hat{\mathcal{A}} o \mathcal{A}$$

relational homomorphism inducing guarded bisimulation of local isomorphisms $(\hat{s} \leftrightarrow \pi(\hat{s}))$ between guarded substructures

local isomorphisms with hypergraph cover property, hypergraph cover through local isomorphisms

covers: unclutter locally-preserve link structure

first examples:



fact: tree unfoldings of cyclic structures are infinite

how much acyclicity is possible in finite covers?

the combinatorial challenge

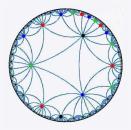
conformal covers

(Hodkinson–O_ 03)

- every finite hypergraph admits a cover by a finite conformal hypergraph
- every finite relational structure admits a guarded cover by a finite structure which is conformal
- **method:** suitable local restriction of 'free' covers that cover s by graphs of functions $\rho: s \to \{1, \dots, k\}$

even 1-local chordality cannot generally be obtained in finite covers

locally finite cover of tetrahedron on $\bullet, \bullet, \bullet, \bullet$



relaxation:

N-chordality

require chordality only for short cycles

(a) weak N-chordality of a cover $\pi \colon \hat{\mathsf{H}} \to \mathsf{H}$

short chordless cycles in $G(\hat{H})$ acquire chords in projection to H

weakly N-acyclic covers	(Barany–Gottlob–O_ 10)
every finite hypergraph admits finite conformal and weakly <i>N</i> -chordal covers	
and analogue for relational structures	

method: quotients of term-based structures inspired by Rosati's chase

 $\rightarrow~$ essentially optimal complexity

(b) full N-chordality

no short chordless cycles G(H)

fully N-acyclic covers

(O_10)

every finite hypergraph admits covers by finite conformal and fully *N*-chordal hypergraphs

... and analogue for relational structures

ingredients: generalisation of Cayley groups of large girth

- + a local-to-global construction and glueing to mend defects
- $\rightarrow\,$ maximal acyclicity, but no feasible bounds

(2) finite model properties

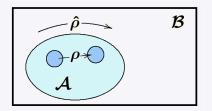
finite model property for GF

Grädel's proof based on Herwig's EPPA

extension properties for partial isomorphisms (EPPA)

Hrushovski, Herwig, Herwig-Lascar

for finite \mathcal{A} and partial iso $\rho \in Part(\mathcal{A}, \mathcal{A})$, can find finite $\mathcal{B} \supseteq \mathcal{A}$ with $\rho \subseteq \hat{\rho} \in Aut(\mathcal{B})$



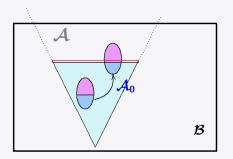
w.l.o.g.
$$S[\mathcal{B}] = \langle S[\mathcal{A}] \rangle^{\operatorname{Aut}(\mathcal{B})}$$

no 'new' guarded sets

finite model property for GF

Grädel's proof based on Herwig's EPPA

after relational Skolemisation ($\varphi \in GF \rightsquigarrow \varphi' \in \forall \exists GF$): use EPPA to obtain finite model as finite closure of finite substructure of infinite model w.r.t. guarded $\forall \exists$ -requirements



→ cover constructions for optimal bounds (2) extensions of fmp for GF

conformal structures and CGF

existence of finite conformal covers (Hodkinson–O_ 03) \Rightarrow fmp(GF) in the class of all conformal structures

applications: • proof of fmp(CGF) using the fact that $CGF \equiv GF$ over conformal structures where clique guarded = guarded

> • extension of EPPA e.g. to K_n-free graphs

further application: extension of EPPA e.g. to K_n -free graphs

(2) extensions of fmp for GF

similarly, finite weakly N-acyclic covers give:

fmp with forbidden homomorphisms (Barany–Gottlob–O_ 10)

let \mathcal{C} be the class of all \mathcal{A} without homomorphisms $\mathcal{B} \xrightarrow{hom} \mathcal{A}$ for a given finite list of finite \mathcal{B}

fmp(GF) over C:

 $\begin{array}{l} \mbox{if } \varphi \in {\sf GF} \mbox{ has any model in } {\mathcal C}, \\ \mbox{then } \varphi \mbox{ has a finite model in } {\mathcal C} \end{array}$

application: finite controllability of unions of conjunctive queries w.r.t. guarded constraints: $\varphi \models q \iff \varphi \models_{\text{fn}} q$

optimal size and complexity bounds essentially as good as for GF alone !

(2) extensions of fmp for GF

similarly, finite fully N-acyclic covers give:

fmp with forbidden cyclic configurations

(O_10)

 $\begin{array}{l} \mbox{let \mathcal{C} be the class of all \mathcal{A} without substructures $\mathcal{B}\subseteq \mathcal{A}$} \\ \mbox{for a given finite list of finite cyclic \mathcal{B}} \end{array}$

fmp(GF) over C:

 $\begin{array}{l} \mbox{if } \varphi \in {\rm GF} \mbox{ has any model in } {\mathcal C}, \\ \mbox{then } \varphi \mbox{ has a finite model in } {\mathcal C} \end{array}$

(3) expressive completeness in fmt

$\mathrm{FO}/{\sim_g} \equiv \mathrm{GF}~$ in fmp

(O_ 10)

fmt analogue of Andreka-van Benthem-Nemeti characterisation with a radically different proof of expressive completeness:

GF expresses, over finite structures, every FO property that is invariant under $\sim_{\rm g}$ on finite structures

crux (modulo Ehrenfeucht-Fraïssé):

 $\begin{array}{lll} \varphi \text{ invariant under } \sim_{\mathsf{g}} & \Rightarrow & \varphi \text{ invariant under some } \sim_{\mathsf{g}}^{\ell} \\ \text{in all finite structures} & & \text{in all finite structures} \end{array}$

proof uses finite *N*-acyclic covers to control FO^{q} -type by GF^{ℓ} -types

(3) expressive completeness in fmt

crux (modulo Ehrenfeucht-Fraïssé):

 $\begin{array}{lll} \varphi \text{ invariant under } \sim_{\mathsf{g}} & \Rightarrow & \varphi \text{ invariant under some } \sim_{\mathsf{g}}^{\ell} \\ \text{in all finite structures} & & \text{in all finite structures} \end{array}$

upgrading
$$\sim_{g}^{\ell}$$
 (\equiv_{GF}^{ℓ}) to \equiv_{FO}^{q} :
 $\mathcal{A} \longrightarrow \sim_{g}^{\ell} \longrightarrow \mathcal{B}$
 $\downarrow_{g} \qquad \qquad \downarrow_{g}$
 $\downarrow_{g} \qquad \qquad \qquad \downarrow_{g}$
 $\mathcal{A}^{*} \longrightarrow \equiv_{FO}^{q} \longrightarrow \mathcal{B}^{*}$ sufficiently rich & acyclic covers

(4) bisimulation quotients, canonisation, capturing

from finite structure ${\mathcal A}$ abstract in Ptime

 $I(\mathcal{A})$ bisimulation quotient of the game graph for the guarded bisimulation game on \mathcal{A}

succinct description of $\mathcal{A}/{\sim_g}$

 $\mathsf{I}(\mathcal{A}) = \mathsf{I}(\mathcal{A}') \quad \mathrm{iff} \quad \mathcal{A} \sim_\mathrm{g} \mathcal{A}'$

complete invariant

Ptime canonisation w.r.t. \sim_{g} (Barany-Gottlob-O_ 10) weakly acyclic covers serve to construct from I a canonical realiser:

$$\hat{\mathcal{A}} \sim_{\mathrm{g}} \mathcal{A}$$
 and $\hat{\mathcal{A}} = \hat{\mathcal{A}}'$ iff $\mathcal{A} \sim_{\mathrm{g}} \mathcal{A}'$ canonisation

applications: • capturing result for $Ptime/\sim_g$

• optimal bounds for small models of GF and CGF

summary

- guarded bisimulation is for relational structures (and hypergraph bismulation is for hypergraphs) what bisimulation is for graph-like structures
- degrees of hypergraph acyclicity in finite covers much harder to achieve than in the graph case
 - ... but of similar importance and success
- hypergraphs/relational structures of qualified acyclicity have interesting structure theory (e.g., bdd convex hulls)
- combinatorics of finite hypergraph covers remains a challenge (e.g., compatibility with automorphisms)