??????Questions?????Questions?????Questions?????? Inquisitive Bisimulation ?????In Modal Logics?????

Inquisitive Logic Amsterdam 2018

Martin Otto

joint work with Ivano Ciardelli

 Martin Otto 2018
 bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness
 1/31

 inquisitive bisimulation:
 bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness

content

- **bisimulation:** the quintessential back&forth
- inquisitive modal & epistemic logic InqML: one level up from standard Kripke models with a built-in team semantic level on top of modal logic
- inquisitive bisimulation & Ehrenfeucht-Fraïssé back&forth somewhere between FO and MSO
- characterisation theorems InqML = FO/~ expressive completeness results over two-sorted relational structures

bisimulation (background)

- bisimulation: back&forth/zig-zag
- bisimulation invariance: the hallmark of modal semantics

modal model theory = model theory of bisimulation invariance

Martin Otto 2018

bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness 3/31

inquisitive bisimulation:

bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness

bisimulation: back&forth

game protocol for testing equivalence between pointed Kripke models \mathcal{A} , a and \mathcal{B} , b

player I: challenge equivalence (move along accessibility edge) player II: respond & maintain propositional equivalence

- II has strategy in unbounded game: $\mathcal{A}, a \sim \mathcal{B}, b$
- II has strategy for ℓ rounds: $\mathcal{A}, a \sim^{\ell} \mathcal{B}, b$

bisimulation: modal Ehrenfeucht-Fraïssé

a special case in the tradition of back&forth equivalences in classical logic, viz. its adaptation to \Box / \diamondsuit quantification:

modal Ehrenfeucht-Fraïssé thm

for any two pointed Kripke models in a finite signature and $\ell \in \mathbb{N}$:

 $\mathcal{A}, \mathbf{a} \sim^{\ell} \mathcal{B}, \mathbf{b} \quad \Leftrightarrow \quad \mathcal{A}, \mathbf{a} \equiv^{\ell}_{\mathsf{ML}} \mathcal{B}, \mathbf{b}$

in particular (& w/o restriction on signature): semantics of ML is invariant under bisimulation

```
\mathcal{A}, a \sim \mathcal{B}, b \quad \Rightarrow \quad \mathcal{A}, a \equiv_{\scriptscriptstyle\mathsf{ML}} \mathcal{B}, b
```


inquisitive bisimulation:

bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness

bisimulation: characteristic formulae

a special case in the tradition of back&forth equivalences in classical logic, viz. its adaptation to \Box / \diamondsuit quantification:

modal Ehrenfeucht-Fraïssé thm (refined)

for any pointed Kripke model \mathcal{A} , a in a finite signature and $\ell \in \mathbb{N}$ there is a characteristic formula $\chi^{\ell}_{\mathcal{A},a} \in \mathsf{ML}_{\ell}$ such that

$$\mathcal{B}, b \models \chi^{\ell}_{\mathcal{A}, a} \quad \Leftrightarrow \quad \mathcal{B}, b \equiv^{\ell}_{\mathsf{ML}} \mathcal{A}, a$$

 \rightsquigarrow disjunctions of $\chi^{\ell}_{\mathcal{A},a}$ as normal form for $\begin{cases} \sim^{\ell} \text{-closed properties} \\ \mathsf{ML}_{\ell} \text{-formulae} \end{cases}$

van Benthem-Rosen thm

 $FO/\sim \equiv ML$

classically and in fmt,

with many variations for other classes of (finite) frames

 $MSO/\sim \equiv L_{\mu}$ Janin–Walukiewicz thm

remains notoriously open in fmt !

Martin Otto 2018 7/31 bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness

inquisitive bisimulation:

bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness

expressive completeness through upgrading

for $FO/\sim \subseteq ML$ over (non-elementary classes) C:

upgrading argument for compactness property

from \sim to \sim^{ℓ} for $\varphi \in \mathsf{FO}_a$

the rest is Ehrenfeucht-Fraïssé!

from modal to inquisitive modal (background)

standard modal models/Kripke structures

for the semantics of basic modal logic ML

- set of possible worlds W
- propositional assignment $\rho: p \mapsto \rho(p) \in 2^W$ globally assigning semantics to proposition p
- accessibility relation(s) $R \subseteq W \times W$ or function(s) $\sigma : W \longrightarrow 2^{W}$ $w \longmapsto \sigma(w) := R[w]$

locally assigning set(s) of accessible worlds: *information states*

for semantics of modal \Box / \diamondsuit at w: FO-quantification over R[w]

inquisitive models (functional format)

augment Kripke structures $\mathcal{K} = (W, \sigma, \rho)$ to inquisitive structures $\mathcal{K} = (\mathcal{W}, \Sigma, \rho)$

- set of possible worlds W
- propositional assignment $\rho: p \mapsto \rho(p) \in \rho(p) \in 2^W$ for semantics of proposition p
- inquisitive assignment(s) $\Sigma : w \mapsto \Sigma(w) \in 2^{2^W}$ for semantics of inquisitive modalities \boxplus / \bigotimes

with

• induced modal assignment(s) $\sigma : u \mapsto \bigcup \Sigma(u) \in 2^W$ for semantics of modal \Box / \diamondsuit

Martin Otto 2018

11/31bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness

inquisitive bisimulation:

bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness

inquisitive models (relational format, two-sorted!)

from Kripke structures $\mathcal{K} = (W, R, \rho)$ with $R \subseteq W \times W$ to inquisitive structures $\mathbb{K} = (W, E, \rho)$ with $E \subseteq W \times 2^W$

encode $\Sigma: w \mapsto \Sigma(w) \in 2^{2^W}$ by its graph $E \subseteq W \times 2^W$ in a two-sorted relational structure with

- first sort: possible worlds, W
- second sort: information states, $S \subseteq 2^W$

linked by two mixed-sorted relations in $W \times S$:

- set-theoretic $\in \subseteq W \times S$ (the graph of Σ) (built-in like

with induced modal accessibility relation(s)

• $R = E \circ \in^{-1}$ (the graph of $\sigma: w \mapsto \bigcup \Sigma(w)$)

inquisitive modal logic $InqML \supseteq ML$

satisfaction relation, team semantic style, here: support semantics

linking

inquisitive bisimulation:

information states over \mathbb{K} , i.e. $s \in 2^{W}$

 $\begin{array}{l} \mathsf{formulae} \\ \varphi \in \mathsf{InqML} \end{array}$

 $\mathsf{read} \ \mathbb{K}, \pmb{s} \models \varphi \ \mathsf{as} \ ``\pmb{s} \ \mathsf{supports} \ \varphi''$

with $\mathbb{K}, \{w\} \models \varphi$ emulating $\mathbb{K}, w \models \varphi$ for $\varphi \in \mathsf{ML}$

and

semantic constraints on models:

• inquisitive assignments $\Sigma(w)$ downward closed in 2^W (!) and for (multi-agent) epistemic setting:

- induced modal σ_a/R_a are S5 with classes $[w]_a = \sigma_a(w)$
- each Σ_a constant on its equivalence classes $[w]_a = \sigma_a(w)$

```
Martin Otto 2018bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness13/31
```

bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness

syntax and semantics for $InqML \supseteq ML$

atoms \pmb{p}, \perp :	$\mathbb{K}, \pmb{s} \models \pmb{p} ext{ if } \pmb{s} \subseteq ho(\pmb{p})$	flat
	$\mathbb{K}, s \models \perp iff \; s = \emptyset$	
strong disjunction \mathbb{W} :	$\mathbb{K}, \boldsymbol{s} \models \varphi_1 \forall \varphi_2 \text{ if} \\ \mathbb{K}, \boldsymbol{s} \models \varphi_1 \text{ or } \mathbb{K}, \boldsymbol{s} \models \varphi_2 $	non-flat
team implication \rightarrow :	$\mathbb{K}, \boldsymbol{s} \models \varphi \to \psi \text{ if for all } \boldsymbol{s}' \subseteq \boldsymbol{s} \\ \mathbb{K}, \boldsymbol{s}' \models \varphi \implies \mathbb{K}, \boldsymbol{s}' \models \psi $	non-flat
inquisitive modalities \boxplus		
$\mathbb{K}, {\it s}$	$\models \boxplus \varphi \text{ if } \begin{cases} \mathbb{K}, s' \models \varphi \\ \text{for all } s' \in \Sigma(w), w \end{cases}$	flattening $f \in s$

induced plain modalities \Box :

$$\mathbb{K}, s \models \Box \varphi \text{ if } \begin{cases} \mathbb{K}, \{v\} \models \varphi & \text{flattening} \\ \text{for all } v \in \sigma(w), w \in s \end{cases}$$

$? \varphi := \varphi \vee \neg \varphi$	captures "question <i>whether</i> φ " or whether φ is settled <i>either way</i> crucially non-flat	
	supported by s in $\mathbb K$ iff	
?arphi	" s settles $arphi$ "	
\boxplus ? $arphi$	"every information update in s settles $arphi$ "	
\Box ? $arphi$	"all information updates in s settle $arphi$ the same"	
$\neg \Box \mathop{?} \varphi \land \boxplus \mathop{?} \varphi$	"the open question $arphi$ gets settled in s "	
rtin Otto 2018 bisimula	tion inquisitive modal logic inquisitive bisimulation expressive completeness 15/31	

inquisitive bisimulation:

bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness

inquisitive bisimulation

inquisitive bisimulation

inquisitive bisimulation game \rightsquigarrow natural notions of bisimilarity

 $\begin{array}{c} \mathbb{K}, z \ \sim \ \mathbb{K}', z' \\ \mathbb{K}, z \ \sim^{\ell} \ \mathbb{K}', z' \end{array} \right\} \text{ for world or state pairs } z, z'$

inquisitive Ehrenfeucht-Fraïssé

inquisitive Ehrenfeucht-Fraïssé thm

for world- or state-pointed inquisitive models in a finite signature and $\ell \in \mathbb{N}$:

 $\mathbb{K}, z \sim^{\ell} \mathbb{K}', z' \quad \Leftrightarrow \quad \mathbb{K}, z \equiv^{\ell}_{\mathsf{IngML}} \mathbb{K}', z'$

in particular (& w/o restriction on signature): InqML invariant under inquisitive bisimulation

$$\mathbb{K}, z \ \sim \ \mathbb{K}', z' \quad \Rightarrow \quad \mathbb{K}, z \equiv_{\operatorname{IngML}} \mathbb{K}', z'$$

inquisitive bisimulation:

bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness

inquisitive Ehrenfeucht–Fraïssé: characteristic formulae

inquisitive Ehrenfeucht-Fraïssé thm (refined)

for world- or state-pointed model \mathbb{K}, z in a finite signature and $\ell \in \mathbb{N}$ there is a characteristic formula $\chi^{\ell}_{\mathcal{K},z} \in \mathsf{InqML}_{\ell}$ such that

 \rightsquigarrow normal forms for (downward&) \sim -closed properties

construct characteristic formulae by induction, in parallel for worlds/information states/inquisitive states

inquisitive Ehrenfeucht–Fraïssé: characteristic formulae

detail for experts: simultaneous induction $\ell \rightsquigarrow \ell + 1$ for \sim^{ℓ} -types of worlds/information states/inquisitive states

$$\begin{split} \chi^0_w &= \text{ propositional type of } w \in W \text{ (for } \ell = 0) \\ \chi^\ell_s &= \bigvee \{ \chi^\ell_w \colon w \in s \} \qquad \sim^\ell\text{-type of } s \in 2^W \text{ (}\downarrow\text{)} \\ \chi^\ell_\Pi &= \bigvee \{ \chi^\ell_s \colon s \in \Pi \} \qquad \sim^\ell\text{-type of } \Pi \in 2^{2^W} \\ \chi^{\ell+1}_w &= \chi^\ell_w \wedge \boxplus \chi^\ell_{\Sigma(w)} \wedge \bigwedge \{ \neg \boxplus \chi^\ell_\Pi \colon \Pi \subseteq \Sigma(w), \Pi \not\sim^\ell \Sigma(w) \} \\ &\sim^{\ell+1}\text{-type of } w \in W \end{split}$$

inquisitive bisimulation:

bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness

bisimulation invariance & compactness (1)

in relational format the actual extension of the second sort $S \subseteq 2^W$ in $\mathbb{K} = (W, S, E, \rho)$ is relatively free up to \sim

natural levels: $\begin{cases} S = 2^{W} & \text{full/maximal} \\ S \supseteq \bigcup_{u \in W} 2^{\sigma(u)} & \text{locally full} \\ S \supseteq \bigcup_{s \in \Sigma(u)} 2^{s} & \text{minimal req.} \end{cases}$

downward closure is a non-elementary condition (!)

compactness as a limitation:

over full/maximal format, FO/ \sim fails to satisfy compactness

InqML is known to be compact

failures of compactness in full/maximal scenario

in two-sorted models $\mathbb{K} = (W, E, \rho)$ with second sort $S = 2^W$, with induced standard Kripke structure $\mathcal{K} = (W, R, \rho)$:

$$\mathbf{FO}[\mathbb{K}, w] \supseteq \mathbf{MSO}[\mathcal{K}, w]$$
$$\mathbf{FO}/{\sim}[\mathbb{K}, w] \supseteq \mathbf{L}_{\mu}[\mathcal{K}, w]$$

e.g. can express "no infinite *R*-paths" (wellfoundedness of R^{-1}) which is incompatible with "no dead ends": $\{\Box^n \diamondsuit \top : n \in \mathbb{N}\}$

characterisation theorems

 → expressive completeness for van Benthem–Rosen style characterisations of InqML:

over remaining feasible classes ${\cal C}$ of two-sorted relational inquisitive structures

all these classes are non-elementary and combine FO and MSO features

- simpler case for basic InqML: local unfolding & stratification
- more challenging for multi-agent epistemic InqML with its extra constraints on S5 models

characterisation theorems

 → expressive completeness for van Benthem–Rosen style characterisations of InqML:

 ${
m FO}/{\sim}\equiv {
m InqML}$ over ${\cal C}$ (classically and fmt)

for expressive completeness $FO/\sim \subseteq InqML$:

expressive completeness via upgrading (I): basic InqML

towards $FO/\sim \subseteq InqML$ e.g. over the classes C/C_{fin} of locally full relational inquisitive models

• upgrading \sim^{ℓ} to \equiv_q over $\mathcal{C}/\mathcal{C}_{\text{fin}}$ using FO-locality:

local unfolding & world/state-layer stratification with fresh worlds to instantiate information states

bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness

expressive completeness via upgrading (II): S5 InqML

towards $FO/\sim \subseteq InqML$ e.g. over the classes C/C_{fin} of locally full relational inquisitive S5 models

upgrading requires:

inquisitive bisimulation:

• local pre-processing of inquisitive assigments $\Sigma_a(w)$ in $[w]_a$

need to boost multiplicities in $[w]_a$ w.r.t. the relevant \sim/\sim^{ℓ} -types (!) to escape MSO counting up to 2^q

• global pre-processing of overlap pattern between classes $[w]_a$

want local tree-likeness to depth 2^q in hypergraph structure of the $[w]_a$ to escape FO-detection of cycles

expressive completeness via upgrading (II): S5 InqML

towards $FO/\sim \subseteq InqML$ e.g. over the classes C/C_{fin} of locally full relational inquisitive S5 models

upgrading requires:

- local pre-processing of inquisitive assigments Σ_a(w) in [w]_a
 → simple lattice algebra & compositionality for unary MSO
- global pre-processing of overlap pattern between classes [w]_a
 → treatment of S5 Kripke structures in Dawar–O_09

expressive completeness via upgrading (II): S5 InqML

- local pre-processing of inquisitive assignments Σ_a(w) in [w]_a
 → simple lattice algebra & compositionality for unary MSO
- global pre-processing of overlap pattern between classes [w]_a
 → treatment of S5 Kripke structures in Dawar–O_09

what makes this interesting ...

- exploration of two-sortedness in a team semantic spirit
- find tame intermediate level between FO and MSO
- another case of locality analysis beyond FO cf. work with Felix Canavoi on ML[CK] in LICS 17

with potential for further integration

→ Ciardelli–O_: results for basic InqML in TARK 17 & draft journal paper arXiv:1803.03483

Martin Otto 2018

bisimulation inquisitive modal logic inquisitive bisimulation expressive completeness 31/31