Game Based Methods and the Model Theory of Fragments of FO over Special Classes of (Finite) Structures

Martin Otto, Technische Universität Darmstadt www.mathematik.tu-darmstadt.de/~otto

Overview

Part I: Ingredients

Part I A: Games and Ehrenfeucht-Fraïssé Techniques

- Model checking games
- Back \& Forth games, FO Ehrenfeucht-Fraïssé
- Modularity and Locality: Hanf, Gaifman
- Variations

Part I B: Some Fragments of First-Order Logic
and some extensions, too

- Universal, existential and finite-variable fragments
- The modal fragment and bisimulation
- MSO and fixed points as a frame of reference

Overview

Part II: Two Model Theoretic Themes

Part II A: Preservation and Expressive Completeness

- Expressive completeness issues: classical and elsewhere
- Game based model constructions vs. classical arguments
- Limited variants of classical theorems

Part II B: Relational Recursion

- Fixed point recursion
- Boundedness and related algorithmic issues

I A: Games and Ehrenfeucht-Fraïssé Techniques

Q1: Is $\mathfrak{A} \models \varphi$?
model checking problem $\mathrm{MC}(L)$: given (finite) \mathfrak{A} and $\varphi \in L$, decide whether $\mathfrak{A} \vDash \varphi$

Q2: What can be expressed in L ?

definability, expressive power, measured against, e.g.,

- other logics
- semantic criteria
- complexity criteria
\longrightarrow development of model checking games and model theoretic comparison games
later link the two via bisimulation

the model checking game for FO^{k}

```
as a general proviso: all vocabularies finite & relational
```

FO ${ }^{k}$: FO with variables x_{1}, \ldots, x_{k} only [every formula defines a k-ary predicate]
the model checking game $\mathrm{MC}^{k}(\mathfrak{A})$
players: I/II with roles as verifier vs. falsifier
positions: $\quad(\boldsymbol{a}, \varphi, \wp) \in A^{k} \times \mathrm{FO}^{k} \times\{\mathbf{I}, \mathbf{I I}\}$
\boldsymbol{a} : assignment to $\boldsymbol{x}=\left(x_{1}, \ldots, x_{k}\right)$
\wp : verifier claiming $\mathfrak{A} \vDash \varphi[a]$
$\bar{反}$: falsifier claiming $\mathfrak{A} \mid \neq \varphi[a]$
moves: depending on φ and \wp, \wp or $\bar{\wp}$ chooses successor position
end: in positions ($\boldsymbol{a}, \varphi, \wp)$ with atomic φ :
\wp wins if $\mathfrak{A} \vDash \varphi[a] \quad \bar{\wp}$ wins if $\mathfrak{A} \not \models \varphi[a]$

the natural protocol for moves in $\mathrm{MC}^{k}(\mathfrak{A})$

 reflecting inductive definition of semanticsin position $(\boldsymbol{a}, \varphi, \wp)$:

$$
\begin{aligned}
& \varphi=\varphi_{1} \wedge \varphi_{2} \quad \text { 反's move: } \\
& \left.\bar{\wp} \text { moves to }\left(\boldsymbol{a}, \varphi_{1}, \wp\right) \text { or to (} \boldsymbol{a}, \varphi_{2}, \wp\right) \\
& \varphi=\varphi_{1} \vee \varphi_{2} \quad \wp \text { 's move: } \\
& \left.\left.\wp \text { moves to (} \boldsymbol{a}, \varphi_{1}, \wp\right) \text { or to (} \boldsymbol{a}, \varphi_{2}, \wp\right) \\
& \varphi=\forall x_{i} \psi \quad \quad \bar{\wp} \text { s move: } \\
& \bar{\wp} \text { moves to (} \boldsymbol{a} \frac{a}{i}, \psi, \wp \text {) for some } a \in A \\
& \varphi=\exists x_{i} \psi \quad \wp \text { 's move: } \\
& \wp \text { moves to (} a \frac{a}{i}, \psi, \wp \text {) for some } a \in A \\
& \varphi=\neg \psi \quad \text { no-one's move: } \\
& \text { game continues from (} \boldsymbol{a}, \psi, \bar{\wp} \text {) }
\end{aligned}
$$

Theorem: \wp has winning strategy in (a, φ, \wp) iff $\mathfrak{A} \models \varphi[a]$

model checking game and model checking complexity

consider combined complexity of deciding $\mathfrak{A} \models \varphi[\boldsymbol{a}]$
in terms of input size $\|\mathfrak{A}, \boldsymbol{a}\|+\|\varphi\|$
strategy search in (game graph associated with)
model checking game leads to

- Ptime algorithm for model checking FO^{k}
the problem is Ptime complete for fixed k
- Pspace algorithm for model checking FO
the problem is Pspace complete
with many variations for other logics,
often yielding algorithms of optimal worst case complexity

model theoretic comparison games: Ehrenfeucht-Fraïssé

 recall general proviso: all vocabularies finite \& relationalhow similar are $\mathfrak{A}, \boldsymbol{a}$ and $\mathfrak{B}, \boldsymbol{b}$?

the FO Ehrenfeucht-Fraïssé game $\mathrm{G}(\boldsymbol{\mathfrak { A }}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b})$

players: I/II challenger/defender of similarity claim
positions: $\quad(\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b}), \boldsymbol{a}, \boldsymbol{b} \in \bigcup_{n} A^{n} \times B^{n}$
$\left.\begin{array}{r}\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \\ \boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right)\end{array}\right\}$ marked in $\mathfrak{A} / \mathfrak{B}$ with pebbles
single round: \mathbf{I} chooses to play in \mathfrak{A} or \mathfrak{B} and places next pebble in that structure II must place pebble in opposite structure net effect: $(\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b}) \longmapsto(\mathfrak{A}, \boldsymbol{a} a ; \mathfrak{B}, \boldsymbol{b} b)$
win/lose: II loses in ($\boldsymbol{a} ; \boldsymbol{b}$) if
$p: \boldsymbol{a} \mapsto \boldsymbol{b}$ not a local isomorphism $p: \mathfrak{A}\lceil\boldsymbol{a} \simeq \mathfrak{B} \upharpoonright \boldsymbol{b}$

Ehrenfeucht-Fraïssé game and elementary equivalence

$$
\begin{array}{ll}
G^{m}(\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b}): & \begin{array}{l}
m \text {-round game starting from }(\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b}) \\
\text { II wins if she survives } m \text { rounds }
\end{array} \\
G^{\infty}(\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b}): & \begin{array}{l}
\text { unbounded game starting from }(\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b}) \\
\text { II wins if she can respond indefinitely }
\end{array}
\end{array}
$$

degrees of similarity in terms of game:

$\mathfrak{A}, \boldsymbol{a} \simeq_{m} \mathfrak{B}, \boldsymbol{b} \quad: \Leftrightarrow \quad$ II has winning strategy in $G^{m}(\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b})$
$\mathfrak{A}, \boldsymbol{a} \simeq \omega \mathfrak{B}, \boldsymbol{b} \quad: \Leftrightarrow \quad$ II has winning strategy in all $G^{m}(\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b})$
$\mathfrak{A}, \boldsymbol{a} \simeq \infty \mathfrak{B}, \boldsymbol{b} \quad: \Leftrightarrow \quad$ II has winning strategy in $G^{\infty}(\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b})$
degrees of elementary indistinguishability:
$\mathfrak{A}, \boldsymbol{a} \equiv{ }_{m} \mathfrak{B}, \boldsymbol{b} \quad: \quad$ eq. in FO up to quantifier rank m
$\mathfrak{A}, \boldsymbol{a} \equiv \mathfrak{B}, \boldsymbol{b} \quad: \quad$ eq. in FO
$\mathfrak{A}, \boldsymbol{a} \equiv \infty \mathfrak{B}, \boldsymbol{b} \quad: \quad$ eq. in infinitary first-order logic $\mathrm{FO}_{\infty}=L_{\infty} \omega$

Ehrenfeucht-Fraïssé and Karp Theorems:

$\mathfrak{A}, \boldsymbol{a} \simeq_{m} \mathfrak{B}, \boldsymbol{b} \quad \Leftrightarrow \quad \mathfrak{A}, \boldsymbol{a} \equiv{ }_{m} \mathfrak{B}, \boldsymbol{b}$
$\mathfrak{A}, \boldsymbol{a} \simeq_{\omega} \mathfrak{B}, \boldsymbol{b} \quad \Leftrightarrow \quad \mathfrak{A}, \boldsymbol{a} \equiv \mathfrak{B}, \boldsymbol{b}$
$\mathfrak{A}, \boldsymbol{a} \simeq{ }_{\infty} \mathfrak{B}, \boldsymbol{b} \quad \Leftrightarrow \quad \mathfrak{A}, \boldsymbol{a} \equiv \infty \mathfrak{B}, \boldsymbol{b}$
moreover $\left\{\begin{array}{l}\equiv \text { and } \equiv \infty \\ \simeq_{\omega} \text { and } \simeq_{\infty}\end{array}\right\}$ coincide in ω-saturated structures
proof ingredients for ($*$):
$(\Rightarrow) \mathfrak{A}, \boldsymbol{a} \not \equiv m \mathfrak{B}, \boldsymbol{b} \Rightarrow \mathbf{I}$ has won, or can force $\mathfrak{A}, \boldsymbol{a} a \not \equiv_{m-1} \mathfrak{B}, \boldsymbol{b} b$ in one round
$(\Leftarrow) \simeq_{m}$-class of $\mathfrak{A}, \boldsymbol{a}$ definable by ar m formula $\chi(\boldsymbol{x})=\chi_{\mathfrak{A}, \boldsymbol{a}}^{m}$ describing back-and-forth conditions

$$
\text { s.t. } \quad \mathfrak{B}=\chi[\boldsymbol{b}] \quad \Leftrightarrow \quad \mathfrak{B}, \boldsymbol{b} \simeq_{m} \mathfrak{A}, \boldsymbol{a}
$$

formalising the back-and-forth conditions (inductively)

$\chi_{\mathfrak{A}, \boldsymbol{a}}^{m+1}(x)=$

NB: \wedge and \bigvee effectively finite even for infinite A !
$\mathfrak{B}=\chi_{\mathfrak{A}, \boldsymbol{a}}^{m+1}[\boldsymbol{b}] \Leftrightarrow \mathfrak{B}, \boldsymbol{b} \simeq_{m+1} \mathfrak{A}, \boldsymbol{a}$

inexpressibility via games: example

the class of even length finite linear orderings is not FO-definable (among the class of finite linear orderings)
show that for all sufficiently large lengths n, n^{\prime} :

$$
\mathfrak{A}=(\{1, \ldots, n\},<) \simeq_{m} \quad\left(\left\{1, \ldots, n^{\prime}\right\},<\right)=\mathfrak{B}
$$

II can survive m rounds from any position $(\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b})$ such that
$0<a_{1}<a_{2}<\cdots<a_{s}<n+1$
$0<b_{1}<b_{2}<\cdots<b_{s}<n^{\prime}+1$
with corresponding intervals of same length, or lengths $\geqslant 2^{m}$
how to respond to challenge $a \in\left(a_{i}, a_{i+1}\right)$ with m further rounds to play
(a)

(b)

(c)

in each case, II finds adequate response in (b_{i}, b_{i+1})
if similarly $b_{i+1}-b_{i} \geqslant 2^{m+1}$

parity of finite linear orders not FO-definable:

$$
\left(\left\{1, \ldots, 2^{m}\right\},<\right) \simeq_{m} \quad\left(\left\{1, \ldots, 2^{m}+1\right\},<\right)
$$

corollaries, via simple interpretations

also not definable in FO, e.g.:

- 2-colourability (of finite graphs)
- connectivity (of finite graphs)

```
cf. classical arguments (via compactness)
which only show non-definability over all graphs
```


locality and modularity of games

sufficient conditions for \simeq_{q} in suitable positions

Gaifman graph and distance

with relational $\mathfrak{A}=\left(A, R^{\mathfrak{A}}, \ldots\right)$ associate undirected graph $G(\mathfrak{A})$ on A with edge $\left\{a, a^{\prime}\right\}$ if $a \neq a^{\prime}$ and $a, a^{\prime} \in \boldsymbol{a}$ for some $\boldsymbol{a} \in R^{\mathfrak{A}}$

- $d\left(a, a^{\prime}\right)$: graph distance in $G(\mathfrak{A})$
- $N^{\ell}(a):=\left\{a^{\prime} \in A: d\left(a, a^{\prime}\right) \leqslant \ell\right\}$ the ℓ-neighbourhood of a; $N^{\ell}(\boldsymbol{a}):=\bigcup_{i} N^{\ell}\left(a_{i}\right)$
- $a_{1}, \ldots, a_{m} \quad \ell$-scattered if $d\left(a_{i}, a_{j}\right)>2 \ell$ for $i \neq j$

$$
\begin{aligned}
& \text { the theorems of Hanf and Gaifman establish } \simeq_{q} \\
& \text { on the basis of suitable degrees of local similarity } \\
& \text { modularity of E-F game w.r.t. Gaifman locality }
\end{aligned}
$$

theorems of Hanf and Gaifman

modularity of game in terms of local views:
Hanf: same numbers of realisations
for each local isomorphism type FMT only
Gaifman: indistinguishability w.r.t. local behaviour near distinguished parameters and of scattered tuples up to some radius/size/quantifier rank

Hanf's theorem

finite relational \mathfrak{A} and \mathfrak{B} are ℓ-Hanf-equivalent, $\mathfrak{A} \approx_{\text {Hanf }}^{\ell} \mathfrak{B}$, if for all isomorphism types ι :

$$
\left|\left\{a \in A: \mathfrak{A} \upharpoonright N^{\ell}(a) \simeq \iota\right\}\right|=\left|\left\{b \in B: \mathfrak{B} \upharpoonright N^{\ell}(b) \simeq \iota\right\}\right|
$$

let $\ell_{0}:=0$ and $\ell_{k+1}=3 \ell_{k}+1$ for $k \leqslant q, \quad \mathfrak{A} \approx_{\text {Hanf }}^{\ell_{q}} \mathfrak{B}$,
then II can survive for k rounds from positions $(\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b})$ such that $\mathfrak{A} \upharpoonright N^{\ell_{k}}(\boldsymbol{a}), \boldsymbol{a} \simeq \mathfrak{B} \upharpoonright N^{\ell_{k}}(\boldsymbol{b}), \boldsymbol{b}$
in particular:

$$
\mathfrak{A} \approx_{\text {Hanf }}^{\ell_{q}} \mathfrak{B} \quad \Rightarrow \quad \mathfrak{A} \simeq_{q} \mathfrak{B}
$$

example:

connectivity of finite graphs not definable in existential MSO

levels of local equivalence: Gaifman-equivalence

(L) local FO formulae: $\quad \varphi^{\ell}(x):=[\varphi(x)]^{N^{\ell}(x)}$ relativisation to $N^{\ell}(\boldsymbol{x})$
 asserting local properties about \boldsymbol{x}
(S) basic local FO sentences:
asserting existence of ℓ-scattered m-tuple within some $\varphi^{\ell}[\mathfrak{A}]$

$\mathfrak{A}, \boldsymbol{a} \equiv \equiv_{q, m}^{\ell} \mathfrak{B}, \boldsymbol{b}: \quad(\mathbf{L}) / \mathbf{(S)}$ agreement to $\left\{\begin{aligned} \text { radius } & \ell \\ \text { qfr rank } & q \\ \text { scatter size } & m\end{aligned}\right.$
finite index approximation to \equiv
based on local properties / scattered tuples view

Gaifman's theorem

- every FO-formula $\varphi(x)$ equivalent to boolean comb. of local formulae (L) and basic local sentences (S)
- every FO-formula $\varphi(x)$ is preserved under $\equiv_{q, m}^{\ell}$ for sufficiently large parameters ℓ, q, m
use the $\equiv_{q, m}^{\ell}$ as locality-sensitive finite index approximations to \equiv
proof: modularity of strategies
in $\mathfrak{A} \equiv{ }_{Q, m}^{L} \mathfrak{B}$
[(S)-conditions]
II has choices to lead game in one round from

$$
\begin{array}{rlll}
& \mathfrak{A} \upharpoonright N^{\ell_{k+1}}(\boldsymbol{a}), \boldsymbol{a} & \equiv_{q_{k+1}} & \mathfrak{B} \upharpoonright N^{\ell_{k+1}}(\boldsymbol{b}), \boldsymbol{b} \\
\text { to } \quad \mathfrak{A} \upharpoonright N^{\ell_{k}}(\boldsymbol{a} a), \boldsymbol{a} a & \equiv_{q_{k}} & \mathfrak{B} \upharpoonright N^{\ell_{k}}(\boldsymbol{b} b), \boldsymbol{b} b
\end{array}
$$

where $|\boldsymbol{a}|=|\boldsymbol{b}|<m$; and w.r.t. suitable sequence $\left(\ell_{k}, q_{k}\right)$

I B: Variations and some Fragments of FO

FO too weak: connectivity, simple properties of strings, ...
FO too strong: \equiv coincides with \simeq in finite structures SAT(FO) and FINSAT(FO) undecidable

FO ill-adapted: no smooth model theory nor good algorithmic behaviour over important non-elementary classes
look to alternative logics/levels of expressiveness
and to well-behaved fragments and their extensions over well-behaved classes of models

some classical fragments of FO

\exists^{*} FO: existential FO classically associated with extension preservation
\forall^{*} FO: universal FO substructure preservation
ヨ*FO+: existential positive
homomorphism preservation

less classical fragments of FO

FO ${ }^{k}$: k-variable FO
quantitative access restriction
algorithmically relevant prominent in FMT non-trivial \equiv^{k}

ML: modal logic as a fragment of FO qualitative access restriction restricted, relativised quantification
bisimulation preservation
algorithmically tame smooth FMT

classical extensions of FO

MSO, monadic second-order
fixed-point extensions
interesting level of expressiveness tractable over important classes
adding relational recursion rather an "extension scheme"
\rightarrow more in part II
here now look at FO^{k}, MSO, ML and their games

FO ${ }^{k}$ and the k-pebble game

positions: $(\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b})$ with $\boldsymbol{a} \in A^{k}, \boldsymbol{b} \in B^{k}$ k pebbles in each structure

single round:

I selects one pebble in one structure to move
II moves corresponding pebble in opposite structure
net effect: $(\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b}) \longmapsto\left(\mathfrak{A}, \boldsymbol{a} \frac{a}{i} ; \mathfrak{B}, \boldsymbol{b} \frac{b}{i}\right)$ for round played with pebble i
winning conditons as before
$\mathfrak{A}, \boldsymbol{a} \simeq{ }_{m}^{k} \mathfrak{B}, \boldsymbol{b} \quad: \Leftrightarrow$ II has winning strategy for m-round game from position ($\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b}$)
characteristic formulae for \boldsymbol{k}-pebble game

$$
\chi_{\mathfrak{A}, \boldsymbol{a}}^{m}(\boldsymbol{x}) \in \mathrm{FO}^{k} \text { s.t. } \quad \mathfrak{B}, \boldsymbol{b} \simeq_{m}^{k} \mathfrak{A}, \boldsymbol{a} \quad \Leftrightarrow \quad \mathfrak{B}=\chi_{\mathfrak{A}, \boldsymbol{a}}^{m}[\boldsymbol{b}]
$$

inductively put

$$
\chi_{\mathfrak{A}, a}^{m+1}(x)=\chi_{\mathfrak{A}, a}^{m}(x) \wedge
$$

$$
\bigwedge_{1 \leqslant i \leqslant k}(\underbrace{\bigwedge_{a \in A} \exists x_{i} \chi_{\mathfrak{A}, a \frac{a}{i}}^{\boldsymbol{m}}(\boldsymbol{x})}_{\text {forth: challenges in } \mathfrak{A}} \wedge \underbrace{\forall \boldsymbol{x}_{\boldsymbol{i}} \bigvee_{a \in A} \chi_{\mathfrak{A}, a}^{m}, \boldsymbol{a} \frac{a}{i}(x)}_{\text {back: challenges in } \mathfrak{B}})
$$

FO ${ }^{k}$ Ehrenfeucht-Fraïssé theorem

$\mathfrak{A}, \boldsymbol{a} \simeq{ }_{m}^{k} \mathfrak{B}, \boldsymbol{b}$ iff $\mathfrak{A}, \boldsymbol{a} \equiv_{m}^{k} \mathfrak{B}, \boldsymbol{b}$
$\&$ variants for \simeq_{ω}^{k} and \simeq_{∞}^{k}
remark: over finite $\mathfrak{A}, \mathfrak{B}: \mathfrak{A}, \boldsymbol{a} \simeq_{n}^{k} \mathfrak{B}, \boldsymbol{b} \Rightarrow \mathfrak{A}, \boldsymbol{a} \simeq_{\infty}^{k} \mathfrak{B}, \boldsymbol{b}$ for $n>\max \left(|A|^{k},|B|^{k}\right)$

FO ${ }^{k}$ Ehrenfeucht-Fraïssé theorem

$\mathfrak{A}, \boldsymbol{a} \simeq{ }_{m}^{k} \mathfrak{B}, \boldsymbol{b}$ iff $\mathfrak{A}, \boldsymbol{a} \equiv{ }_{m}^{k} \mathfrak{B}, \boldsymbol{b}$

examples:

- linear order of length n characterised up to \simeq by FO^{2}-sentence of $\mathrm{qr} n+1$ (Poizat)
- the class of all finite linear orderings is closed under $\simeq{ }_{\omega}^{2}$, but not definable in FO_{∞}^{2} (even among finite structures); transitivity really requires 3 variables.

MSO and its Ehrenfeucht-Fraïssé game

positions ($\mathfrak{A}, \boldsymbol{P}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{Q}, \boldsymbol{b}$)
with marked subsets $\boldsymbol{P} / \boldsymbol{Q}$ (colours) and elements $\boldsymbol{a} / \boldsymbol{b}$ (pebbles)
two kinds of moves: element moves/set moves (I's choice)
everything else entirely analogous, considering $\equiv{ }_{m}^{\mathrm{MSO}}$ w.r.t. (mixed) quantifier rank m in relation to $\simeq m$ MsO (II has strategy for m rounds)

MSO Ehrenfeucht-Fraïssé theorem

$\mathfrak{A}, \boldsymbol{P}, \boldsymbol{a} \simeq_{m}^{\mathrm{MSO}} \mathfrak{B}, \boldsymbol{Q}, \boldsymbol{b} \quad$ iff $\quad \mathfrak{A}, \boldsymbol{P}, \boldsymbol{a} \equiv_{m}^{\mathrm{MSO}} \mathfrak{B}, \boldsymbol{Q}, \boldsymbol{b}$

example: expressiveness of MSO: Büchi's theorem

```
words over alphabet \Sigma - finite linear orderings
                                    with monadic colours (for letters)
    \Sigma-languages - classes of such word structures
run of finite automaton - colouring of word structure
    with states q\inQ with ( }\mp@subsup{P}{q}{}\mp@subsup{)}{q\inQ}{
```


Büchi's theorem

regular languages/recognisability by automata
$=$ MSO-definability over finite linear orderings
i.e., MSO admits model checking by finite automata and captures algorithmic power of finite automata
this extends to ω-word-structures and to trees

MSO: modularity of strategies model theoretic (de)composition arguments here: in the context of word structures

concatenation/ordered sums:

for word structures $\mathfrak{A}=\left(A,<^{\mathfrak{A}}, \boldsymbol{P}^{\mathfrak{A}}\right) ; \mathfrak{B}=\left(A,<^{\mathfrak{B}}, \boldsymbol{P}^{\mathfrak{B}}\right)$:
$\mathfrak{A} \oplus \mathfrak{B}$: disjoint union of universes A and B
$<^{\mathfrak{A}}$ followed by $<^{\mathfrak{B}}$ disjoint union of \boldsymbol{P}
\qquad
\qquad
strategy composition:

$$
\mathfrak{A} \equiv{ }_{m}^{\mathrm{MSO}} \mathfrak{A}^{\prime} \text { and } \mathfrak{B} \equiv \equiv_{m}^{\mathrm{MSO}} \mathfrak{B}^{\prime} \quad \Rightarrow \quad \mathfrak{A} \oplus \mathfrak{B} \equiv \equiv_{m}^{\mathrm{MSO}} \mathfrak{A}^{\prime} \oplus \mathfrak{B}^{\prime}
$$

$\Rightarrow \quad \equiv \begin{aligned} & \mathrm{MsO} \\ & \mathrm{m}\end{aligned}$ induces finite index congruence
on the word monoid ($\Sigma^{*}, \cdot, \epsilon$)

MSO: consequences of modularity (over word structures)

- $\equiv{ }_{m}^{\mathrm{MSO}}$ induces finite index congruence on the word monoid $\left(\Sigma^{*}, \cdots, \epsilon\right)$
- MSO model checking by automata
- MSO-definable languages are regular
- pumping arguments for MSO/FO-definable languages
- SAT(MSO) in word models decidable
with analogous results for ω-word-models and trees

ML and the bisimulation game

the structures: edge- and vertex-coloured directed graphs

 transition systems/Kripke structures$$
\mathfrak{A}=\left(\boldsymbol{A},\left(\boldsymbol{E}_{\boldsymbol{\alpha}}\right),\left(\boldsymbol{P}_{i}\right)\right)
$$

$a \in A \quad$ nodes states/possible worlds
$E_{\alpha}^{\mathfrak{A}} \subseteq A^{2}$ edge relations transition/accessibility relations
$P_{i}^{\mathfrak{A}} \subseteq A$ unary predicates basic state properties/propositions

in particular: game graphs
positions: $(\mathfrak{A}, a ; \mathfrak{B}, b) \quad$ one node marked in each structure single round: I chooses α, moves pebble along E_{α}-edge in \mathfrak{A} or in \mathfrak{B}
II has to respond in opposite structure
win/lose: lose when stuck
II loses in ($\mathfrak{A}, a ; \mathfrak{B}, b$) with \boldsymbol{P}-inequivalent a, b
bisimulation game and equivalences

back\&forth in bisimulation

$\mathfrak{A}, a \sim \mathfrak{B}, b \quad$ iff

- $a \simeq b$ (same colours w.r.t. $\boldsymbol{P}^{\mathfrak{A}} / \boldsymbol{P}^{\mathfrak{B}}$)
- for all $a \xrightarrow{\alpha} a^{\prime}$ in \mathfrak{A} there is $b \xrightarrow{\alpha} b^{\prime}$ in $\mathfrak{B}: ~ \mathfrak{A}, a^{\prime} \sim \mathfrak{B}, b^{\prime}$
- for all $b \xrightarrow{\alpha} b^{\prime}$ in \mathfrak{B} there is $a \xrightarrow{\alpha} a^{\prime}$ in $\mathfrak{A}: ~ \mathfrak{A}, a^{\prime} \sim \mathfrak{B}, b^{\prime}$
back \& forth system $Z \subseteq A \times B$:
non-det. winning strategy for II witnessing bisimulation equivalence

largest bisimulation

greatest fixed point Z^{∞} w.r.t. the back\&forth conditions $\mathfrak{A}, a \sim \mathfrak{B}, b$ iff $(a, b) \in Z^{\infty}$

example of bisimulation equivalence

different traditions: bisimulation: Hennessy/Milner/Park zig-zag equivalence: van Benthem Ehrenfeucht-Fraïssé back\&forth
which logic?

basic modal Iogic ML

atomic formulae: $\quad \top, \perp, p_{i}$ (vertex colours P_{i}) boolean connectives: $\quad \vee, \wedge, \neg, \rightarrow, \ldots$
relativised quantification: $\langle\boldsymbol{\alpha}\rangle,[\boldsymbol{\alpha}]$

$$
\begin{array}{ll}
\langle\boldsymbol{\alpha}\rangle \boldsymbol{\psi}(x): & \exists y((x \xrightarrow{\alpha} y) \wedge \psi(y)) \equiv \exists y\left(E_{\alpha} x y \wedge \psi(y)\right) \\
{[\boldsymbol{\alpha}] \boldsymbol{\psi}(x):} & \forall y((x \xrightarrow{\alpha} y) \rightarrow \psi(y)) \equiv \forall y\left(E_{\alpha} x y \rightarrow \psi(y)\right)
\end{array}
$$

+ variations (modalities w.r.t. derived edge relations)
$\mathrm{NB}: \mathbf{M L} \subseteq \mathrm{FO}^{2}$ via standard translation

modal Ehrenfeucht-Fraïssé and Karp theorems

$$
\begin{align*}
& \mathfrak{A}, a \sim^{\ell} \mathfrak{B}, a \Leftrightarrow \tag{*}\\
& \mathfrak{A}, a \sim^{\omega} \mathfrak{B}, b \Leftrightarrow \\
& \mathfrak{A}, a \sim \mathfrak{A}, a \equiv_{\ell}^{\mathrm{ML}} \mathfrak{B}, b \\
& \mathfrak{B L}, b \Leftrightarrow \\
& \mathfrak{A}, a \equiv \equiv^{\mathrm{ML}} \boldsymbol{B} \mathfrak{B}, b
\end{align*}
$$

moreover, \sim^{ω} and \sim coincide in $\left\{\begin{array}{l}\omega \text {-saturated structures } \\ \text { ML saturated structures } \\ \text { finitely branching structures }\end{array}\right.$
(*) key: formulae $\chi_{\mathfrak{A}, a}^{\ell} \in \mathrm{ML}_{\ell}$ characterising \sim^{ℓ} class of \mathfrak{A}, a

the modal back\&forth conditions

inductively put

$$
\chi_{\mathfrak{A}, a}^{\ell+1}=\chi_{\mathfrak{A}, a}^{\ell} \wedge
$$

$$
\bigwedge_{\alpha}(\underbrace{\bigwedge_{a^{\prime} \in \boldsymbol{R}_{\alpha}[a]}\langle\boldsymbol{\alpha}\rangle \quad \chi_{\mathfrak{A}, a^{\prime}}^{\ell}}_{\text {forth: challenges in } \mathfrak{A}} \wedge \underbrace{\left.[\alpha] \bigvee_{\boldsymbol{B}} \chi_{\mathfrak{A}, a^{\prime}}^{\ell}\right)}_{\text {back: challenges in } \mathfrak{B}}
$$

- $\chi_{\mathfrak{A}, a}^{\ell+1} \in \mathrm{ML}_{\ell+1}$
- $\chi_{\mathfrak{A}, a}^{\ell+1}$ such that $\mathfrak{B}, b=\chi_{\mathfrak{A}, a}^{\ell+1} \Leftrightarrow \mathfrak{B}, b \sim^{\ell+1} \mathfrak{A}, a$

view other games through modal glasses

with back\&forth game setting associate game graphs $\mathfrak{G}(\mathfrak{A})$ such that

$$
\begin{array}{ll}
\mathfrak{G}(\mathfrak{A}), \boldsymbol{a} \sim \mathfrak{G}(\mathfrak{B}), \boldsymbol{b} \quad \Leftrightarrow \quad \text { II has winning strategy } \\
\quad \text { in } G^{\infty}(\mathfrak{A}, \boldsymbol{a} ; \mathfrak{B}, \boldsymbol{b})
\end{array}
$$

e.g., for k-pebble game: $\mathfrak{G}(\mathfrak{A})=\left(A^{k},\left(R_{i}\right)_{1 \leqslant i \leqslant k},\left(P_{\rho}\right)_{\rho \in \text { atp }}\right)$
view \sim (and its approximations \sim^{ℓ}) as back\&forth equivalence of games
in this sense, e.g., view correspondence:
$\simeq=\simeq_{\omega}$ over ω-saturated structures
$\sim=\sim^{\omega}$ (Hennessy-Milner property) for associated game graphs

II A: Preservation and Expressive Completeness

recall Q2: What can be expressed in L ? definability, expressive power, measured against

- other logics
- semantic criteria
- complexity criteria

classical example: Łos-Tarski theorem

$\varphi(x) \in$ FO preserved under extensions $\Leftrightarrow \varphi \equiv \tilde{\varphi} \in \exists^{*}$-FO
\Leftarrow : obvious
\Rightarrow : expressive completeness of \exists^{*}-FO for extension-robust properties
classical proof: compactness/elementary extns

expressive completeness issues: classical and elsewhere

characterisation theorems (like Łos-Tarski)

- not robust w.r.t. underlying class of structures
- not even w.r.t. restriction to $\mathcal{C}_{0} \subseteq \mathcal{C}$
preservation is robust, expressive completeness is not
$\varphi *$-invariant within $\mathcal{C}_{0} \nRightarrow \varphi *$-invariant within \mathcal{C}

$$
\varphi \equiv \tilde{\varphi} \text { within } \mathcal{C}_{0} \nRightarrow \quad \varphi \equiv \tilde{\varphi} \text { within } \mathcal{C}
$$

e.g., Łos-Tarski thm fails in FMT (Tait, Gurevich)
exhibit FO-definable class of structures, whose finite members are robust under extension, but not existentially FO-definable (among finite structures) with infinitely many minimal finite models

further examples

- FO^{2} and invariance under 2-pebble game equivalence \simeq^{2}
$\mathrm{FO} / \simeq^{2} \equiv \mathrm{FO}^{2}$ classically but not in FMT the usual compactness argument, ω-saturated extensions

finite linear orderings

- ML and invariance under bisimulation \sim

van Benthem 83

the usual compactness argument, ω-saturated extensions

$$
\mathrm{FO} / \sim \equiv \mathrm{ML} \text { classically } \quad \text { and also } \mathrm{FO} / \sim \equiv \mathrm{ML} \text { (FIN) }
$$

Rosen 97
game based model constructions new proof below
with many variations
still \sim-invariance in finite $\nRightarrow \sim$-invariance throughout

FO/~ \equiv ML

classically as well as in FMT
for FO definable properties:
bisimulation invariance $=$ definability in ML
i.e., for $\varphi(x) \in \mathrm{FO}: \quad \begin{aligned} & \varphi \sim \text { invariant } \\ & \Leftrightarrow \varphi \text { equivalent to some } \tilde{\varphi} \in \mathrm{ML} \\ & \Leftrightarrow \varphi \sim^{\ell} \text { invariant for some } \ell(!)\end{aligned}$
characterising $\mathrm{ML} \subseteq \mathrm{FO}$ and effective syntax for FO / \sim

ML is the first-order logic of games/process behaviour

FO/~ \equiv ML

preservation: $\mathrm{ML} \subseteq \mathrm{FO} / \sim$
$\varphi \in \mathrm{ML}_{\ell}$ invariant under \sim^{ℓ}
Ehrenfeucht-Fraïssé
expressive completeness: $\mathrm{FO} / \sim \subseteq$ ML
proof methods
classical: compactness
constructive: explicit model constructions Ehrenfeucht-Fraïssé: FO vs ML
infinite vs. finite game equivalence as in \sim / \sim^{ℓ}

full equivalence
\leftrightharpoons
infinite
games

approximants
$\leftrightharpoons \ell$
finite, ℓ-round
games

Ehrenfeucht-Fraïssé analysis of $\leftrightharpoons \ell$
\longrightarrow approximants to full characterisation thm

$$
\mathrm{FO} / \leftrightharpoons \leftrightharpoons^{\ell} \equiv \mathcal{L}_{\ell} \quad \text { as in } \mathrm{FO} / \sim^{\ell} \equiv \mathrm{ML}_{\ell}
$$

full characterisation thm equivalent to compactness property \leftrightharpoons invariance $\Rightarrow \quad \leftrightharpoons^{\ell}$ invariance for some ℓ
classical proofs: compactness of FO
based on convergence $\leftrightharpoons{ }^{\ell} \longrightarrow \leftrightharpoons$
in $*$-models (e.g., ω saturated) where $\leftrightharpoons^{\omega}:=\bigcap_{\ell} \leftrightharpoons{ }^{\ell}$ is \leftrightharpoons
for \leftrightharpoons invariant φ :

\mathfrak{A}_{ℓ}	$\leftrightharpoons^{\ell}$	\mathfrak{B}_{ℓ}	(one ℓ at a time)
\mathfrak{A}	$\leftrightharpoons^{\omega}$	\mathfrak{B}	(all ℓ simultaneously)
\mathfrak{A}^{*}	\leftrightharpoons	\mathfrak{B}^{*}	
π		\mathbb{T}	$\#$
-6		-	

non-constructive (indirect) does not go through in fmt
orthogonal approach to expressive completeness proofs
instead of
via full \equiv to full \leftrightharpoons

prep: $\left(\leftrightharpoons^{\ell}\right)_{\ell \in \omega} \longrightarrow \leftrightharpoons^{\omega}$
upgrading via ω-saturation
try
via full \leftrightharpoons to approximate \equiv

direct upgrading
aside: new stand-alone proof for van Benthem-Rosen
reduces input from classical model theory to Ehrenfeucht-Fraïssé \longrightarrow valid classically as well as in fmt
(0) $\varphi \sim$ invariant $\Rightarrow \varphi$ invariant under disjoint unions
(1) $\varphi \sim$ invariant $\Rightarrow \varphi \ell$-local for $\ell \leqslant 2^{\mathrm{qr}(\varphi)}$
(2) $\varphi \sim$ invariant $\& \ell$-local $\Rightarrow \varphi \sim^{\ell}$ invariant

the Ehrenfeucht-Fraïssé argument

(1) $\varphi \sim$ invariant $\Rightarrow \varphi \ell$-local for $\ell=2^{\operatorname{qr}(\varphi)}$
show

$$
\mathfrak{A}, a \models \varphi \quad \text { iff } \quad \mathfrak{A} \upharpoonright N^{\ell}(a), a \models \varphi
$$

$$
\mathfrak{A} \upharpoonright N^{\ell}(a) \quad \nabla^{\prime}=\varphi
$$

play q rounds respecting critical distance $d_{m}=2^{q-m}$ in round m
(2) \sim invariant $\& \ell$-local $\Rightarrow \sim^{\ell}$ invariant
here an almost trivial case of upgrading \sim^{ℓ} to ℓ-local isomorphism

challenge: uniform locality for finer, global variants of \sim upgrade to appropriate levels of \equiv rather than \simeq \rightarrow locality and levels of Gaifman equivalence $\equiv_{q, m}^{\ell}$
generic idea: upgrading $\leftrightharpoons^{\ell}$ to $\equiv_{q, m}^{\ell^{\prime}}$

φ preserved under $\equiv_{q, m}^{\ell^{\prime}}$ and \leftrightharpoons invariant
$\Rightarrow \varphi \leftrightharpoons{ }^{\ell}$ invariant

$$
\begin{array}{cll}
& & \text { classical and in FMT } \\
\sim & \begin{array}{l}
\text { global (forward) } \\
\text { bisimulation }
\end{array} & \mathrm{FO} / \sim_{\forall} \equiv \mathrm{ML}[\forall] \\
\sim=\sim \sim & \begin{array}{l}
\text { global two-way } \\
\text { bisimulation }
\end{array} & \mathrm{FO} / \approx \equiv \mathrm{ML}[-, \forall]
\end{array}
$$

from $\leftrightharpoons^{\ell}$ to local control over FO

locally acyclic covers
instead of (infinite) tree unravellings
homomorphism $\pi: \widehat{\mathfrak{A}} \rightarrow \mathfrak{A}$ whose graph induces a two-way global bisimulation

NB: two-way unravellings are (infinite) acyclic covers

theorem

any [finite] transition system admits a cover by a [finite] ℓ-locally acyclic transition system.
proof: "fibre bundle" over base system using group whose Cayley graph has no short cycles
[polynomial blow-up for fixed ℓ]

further variations

non-trivial locality to no apparent locality

- Classical frame properties: symmetry, reflexivity, transitivity equivalence frames (S5)
(modified locality arguments) Dawar, O_ LICS 05
transitive (and tree-like) frames
(decomposition arguments) Dawar, O_; recently right
- challenge: beyond transition systems
guarded logics and hypergraph bisimulations
(major open problems of a combinatorial nature)

example: decomposition based techniques

e.g.: upgrading \sim^{ℓ} to $\equiv q \quad$ in \prec-trees or \preccurlyeq-trees
finite irreflexive/reflexive transitive \mathfrak{A}, a unravel to finite \prec / \preccurlyeq-trees $s(\mathfrak{A}, a)$ with boosted multiplicities

$s(\mathfrak{A}, a) \longleftarrow \quad \equiv q(\mathfrak{B}, b) \quad \leftarrow$ saturated \prec / \preccurlyeq-trees
in suitably saturated finite (!) \prec / \preccurlyeq-trees $s(\mathfrak{A}, \boldsymbol{a}), s(\mathfrak{B}, \boldsymbol{b})$: establish \equiv_{q} via games and path decompositions instead of plain locality argument

pumping lemma (Ehrenfeucht-Fraïssé):
bound on length of relevant words realised in $s(\mathfrak{A}, a)$ finiteness property
$\longrightarrow \quad$ inductive bound on ℓ for which \sim^{ℓ} governs \equiv_{q}
if reflexivity is not prescribed:
$\varphi(x)=\exists y(E x y \wedge E y y)$

- ~ invariant over finite (!) transitive frames
- not \sim^{ℓ} invariant for any ℓ
while $\mathrm{FO} / \sim \equiv \mathrm{ML}$ over the class of all transitive frames, FO/ $\sim \not \equiv M L$ over the class of finite transitive frames
instead, a new modality emerges:
$\diamond^{*} \varphi \equiv \exists y(E x y \wedge E y y \wedge \varphi(y))$
with associated $\sim_{*} / \sim_{*}^{\ell}$

$$
\begin{aligned}
\mathfrak{A}, a \sim \mathfrak{B}, b & \Rightarrow \mathfrak{A}, a \sim_{*} \mathfrak{B}, b \quad \text { for finite (!) transitive frames } \\
\text { but } \mathfrak{A}, a \sim^{\ell} \mathfrak{B}, b \nRightarrow \mathfrak{A}, a \sim_{*}^{1} \mathfrak{B}, b & \text { for any } \ell
\end{aligned}
$$

with the new modality \diamond^{*}

$$
\begin{aligned}
\sim_{*}^{\ell^{\prime}} \text { can be upgraded } & \text { to } \sim^{\ell} \text { in expansions } \\
& \text { with reflexivity predicate } \\
& \text { and to } \equiv_{q} \text { in these }
\end{aligned}
$$

new
Dawar, O_ 07
FO $/ \sim \equiv \operatorname{ML}\left[\diamond^{*}\right]$ over $\left\{\begin{array}{l}\text { finite transitive frames } \\ \text { finite transitive tree-like frames }\end{array}\right.$
versus (classically)

FO/~ \sim ML over all transitive frames

excursion:

locality criteria and explicit model constructions from FMT to the study of well-behaved classes
examples of classical thereoms regained

Łos-Tarski extension preservation
$\varphi(x) \in$ FO preserved
under extensions $\quad \Leftrightarrow \quad \varphi \equiv \tilde{\varphi} \in \exists^{*}$-FO
valid over special classes of finite structures (Atserias, Dawar, Grohe 05)

Lyndon-Tarski homomorphism preservation $\varphi(x) \in$ FO preserved $\Leftrightarrow \varphi \equiv \tilde{\varphi} \in \exists^{*}$-FO ${ }^{+}$ under homomorphisms
valid over special classes of finite structures (Atserias, Dawar, Kolaitis 04) valid in FMT (Rossman 05)

extension preservation in special classes

\mathcal{C} a \subseteq-closed class of finite structures
$\varphi \in \mathrm{FO}$ preserved under extensions in \mathcal{C}
need: finitely many \subseteq-minimal elements in $\varphi[\mathcal{C}]$
then φ equivalent to disjunction over
\exists-closure of algebraic diagrams
homomorphism preservation in special classes
need: finitely many \subseteq^{w}-minimal elements in $\varphi[\mathcal{C}]$
then φ equivalent to disjunction over
\exists-closure of positive algebraic diagrams
expressive completeness:
bounds on size of minimal models
through locality based criteria

notions of wideness

Atserias, Dawar, Grohe, Kolaitis 04/05
$\mathfrak{A}(\ell, m)$-wide: $\quad \mathfrak{A}$ contains ℓ-scattered subset of size m
a property of the Gaifman the graph
\mathcal{C} wide: \quad for all ℓ, m exists N :
$\mathfrak{A} \in \mathcal{C},|\mathfrak{A}| \geqslant N \Rightarrow \mathfrak{A}(\ell, m)$-wide
relax to
\mathcal{C} almost wide: wide up to constant number of elements
e.g., trees
theorem
Atserias, Dawar, Kolaitis 04
any class of graphs with excluded minor is almost wide

theorem

Ajtai, Gurevich
\mathcal{C} closed under substructures and disjoint unions
$\varphi \in \mathrm{FO}$ preserved under homomorphisms on \mathcal{C}
\Rightarrow
minimal models of φ cannot be (ℓ, m)-wide (suitable ℓ, m) similarly, even up to removal of any fixed number of elements

corollary

over almost wide $\mathcal{C}: \quad \rightarrow$ bound on size of minimal models
\rightarrow finitely many minimal models
\rightarrow positive \exists^{*} definability
homomorphism preservation thm in restriction to \mathcal{C}

can bound size of minimal models over:

- classes of structures with acyclic Gaifman graphs
- all wide \mathcal{C}, e.g., bounded degree graphs
- \mathcal{C}_{k} (treewidth k)
size bounds on minimal models via Gaifman:
in large $\mathfrak{A} \vDash \varphi$ find

$$
\begin{aligned}
& \mathfrak{A}_{0} \nsubseteq \mathfrak{A} \subseteq \widehat{\mathfrak{A}} \\
& \mathfrak{A}_{0} \equiv \ell, m \text { 서 } \quad \Rightarrow \mathfrak{A}_{0} \models \varphi
\end{aligned}
$$

finite chain construction!
remark: Łos-Tarski fails over planar finite graphs

homomorphism preservation: new classical proof and FMT

homomomorphism preservation

Rossman 05

```
for any }\varphi\in\textrm{FO
```

classically, with extra value:
φ preserved
under homomorphisms
in FMT:
φ preserved
under homomorphisms
method: existential positive types \& saturation (chain) compactness property in finite structures: large finite degree of saturation suffices

orthogonal route in Rossman's proof

instead of
via full \equiv to hom
via hom to approximate \equiv

upgrading via ω-saturation

finite $\boldsymbol{\mathfrak { A }}^{*}: \ell(\boldsymbol{r})$ non-elementary infinite $\boldsymbol{\mathfrak { A }}^{*}: \ell=\boldsymbol{r}$

II B: Relational Recursion

recall
Q2: What can be expressed in L ?
definability, expressive power, measured against

- other logics
- semantic criteria
- complexity criteria

FO too weak to express algorithmically very basic properties like reachability, connectivity

FO static and local
\rightarrow add recursion mechanisms especially fixed points of monotone operators like $\varphi(X, x)=P x \vee \exists y(E x y \wedge X y)$

least fixed points of monotone operators

with $\varphi(X, \boldsymbol{x}), X$ and \boldsymbol{x} of arity r, associate operator over \mathfrak{A}

$$
\begin{aligned}
\varphi^{\mathfrak{A}}: \mathcal{P}\left(A^{r}\right) & \longrightarrow \mathcal{P}\left(A^{r}\right) \\
P & \longmapsto \varphi^{\mathfrak{A}}[P]:=\left\{\boldsymbol{a} \in A^{r}: \mathfrak{A}=\varphi[P, \boldsymbol{a}]\right\}
\end{aligned}
$$

φ is positive in X
$\Rightarrow \varphi^{\mathfrak{A}}$ is monotone $\quad\left(P \subseteq P^{\prime} \Rightarrow \varphi^{\mathfrak{d}}[P] \subseteq \varphi^{\mathfrak{A}}\left[P^{\prime}\right]\right)$
$\Rightarrow \varphi^{\mathfrak{A}}$ possesses unique least and greatest fixed points
least fixpoint

$$
\left(\mu_{X} \varphi\right)[\mathfrak{A}]=\bigcap\left\{P \subseteq A^{r}: \varphi^{\mathfrak{A}}[P]=P\right\}
$$

also as limit of inductive stages: $\quad\left(\mu_{X} \varphi\right)[\mathfrak{A}]=\bigcup_{\alpha} X^{\alpha}[\mathfrak{A}] \quad$ where

$$
\boldsymbol{X}^{0}[\mathfrak{A}]=\emptyset
$$

$$
X^{\alpha+1}[\mathfrak{A}]=\varphi^{\mathfrak{A}}\left[X^{\alpha}[\mathfrak{A}]\right]
$$

$$
X^{\lambda}[\mathfrak{A}]=\bigcup_{\alpha<\lambda} X^{\alpha}[\mathfrak{A}]
$$

background on fixed point logics

key examples

least fixed point logic LFP:

extension of FO by μ / ν for X-positive operators

```
e.g.: }\mp@subsup{\mu}{X}{}(Exy\vee\existsz(Xxz\wedgeXzy)) defines TC(E
```

as expressive as (more general) IFP extension
for inductive definitions (Gurevich-Shelah/Kreutzer)
modal μ-calculus L_{μ} :
extension of ML by μ / ν for (monadic) X-positive operators
e.g.: $\mu_{X}(\square X)$ defines well-founded support for R^{-1}
the unifying framework for the
most important process/game/temporal logics

- also a fragment of MSO

Immerman-Vardi theorem

for properties of finite, linearly ordered structures:
Ptime properties \equiv LFP definable properties

Ptime model checking fixed points reached within polynomially many steps
expressive completeness simulation of polynomially bounded TM computations in fixed point recursion over ordered domains

Janin-Walukiewicz theorem
$\mathrm{MSO} / \sim \equiv \mathrm{L}_{\boldsymbol{\mu}} \quad \begin{aligned} & \text { compare } \mathrm{FO} / \sim \equiv \mathrm{ML} \\ & \text { at first-order level }\end{aligned}$
expressive completeness: tree automata for $M S O$ and L_{μ}
descriptive complexity in the modal world:
Ptime $\sim \equiv \mathrm{L}_{\boldsymbol{\mu}}^{\omega} \quad \begin{aligned} & \boldsymbol{\text { higher-arity variant of }} \mathrm{L}_{\mu} \\ & \text { for } \sim \text {-invariant Ptime }\end{aligned}$
expressive completeness: definable ordering of \sim quotients and reduction to Immerman-Vardi

boundedness of fixed point recursions

$\varphi(X, \boldsymbol{x})$ positive in X; fixed point process with stages X^{α}
closure ordinal: $\gamma[\varphi, \mathfrak{A}]=\min _{\alpha}\left(X^{\alpha+1}[\mathfrak{A}]=X^{\alpha}[\mathfrak{A}]\right)$
$\varphi(X, x)$ bounded: $\exists n \in \mathbb{N}$ s.t. $\gamma[\varphi, \mathfrak{A}]<\boldsymbol{n}$ for all \mathfrak{A}
$\varphi(X, x) \in \mathrm{FO}$ bounded \Rightarrow recursion spurious

$$
\Rightarrow \mu_{X} \varphi \equiv \varphi^{n} \text { uniformly FO }
$$

boundedness and definability

Barwise-Moschovakis theorem

for any X-positive FO formula $\varphi(X, x)$
the following are equivalent:
(i) $\mu_{X} \varphi$ bounded
(ii) $\mu_{X} \varphi$ uniformly FO definable
(iii) $\mu_{X} \varphi[\mathfrak{A}]$ FO definable in each \mathfrak{A}
relativises to natural fragments: $\forall^{*}-\mathrm{FO}, \exists^{*}-\mathrm{FO}, \mathrm{FO}^{k}, \mathrm{ML}, \ldots$
relativises to elementary classes: acyclic, \mathcal{C}_{k} (treewidth k), ...
proof: compactness argument
$\gamma[\varphi, \mathfrak{A}] \leqslant \omega$ in ω-saturated \mathfrak{A}
boundedness as a decision problem
for a class \mathcal{F} of FO formulae:

```
BDD(\mathcal{F})
given }\varphi(\boldsymbol{X},x)\in\mathcal{F
decide if }\mp@subsup{\mu}{X}{}\varphi\mathrm{ is bounded
```

- SAT reducible to BDD for natural fragments \mathcal{F}
- BDD a generalised SAT problem: $\left(\varphi^{n+1} \wedge \neg \varphi^{n}\right)$ for all $n \in \mathbb{N}$
- few decidable cases, even for monadic recursion
decidability vs. undecidability for monadic BDD

undecidable	decidable
\exists^{*}-FO	\exists^{*}-FO+
existential, positive	pure existential positive
with inequality	Cosmadakis, Gaifman,
Gaifman, Mairson, Sagiv, Vardi 87	Kanellakis, Vardi 95
FO 2	ML
two variables	modal
Kolaitis, O_98	$\mathrm{O}_{-} 98$, improved 06
\forall^{*}-FO	\forall^{*}-FO
universal, mixed polarities	universal, single polarities
or with equality	without equality
O_ 06	$\mathrm{O}_{-} 06$

locality and boundedness in tree-like structures

NB: monadic fixed points are MSO definable

local MSO = local FO

in acyclic relational structures (trees):
$\varphi(x) \in$ MSO local $\Rightarrow \varphi(x) \equiv \tilde{\varphi}(x) \in$ FO \quad game argument
in particular, for $\varphi(X) \in \mathrm{ML}$: $\quad \varphi$ bounded
$\Rightarrow \quad \mu_{X} \varphi$-local for some ℓ
$\Rightarrow \quad \mu_{X} \varphi$ FO-definable
$\Rightarrow \quad \mu_{X} \varphi$ ML-definable
$\Rightarrow \quad \varphi$ bounded
all equivalent
$\exists \ell \in \mathbb{N}$ such that for all trees T, and all initial $D \subseteq T$ with $D \supseteq T \upharpoonright \ell$: $T \models \psi$ iff $T \upharpoonright D \models \psi$

towards a reduction to the MSO-theory of \boldsymbol{T}_{ω}
Z initial and for all I and all initial D :
$Z \subseteq D \longrightarrow(\psi[\boldsymbol{I}] \leftrightarrow \psi[\boldsymbol{I} \upharpoonright D])$
$\eta(Z) \in \mathrm{MSO}$
ψ tree-local iff $\quad T_{\omega} \models \exists Z\left(\begin{array}{r}Z \text { bounded } \\ \text { not MSO }\end{array} \wedge \eta(Z)\right)$

König's lemma for regular expansions of T_{ω}
for regular $\left(T_{\omega}, Z\right)$ (finite number of subtrees up to \simeq) with initial $Z \subseteq T_{\omega}$ t.f.a.e.:
(i) Z path-finite (no infinte path within Z)
(ii) Z bounded $\quad(Z \subseteq T \upharpoonright \ell$ for some $\ell \in \mathbb{N})$
tree-locality criterion in $\mathrm{MSO}-\mathrm{Th}\left(\boldsymbol{T}_{\boldsymbol{\omega}}\right)$:

$$
\begin{aligned}
& T_{\omega} \vDash \exists Z\left(\varphi_{\text {path-fin }}(Z) \wedge \eta(Z)\right) \\
\Leftrightarrow & \left(T_{\omega}, Z\right) \vDash \varphi_{\text {path-fin }}(Z) \wedge \eta(Z) \quad \text { for some } Z \subseteq T_{\omega} \\
\Leftrightarrow & \left(T_{\omega}, Z\right) \models \varphi_{\text {path-fin }}(Z) \wedge \eta(Z) \quad \text { for some regular }\left(T_{\omega}, Z\right) \\
\Leftrightarrow & T_{\omega} \models \exists Z(Z \text { bounded } \wedge \eta(Z)) \\
\longrightarrow & \text { decidability of } \operatorname{BDD}(\mathrm{ML}) \\
& \text { via locality and } \mathrm{MSO}-\mathrm{Th}\left(T_{\omega}\right)
\end{aligned}
$$

deciding monadic $\mathrm{BDD}(\mathrm{FO})$ over acyclic structures

Kreutzer, O_, Schweikardt ICALP 07

decidable BDD

\mathcal{C} (any FO-definable sublass of) the class of all acyclic structures
for X-positive $\varphi(X, x) \in \mathrm{FO}$,
decide whether $\begin{cases}\varphi(X, x) & \text { is bounded over } \mathcal{C} \\ \mu_{X} \varphi(X, x) & \text { is FO over } \mathcal{C}\end{cases}$

methods:

locality analysis of φ (Gaifman ${ }^{+}$)
locality testing for phases of purely local iteration (MSO-based) Barwise-Moschovakis (FO-based)
open: treewidth k // trees // finite acyclic // ...

Gaifman's theorem

$\varphi(X, x) \in \mathrm{FO}$ equivalent to boolean combination of
FO-formulae of two types
(L) $\quad \chi^{(\ell)}(X, x)$ asserting properties of $N^{\ell}(x)$
(S) assertions about existence of ℓ-scattered tuples y_{1}, \ldots, y_{m} within some $\chi^{(\ell)}[\mathfrak{A}, X]$

respecting positivity in X ?
example: $\varphi(X, x)=\exists y(y \neq x \wedge X y)$

respecting positivity in X ?

- X-positive $\varphi(X, x) \not \equiv X$-positive b.c. of $(\mathrm{L}) /(\mathrm{S})$
X-positive type (L) may not suffice
- $\varphi(X) X$-positive $\equiv X$-positive b.c. of (S)

Dawar/Grohe/Kreutzer/Schweikardt LICS 06

- for X-positive $\varphi(X, x)$: unrestricted (L)-parts + only X-pos. (S)-parts
example:

$$
\exists y(y \neq x \wedge X y) \equiv\left\{\begin{array}{l}
\quad X x \wedge \exists y_{1} y_{2}\left(d\left(y_{1}, y_{2}\right)>0 \wedge X y_{1} \wedge X y_{2}\right) \\
\vee \neg x \wedge \exists y_{1} X y_{1}
\end{array}\right.
$$

leading to generic format:

$$
\varphi(X, x)=\bigvee_{i}(\underbrace{\varphi_{i}^{(\ell)}(X, x)}_{(L)} \wedge \psi_{i}(X))
$$

$\varphi_{i}^{(e)}(X, x)$: local about x, but not necesssarily X-positive $\psi_{i}(X)$: X-positive guards for local components
idea: decompose iteration on φ into phases of purely local iterations driven by $\varphi_{i}^{(\ell)}$ switched on by $\psi_{i}(X)$
$\varphi(X, x)=\left(\varphi_{1}^{(\ell)}(X, x) \wedge \psi_{1}(X)\right) \vee\left(\varphi_{2}^{(\ell)}(X, x) \wedge \psi_{2}(X)\right)$
detecting unboundedness
through
over \mathfrak{A} such that
(0) $\mathfrak{A} \vDash \neg \psi_{1}[\emptyset] \wedge \neg \psi_{2}[\emptyset]$
(1) $\mathfrak{A} \models \psi_{1}[\emptyset] \wedge \psi_{2}[\emptyset]$
(2) $\mathfrak{A} \vDash \psi_{1}[\emptyset] \wedge \neg \psi_{2}\left[\varphi^{\infty}\right]$
driven by $\varphi_{1}^{(\ell)} \vee \varphi_{2}^{(\ell)}$
LT
driven by $\varphi_{1}^{(\ell)}$
LT
(3) $\mathfrak{A} \vDash \psi_{1}[\emptyset] \wedge \psi_{2}\left[\varphi^{\infty}\right]$
(a) $\varphi_{1}^{(\ell)} \vee \psi_{2}$ unbdd
(b) $\varphi_{1}^{(\ell)} \vee \psi_{2}$ bdd
two phases (!)
subsumed in (2)
LT
subsumed in (1)
LT
up to initialisation

LT: locality testing

why not any better yet?

treading on thin ice:

- Barwise-Moschovakis fails for $\left\{\begin{array}{l}\text { trees (finite or infinite) } \\ \text { finite acyclic structures }\end{array}\right.$
- "locality implies FO" fails for treewidth 3 graphs
on the other hand, decidability of BDD in bounded treewidth would have great explanatory power ...

model theoretic games and model constructions

```
work in all sorts of interesting classes
ignored by classical model theory
```

for many issues, there are interesting classes other than just elementary
locality and its role in mediating game analysis curiously under-exposed in classical model theory
explicit model constructions can replace classical arguments in surprising manners

selected references

Finite Model Theory, Ebbinghaus, Flum, (2nd ed) Springer 1999
Finite Model Theory
Lecture Notes at www.mathematik.tu-darmstadt.de/~otto, 2005/06

Elementary proof of the van Benthem-Rosen

 characterisation theorem, O_, TUD online preprint 2342, 2004Model theory of modal logic, Goranko\&O_, in:
Handbook of Modal Logic, Elsevier 2006

Modal and guarded characterisation theorems over finite transition systems, O_, APAL 2004

Bisimulation invariance and finite structures
O_, LNL 27, Logic Colloquium 2002, ASL 2006
Modal characterisation theorems over special classes of frames Dawar\&O_, LICS 2005, \longrightarrow preprint of journal version (in prep) 2007

selected references

 ctd.On presevation under homomorphisms and unions of conjunctive queries Atserias,Dawar\&Kolaitis, PODS 2004 and JACM 53, 2006.

Preservation under extensions on well-behaved finite structures Atserias,Dawar\&Grohe, ICALP 2005, LNCS 3580

Existential positive types and preservation under homomorphisms Rossman, LICS 2005

Capturing bisimulation-invariant Ptime, O_, TCS 1999
Boundedness of monadic FO over acyclic structures Kreutzer,O_\&Schweikardt, ICALP 2007.

The Boundedness Problem for Monadic Universal FO, O_, LICS 2006

