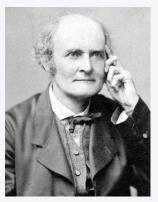


Martin Otto Simons Institute, Logical Structures in Computation Reunion December 2017



Arthur Cayley, 1821–1895

- epistemic modal logic & common knowledge
- basic algebra and combinatorics

Cayley structures & measures of acyclicity

• uses in (finite) model theory

algebraic interpretations and back&forth in dual hypergraphs of Cayley structures

up to bisimulation: modal model theory

- bisimulation: modal back&forth, modal Ehrenfeucht-Fraïssé
- expressive completeness/characterisations:

van Benthem-Rosen: $ML \equiv FO/\sim$ Janin-Walukiewicz: $L_{\mu} \equiv MSO/\sim$

• fmt characterisations we do have vs. we don't have $ML \equiv FO/\sim$ vs. $L_{\mu} \equiv MSO/\sim$ many variants just classically?

- Kripke structures: edge- and vertex-coloured graphs vertices: possible worlds colours for basic propositions p ∈ Φ
 edges: accessibility relations colours for agents a ∈ Γ
- the epistemic setting: equivalence frames (S5)

a-equivalence classes [*w*]_{*a*} : clusters of worlds w.r.t. *observational equivalence* for agent *a*

modelling factual uncertainty

epistemic modal logic & common knowledge

• basic modal logic ML:

modalities \Box_a, \diamondsuit_a for $a \in \Gamma$ (along *a*-edges)

$$[\Box_{a}\varphi](x) \equiv \forall y (R_{a}xy \to [\varphi](y))$$

agent a knows φ

• common knowledge logic ML[CK]:

modalities $\Box_{\alpha}, \diamondsuit_{\alpha}$ for $\alpha \subseteq \Gamma$ (along α -paths)

$$[\Box_{\alpha}\varphi](x) \equiv \forall y \big([\bigcup_{a \in \alpha} R_a]^* xy \to [\varphi](y) \big)$$

 φ is common knowledge among all $\mathbf{a} \in \alpha$

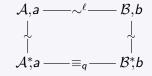
NB: reachability closure for $\Box_{\alpha} \varphi \equiv \bigwedge_{a_1 \dots a_n \in \alpha^*} \Box_{a_1} \dots \Box_{a_n} \varphi$ is MSO-definable and corresponds to greatest fixpoint

expressive completeness

• $ML \equiv FO/\sim$ (classically and in fmt)

 $\begin{array}{ll} \text{expressive completeness is} \\ \text{a compactness property} \end{array} \begin{cases} \text{viz.} \quad \varphi \in \text{FO} \sim \text{-invariant} \Rightarrow \\ \varphi \sim^{\ell} \text{-invariant for some finite } \ell \end{array}$

through *upgrading* argument: force strategy in first-order E-F game over suitable (finite) \sim -companions Gaifman locality of FO



• $L_{\mu} \equiv MSO/\sim$ (classically only?)

expressive completeness by global collapse for automata-theoretic model-checking in suitable (infinite) ~-companions, viz. trees non-locality of MSO

common knowledge in CK structures

CK structure: expansion of S5 (equivalence) structure by the accessibility relations for common knowledge

 $R_{lpha} = [\bigcup_{a \in lpha} R_a]^*$ for $\alpha \subseteq \Gamma$ so that

non-elementary

idea: use Cayley structures as special CK structures

control combinatorics algebraically

Cayley groups & graphs

group $G = (G, \cdot, 1)$ generated by $E = E^{-1}$ s.t. $G = \langle E \rangle^G$ \rightsquigarrow graph representation:

$$(G, (R_e)_{e \in E})$$
 where $R_e = \{(g, ge) \colon g \in G\}$ $g \bullet_{e^{-1}} \bullet ge$

- examples: \mathbb{Z}_n with generators 1, -1 \rightsquigarrow bi-directed *n*-cycle
 - group with k involutive generators e_i = e_i⁻¹
 → k-regular labelled undirected tree

Cayley structures as special CK structures

Cayley structure: based on Cayley graph with generator set *E* partitioned among agents

$$E = \bigcup_{a \in \Gamma} E_a$$

and induced equivalence relations

$$R_{a} = \left\{ (g, gh) \colon h \in \langle E_{a} \rangle \subseteq G \right\}$$
$$R_{\alpha} = \left\{ (g, gh) \colon h \in \langle \bigcup_{a \in \alpha} E_{a} \rangle \subseteq G \right\} = [\bigcup_{a \in \alpha} R_{a}]^{*}$$

 E_a : generator set for agent *a*'s uncertainty $E_\alpha = \bigcup_{a \in \alpha} E_a$: generator set for shared uncertainty in α

 α -equivalence = membership in same $\langle E_{\alpha} \rangle$ -coset

algebraic, highly regular — yet generic/ $\sim~$ (see below)

back to upgrading arguments

idea: in suitable Cayley structures upgrade \sim^{ℓ} to \equiv_q

issues:

- disagreement on short cycles
- disagreement on small multiplicities
- locality? connected components are Gaifman cliques (!) need to match small/large distances at different scales (!)

acyclicity criteria in Cayley groups

to control FO_q through \sim^{ℓ} , need to avoid short cycles

- large girth, no short generator cycles, the classical graph-theoretic notion
 - → finite Cayley graphs of girth $\ge N$ from simple permutation group action on finite trees
- much stronger: no short coset cycles, a hypergraph-inspired notion from O_12
 - → finite *N*-acyclic Cayley groups from intricate interleaving of finite unfoldings with permutation group actions

coset acyclicity

coset cycle of length *n* in $G = \langle E \rangle$: $(g_i, g_i \langle \alpha_i \rangle)_{i \in \mathbb{Z}_n}$:

N-acyclic Cayley groups (O_12): for any $N \in \mathbb{N}$ and generator set find finite Cayley group without coset cycles of lengths $\leq N$

coset acyclicity is α -acyclicity of a dual hypergraph: vertices : cosets $g\langle \alpha \rangle$ for $g \in G, \alpha \subseteq E$ hyperedges : clusters $[g] = \{g\langle \alpha \rangle : \alpha \subseteq E\}$

Cayley structures as generic CK structures

theorem (Canavoi-O_17):

every (finite) S5/CK structure admits bisimilar coverings by (finite) N-acyclic Cayley structures, for any N

ML[CK] over S5 structures	≡	ML over CK structures
III	up to \sim	III
ML[CK] over Cayley structures	≡	ML over Cayley structures
as acyclic and as highly branching as desired		

gain high algebraic regularity

back to upgrading arguments

task: in sufficiently acyclic, highly branching Cayley structures upgrade \sim^{ℓ} to \equiv_q

issues:

- disagreement on short cycles \checkmark
- disagreement on small multiplicities \checkmark
- locality? connected components are Gaifman cliques (!) need to match small/large distances at different scales (!)

upgrading & game over Cayley structures

in sufficiently acyclic and highly branching Cayley structures:

- in *q*-round FO Ehrenfeucht–Fraïssé game can maintain isomorphic local tree decompositions in dual hypergraphs
- algebraic regularity of *N*-acyclic Cayley structure allows to match small distances at all scales
- e.g. coset acyclicity at level N yields
 - unique least connecting set of agents (for $N \ge 2$)
 - unique core paths witnessing distance d (for $N \ge f(d)$)

non-trivial structure theory for *N*-acyclic Cayley structures and their dual hypergraphs

→ Felix Canavoi's forthcoming dissertation

dual viewpoints: how acyclicity comes in

• plain S5: boost girth in dual graph (Dawar–O_09)

 $S5 \text{ Kripke} \iff \text{vertex-coloured graph}$ $a\text{-classes } [w]_a \iff \text{vertices}$ intersections/worlds $\iff \text{edges}$ $N\text{-acyclic hypergraph} \iff \text{girth} \ge N$ of equivalence classes

• CK/Cayley: boost coset acyclicity (Canavoi–O_17)

Cayley CK $\leftrightarrow \Rightarrow$ dual hypergraph α -classes $[w]_{\alpha} \leftrightarrow \Rightarrow$ vertices

coset N-acyclicity <----> hypergraph N-acyclicity

alg. int.

results & directions

theorem (Canavoi–O_17): $ML[CK] \equiv ML \equiv FO/\sim$ in (finite) CK structures $ML[CK] \equiv FO[CK]/\sim$ in (finite) S5 structures

new results/work in progress:

analogous characterisations even at the level of relativised common knowledge and public announcement

further potential:

explore richer "algebraic interpretations" in Cayley structures to cover other reachability phenomena in "almost FO"

technical notes (1): the basic Cayley covering

from S5/CK structure to bisimilar covering by Cayley structure

with connected S5 structure $\mathcal{K} = (\mathcal{K}, (R_a)_{a \in \Gamma})$ associate permutation group action generated by $E := \bigcup_{a \in \Gamma} R_a$ via

$$e = (u, u') \quad \rightsquigarrow \quad \pi_e = (u, u') \in \operatorname{Sym}(K)$$

individual edges \rightsquigarrow swaps of related worlds

•
$$G := \langle \pi_e \colon e \in E \rangle \subseteq \operatorname{Sym}(K)$$

to boost branching degree, put multiple copies of each e

•
$$G(\mathcal{K}) := (G, (\{(g,gh): h \in \langle R_a \rangle\})_{a \in \Gamma}),$$

 $g \mapsto u \cdot g$, for fixed source $u \in K$, induces bisimilar covering $G(\mathcal{K}) \longrightarrow \mathcal{K}$, compatible with passage to the R_{α} for $\alpha \subseteq \Gamma$ (!)

technical notes (2): N-acyclic Cayley groups

for given set *E* and $N \ge 2$ find $G = \langle E \rangle^G$ without coset cycles of length $\leq N$

by induction w.r.t. k < |E| find G_k s.t.

- for $\alpha \subseteq E$ of size $\leqslant k$: $\langle \alpha \rangle^{\mathcal{G}_{k+1}} \simeq \langle \alpha \rangle^{\mathcal{G}_k}$

- for $\alpha \subseteq E$ of size $\leqslant k + 1$: $\langle \alpha \rangle^{G_{k+1}}$ *N*-acyclic
- idea: abstract G_{k+1} from permutation group action on depth N tree unfolding of G_k w.r.t. subgroups $\langle \alpha \rangle$ for $|\alpha| \leq k$

NB: 2-acyclicity,
$$\langle \alpha \rangle \cap \langle \beta \rangle = \langle \alpha \cap \beta \rangle$$
,
is a discrete form of simple connectivity:

references

F. Canvoi and M. Otto. Common knowledge and multi-scale locality analysis in Cayley structures. *Proceedings of LICS 2017.*

A. Dawar and M. Otto. Modal characterisation theorems over special classes of frames. *Annals of Pure and Applied Logic*, 161: pp. 1-42, 2009.

M. Otto. Modal and guarded characterisation theorems over finite transition systems. *Annals of Pure and Applied Logic*, 130: pp. 173-205, 2004.

M. Otto. Highly acyclic groups, hypergraph covers and the guarded fragment, *Journal of the ACM*, 59:1, 2012.