???????Questionsiiiiiii

Inquisitive Epistemic Modal Logic, teams, bisimulation and all that

AlMoTh Berlin 2018 Martin Otto joint work with Ivano Ciardelli

Martin Otto 2018 the logic bisimulation expressive completeness

content

- inquisitve modal & epistemic logic IML a team semantic level on top of modal logic
- inquisitive bisimulation & Ehrenfeucht-Fraïssé back&forth somewhere between FO and MSO
- characterisation theorems $IML \equiv FO/\sim$ over suitable two-sorted relational structures

modal structures

Kripke structures $\mathcal{K} = (W, R, \rho)$ for the semantics of basic modal logic ML

- set of possible worlds W
- propositional assignment ρ: p → ρ(p) ∈ 2^W
 for semantics of proposition p in each world w
- accessibility relation(s) R ⊆ W × W for semantics of modal □/◊

or the function

 $\sigma \colon u \mapsto \sigma(u) := R[u] = \{v \in W \colon (u, v) \in R\} \in 2^{W}$

set of accessible worlds: *information state* at *u*

from modal to inquisitive

• modal assignment of sets of accessible worlds:

 $\sigma: u \mapsto \sigma(u) = R[u] \in 2^W$ the information state at u

semantics of modal \Box / \diamondsuit at u: FO-quantification over $\sigma(u)$

in epistemic reading: $\sigma(u) = (lack of)$ knowledge in u

information state at *u* a set of possible worlds at *u*

to give semantics to questions add

• inquisitive assignment of sets of "information updates":

 $\Sigma : u \longmapsto \Sigma(u) \in 2^{2^W}$ the inquisitive state at u

in epistemic reading: $\Sigma(u) = \text{possible updates in } u$

inquisitive state at u

a set of information states at \boldsymbol{u}

inquisitive structures (functional format)

augment Kripke structures $\mathcal{K} = (W, \sigma, \rho)$ for the semantics of basic modal logic ML to inquisitive structures $\mathcal{K} = (W, \Sigma, \rho)$

- set of possible worlds W
- propositional assignment ρ: p → ρ(p) ∈ ρ(p) ∈ 2^W for semantics of proposition p in each world w
- inquisitive assignment(s) Σ: u → Σ(u) ∈ 2^{2^W}
 for semantics of new inquisitive modalities

with induced

 modal assignment(s) σ: u → UΣ(u) ∈ 2^W for semantics of modal □/◊

inquisitive structures (relational format)

from Kripke structures $\mathcal{K} = (W, R, \rho)$ with $R \subseteq W \times W$ to inquisitive structures $\mathbb{K} = (W, E, \rho)$ with $E \subseteq W \times 2^W$

encode $\Sigma : u \mapsto \Sigma(u) \in 2^{2^W}$ by its graph $E \subseteq W \times 2^W$ in a two-sorted relational structure with

- first sort: possible worlds, W
- second sort: information states, $S \subseteq 2^W$

linked by two mixed-sorted relations in $W \times S$:

- set-theoretic $\in \subseteq W \times S$ (built-in like =)
- $E \subseteq W \times S$ (the graph of Σ)

with induced modal accessibility relation(s)

•
$$R = E \circ \in^{-1}$$
 (the graph of $\sigma: u \mapsto \bigcup \Sigma(u)$)

inquisitive modal logic IML \supseteq ML

satisfaction relation, team semantic style,

 $\begin{array}{l} \mathsf{read} \ \ \mathbb{K}, \pmb{s} \models \varphi \ \ \mathsf{as} \ \ ``\pmb{s} \ \mathsf{supports} \ \varphi"\\ \mathsf{with} \ \ \mathbb{K}, \{w\} \models \varphi \ \mathsf{emulating} \ \ \mathbb{K}, w \models \varphi \ \mathsf{for} \ \varphi \in \mathsf{ML} \end{array}$

semantic constraints on models:

- inquisitive assignments $\Sigma(u)$ downward closed in 2^W ! and for (multi-agent) epistemic setting:
 - induced modal σ_a/R_a are (S5) with classes $[u]_a = \sigma_a(u)$
 - each Σ_a constant on its equivalence classes $[u]_a = \sigma_a(u)$

syntax and semantics for IML \supseteq ML

atoms
$$p, \perp$$
: $\mathbb{K}, s \models p \text{ if } s \subseteq \rho(p)$ flat $\mathbb{K}, s \models \perp \text{ iff } s = \emptyset$ $\mathbb{K}, s \models \perp \text{ iff } s = \emptyset$ non-flatstrong disjunction \forall : $\mathbb{K}, s \models \varphi_1 \lor \varphi_2$ ifnon-flat $\mathbb{K}, s \models \varphi_1$ or $\mathbb{K}, s \models \varphi_2$ $\mathbb{K}, s \models \varphi_2$ non-flatteam implication \rightarrow : $\mathbb{K}, s \models \varphi \rightarrow \psi$ if for all $s' \subseteq s$ non-flat $\mathbb{K}, s' \models \varphi \Rightarrow \mathbb{K}, s' \models \psi$ inquisitive modalities \boxplus :flattening $\mathbb{K}, s \models \boxplus \varphi$ if $\mathbb{K}, s' \models \varphi$ $\mathbb{K}, s' \models \varphi$

$$egin{array}{ll} s \models \boxplus arphi \, ext{ if } & \mathbb{K}, s' \models arphi \ ext{ for all } s' \in \Sigma(w), w \in s \end{array}$$

induced plain modalities \Box :

flattening

$$\mathbb{K}, s \models \Box \varphi \text{ if } \mathbb{K}, \{v\} \models \varphi \\ \text{for all } v \in \sigma(w), w \in s$$

some examples (involving questions)

 $\label{eq:phi} ?\varphi := \varphi \, \underline{\vee} \, \neg \varphi \qquad \mbox{captures} \quad ``question $whether φ is settled''} $ irrespective of ``which way''$

crucially non-flat

	supported by s in $\mathbb K$ iff
? arphi	" s settles $arphi$ "
\boxplus ? $arphi$	"every information update in s will settle $arphi$ "
\Box ? $arphi$	"all information updates in s settle $arphi$ the same"
$ eg \square ? \varphi \wedge \boxplus ? \varphi$	"the open question $arphi$ will be answered in s "

inquisitive bisimulation and Ehrenfeucht-Fraïssé

<code>back&forth</code> game on $\mathbb K$ and $\mathbb K'$ with split rounds

from (u, u') from matching worlds to $(s, s') \in \Sigma(u) \times \Sigma'(u')$ via information states to $(w, w') \in s \times s'$ to matching worlds

- $\rightsquigarrow\,$ natural notions of bisimilarity $\,\,\sim\,/\,\sim^{\ell}\,$
- → Ehrenfeucht–Fraïssé link between \sim^{ℓ} and \equiv^{IML}_{ℓ} with non-trivial characteristic formulae at world/state levels

in particular IML is ~-invariant

bisimulation invariance & compactness

in relational format, the actual extension of the second sort $S \subseteq 2^W$ in $\mathbb{K} = (W, S, E, \rho)$ is relatively free up to \sim

natural levels:
$$\begin{cases} S = 2^{W} & \text{full/maximal} \\ S \supseteq \bigcup_{u \in W} 2^{\sigma(u)} & \text{locally full} \\ S \supseteq \bigcup_{s \in \Sigma(u)} 2^{s} & \text{min. req.} \end{cases}$$

for downward closed S $IML \subseteq FO/\sim$ and $IML \supseteq FO/\sim$ is equivalent to

 \sim -invariance $\Rightarrow \sim^{\ell}$ -invariance for some $\ell \in \mathbb{N}$

→ upgrading constructions

 $\label{eq:limitation:over_full/maximal format, FO/~ fails to satisfy compactness, whence IML \not\equiv FO/~ IML is known to be compact$

Martin Otto 2018

characterisation theorems

 → expressive completeness for van Benthem–Rosen style characterisations of IML:

 ${\rm FO}/{\sim}\equiv {\rm IML}$ over ${\cal C}$ (classically and fmt)

over the above feasible classes of two-sorted relational inquisitive structures

all these classes are non-elementary and combine FO and MSO features

through upgrading for compactness property collapsing \sim to \sim^{ℓ}

expressive completeness via upgrading (I)

towards $FO/\sim \subseteq IML$ e.g. over the classes C/C_{fin} of locally full relational inquisitive models

• upgrading \sim^{ℓ} to \equiv_q over $\mathcal{C}/\mathcal{C}_{\mathrm{fin}}$ using FO-locality:

local unfolding & world/state-layer stratification with fresh worlds to instantiate information states

expressive completeness via upgrading (II)

towards $FO/\sim \subseteq IML$ e.g. over the classes C/C_{fin} of locally full relational inquisitive (S5) models

- local pre-processing of inquisitive assignments Σ_a(u) in [u]_a
 → simple lattice algebra & compositionality for unary MSO
- global pre-processing of overlap pattern between classes [u]_a
 → treatment of (S5) Kripke structures in Dawar–O_09

what makes this interesting ...

- two-sortedness in a team semantic spirit
- non-trivial but tame intermediate level between FO and MSO
- another case of locality analysis near the limit (?) cf. work with Felix Canavoi on ML[CK] in LICS 17

 \longrightarrow Ciardelli–O_: TARK 17, results for basic IML, & draft journal paper for (S5)

The End