Inquisitive Bisimulation

Inquisitive Logic
Amsterdam 2018
Martin Otto joint work with Ivano Ciardelli

content

- bisimulation:
the quintessential back\&forth
- inquisitive modal \& epistemic logic InqML: one level up from standard Kripke models with a built-in team semantic level on top of modal logic
- inquisitive bisimulation \& Ehrenfeucht-Fraïssé back\&forth somewhere between FO and MSO
- characterisation theorems InqML \equiv FO/~ expressive completeness results over two-sorted relational structures

bisimulation (background)

- bisimulation: back\&forth/zig-zag
- bisimulation invariance: the hallmark of modal semantics

$$
\begin{aligned}
& \text { modal model theory } \\
& =\text { model theory of } \\
& \text { bisimulation invariance }
\end{aligned}
$$

bisimulation: back\&forth

game protocol for testing equivalence between pointed Kripke models \mathcal{A}, a and \mathcal{B}, b

player I: challenge equivalence (move along accessibility edge) player II: respond \& maintain propositional equivalence

- II has strategy in unbounded game: $\mathcal{A}, a \sim \mathcal{B}, b$
- II has strategy for ℓ rounds: $\mathcal{A}, a \sim^{\ell} \mathcal{B}, b$

bisimulation: modal Ehrenfeucht-Fraïssé

a special case in the tradition of back\&forth equivalences in classical logic, viz. its adaptation to \square / \diamond quantification:

modal Ehrenfeucht-Fraïssé thm

for any two pointed Kripke models in a finite signature and $\ell \in \mathbb{N}$:

$$
\mathcal{A}, a \sim^{\ell} \mathcal{B}, b \quad \Leftrightarrow \quad \mathcal{A}, a \equiv_{\mathrm{ML}}^{\ell} \mathcal{B}, b
$$

in particular (\& w/o restriction on signature):
semantics of ML is invariant under bisimulation

$$
\mathcal{A}, a \sim \mathcal{B}, b \quad \Rightarrow \quad \mathcal{A}, a \equiv_{\text {МL }} \mathcal{B}, b
$$

bisimulation: characteristic formulae

a special case in the tradition of back\&forth equivalences in classical logic, viz. its adaptation to \square / \diamond quantification:

modal Ehrenfeucht-Fraïssé thm (refined)

for any pointed Kripke model \mathcal{A}, a in a finite signature and $\ell \in \mathbb{N}$ there is a characteristic formula $\chi_{\mathcal{A}, a}^{\ell} \in \mathrm{ML}_{\ell}$ such that

$$
\mathcal{B}, b=\chi_{\mathcal{A}, a}^{\ell} \quad \Leftrightarrow \quad \mathcal{B}, b \equiv_{\mathrm{ML}}^{\ell} \mathcal{A}, a
$$

\rightsquigarrow disjunctions of $\chi_{\mathcal{A}, a}^{\ell}$ as normal form for $\left\{\begin{array}{l}\sim^{\ell} \text {-closed properties } \\ \mathrm{ML}_{\ell} \text {-formulae }\end{array}\right.$

bisimulation: expressive completeness

van Benthem-Rosen thm $\quad \mathrm{FO} / \sim \equiv \mathrm{ML}$

classically and in fmt,
t.f.a.e. for $\varphi(x) \in$ FO:

(i) $\varphi \sim$-invariant	compactness property
(ii) $\varphi \equiv \varphi^{\prime} \in \mathrm{ML}$	for \sim-invariance
(ii) $\varphi \equiv \varphi^{\prime} \in \mathrm{ML}$	or some $\ell \in \mathbb{I}$
(iv) $\varphi \sim^{\ell}$-invariant	for some $\ell \in \mathbb{N}$

with many variations for other classes of (finite) frames

$$
\text { Janin-Walukiewicz thm } \quad \mathrm{MSO} / \sim \equiv \mathrm{L}_{\mu}
$$

remains notoriously open in fmt !

expressive completeness through upgrading

for $\mathrm{FO} / \sim \subseteq$ ML over (non-elementary classes) \mathcal{C} :

the rest is Ehrenfeucht-Fraïssé!

from modal to inquisitive modal (background)

standard modal models/Kripke structures

for the semantics of basic modal logic ML

- set of possible worlds W
- propositional assignment $\rho: p \mapsto \rho(p) \in 2^{W}$ globally assigning semantics to proposition p
- accessibility relation(s)

$$
\begin{aligned}
R \subseteq W & \times W \\
\sigma: W & \longrightarrow 2^{W} \\
w & \longmapsto \sigma(w):=R[w]
\end{aligned}
$$

$$
\text { or function(s) } \quad \sigma: W \longrightarrow 2^{W}
$$

locally assigning set(s) of accessible worlds: information states for semantics of modal \square / \diamond at w : FO-quantification over $R[w]$

from modal to inquisitive modal

from modal assignment of sets of accessible worlds:
$\sigma: w \longmapsto \sigma(w) \in 2^{W}$ in epistemic reading: $\quad \sigma(w)=($ lack of) knowledge in w the information state as the set of equally possible worlds at w for semantics of \square / \diamond
to an inquisitive assignment of sets of information states:
 in epistemic reading: $\quad \Sigma(w)=$ possible updates in w the inquisitive state as the set of possible information updates at w for semantics of inquisitive modalities \boxplus / \otimes

inquisitive models (functional format)

augment Kripke structures $\mathcal{K}=(W, \sigma, \rho)$
to inquisitive structures $\mathcal{K}=(W, \Sigma, \rho)$

- set of possible worlds W
- propositional assignment $\rho: p \longmapsto \rho(p) \in \rho(p) \in 2^{W}$ for semantics of proposition p
- inquisitive assignment(s) $\Sigma: w \longmapsto \Sigma(w) \in 2^{2^{w}}$ for semantics of inquisitive modalities $\boxplus / \Leftrightarrow$
with
- induced modal assignment(s) $\sigma: u \longmapsto \bigcup \Sigma(u) \in 2^{W}$ for semantics of modal \square / \diamond

inquisitive models (relational format, two-sorted!)

from Kripke structures $\mathcal{K}=(W, R, \rho)$ with $R \subseteq W \times W$ to inquisitive structures $\mathbb{K}=(W, E, \rho)$ with $E \subseteq W \times 2^{W}$
encode $\Sigma: w \longmapsto \Sigma(w) \in 2^{2^{W}}$ by its graph $E \subseteq W \times 2^{W}$ in a two-sorted relational structure with

- first sort: possible worlds, W
- second sort: information states, $S \subseteq 2^{W}$
linked by two mixed-sorted relations in $W \times S$:
- $E \subseteq W \times S$
(the graph of Σ)
- set-theoretic $\in \subseteq W \times S \quad$ (built-in like $=$)
with induced modal accessibility relation(s)
- $R=E \circ \in^{-1} \quad$ (the graph of $\left.\sigma: w \longmapsto \bigcup \Sigma(w)\right)$

inquisitive modal logic InqML \supseteq ML

satisfaction relation, team semantic style, here: support semantics
linking

| information states
 over \mathbb{K}, i.e. $s \in 2^{W}$$\quad$ and \quadformulae
 $\varphi \in \operatorname{InqML}$ |
| :--- | :--- |

$\operatorname{read} \mathbb{K}, s \models \varphi \quad$ as "s supports φ "
with $\mathbb{K},\{w\} \models \varphi$ emulating $\mathbb{K}, w \models \varphi$ for $\varphi \in \mathrm{ML}$

semantic constraints on models:

- inquisitive assignments $\Sigma(w)$ downward closed in 2^{W}
and for (multi-agent) epistemic setting:
- induced modal σ_{a} / R_{a} are S 5 with classes $[w]_{a}=\sigma_{a}(w)$
- each Σ_{a} constant on its equivalence classes $[w]_{a}=\sigma_{a}(w)$
syntax and semantics for InqML \supseteq ML
atoms p, \perp :

$$
\begin{aligned}
& \mathbb{K}, s \models p \text { if } s \subseteq \rho(p) \\
& \mathbb{K}, s \models \perp \text { iff } s=\emptyset
\end{aligned}
$$

strong disjunction \mathbb{V} : $\mathbb{K}, s \models \varphi_{1} \backslash \varphi_{2}$ if $\mathbb{K}, s \models \varphi_{1}$ or $\mathbb{K}, s \models \varphi_{2}$
non-flat
team implication $\rightarrow: \quad \mathbb{K}, s \models \varphi \rightarrow \psi$ if for all $s^{\prime} \subseteq s$

$$
\mathbb{K}, s^{\prime} \models \varphi \Rightarrow \mathbb{K}, s^{\prime} \models \psi
$$

non-flat
inquisitive modalities \boxplus :

$$
\mathbb{K}, s \models \boxplus \varphi \text { if }\left\{\begin{array}{l}
\mathbb{K}, s^{\prime} \models \varphi \\
\text { for all } s^{\prime} \in \Sigma(w), w \in s
\end{array}\right.
$$

induced plain modalities \square :

$$
\mathbb{K}, s \models \square \varphi \text { if }\left\{\begin{array}{l}
\mathbb{K},\{v\} \models \varphi \quad \text { flattening } \\
\text { for all } v \in \sigma(w), w \in s
\end{array}\right.
$$

some examples (involving questions)

$$
? \varphi:=\varphi \mathbb{V} \neg \varphi \quad \text { captures "question whether } \varphi \text { " }
$$ or whether φ is settled either way crucially non-flat

	supported by s in \mathbb{K} iff
$? ? \varphi$	"s settles φ "
$\boxplus ? \varphi$	"every information update in s settles φ "
$\square ? \varphi$	"all information updates in s settle φ the same"
$\square \square ? \varphi \wedge \boxplus ? \varphi$	"the open question φ gets settled in $s "$

inquisitive bisimulation

testing inquisitive equivalence in back\&forth game:

in interleaving challenge/response steps
from matching worlds $\left(u, u^{\prime}\right)$
to matching
information states

$$
\left(s, s^{\prime}\right) \in \Sigma(u) \times \Sigma\left(u^{\prime}\right)
$$

to matching worlds $\quad\left(w, w^{\prime}\right) \in s \times s^{\prime} \quad \ldots$

inquisitive bisimulation

testing inquisitive equivalence in back\&forth game:

inquisitive bisimulation game \rightsquigarrow natural notions of bisimilarity

$$
\left.\begin{array}{l}
\mathbb{K}, z \sim \mathbb{K}^{\prime}, z^{\prime} \\
\mathbb{K}, z \sim^{\ell} \mathbb{K}^{\prime}, z^{\prime}
\end{array}\right\} \text { for world or state pairs } z, z^{\prime}
$$

inquisitive bisimulation

testing inquisitive equivalence in back\&forth game:

inquisitive bisimulation game \rightsquigarrow natural notions of bisimilarity
NB: these are symmetric bi-simulation equivalences with built-in focus on \downarrow-closed state properties

NB: flattening $(s \rightarrow u)$ vs. inquisitive expansion $(u \rightarrow s)$

inquisitive Ehrenfeucht-Fraïssé

inquisitive Ehrenfeucht-Fraïssé thm

for world- or state-pointed inquisitive models in a finite signature and $\ell \in \mathbb{N}$:

$$
\mathbb{K}, z \sim^{\ell} \mathbb{K}^{\prime}, z^{\prime} \quad \Leftrightarrow \quad \mathbb{K}, z \equiv \equiv_{\operatorname{IngML}}^{\ell} \mathbb{K}^{\prime}, z^{\prime}
$$

in particular (\& w/o restriction on signature):
InqML invariant under inquisitive bisimulation

$$
\mathbb{K}, z \sim \mathbb{K}^{\prime}, z^{\prime} \quad \Rightarrow \quad \mathbb{K}, z \equiv_{\operatorname{InqML}} \mathbb{K}^{\prime}, z^{\prime}
$$

inquisitive Ehrenfeucht-Fraïssé: characteristic formulae

inquisitive Ehrenfeucht-Fraïssé thm (refined)

for world- or state-pointed model \mathbb{K}, z
in a finite signature and $\ell \in \mathbb{N}$
there is a characteristic formula $\chi_{\mathcal{K}, z}^{\ell} \in \operatorname{InqML}_{\ell}$ such that

$$
\begin{aligned}
\mathcal{K}^{\prime}, w^{\prime} \models \chi_{\mathbb{K}, w}^{\ell} & \Leftrightarrow \mathbb{K}^{\prime}, z^{\prime} \equiv \equiv_{\operatorname{lngML}}^{\ell} \mathbb{K}, z \\
\text { or } \quad \mathcal{K}^{\prime}, s^{\prime} \models \chi_{\mathbb{K}, s}^{\ell} & \Leftrightarrow \mathbb{K}^{\prime}, s^{\prime} \equiv \equiv_{\operatorname{IngML}}^{\ell} \mathbb{K}, t \text { for some } t \subseteq s
\end{aligned}
$$

\rightsquigarrow normal forms for (downward\&) ~-closed properties
construct characteristic formulae by induction, in parallel for worlds/information states/inquisitive states

inquisitive Ehrenfeucht-Fraïssé: characteristic formulae

detail for experts: simultaneous induction $\ell \rightsquigarrow \ell+1$ for

 \sim^{ℓ}-types of worlds/information states/inquisitive states$$
\begin{gathered}
\chi_{w}^{0}=\text { propositional type of } w \in W(\text { for } \ell=0) \\
\chi_{s}^{\ell}=\bigvee\left\{\chi_{w}^{\ell}: w \in s\right\} \quad \sim^{\ell} \text {-type of } s \in 2^{W}(\downarrow) \\
\chi_{\Pi}^{\ell}=\backslash \bigvee\left\{\chi_{s}^{\ell}: s \in \Pi\right\} \quad \sim^{\ell} \text {-type of } \Pi \in 2^{2^{W}} \\
\chi_{w}^{\ell+1}=\chi_{w}^{\ell} \wedge \boxplus \chi_{\Sigma(w)}^{\ell} \wedge \bigwedge\left\{\neg \boxplus \chi_{\Pi}^{\ell}: \Pi \subseteq \Sigma(w), \Pi \chi^{\ell} \Sigma(w)\right\} \\
\sim^{\ell+1} \text {-type of } w \in W
\end{gathered}
$$

bisimulation invariance \& compactness

in relational format the actual extension of the second sort $S \subseteq 2^{W}$ in $\mathbb{K}=(W, S, E, \rho)$ is relatively free up to \sim natural levels: $\left\{\begin{array}{lll}S=2^{W} & \text { full/maximal } & \times \\ S \supseteq \bigcup_{u \in W} 2^{\sigma(u)} & \text { locally full } & \checkmark \\ S \supseteq \bigcup_{s \in \Sigma(u)} 2^{s} & \text { minimal req. } & \checkmark\end{array}\right.$
downward closure is a non-elementary condition (!)

compactness as a limitation:

over full/maximal format, FO/~ fails to satisfy compactness

InqML is known
to be compact

failures of compactness in full/maximal scenario

in two-sorted models $\mathbb{K}=(W, E, \rho)$ with second sort $S=2^{W}$, with induced standard Kripke structure $\mathcal{K}=(W, R, \rho)$:

$$
\begin{aligned}
& \mathrm{FO}[\mathbb{K}, w] \supseteq \mathbf{M S O}[\mathcal{K}, w] \\
& \mathbf{F O} / \sim[\mathbb{K}, w] \supseteq \mathbf{L}_{\mu}[\mathcal{K}, w]
\end{aligned}
$$

e.g. can express "no infinite R-paths" (wellfoundedness of R^{-1}) which is incompatible with "no dead ends": $\left\{\square^{n} \diamond T: n \in \mathbb{N}\right\}$

bisimulation invariance and compactness

remaining natural levels: $\left\{\begin{array}{lll}S=2^{W} & \text { full/maximal } \\ S \supseteq \bigcup_{u \in W} 2^{\sigma(u)} & \text { locally full } & \checkmark \\ S \supseteq \bigcup_{s \in \Sigma(u)} 2^{s} & \text { min. req. } & \checkmark\end{array}\right.$
over these non-elementary classes of two-sorted models:

InqML \supseteq FO / ~
is again equivalent to
compactness property
for \sim-invariance
\sim-invariance $\Rightarrow \sim^{\ell}$-invariance for some $\ell \in \mathbb{N}$
e.g. want $\quad \mathbb{K}, w \sim^{\ell} \mathbb{K}^{\prime}, w^{\prime} \quad \Rightarrow \quad\left(\mathbb{K}, w \models \varphi \Leftrightarrow \mathbb{K}^{\prime}, w^{\prime} \models \varphi\right)$

Q: why so? ; for which ℓ ?

characterisation theorems

\rightsquigarrow expressive completeness for van Benthem-Rosen style characterisations of InqML:

$$
\mathrm{FO} / \sim \equiv \operatorname{InqML} \text { over } \mathcal{C} \quad \text { (classically and fmt) }
$$

over remaining feasible classes \mathcal{C} of two-sorted relational inquisitive structures all these classes are non-elementary
and combine FO and MSO features

- simpler case for basic InqML: local unfolding \& stratification
- more challenging for multi-agent epistemic InqML with its extra constraints on S5 models

characterisation theorems

\rightsquigarrow expressive completeness for van Benthem-Rosen style characterisations of InqML:

$$
\mathrm{FO} / \sim \equiv \operatorname{lnqML} \text { over } \mathcal{C} \quad \text { (classically and fmt) }
$$

for expressive completeness $\mathrm{FO} / \sim \subseteq$ InqML:
upgrading argument for compactness property from \sim to \sim^{ℓ} over \mathcal{C} for $\varphi \in \mathrm{FO}_{q}$

expressive completeness via upgrading (I): basic InqML

 towards $\mathrm{FO} / \sim \subseteq \operatorname{InqML} \quad$ e.g. over the classes $\mathcal{C} / \mathcal{C}_{\text {fin }}$ of locally full relational inquisitive models- upgrading \sim^{ℓ} to \equiv_{q} over $\mathcal{C} / \mathcal{C}_{\text {fin }}$ using FO-locality:
local unfolding \& world/state-layer stratification with fresh worlds to instantiate information states

expressive completeness via upgrading (II): S5 InqML towards $\mathrm{FO} / \sim \subseteq \operatorname{InqML} \quad$ e.g. over the classes $\mathcal{C} / \mathcal{C}_{\text {fin }}$ of locally full relational inquisitive S 5 models
upgrading requires:
- local pre-processing of inquisitive assigments $\Sigma_{a}(w)$ in $[w]_{a}$ need to boost multiplicities in $[w]_{a}$ w.r.t. the relevant \sim / \sim^{ℓ}-types (!) to escape MSO counting up to 2^{q}
- global pre-processing of overlap pattern between classes $[w]_{a}$ want local tree-likeness to depth 2^{q} in hypergraph structure of the $[w]_{a}$ to escape FO-detection of cycles

expressive completeness via upgrading (II): S5 InqML

 towards $\mathrm{FO} / \sim \subseteq \operatorname{InqML} \quad$ e.g. over the classes $\mathcal{C} / \mathcal{C}_{\text {fin }}$ of locally full relational inquisitive S 5 modelsupgrading requires:

- local pre-processing of inquisitive assignments $\Sigma_{a}(w)$ in $[w]_{a}$ \rightsquigarrow simple lattice algebra \& compositionality for unary MSO
- global pre-processing of overlap pattern between classes $[w]_{a}$ \rightsquigarrow treatment of S5 Kripke structures in Dawar-O_09

expressive completeness via upgrading (II): S5 InqML

- local pre-processing of inquisitive assigments $\Sigma_{a}(w)$ in $[w]_{a}$ \leadsto simple lattice algebra \& compositionality for unary MSO
- global pre-processing of overlap pattern between classes $[w]_{a}$ \rightsquigarrow treatment of S5 Kripke structures in Dawar-O_09

what makes this interesting

- exploration of two-sortedness in a team semantic spirit
- find tame intermediate level between FO and MSO
- another case of locality analysis beyond FO cf. work with Felix Canavoi on ML[CK] in LICS 17 with potential for further integration
\longrightarrow Ciardelli-O_: results for basic InqML in TARK 17 \& draft journal paper arXiv:1803.03483

