MathLogAps PhD training summer school Aussois, June 2007

Game Based Methods

and the Model Theory of Fragments of FO over Special Classes of (Finite) Structures

Martin Otto, Technische Universität Darmstadt www.mathematik.tu-darmstadt.de/~otto

Overview

Part I: Ingredients

Part I A: Games and Ehrenfeucht–Fraïssé Techniques

- Model checking games
- Back & Forth games, FO Ehrenfeucht–Fraïssé
- Modularity and Locality: Hanf, Gaifman
- Variations

Part I B: Some Fragments of First-Order Logic

and some extensions, too

- Universal, existential and finite-variable fragments
- The modal fragment and bisimulation
- MSO and fixed points as a frame of reference

Overview

Part II: Two Model Theoretic Themes

Part II A: Preservation and Expressive Completeness

- Expressive completeness issues: classical and elsewhere
- Game based model constructions vs. classical arguments
- Limited variants of classical theorems

Part II B: Relational Recursion

- Fixed point recursion
- Boundedness and related algorithmic issues

I A: Games and Ehrenfeucht–Fraïssé Techniques

Q1: Is $\mathfrak{A} \models \varphi$? model checking problem MC(*L*): given (finite) \mathfrak{A} and $\varphi \in L$, decide whether $\mathfrak{A} \models \varphi$

Q2: What can be expressed in L ?

definability, expressive power, measured against, e.g.,

- other logics
- semantic criteria
- complexity criteria

→ development of *model checking games* and model theoretic *comparison games*

later link the two via bisimulation

the model checking game for FO^k

as a general proviso: all vocabularies finite & relational

FO^k: FO with variables x_1, \ldots, x_k only [every formula defines a k-ary predicate]

the model checking game $\mathrm{MC}^k(\mathfrak{A})$

players:I/IIwith roles as verifier vs. falsifierpositions: $(a, \varphi, \wp) \in A^k \times FO^k \times \{I, II\}$
a: assignment to $x = (x_1, \dots, x_k)$
 $\wp:$ verifier claiming $\mathfrak{A} \models \varphi[a]$
 $\overline{\wp}:$ falsifier claiming $\mathfrak{A} \models \varphi[a]$ moves:depending on φ and \wp ,
 \wp or $\overline{\wp}$ chooses successor positionend:in positions (a, φ, \wp) with atomic φ :
 \wp wins if $\mathfrak{A} \models \varphi[a]$

reflecting inductive definition of semantics

in position (a, φ, \wp) :

$\varphi = \varphi_1 \land \varphi_2$	$\overline{\wp}$'s move: $\overline{\wp}$ moves to $(a, arphi_1, \wp)$ or to $(a, arphi_2, \wp)$
$\varphi = \varphi_1 \lor \varphi_2$	\wp 's move: \wp moves to $(a, arphi_1, \wp)$ or to $(a, arphi_2, \wp)$
$\varphi = \forall x_i \psi$	$\overline{\wp}$'s move: $\overline{\wp}$ moves to $({m a} rac{a}{i}, \psi, \wp)$ for some $a \in A$
$\varphi = \exists x_i \psi$	\wp 's move: \wp moves to $({m a} {a\over i},\psi,\wp)$ for some $a\in A$
$\varphi = \neg \psi$	no-one's move: game continues from $({m a},\psi,\overline{\wp})$

Theorem: \wp has winning strategy in (a, φ, \wp) iff $\mathfrak{A} \models \varphi[a]$

model checking game and model checking complexity

consider *combined complexity* of deciding $\mathfrak{A} \models \varphi[a]$ in terms of input size $||\mathfrak{A}, a|| + ||\varphi||$

strategy search in (game graph associated with) model checking game leads to

- Ptime algorithm for model checking FO^k the problem is Ptime complete for fixed k
- **Pspace** algorithm for **model checking FO** the problem is Pspace complete

with many variations for other logics, often yielding algorithms of optimal worst case complexity model theoretic comparison games: Ehrenfeucht-Fraïssé

recall general proviso: all vocabularies finite & relational

how similar are \mathfrak{A}, a and \mathfrak{B}, b ?

the FO Ehrenfeucht–Fraïssé game $G(\mathfrak{A}, a; \mathfrak{B}, b)$

players:	/II challenger/defender of similarity claim
positions:	$ \left\{ \begin{array}{l} \mathfrak{A}, \boldsymbol{a}; \mathfrak{B}, \boldsymbol{b} \right\}, \boldsymbol{a}, \boldsymbol{b} \in \bigcup_n A^n \times B^n \\ \boldsymbol{a} = (a_1, \dots, a_n) \\ \boldsymbol{b} = (b_1, \dots, b_n) \end{array} \right\} \text{ marked in } \mathfrak{A}/\mathfrak{B} \text{ with pebbles} $
single round:	chooses to play in \mathfrak{A} or \mathfrak{B} and places next pebble in that structure I must place pebble in opposite structure
	$net \; effect: \; (\mathfrak{A}, \boldsymbol{a}; \mathfrak{B}, \boldsymbol{b}) \longmapsto (\mathfrak{A}, \boldsymbol{a}a; \mathfrak{B}, \boldsymbol{b}b)$
win/lose:	I loses in $(a; b)$ if $p: a \mapsto b \text{ not } a$ local isomorphism $p: \mathfrak{A} \upharpoonright a \simeq \mathfrak{B} \upharpoonright b$

Ehrenfeucht–Fraïssé game and elementary equivalence

- $G^m(\mathfrak{A}, \boldsymbol{a}; \mathfrak{B}, \boldsymbol{b})$: *m*-round game starting from $(\mathfrak{A}, \boldsymbol{a}; \mathfrak{B}, \boldsymbol{b})$ II wins if she survives *m* rounds
- $G^{\infty}(\mathfrak{A}, a; \mathfrak{B}, b)$: unbounded game starting from $(\mathfrak{A}, a; \mathfrak{B}, b)$ II wins if she can respond indefinitely

degrees of similarity in terms of game:

 $\mathfrak{A}, \boldsymbol{a} \simeq_m \mathfrak{B}, \boldsymbol{b}$: \Leftrightarrow II has winning strategy in $G^m(\mathfrak{A}, \boldsymbol{a}; \mathfrak{B}, \boldsymbol{b})$ $\mathfrak{A}, \boldsymbol{a} \simeq_{\omega} \mathfrak{B}, \boldsymbol{b}$: \Leftrightarrow II has winning strategy in all $G^m(\mathfrak{A}, \boldsymbol{a}; \mathfrak{B}, \boldsymbol{b})$

 $\mathfrak{A}, \boldsymbol{a} \simeq_{\infty} \mathfrak{B}, \boldsymbol{b}$: \Leftrightarrow II has winning strategy in $G^{\infty}(\mathfrak{A}, \boldsymbol{a}; \mathfrak{B}, \boldsymbol{b})$

degrees of elementary indistinguishability:

 $\mathfrak{A}, \boldsymbol{a} \equiv_m \mathfrak{B}, \boldsymbol{b}$: eq. in FO up to quantifier rank m

 $\mathfrak{A}, a \equiv \mathfrak{B}, b$: eq. in FO

 $\mathfrak{A}, a \equiv_{\infty} \mathfrak{B}, b$: eq. in infinitary first-order logic $\mathsf{FO}_{\infty} = L_{\infty\omega}$

Ehrenfeucht–Fraïssé and Karp Theorems:

$$\mathfrak{A}, a \simeq_m \mathfrak{B}, b \quad \Leftrightarrow \quad \mathfrak{A}, a \equiv_m \mathfrak{B}, b \quad (*)$$

 $\mathfrak{A}, a \simeq_\omega \mathfrak{B}, b \quad \Leftrightarrow \quad \mathfrak{A}, a \equiv \mathfrak{B}, b$
 $\mathfrak{A}, a \simeq_\infty \mathfrak{B}, b \quad \Leftrightarrow \quad \mathfrak{A}, a \equiv_\infty \mathfrak{B}, b$
moreover $\left\{ \begin{array}{c} \equiv \quad \text{and} \equiv_\infty \\ \simeq_\omega \quad \text{and} \simeq_\infty \end{array} \right\}$ coincide in ω -saturated structures

classical completeness test

proof ingredients for (*):

 $\begin{array}{ll} (\Rightarrow) & \mathfrak{A}, a \not\equiv_m \mathfrak{B}, b & \Rightarrow \mathbf{I} \text{ has won, or can force} \\ & \mathfrak{A}, aa \not\equiv_{m-1} \mathfrak{B}, bb \text{ in one round} \end{array}$

(\Leftarrow) \simeq_m -class of \mathfrak{A}, a definable by qr m formula $\chi(x) = \chi^m_{\mathfrak{A}, a}$ describing back-and-forth conditions

s.t.
$$\mathfrak{B} \models \chi[b] \Leftrightarrow \mathfrak{B}, b \simeq_m \mathfrak{A}, a$$

formalising the back-and-forth conditions (inductively)

NB: \land and \lor effectively finite even for infinite A!

$$\mathfrak{B} \models \chi_{\mathfrak{A}, \boldsymbol{a}}^{m+1}[\boldsymbol{b}] \Leftrightarrow \mathfrak{B}, \boldsymbol{b} \simeq_{m+1} \mathfrak{A}, \boldsymbol{a}$$

inexpressibility via games: example

the class of even length finite linear orderings is not FO-definable (among the class of finite linear orderings)

show that for all sufficiently large lengths n, n':

$$\mathfrak{A} = ig(\{1,\ldots,n\},$$

II can survive m rounds from any position $(\mathfrak{A}, a; \mathfrak{B}, b)$ such that $0 < a_1 < a_2 < \cdots < a_s < n+1$ $0 < b_1 < b_2 < \cdots < b_s < n'+1$

with corresponding intervals of same length, or lengths $\ge 2^m$

how to respond to challenge $a \in (a_i, a_{i+1})$ with m further rounds to play

in each case, **II** finds adequate response in (b_i, b_{i+1}) if similarly $b_{i+1} - b_i \ge 2^{m+1}$

$$ig(\{1,\ldots,2^m\},$$

corollaries, via simple interpretations

also not definable in FO, e.g.:

- 2-colourability (of finite graphs)
- connectivity (of finite graphs)

cf. classical arguments (via compactness) which only show non-definability over all graphs

locality and modularity of games

sufficient conditions for \simeq_q in suitable positions

Gaifman graph and distance

with relational $\mathfrak{A} = (A, R^{\mathfrak{A}}, \ldots)$ associate undirected graph $G(\mathfrak{A})$ on A with edge $\{a, a'\}$ if $a \neq a'$ and $a, a' \in a$ for some $a \in R^{\mathfrak{A}}$

- d(a, a'): graph distance in $G(\mathfrak{A})$
- $N^{\ell}(a) := \{a' \in A : d(a, a') \leq \ell\}$ the ℓ -neighbourhood of a; $N^{\ell}(a) := \bigcup_i N^{\ell}(a_i)$
- a_1, \ldots, a_m ℓ -scattered if $d(a_i, a_j) > 2\ell$ for $i \neq j$

the theorems of Hanf and Gaifman establish \simeq_q on the basis of suitable degrees of local similarity **modularity of E-F game w.r.t. Gaifman locality**

theorems of Hanf and Gaifman

modularity of game in terms of local views:

- Hanf:same numbers of realisationsfor each local isomorphism typeFMT only
- **Gaifman**: indistinguishability w.r.t. local behaviour near distinguished parameters and of scattered tuples up to some radius/size/quantifier rank

Hanf's theorem

finite relational \mathfrak{A} and \mathfrak{B} are ℓ -Hanf-equivalent, $\mathfrak{A} \approx^{\ell}_{Hanf} \mathfrak{B}$, if for all isomorphism types ι :

$$|\{a \in A \colon \mathfrak{A} \upharpoonright N^{\ell}(a) \simeq \iota\}| = |\{b \in B \colon \mathfrak{B} \upharpoonright N^{\ell}(b) \simeq \iota\}|$$

$$\text{Iet } \ell_0 := 0 \text{ and } \ell_{k+1} = 3\ell_k + 1 \text{ for } k \leqslant q, \ \mathfrak{A} \approx^{\ell_q}_{\mathsf{Hanf}} \mathfrak{B},$$

then II can survive for k rounds from positions $(\mathfrak{A}, \boldsymbol{a}; \mathfrak{B}, \boldsymbol{b})$ such that $\mathfrak{A} \upharpoonright N^{\ell_k}(\boldsymbol{a}), \boldsymbol{a} \simeq \mathfrak{B} \upharpoonright N^{\ell_k}(\boldsymbol{b}), \boldsymbol{b}$

$$\mathfrak{A} pprox_{\mathsf{Hanf}}^{\ell_q} \mathfrak{B} \quad \Rightarrow \quad \mathfrak{A} \simeq_q \mathfrak{B}$$

example:

connectivity of finite graphs not definable in existential MSO

levels of local equivalence: Gaifman-equivalence

(L) local FO formulae: $\varphi^{\ell}(x) := [\varphi(x)]^{N^{\ell}(x)}$

relativisation to $N^\ell(x)$ asserting local properties about x

(S) basic local FO sentences:

asserting existence of ℓ -scattered m-tuple within some $\varphi^{\ell}[\mathfrak{A}]$

 $\mathfrak{A}, a \equiv_{q,m}^{\ell} \mathfrak{B}, b: \quad (L)/(S) \text{ agreement to } \begin{cases} \text{radius } \ell \\ \text{qfr rank } q \\ \text{scatter size } m \end{cases}$

finite index approximation to \equiv based on local properties / scattered tuples view

Gaifman's theorem

- every FO-formula $\varphi(x)$ equivalent to boolean comb. of local formulae (L) and basic local sentences (S)
- every FO-formula $\varphi(x)$ is preserved under $\equiv_{q,m}^{\ell}$ for sufficiently large parameters ℓ, q, m

use the $\equiv_{q,m}^{\ell}$ as locality-sensitive finite index approximations to \equiv

proof: modularity of strategies

in
$$\mathfrak{A} \equiv^{L}_{Q,m} \mathfrak{B}$$
 [(S)-conditions]

II has choices to lead game in one round from

$$\mathfrak{A} \upharpoonright N^{\ell_k+1}(a), a \equiv_{q_{k+1}} \mathfrak{B} \upharpoonright N^{\ell_k+1}(b), b$$

to $\mathfrak{A} \upharpoonright N^{\ell_k}(aa), aa \equiv_{q_k} \mathfrak{B} \upharpoonright N^{\ell_k}(bb), bb$ [(L)-conditions]
where $|a| = |b| < m$; and w.r.t. suitable sequence (ℓ_k, q_k)

I B: Variations and some Fragments of FO

FO too weak: FO too strong:	connectivity, simple properties of strings, \equiv coincides with \simeq in finite structures SAT(FO) and FINSAT(FO) undecidable
FO ill-adapted:	no smooth model theory nor good algorithmic behaviour over important non-elementary classes

look to alternative logics/levels of expressiveness

and to well-behaved fragments and their extensions over well-behaved classes of models

some classical fragments of FO

 \exists^*FO : existential FO classically associated with extension preservation \forall^*FO : universal FOsubstructure preservation \exists^*FO^+ : existential positivehomomorphism preservation

less classical fragments of FO

FO^k: k-variable FO quantitative access restriction

algorithmically relevant prominent in FMT non-trivial \equiv^k

ML: modal logic as a fragment of FO qualitative access restriction restricted, relativised quantification gualitative access restriction restricted, relativised quantification classical extensions of FO

MSO, monadic second-order

fixed-point extensions

interesting level of expressiveness tractable over important classes

adding relational recursion rather an "extension scheme" \rightarrow more in part II

here now look at FO^k , MSO, ML and their games

positions: $(\mathfrak{A}, \boldsymbol{a}; \mathfrak{B}, \boldsymbol{b})$ with $\boldsymbol{a} \in A^k$, $\boldsymbol{b} \in B^k$ k pebbles in each structure

single round:

I selects one pebble in one structure to moveII moves corresponding pebble in opposite structure

net effect: $(\mathfrak{A}, a; \mathfrak{B}, b) \mapsto (\mathfrak{A}, a^{\underline{a}}_{i}; \mathfrak{B}, b^{\underline{b}}_{i})$ for round played with pebble *i*

winning conditons as before

 $\mathfrak{A}, \boldsymbol{a} \simeq_m^k \mathfrak{B}, \boldsymbol{b} :\Leftrightarrow$ II has winning strategy for *m*-round game from position $(\mathfrak{A}, \boldsymbol{a}; \mathfrak{B}, \boldsymbol{b})$

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{characteristic formulae for k-pebble game} \\ \end{array} \\ \chi^m_{\mathfrak{A}, \boldsymbol{a}}(\boldsymbol{x}) \in \mathsf{FO}^k \ \text{s.t.} \\ \end{array} \\ \begin{array}{l} \mathfrak{B}, \boldsymbol{b} \simeq^k_m \mathfrak{A}, \boldsymbol{a} \\ \end{array} \\ \begin{array}{l} \Leftrightarrow \\ \mathfrak{B} \models \chi^m_{\mathfrak{A}, \boldsymbol{a}}[\boldsymbol{b}] \end{array} \end{array}$

inductively put

FO^k Ehrenfeucht-Fraïssé theorem $\mathfrak{A}, a \simeq_m^k \mathfrak{B}, b$ iff $\mathfrak{A}, a \equiv_m^k \mathfrak{B}, b$ & variants for \simeq_{ω}^k and \simeq_{∞}^k remark: over finite $\mathfrak{A}, \mathfrak{B}: \mathfrak{A}, a \simeq_n^k \mathfrak{B}, b \Rightarrow \mathfrak{A}, a \simeq_{\infty}^k \mathfrak{B}, b$ for $n > \max(|A|^k, |B|^k)$

FO^k Ehrenfeucht–Fraïssé theorem

 $\mathfrak{A}, oldsymbol{a} \simeq^k_m \mathfrak{B}, oldsymbol{b}$ iff $\mathfrak{A}, oldsymbol{a} \equiv^k_m \mathfrak{B}, oldsymbol{b}$

examples:

- linear order of length n characterised up to \simeq by FO²-sentence of qr n + 1 (Poizat)
- the class of all finite linear orderings is closed under \simeq^2_{ω} , but not definable in FO²_{∞} (even among finite structures); transitivity *really* requires 3 variables.

MSO and its Ehrenfeucht–Fraïssé game

positions $(\mathfrak{A}, \boldsymbol{P}, \boldsymbol{a}; \mathfrak{B}, \boldsymbol{Q}, \boldsymbol{b})$

with marked subsets P/Q (colours) and elements a/b (pebbles)

two kinds of moves: element moves/set moves (I's choice)

everything else entirely analogous, considering \equiv_m^{MSO} w.r.t. (mixed) quantifier rank min relation to \simeq_m^{MSO} (II has strategy for m rounds)

MSO Ehrenfeucht–Fraïssé theorem

 $\mathfrak{A}, \boldsymbol{P}, \boldsymbol{a} \simeq^{\mathsf{MSO}}_{m} \mathfrak{B}, \boldsymbol{Q}, \boldsymbol{b}$ iff $\mathfrak{A}, \boldsymbol{P}, \boldsymbol{a} \equiv^{\mathsf{MSO}}_{m} \mathfrak{B}, \boldsymbol{Q}, \boldsymbol{b}$

example: expressiveness of MSO: Büchi's theorem

- words over alphabet Σ finite linear orderings with monadic colours (for letters)
 - Σ -languages classes of such word structures
- run of finite automaton colouring of word structure with states $q \in Q$ with $(P_q)_{q \in Q}$

Büchi's theorem

- regular languages/recognisability by automata = MSO-definability over finite linear orderings
- i.e., MSO admits model checking by finite automata and captures algorithmic power of finite automata

this extends to ω -word-structures and to trees

MSO: modularity of strategies model theoretic (de)composition arguments

here: in the context of word structures

concatenation/ordered sums: for word structures $\mathfrak{A} = (A, <^{\mathfrak{A}}, P^{\mathfrak{A}}); \mathfrak{B} = (A, <^{\mathfrak{B}}, P^{\mathfrak{B}}):$

 $\mathfrak{A}\oplus\mathfrak{B}$: disjoint union of universes A and B $<^{\mathfrak{A}}$ followed by $<^{\mathfrak{B}}$ disjoint union of P

$$\mathfrak{A},<^{\mathfrak{A}}$$
 \oplus $\mathfrak{B},<^{\mathfrak{B}}$

strategy composition:

 $\mathfrak{A} \equiv^{\mathsf{MSO}}_{m} \mathfrak{A}' \text{ and } \mathfrak{B} \equiv^{\mathsf{MSO}}_{m} \mathfrak{B}' \quad \Rightarrow \quad \mathfrak{A} \oplus \mathfrak{B} \equiv^{\mathsf{MSO}}_{m} \mathfrak{A}' \oplus \mathfrak{B}'$

 $\Rightarrow \equiv_{m}^{\text{MSO}} \text{ induces finite index congruence} \\ \text{on the word monoid } (\Sigma^*, \cdot, \epsilon)$

MSO: consequences of modularity (over word structures)

- \equiv_m^{MSO} induces finite index congruence on the word monoid $(\Sigma^*, \dots, \epsilon)$
- MSO model checking by automata
- MSO-definable languages are regular
- pumping arguments for MSO/FO-definable languages
- SAT(MSO) in word models decidable

with analogous results for $\omega\text{-word-models}$ and trees

the structures: edge- and vertex-coloured directed graphs transition systems/Kripke structures

$$\mathfrak{A} = ig(A,(E_lpha),(P_i)ig)$$

 $\begin{array}{ll} a \in A & \text{nodes} & \text{states/possible worlds} \\ E^{\mathfrak{A}}_{\alpha} \subseteq A^2 & \text{edge relations} & \text{transition/accessibility relations} \\ P^{\mathfrak{A}}_i \subseteq A & \text{unary predicates} & \text{basic state properties/propositions} \end{array}$

in particular: game graphs

positions: $(\mathfrak{A}, a; \mathfrak{B}, b)$ one node marked in each structure

single round: I chooses α , moves pebble along E_{α} -edge in \mathfrak{A} or in \mathfrak{B} II has to respond in opposite structure

win/lose: lose when stuck II loses in $(\mathfrak{A}, a; \mathfrak{B}, b)$ with *P*-inequivalent *a*, *b*

bisimulation game and equivalences

- $\mathfrak{A}, a \sim^{\ell} \mathfrak{B}, b :\Leftrightarrow$ **II** has winning strategy in $G^{\ell}(\mathfrak{A}, a; \mathfrak{B}, b)$ ℓ -bisimilarity
- $\mathfrak{A}, a \sim^{\omega} \mathfrak{B}, b :\Leftrightarrow$ **II** has winning strategy in all $G^{\ell}(\mathfrak{A}, a; \mathfrak{B}, b)$
- $\mathfrak{A}, a \sim \mathfrak{B}, b :\Leftrightarrow$ II has winning strategy in $G^{\infty}(\mathfrak{A}, a; \mathfrak{B}, b)$ bisimilarity

back&forth in bisimulation

 $\mathfrak{A}, a \sim \mathfrak{B}, b \quad \text{ iff } \quad$

• $a \simeq b$ (same colours w.r.t. $P^{\mathfrak{A}}/P^{\mathfrak{B}}$)

- for all $a \xrightarrow{\alpha} a'$ in \mathfrak{A} there is $b \xrightarrow{\alpha} b'$ in \mathfrak{B} : $\mathfrak{A}, a' \sim \mathfrak{B}, b'$
- for all $b \xrightarrow{\alpha} b'$ in \mathfrak{B} there is $a \xrightarrow{\alpha} a'$ in \mathfrak{A} : $\mathfrak{A}, a' \sim \mathfrak{B}, b'$

back & forth system $Z \subseteq A \times B$:

non-det. winning strategy for **II** witnessing bisimulation equivalence

largest bisimulation

greatest fixed point Z^{∞} w.r.t. the back&forth conditions $\mathfrak{A}, a \sim \mathfrak{B}, b$ iff $(a, b) \in Z^{\infty}$

example of bisimulation equivalence

different traditions: bisimulation: Hennessy/Milner/Park zig-zag equivalence: van Benthem Ehrenfeucht–Fraïssé back&forth

which logic?

basic modal logic ML

atomic formulae: \forall, \perp, p_i (vertex colours P_i) boolean connectives: $\forall, \land, \neg, \rightarrow, \ldots$ relativised quantification: $\langle \alpha \rangle$, $[\alpha]$

+ variations (modalities w.r.t. derived edge relations)

NB: $\mathbf{ML} \subseteq \mathbf{FO}^2$ via standard translation

modal Ehrenfeucht–Fraïssé and Karp theorems

$$\mathfrak{A}, a \sim^{\ell} \mathfrak{B}, a \quad \Leftrightarrow \quad \mathfrak{A}, \boldsymbol{a} \equiv^{\mathsf{ML}}_{\ell} \mathfrak{B}, b \qquad (*)$$

 $\mathfrak{A}, a \sim^{\omega} \mathfrak{B}, b \quad \Leftrightarrow \quad \mathfrak{A}, a \equiv^{\mathsf{ML}} \mathfrak{B}, b$

$$\mathfrak{A}, a \sim \mathfrak{B}, b \qquad \Leftrightarrow \quad \mathfrak{A}, a \equiv^{\mathsf{ML}_{\infty}} \mathfrak{B}, b$$

moreover, \sim^{ω} and \sim coincide in $\begin{cases} \omega \text{-saturated structures} \\ \text{ML saturated structures} \\ \text{finitely branching structures} \end{cases}$

(*) key: formulae $\chi^\ell_{\mathfrak{A},a} \in \mathsf{ML}_\ell$ characterising \sim^ℓ class of \mathfrak{A}, a
the modal back&forth conditions

inductively put

$$\chi_{\mathfrak{A},a}^{\ell+1} = \chi_{\mathfrak{A},a}^{\ell} \wedge \\ \bigwedge_{\alpha} (\bigwedge_{\substack{a' \in R_{\alpha}[a] \\ \text{forth: challenges in }\mathfrak{A}}} \langle \alpha \rangle \chi_{\mathfrak{A},a'}^{\ell} \wedge [\alpha] \bigvee_{\substack{a' \in R_{\alpha}[a] \\ \text{back: challenges in }\mathfrak{B}}} \chi_{\mathfrak{A},a'}^{\ell})$$

•
$$\chi_{\mathfrak{A},a}^{\ell+1} \in \mathsf{ML}_{\ell+1}$$

• $\chi_{\mathfrak{A},a}^{\ell+1}$ such that $\mathfrak{B}, b \models \chi_{\mathfrak{A},a}^{\ell+1} \Leftrightarrow \mathfrak{B}, b \sim^{\ell+1} \mathfrak{A}, a$

view other games through modal glasses

with back&forth game setting associate game graphs $\mathfrak{G}(\mathfrak{A})$ such that

 $\mathfrak{G}(\mathfrak{A}), \boldsymbol{a} \sim \mathfrak{G}(\mathfrak{B}), \boldsymbol{b} \quad \Leftrightarrow \quad \mathbf{II} \text{ has winning strategy} \ \text{in } G^{\infty}(\mathfrak{A}, \boldsymbol{a}; \mathfrak{B}, \boldsymbol{b})$

e.g., for k-pebble game: $\mathfrak{G}(\mathfrak{A}) = (A^k, (R_i)_{1 \leq i \leq k}, (P_\rho)_{\rho \in \mathsf{atp}})$

view \sim (and its approximations \sim^{ℓ}) as back&forth equivalence of games

in this sense, e.g., view correspondence:

- \simeq = \simeq_{ω} over ω -saturated structures
- $\sim = \sim^{\omega}$ (Hennessy–Milner property) for associated game graphs

II A: Preservation and Expressive Completeness

recall Q2: What can be expressed in L ?

definability, expressive power, measured against

- other logics
- semantic criteria
- complexity criteria

classical example: Łos-Tarski theorem

 $\varphi(x) \in \mathsf{FO} \text{ preserved under extensions} \quad \Leftrightarrow \ \varphi \equiv \tilde{\varphi} \in \exists^* - \mathsf{FO}$

- \Leftarrow : obvious
- ⇒ : expressive completeness of \exists^* -FO for extension-robust properties

classical proof: compactness/elementary extns

expressive completeness issues: classical and elsewhere

characterisation theorems (like Łos–Tarski)

- *not* robust w.r.t. underlying class of structures
- not even w.r.t. restriction to $\mathcal{C}_0 \subseteq \mathcal{C}$

preservation is robust, expressive completeness is not

 φ *-invariant within $C_0 \Rightarrow \varphi$ *-invariant within C

 $\varphi \equiv \tilde{\varphi}$ within $\mathcal{C}_0 \quad \not\Rightarrow \quad \varphi \equiv \tilde{\varphi}$ within \mathcal{C}

e.g., **Los–Tarski thm fails in FMT** (Tait, Gurevich)

exhibit FO-definable class of structures, whose finite members are robust under extension, but not existentially FO-definable (among finite structures) with infinitely many minimal finite models

further examples

• ${
m FO}^2$ and invariance under 2-pebble game equivalence \simeq^2

 $FO/\simeq^2 \equiv FO^2$ classically but **not in FMT** the usual compactness argument, finite linear orderings ω -saturated extensions

• ML and invariance under bisimulation \sim

 $FO/\sim \equiv ML$ classically

van Benthem 83 the usual compactness argument, ω -saturated extensions

and also $FO/\sim \equiv ML$ (FIN)

Rosen 97

game based model constructions new proof below

with many variations

still \sim -invariance in finite $\Rightarrow \sim$ -invariance throughout

 $FO/\sim \equiv ML$

for FO definable properties:

bisimulation invariance = definability in ML

i.e., for $\varphi(x) \in \mathsf{FO}$:

- $arphi \sim$ invariant
- $\Leftrightarrow \ \varphi \text{ equivalent to some } \tilde{\varphi} \in \mathsf{ML}$
- $\Leftrightarrow \varphi \sim^{\ell}$ invariant for some ℓ (!)

ML is the first-order logic of games/process behaviour

 $FO/\sim \equiv ML$

preservation: $ML \subseteq FO/\sim$

 $\varphi \in \mathsf{ML}_\ell$ invariant under \sim^ℓ

Ehrenfeucht-Fraïssé

expressive completeness: $FO/\sim \subseteq ML$

proof methods

classical: compactness constructive: explicit model constructions Ehrenfeucht-Fraïssé: FO vs ML

as in
$$\sim\!/\!\sim^\ell$$

of finite index

Ehrenfeucht-Fraïssé analysis of $=^{\ell}$

 \longrightarrow approximants to full characterisation thm

$$\mathsf{FO}/{\leftrightarrows^\ell}~\equiv~\mathcal{L}_\ell$$
 as in $\mathsf{FO}/{\sim^\ell}~\equiv~\mathsf{ML}_\ell$

full characterisation thm equivalent to compactness property

 $\Rightarrow \text{ invariance } \Rightarrow \quad \Rightarrow^{\ell} \text{ invariance for some } \ell$

classical proofs: compactness of FO

based on convergence $\rightleftharpoons^{\ell} \longrightarrow \rightleftharpoons$ in *-models (e.g., ω saturated) where $\rightleftharpoons^{\omega} := \bigcap_{\ell} \rightleftharpoons^{\ell}$ is \rightleftharpoons

for \Leftrightarrow invariant φ :

non-constructive (indirect) does not go through in fmt

orthogonal approach to expressive completeness proofs

instead of via full \equiv to full \rightleftharpoons

try via full \Rightarrow to approximate \equiv

prep:
$$(=^{\ell})_{\ell \in \omega} \longrightarrow =^{\omega}$$

upgrading via ω -saturation

direct upgrading

aside: new stand-alone proof for van Benthem-Rosen

reduces input from classical model theory to Ehrenfeucht-Fraı̈ssé \longrightarrow valid classically as well as in fmt

(0) $\varphi \sim \text{invariant} \Rightarrow \varphi \text{ invariant under disjoint unions}$

(1) $\varphi \sim \text{invariant} \Rightarrow \varphi \ell \text{-local for } \ell \leq 2^{\operatorname{qr}(\varphi)}$ (E-F)

(2) $\varphi \sim \text{invariant } \& \ell \text{-local} \Rightarrow \varphi \sim^{\ell} \text{invariant}$

ℓ-locality

the Ehrenfeucht-Fraïssé argument

play q rounds respecting critical distance $d_m = 2^{q-m}$ in round m

(2) ~ invariant & ℓ -local $\Rightarrow \sim^{\ell}$ invariant

here an almost trivial case of upgrading \sim^ℓ to ℓ -local isomorphism

challenge: uniform locality for finer, global variants of ~ upgrade to appropriate levels of \equiv rather than \simeq \rightarrow locality and levels of Gaifman equivalence $\equiv_{q,m}^{\ell}$ generic idea: upgrading \rightleftharpoons^ℓ to $\equiv_{q,m}^{\ell'}$

local control over FO up to quantifier rank \boldsymbol{q}

$$\varphi$$
 preserved under $\equiv_{q,m}^{\ell'}$ and \leftrightarrows invariant $\Rightarrow \varphi \rightleftharpoons^{\ell}$ invariant

classical and in FMT

- \sim_{\forall} global (forward) bisimulation
- ≈ global two-way bisimulation

 $FO/\sim_{\forall} \equiv ML[\forall]$

 $FO/\approx \equiv ML[-,\forall]$

 $\sim = \sim_{\forall}$

 $FO/\sim \equiv ML[\forall]$ over rooted frames

<u>from</u> \models^{ℓ} to local control over FO

locally acyclic covers

instead of (infinite) tree unravellings

homomorphism $\pi: \widehat{\mathfrak{A}} \to \mathfrak{A}$ whose graph induces a two-way global bisimulation

NB: two-way unravellings are (infinite) acyclic covers

any [finite] transition system admits a cover by a [finite] ℓ -locally acyclic transition system.

proof: "fibre bundle" over base system using group whose Cayley graph has no short cycles

[polynomial blow-up for fixed ℓ]

further variations

non-trivial locality to no apparent locality

• classical frame properties: symmetry, reflexivity, transitivity

equivalence frames (S5) (modified locality arguments)

Dawar, O_ LICS 05

transitive (and tree-like) frames(decomposition arguments)Dawar, O_; recently right

• challenge: beyond transition systems

guarded logics and hypergraph bisimulations (major open problems of a combinatorial nature)

example: decomposition based techniques

e.g.: upgrading \sim^{ℓ} to \equiv_q in \prec -trees or \preccurlyeq -trees

finite irreflexive/reflexive transitive \mathfrak{A}, a unravel to finite \prec/\preccurlyeq -trees $s(\mathfrak{A}, a)$ with boosted multiplicities

in suitably saturated finite (!) \prec/\preccurlyeq -trees $s(\mathfrak{A}, a), s(\mathfrak{B}, b)$: establish \equiv_q via games and path decompositions instead of plain locality argument

pumping lemma (Ehrenfeucht-Fraïssé):

bound on length of relevant words realised in $s(\mathfrak{A}, a)$ **finiteness property**

 $\longrightarrow \quad \text{inductive bound on } \ell \\ \text{for which } \sim^{\ell} \text{governs } \equiv_{q}$

the *interesting* mistake in DO LICS 05

 $arphi(x) = \exists y(Exy \wedge Eyy)$

- \sim invariant over finite (!) transitive frames
- not \sim^{ℓ} invariant for any ℓ

while $FO/\sim \equiv ML$ over the class of all transitive frames, $FO/\sim \not\equiv ML$ over the class of finite transitive frames

instead, a new modality emerges:

$$\diamond^*arphi \equiv \exists y ig(Exy \wedge Eyy \wedge arphi(y) ig)$$

with associated \sim_* / \sim_*^ℓ

$$\begin{split} \mathfrak{A}, a \sim \mathfrak{B}, b \; \Rightarrow \; \mathfrak{A}, a \sim_* \mathfrak{B}, b \quad \text{for finite (!) transitive frames} \\ \text{but} \quad \mathfrak{A}, a \sim^{\ell} \mathfrak{B}, b \; \Rightarrow \; \mathfrak{A}, a \sim^{1}_* \mathfrak{B}, b \quad \text{for any } \ell \end{split}$$

excursion:

locality criteria and explicit model constructions from FMT to the study of well-behaved classes

examples of classical thereoms regained

Łos-Tarski extension preservation

 $\varphi(x) \in \mathsf{FO} \text{ preserved} \quad \Leftrightarrow \quad \varphi \equiv \tilde{\varphi} \in \exists^* - \mathsf{FO}$ under extensions

valid over special classes of finite structures (Atserias, Dawar, Grohe 05)

Lyndon–Tarski homomorphism preservation

 $\varphi(x) \in \mathsf{FO} \text{ preserved} \quad \Leftrightarrow \ \varphi \equiv \tilde{\varphi} \in \exists^* - \mathsf{FO}^+$ under homomorphisms

```
valid over special classes of finite structures (Atserias, Dawar, Kolaitis 04) valid in FMT (Rossman 05)
```

extension preservation in special classes

 \mathcal{C} a \subseteq -closed class of finite structures $\varphi \in \mathsf{FO}$ preserved under extensions in \mathcal{C}

need: finitely many \subseteq -minimal elements in $\varphi[C]$ then φ equivalent to disjunction over \exists -closure of algebraic diagrams

homomorphism preservation in special classes

need: finitely many \subseteq_{w} -minimal elements in $\varphi[\mathcal{C}]$ then φ equivalent to disjunction over \exists -closure of positive algebraic diagrams

expressive completeness: bounds on size of minimal models through locality based criteria

notions of wideness

Atserias, Dawar, Grohe, Kolaitis 04/05 Ajtai, Gurevich 89

 \mathfrak{A} (ℓ, m) -wide: \mathfrak{A} contains ℓ -scattered subset of size ma property of the Gaifman the graph

relax to *C* almost wide: wide up to constant number of elements e.g., trees

cheorem	Atserias, Dawar,	Kolaitis 04
---------	------------------	-------------

any class of graphs with excluded minor is almost wide

Atserias, Dawar, Kolaitis 04 Rossman 05

theorem

Ajtai, Gurevich

 $\ensuremath{\mathcal{C}}$ closed under substructures and disjoint unions

 $\varphi \in \mathsf{FO}$ preserved under homomorphisms on $\mathcal C$

\Rightarrow

minimal models of φ cannot be (ℓ, m) -wide (suitable ℓ, m) similarly, even up to removal of any fixed number of elements

corollary

over almost wide C: \rightarrow bound on size of minimal models \rightarrow finitely many minimal models \rightarrow positive \exists^* definability

homomorphism preservation thm in restriction to $\ensuremath{\mathcal{C}}$

Atserias, Dawar, Grohe 05

can bound size of minimal models over:

- classes of structures with acyclic Gaifman graphs
- all wide \mathcal{C} , e.g., bounded degree graphs
- C_k (treewidth k)

size bounds on minimal models via Gaifman:

 $\text{ in large }\mathfrak{A}\models\varphi \text{ find }$

$$\begin{array}{l} \mathfrak{A}_{0} \varsubsetneq \mathfrak{A} \subseteq \mathfrak{A} \\ \mathfrak{A}_{0} \equiv_{q,m}^{\ell} \widehat{\mathfrak{A}} \end{array} \qquad \Rightarrow \ \mathfrak{A}_{0} \models \varphi \end{array}$$

finite chain construction!

remark: Łos-Tarski fails over planar finite graphs

homomorphism preservation: new classical proof and FMT

homomorphism preservation

for any $\varphi \in FO$:

classically, with extra value:

 φ preserved under homomorphisms

$$arphi \equiv ilde{arphi} \in \exists^* - \mathsf{FO}^+$$

 $\operatorname{qr}(arphi') = \operatorname{qr}(arphi) \ (!)$

in FMT:

 φ preserved under homomorphisms

 $\Leftrightarrow \quad \varphi \equiv \tilde{\varphi} \in \exists^* - \mathbf{FO}^+$ with non-elementary gap in qr

Rossman 05

method: existential positive types & saturation (chain)

 \Leftrightarrow

compactness property in finite structures: large finite degree of saturation suffices instead of

via full \equiv to hom

via hom to approximate \equiv

upgrading via ω -saturation

finite \mathfrak{A}^* : $\ell(r)$ non-elementary infinite \mathfrak{A}^* : $\ell = r$

II B: Relational Recursion

recall

Q2: What can be expressed in L ?

definability, expressive power, measured against

- other logics
- semantic criteria
- complexity criteria

FO too weak to express algorithmically very basic properties like reachability, connectivity

FO static and local

→ add recursion mechanisms especially fixed points of monotone operators like $\varphi(X, x) = Px \lor \exists y(Exy \land Xy)$

least fixed points of monotone operators

with $\varphi(X, x)$, X and x of arity r, associate operator over \mathfrak{A}

$$\varphi^{\mathfrak{A}} \colon \mathcal{P}(A^{r}) \longrightarrow \mathcal{P}(A^{r})$$
$$P \longmapsto \varphi^{\mathfrak{A}}[P] := \left\{ \boldsymbol{a} \in A^{r} \colon \mathfrak{A} \models \varphi[P, \boldsymbol{a}] \right\}$$

$$\varphi$$
 is positive in X
 $\Rightarrow \varphi^{\mathfrak{A}}$ is monotone $(P \subseteq P' \Rightarrow \varphi^{\mathfrak{A}}[P] \subseteq \varphi^{\mathfrak{A}}[P'])$
 $\Rightarrow \varphi^{\mathfrak{A}}$ possesses unique least and greatest fixed points

least fixpoint

$$ig| \ (\mu_X arphi)[\mathfrak{A}] = igcap \{ P \subseteq A^r \colon arphi^\mathfrak{A}[P] = P ig\}$$

also as limit of **inductive stages**: $(\mu_X \varphi)[\mathfrak{A}] = \bigcup_{\alpha} X^{\alpha}[\mathfrak{A}]$ where $X^0[\mathfrak{A}] = \emptyset$ $X^{\alpha+1}[\mathfrak{A}] = \varphi^{\mathfrak{A}}[X^{\alpha}[\mathfrak{A}]]$ $X^{\lambda}[\mathfrak{A}] = \bigcup_{\alpha < \lambda} X^{\alpha}[\mathfrak{A}]$ key examples

least fixed point logic LFP:

extension of FO by μ/ν for X-positive operators

e.g.: $\mu_X(Exy \lor \exists z(Xxz \land Xzy))$ defines $\top C(E)$

as expressive as (more general) IFP extension for inductive definitions (Gurevich–Shelah/Kreutzer)

modal μ -calculus L_{μ} :

extension of ML by μ/ν for (monadic) X-positive operators

e.g.: $\mu_X(\Box X)$ defines well-founded support for R^{-1}

the unifying framework for the most important process/game/temporal logics — also a fragment of MSO

Immerman–Vardi theorem

for properties of finite, *linearly ordered* structures:

Ptime model checking	fixed points reached within polynomially many steps
expressive completeness	simulation of polynomially bounded TM computations in fixed point recursion over ordered domains
Janin–Walukiewicz theorem

 $MSO/\sim \equiv L_{\mu}$

compare $FO/\sim \equiv ML$ at first-order level

expressive completeness: tree automata for MSO and L_{μ}

descriptive complexity in the modal world:

Ptime/ $\sim \equiv L_{\mu}^{\omega}$

higher-arity variant of L_{μ} for \sim -invariant Ptime

expressive completeness: definable ordering of \sim quotients and reduction to Immerman–Vardi

boundedness of fixed point recursions

 $\varphi(X, \boldsymbol{x})$ positive in X; fixed point process with stages X^{α}

closure ordinal: $\gamma[\varphi, \mathfrak{A}] = \min_{\alpha} (X^{\alpha+1}[\mathfrak{A}] = X^{\alpha}[\mathfrak{A}])$ $\varphi(X, x)$ bounded: $\exists n \in \mathbb{N} \text{ s.t. } \gamma[\varphi, \mathfrak{A}] < n \text{ for all } \mathfrak{A}$

 $\varphi(X, x) \in \mathsf{FO} \text{ bounded} \Rightarrow \text{ recursion spurious} \Rightarrow \mu_X \varphi \equiv \varphi^n \text{ uniformly FO}$

Barwise–Moschovakis theorem

for any X-positive FO formula $\varphi(X, x)$ the following are equivalent:

- (i) $\mu_X \varphi$ bounded
- (ii) $\mu_X \varphi$ uniformly FO definable
- (iii) $\mu_X \varphi[\mathfrak{A}]$ FO definable in each \mathfrak{A}

relativises to natural fragments: \forall^* -FO, \exists^* -FO, FO^k, ML, ... relativises to elementary classes: acyclic, C_k (treewidth k), ...

proof: compactness argument $\gamma[\varphi,\mathfrak{A}]\leqslant\omega \text{ in }\omega\text{-saturated }\mathfrak{A}$

boundedness as a decision problem

for a class \mathcal{F} of FO formulae:

 $\begin{array}{l} \mathrm{BDD}(\mathcal{F})\\\\ \textbf{given } \varphi(X,x) \in \mathcal{F}\\\\ \textbf{decide if } \mu_X \varphi \text{ is bounded} \end{array}$

- SAT reducible to BDD for natural fragments ${\cal F}$
- BDD a generalised SAT problem: $(\varphi^{n+1} \land \neg \varphi^n)$ for all $n \in \mathbb{N}$
- few decidable cases, even for monadic recursion

decidability vs. undecidability for monadic BDD

undecidable	decidable
∃*-FO	∃*-FO ⁺
existential, positive	pure existential positive
with inequality	Cosmadakis, Gaifman,
Gaifman, Mairson, Sagiv, Vardi 87	Kanellakis, Vardi 95
FO ²	ML
two variables	modal
Kolaitis, O_ 98	O_ 98, improved 06
\forall^* -FO	\forall^* -FO ⁻
universal, mixed polarities	universal, single polarities
or with equality	without equality
O 06	O_ 06

can encode tilings

decidable via tree codings

locality and boundedness in tree-like structures

NB: monadic fixed points are MSO definable

local MSO = local FOin acyclic relational structures (trees): $\varphi(x) \in \mathsf{MSO} \ \mathsf{local} \ \Rightarrow \ \varphi(x) \equiv \tilde{\varphi}(x) \in \mathsf{FO}$ game argument in particular, for $\varphi(X) \in ML$: arphi bounded $\Rightarrow \mu_X \varphi \ell$ -local for some ℓ $\Rightarrow \mu_X \varphi$ FO-definable $\Rightarrow \mu_X \varphi$ ML-definable $\Rightarrow \varphi$ bounded all equivalent

tree-locality of $\psi \in MSO$

$$\exists \ell \in \mathbb{N} \text{ such that for all trees } T, \\ \text{and all initial } D \subseteq T \text{ with } D \supseteq T \restriction \ell: \\ T \models \psi \text{ iff } T \restriction D \models \psi \\ \hline \ell \\ Z = T$$

 $\lfloor \ell$

towards a reduction to the MSO-theory of T_{ω}

Z initial and for all
$$I$$
 and all initial D :
 $Z \subseteq D \longrightarrow (\psi[I] \leftrightarrow \psi[I \upharpoonright D])$

$$\begin{cases} \eta(Z) \in \mathsf{MSO} \end{cases}$$

$$\psi$$
 tree-local iff $T_{\omega} \models \exists Z (Z \text{ bounded } \land \eta(Z))$
not MSO

König's lemma for regular expansions of T_{ω}

for regular (T_{ω}, Z) (finite number of subtrees up to \simeq) with initial $Z \subseteq T_{\omega}$ t.f.a.e.:

- (i) Z path-finite (no infinite path within Z)
- (ii) Z bounded $(Z \subseteq T \restriction \ell \text{ for some } \ell \in \mathbb{N})$

tree-locality criterion in MSO-Th (T_{ω}) :

 $T_{\omega} \models \exists Z(\varphi_{\mathsf{path-fin}}(Z) \land \eta(Z))$

- $\Leftrightarrow (T_{\omega}, Z) \models \varphi_{\mathsf{path-fin}}(Z) \land \eta(Z) \quad \text{for some } Z \subseteq T_{\omega}$
- \Leftrightarrow $(T_{\omega}, Z) \models \varphi_{\text{path-fin}}(Z) \land \eta(Z)$ for some regular (T_{ω}, Z)
- $\Leftrightarrow T_{\omega} \models \exists Z (Z \text{ bounded } \land \eta(Z))$
- \rightarrow decidability of BDD(ML) via locality and MSO-Th(T_{ω})

Kreutzer, O_, Schweikardt ICALP 07

decidable BDD

 ${\cal C}$ (any FO-definable sublass of) the class of all acyclic structures

for X-positive $\varphi(X,x) \in \mathsf{FO}$,

decide whether $\left\{ \begin{array}{ll} \varphi(X,x) & \text{is bounded over } \mathcal{C} \\ \mu_X \varphi(X,x) & \text{is FO over } \mathcal{C} \end{array} \right.$

methods:

locality analysis of φ (Gaifman⁺) locality testing for phases of purely local iteration (MSO-based) Barwise-Moschovakis (FO-based)

open: treewidth k // trees // finite acyclic // ...

Gaifman's theorem

 $\varphi(X, x) \in \mathsf{FO}$ equivalent to boolean combination of FO-formulae of two types

- (L) $\chi^{(\ell)}(X,x)$ asserting properties of $N^{\ell}(x)$
- (S) assertions about existence of ℓ -scattered tuples y_1, \ldots, y_m within some $\chi^{(\ell)}[\mathfrak{A}, X]$

respecting positivity in X? example: $\varphi(X, x) = \exists y(y \neq x \land Xy)$

respecting positivity in X?

• X-positive $\varphi(X, x) \not\equiv X$ -positive b.c. of (L)/(S)

X-positive type (L) may not suffice

• $\varphi(X)$ X-positive \equiv X-positive b.c. of (S)

Dawar/Grohe/Kreutzer/Schweikardt LICS 06

• for X-positive $\varphi(X, x)$: unrestricted (L)-parts + only X-pos. (S)-parts

example:

$$\exists y(y \neq x \land Xy) \equiv \begin{cases} Xx \land \exists y_1y_2(d(y_1, y_2) > 0 \land Xy_1 \land Xy_2) \\ \lor \\ \neg Xx \land \exists y_1Xy_1 \end{cases}$$

leading to generic format:

$$\varphi(X,x) = \bigvee_i \big(\underbrace{\varphi_i^{(\ell)}(X,x)}_{(\mathsf{L})} \, \wedge \, \psi_i(X) \, \big)$$

 $\varphi_i^{\scriptscriptstyle(\ell)}(X,x)$: local about x, but not necessarily X-positive $\psi_i(X)$: X-positive guards for local components

idea: decompose iteration on φ into phases of purely local iterations driven by $\varphi_i^{(\ell)}$ switched on by $\psi_i(X)$ $arphi(X,x) = ig(arphi_1^{(\ell)}(X,x) \ \land \ \psi_1(X) ig) \lor ig(arphi_2^{(\ell)}(X,x) \ \land \ \psi_2(X) ig)$

detecting unboundedness over
$${\mathfrak A}$$
 such that

through

- (0) $\mathfrak{A} \models \neg \psi_1[\emptyset] \land \neg \psi_2[\emptyset]$
- (1) $\mathfrak{A} \models \psi_1[\emptyset] \land \psi_2[\emptyset]$
- (2) $\mathfrak{A} \models \psi_1[\emptyset] \land \neg \psi_2[\varphi^\infty]$

(3)
$$\mathfrak{A} \models \psi_1[\emptyset] \land \psi_2[\varphi^\infty]$$

(a) $\varphi_1^{(\ell)} \lor \psi_2$ unbdd
(b) $\varphi_1^{(\ell)} \lor \psi_2$ bdd

driven by $\varphi_1^{(\ell)} \lor \varphi_2^{(\ell)}$ LTdriven by $\varphi_1^{(\ell)}$ LTtwo phases (!)LTsubsumed in (2)LTsubsumed in (1)LT

up to initialisation

LT: locality testing

treading on thin ice:

• Barwise–Moschovakis fails for { trees (finite or infinite) finite acyclic structures

• "locality implies FO" fails for treewidth 3 graphs

on the other hand, decidability of BDD in bounded treewidth would have great explanatory power . . .

model theoretic games and model constructions

work in all sorts of interesting classes ignored by classical model theory

for many issues, there are interesting classes other than just elementary

locality and its role in mediating game analysis curiously under-exposed in classical model theory

explicit model constructions can replace classical arguments in surprising manners

selected references

Finite Model Theory, Ebbinghaus, Flum, (2nd ed) Springer 1999

Finite Model Theory Lecture Notes at www.mathematik.tu-darmstadt.de/~otto, 2005/06

Elementary proof of the van Benthem–Rosen characterisation theorem, O_, TUD online preprint 2342, 2004

Model theory of modal logic, Goranko&O_, in: Handbook of Modal Logic, Elsevier 2006

Modal and guarded characterisation theorems over finite transition systems, O_, APAL 2004

Bisimulation invariance and finite structures O_, LNL 27, Logic Colloquium 2002, ASL 2006

Modal characterisation theorems over special classes of frames Dawar&O_, LICS 2005, \longrightarrow preprint of journal version (in prep) 2007

On presevation under homomorphisms and unions of conjunctive queries Atserias, Dawar&Kolaitis, PODS 2004 and JACM 53, 2006.

Preservation under extensions on well-behaved finite structures Atserias, Dawar&Grohe, ICALP 2005, LNCS 3580

Existential positive types and preservation under homomorphisms Rossman, LICS 2005

Capturing bisimulation-invariant Ptime, O_, TCS 1999

Boundedness of monadic FO over acyclic structures Kreutzer,O_&Schweikardt, ICALP 2007.

The Boundedness Problem for Monadic Universal FO, O_, LICS 2006