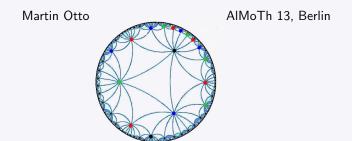
Groupoids, Hypergraphs, and Symmetries

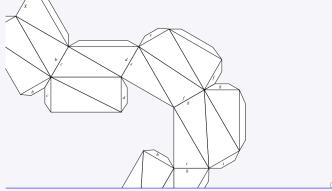


tesselation images created with http://aleph0.clarku.edu/ djoyce/poincare/PoincareApplet.html

- can every overlap pattern of hyperedges be realised in some finite hypergraph?
- does every finite hypergraph admit finite covers of any degree of acyclicity?
- how faithful can finite realisations/covers be w.r.t. symmetries of the specification?

hypergraphs $\mathcal{A} = (A, S)$, $S \subseteq \mathcal{P}(A)$ occur as abstractions of relational structures/data bases, of cluster patterns of variables in CSP, as combinatorial patterns of structural decompositions, ...

bastelbogen/glueing by numbers



©2000 Franz Zahaurek

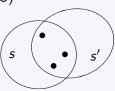
→ here just combinatorics (sets & local bijections)

specification: local overlap pattern **realisation:** local consistency & finite closure

bastelbogen/glueing by numbers

concrete specification: as in given hypergraph

reproduce intersection pattern of given $\mathcal{A} = (A, S)$ I(\mathcal{A}) = (S, E), E = {(s, s'): $s \neq s', s \cap s' \neq \emptyset$ }



bastelbogen/glueing by numbers

concrete specification: as in given hypergraph

reproduce intersection pattern of given $\mathcal{A} = (A, S)$ I(\mathcal{A}) = (S, E), E = {(s, s'): $s \neq s', s \cap s' \neq \emptyset$ }

s • s'

abstract specification

of overlaps between disjoint patches V_s for $s \in S$ via partial matchings $R_e \subseteq V_s \times V_{s'}$ for $e \in E_{ss'}$ according to intersection pattern $I = (S, (E_{ss'}))$

overlap patterns & their realisations

bastelbogen: the abstraction

incidence pattern: sites and links

$$I = (S, E)$$
 multigraph, $E = (E_{ss'}: s, s' \in S)$

with involutive edge reversal $e \in \mathsf{E}_{ss'} \longmapsto e^{-1} \in \mathsf{E}_{s's}$

overlap patterns & their realisations

bastelbogen: the abstraction

incidence pattern: sites and links

$$I = (S, E)$$
 multigraph, $E = (E_{ss'}: s, s' \in S)$

with involutive edge reversal $e \in \mathsf{E}_{ss'} \longmapsto e^{-1} \in \mathsf{E}_{s's}$

I-graph: local overlap pattern

 $H=(V,(V_s)_{s\in S},(R_e)_{e\in E})$

partitioned into patches V_s , connected by partial matchings $R_e \subseteq V_s \times V_{s'}$ for $e \in E_{ss'}$ compatible with $e \mapsto e^{-1}$

overlap patterns & their realisations

bastelbogen: the abstraction

incidence pattern: sites and links

$$I = (S, E)$$
 multigraph, $E = (E_{ss'}: s, s' \in S)$

with involutive edge reversal $e \in \mathsf{E}_{ss'} \longmapsto e^{-1} \in \mathsf{E}_{s's}$

I-graph: local overlap pattern

$$\mathsf{H} = (\mathsf{V}, (\mathsf{V}_s)_{s \in \mathsf{S}}, (\mathsf{R}_e)_{e \in \mathsf{E}})$$

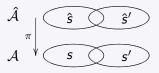
partitioned into patches V_s , connected by partial matchings $R_e \subseteq V_s \times V_{s'}$ for $e \in E_{ss'}$ compatible with $e \mapsto e^{-1}$

realisation: global realisation of local specification $\hat{\mathcal{A}} = (\hat{\mathbf{A}}, \hat{\mathbf{S}})$ hypergraph, with projection $\pi : \hat{\mathbf{S}} \longrightarrow \mathbf{S}$ and local bijections $\pi_{\hat{\mathbf{s}}} : \hat{\mathbf{s}} \longrightarrow V_{\pi(\hat{\mathbf{s}})}$ realising matchings as overlaps

example 1: hypergraph coverings

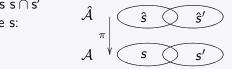
bisimilar covering: $\pi : \hat{\mathcal{A}} \to \mathcal{A}$ of hypergraph $\mathcal{A} = (A, S)$ by hypergraph $\hat{\mathcal{A}} = (\hat{A}, \hat{S})$ (forth): π is a homomorphism mapping hyperedges $\hat{s} \in \hat{S}$ bijectively onto hyperedges $\pi(\hat{s}) = s \in S$

(back): π lifts overlaps $s \cap s'$ to any \hat{s} above s:



example 1: hypergraph coverings

bisimilar covering: $\pi : \hat{\mathcal{A}} \to \mathcal{A}$ of hypergraph $\mathcal{A} = (A, S)$ by hypergraph $\hat{\mathcal{A}} = (\hat{A}, \hat{S})$ (forth): π is a homomorphism mapping hyperedges $\hat{s} \in \hat{S}$ bijectively onto hyperedges $\pi(\hat{s}) = s \in S$

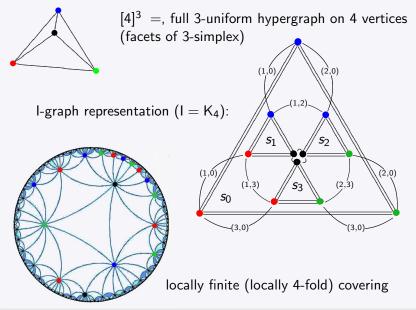


(back): π lifts overlaps s \cap s' to any \hat{s} above s:

realisations of an overlap specification based on $I(\mathcal{A}) := (S, E), E = \{(s, s') : s \neq s', s \cap s' \neq \emptyset\}$ and specification of \mathcal{A} as I-graph

issues: degrees of acyclicity, saturation and symmetry

example



example 2: realisation of GF-types

implicit specification of complete GF-theory

 → abstract specification of overlap pattern of guarded tuples/substructures

find models as realisations of overlap pattern that avoid local inconsistencies (by avoiding short cycles)

issues: acyclicity-, saturation- & symmetry properties

example 3: extension of partial isomorphisms

Hrushovski-Herwig-Lascar EPPA

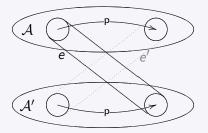
for finite relational structure $\mathcal{A} = (A, \mathbf{R})$ and $p \in Part(\mathcal{A}, \mathcal{A})$ find *finite* extension $\mathcal{B} \supseteq \mathcal{A}$ such that p extends to $\check{p} \in Aut(\mathcal{B})$

example 3: extension of partial isomorphisms

Hrushovski-Herwig-Lascar EPPA

for finite relational structure $\mathcal{A} = (A, \mathbf{R})$ and $p \in Part(\mathcal{A}, \mathcal{A})$ find *finite* extension $\mathcal{B} \supseteq \mathcal{A}$ such that p extends to $\check{p} \in Aut(\mathcal{B})$

use overlap pattern between copies $\mathcal{A}, \mathcal{A}'$ and glueing of dom(p) $\subseteq A, A'$ and image(p) $\subseteq A', A$



symmetry & acyclicity properties at stake!

- graph/hypergraph coverings
- (reduced) products with groups/groupoids
- degrees of acyclicity in products with groups/groupoids without short coset cycles
- genericity and symmetries of these constructions

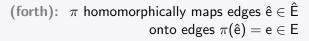
symmetries of coverings $\pi \colon \hat{\mathcal{A}} \longrightarrow \mathcal{A}$ are of two kinds

- vertical: fibre-preserving symmetries relating $\hat{s}_1, \hat{s}_2 \in \pi^{-1}(s)$.
- horizontal: lifting symmetries of base/specification

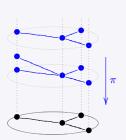
natural/generic coverings should provide both!

graph covering $\pi : \hat{\mathcal{A}} \to \mathcal{A}$

of graph $\mathcal{A}=(\mathsf{A},\mathsf{E})$ by graph $\hat{\mathcal{A}}=(\hat{\mathsf{A}},\hat{\mathsf{E}})$



(back): π lifts every edge e incident at $a \in A$ to any $\hat{a} \in \pi^{-1}(a)$ above a

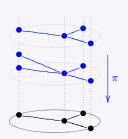


graph covering $\pi \colon \hat{\mathcal{A}} \to \mathcal{A}$

of graph $\mathcal{A}=(\mathsf{A},\mathsf{E})$ by graph $\hat{\mathcal{A}}=(\hat{\mathsf{A}},\hat{\mathsf{E}})$

(forth): π homomorphically maps edges $\hat{e} \in \hat{E}$ onto edges $\pi(\hat{e}) = e \in E$

(back): π lifts every edge e incident at $a \in A$ to any $\hat{a} \in \pi^{-1}(a)$ above a



thm O 2002

for finite graph $\mathcal{A} = (\mathsf{A}, \mathsf{E})$ and $\mathsf{N} \in \mathbb{N}$ find finite coverings $\pi : \hat{\mathcal{A}} \longrightarrow \mathcal{A}$ such that

- $\hat{\mathcal{A}}$ is N-acyclic (no cycles up to length N)
- π preserves incidence degrees (an unbranched covering)
- full symmetry is achieved (generic product construction)

Cayley groups of large girth

Cayley group & graph:

group $\mathbb{G}=\mathbb{G}[\mathsf{E}]=(\mathsf{G},\,\cdot\,,1)$ with finite set E of generators $e\in\mathsf{E}$

E-edge-coloured graph with edge relations

 $\mathsf{R}_e = \{(g,g {\cdot} e) \colon g \in \mathsf{G}\} \text{ for } e \in \mathsf{E}$

girth: minimal length of generator cycle $e_1 \cdots e_n = 1$

Cayley groups of large girth

Cayley group & graph:

group $\mathbb{G} = \mathbb{G}[\mathsf{E}] = (\mathsf{G}, \cdot, 1)$ with finite set E of generators $e \in \mathsf{E}$ E-edge-coloured graph with edge relations $\mathsf{R}_e = \{(g, g \cdot e) \colon g \in \mathsf{G}\}$ for $e \in \mathsf{E}$

girth: minimal length of generator cycle $e_1 \cdots e_n = 1$

generic construction idea (Alon-Biggs):

obtain \mathbb{G} as $\langle \pi_e \colon e \in \mathsf{E} \rangle \subseteq \mathsf{Sym}(\mathsf{V})$ for permutations π_e on E-edge-coloured graph $\mathsf{H} = (\mathsf{V}, (\mathsf{R}_e)_{e \in \mathsf{E}})$

Cayley groups of large girth

Cayley group & graph:

group $\mathbb{G} = \mathbb{G}[\mathsf{E}] = (\mathsf{G}, \cdot, 1)$ with finite set E of generators $e \in \mathsf{E}$ E-edge-coloured graph with edge relations $\mathsf{R}_e = \{(g, g \cdot e) \colon g \in \mathsf{G}\}$ for $e \in \mathsf{E}$

girth: minimal length of generator cycle $e_1 \cdots e_n = 1$

generic construction idea (Alon–Biggs): obtain \mathbb{G} as $\langle \pi_e : e \in \mathsf{E} \rangle \subseteq \mathsf{Sym}(\mathsf{V})$ for permutations π_e

on E-edge-coloured graph $H = (V, (R_e)_{e \in E})$

boosting girth (minimal sequence of π_e generating id_V): eliminate short cycles through embedded acyclic traces in H

direct (synchronous) products

between $\mathcal{A} = (\mathsf{A},\mathsf{E})$ and Cayley groups $\mathbb{G}[\mathsf{E}]$

$$\mathcal{A} \otimes \mathbb{G} = (\hat{A}, \hat{E}) =: \begin{cases} \hat{A} = A \times G\\ \hat{E} \text{ lifting } e = (a, a') \in E\\ \text{to } ((a, g), (a', g \cdot e)) \in \hat{E} \end{cases}$$

provide unbranched coverings $\pi: \mathcal{A} \otimes \mathbb{G} \longrightarrow \mathcal{A}$

- N-acyclic if girth(G) > N
- $\bullet\,$ with all desirable symmetries for the right $\mathbb G$

more than large girth: no short coset cycles

and one step towards hyperedeges

thm O 2010

obtain Cayley groups that are N-acyclic in the stronger sense of not admitting $coset \ cycles$ of length up to N

more than large girth: no short coset cycles

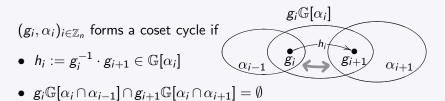
and one step towards hyperedeges

thm O 2010

obtain Cayley groups that are N-acyclic in the stronger sense of not admitting coset cycles of length up to N $\,$

coset cycles:

 $\label{eq:G} \begin{array}{l} \text{in } \mathbb{G} = \mathbb{G}[\mathsf{E}] \text{ consider subgroups } \mathbb{G}[\alpha] \text{ generated by } \alpha \subseteq \mathsf{E} \\ \\ \textbf{coset } \mathbf{g}\mathbb{G}[\alpha] \iff \alpha \text{-component of } \mathbf{g} \end{array}$

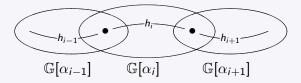


Cayley groups without short coset cycles

method: Biggs & amalgamation

inductively eliminate short coset cycles in $\mathbb{G}[\alpha]$ for larger α

induction step: $\mathbb{G} \rightsquigarrow \mathbb{G}' := \langle \pi_e \colon e \in E \rangle \subseteq Sym(V)$ in E-edge coloured graph containing amalgamated chains of small cosets 'small coset cycles' unfolded



useful in hypergraph transformations (JACM 2012) but not a stand-alone method for covers

finally to hypergraphs

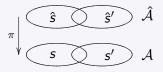
with hypergraph $\mathcal{A} = (A, S)$ associate incidence pattern: $I(\mathcal{A}) = (S, E)$ $E = \{(s, s'): s \neq s', s \cap s' \neq \emptyset\}$ Gaifman graph: $G(\mathcal{A}) = (A, R)$ $R = \{(a, a'): a \neq a'; a, a' \in s \text{ for some } s \in S\}$

hyperedges ~> cliques

finally to hypergraphs

with hypergraph $\mathcal{A} = (A, S)$ associate incidence pattern: $I(\mathcal{A}) = (S, E)$ $E = \{(s, s'): s \neq s', s \cap s' \neq \emptyset\}$ Gaifman graph: $G(\mathcal{A}) = (A, R)$ $R = \{(a, a'): a \neq a'; a, a' \in s \text{ for some } s \in S\}$ hyperedges \rightsquigarrow cliques

recall that a covering $\pi: \hat{\mathcal{A}} \to \mathcal{A}$ is a homomorphism with *back*-property w.r.t. overlaps (lifting)



issue: degrees of acyclicity

hypergraph acyclicity

equivalent for finite $\mathcal{A} = (A, S)$:

- $\mathcal A$ has tree decomposition with bag set S
- \mathcal{A} dissolvable through retractions
- A conformal & chordal

conformal: every clique in G(A) induced by individual $s \in S$ **chordal:** every cycle in G(A) of length > 3 has a chord

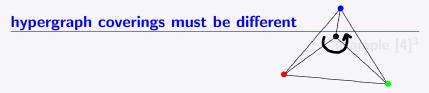
approximation: N-acyclicity (N-conformality & N-chordality) guarantees acyclicity of induced sub-hypergraphs of size $\leq N$

hypergraph acyclicity

equivalent for finite $\mathcal{A} = (A, S)$:

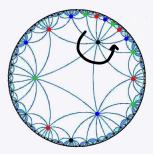
- ${\mathcal A}$ has tree decomposition with bag set ${\mathcal S}$
- \mathcal{A} dissolvable through retractions
- A conformal & chordal

conformal: every clique in G(A) induced by individual $s \in S$ **chordal:** every cycle in G(A) of length > 3 has a chord



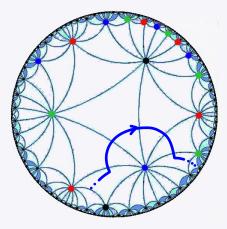
• non-trivial covers cannot preserve incidence degrees

 \longrightarrow no unbranched coverings



• acyclicity not robust under passage to weak substructures \longrightarrow need to look to groupoids rather than groups

why coset cycles may matter



why groupoids are more appropriate

Cayley graphs of groups $\mathbb{G}[E]$ may be too homogeneous: every generator available at every point rather than just the necessary transitions/extensions

incidence pattern $I = (S, E) = (S, (E_{ss'}))$ specifies which transitions are required locally

I-groupoid
$$\mathbb{G} = (\mathsf{G}, (\mathsf{G}_{\mathsf{st}}), \, \cdot \, , \, (\lambda_{\mathsf{s}}), \, ^{-1})$$

has sort-sensitive groupoidal operation $G_{st} \times G_{tu} \longrightarrow G_{su}$, neutral elements λ_s , and inverses $g^{-1} \in G_{ts}$ for $g \in G_{st}$

$$\begin{split} \mathbb{G}[\textbf{E}] \text{: generated by groupoid elements } e \in \mathsf{G}_{ss'} \text{ for } e \in \mathsf{E}_{ss'} \\ & \rightsquigarrow \text{ homomorphism of I-paths } s \xrightarrow{e_1} \cdots \xrightarrow{e_k} t \\ & \text{ onto groupoid elements } e_1 \cdots e_k \in \mathsf{G}_{st} \end{split}$$

N-acyclic Cayley groupoids

... inductive process for generating l-groupoids without short coset cycles from amalgamated chains yields

thm O 2012

for any $I = (S, (E_{ss'}))$ and for any $N \in \mathbb{N}$, there are finite I-groupoids $\mathbb{G}[E]$ without coset cycles of length up to N

can serve as generic factors for construction of hypergraphs with specified overlap pattern

reduced products $\mathcal{A} \otimes \mathbb{G}$, $H \otimes \mathbb{G}$, ...

simple idea:

start from disjoint union of copies of hyperedges associated with $s \in S$ indexed by elements $g \in G_{*s} \subseteq \mathbb{G}$

a direct product

reduce to quotient w.r.t. equivalence \approx induced by local identifications R_e/ρ_e

reduced products $\mathcal{A} \otimes \mathbb{G}$, $H \otimes \mathbb{G}$, ...

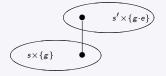
simple idea:

start from disjoint union of copies of hyperedges associated with $s \in S$ indexed by elements $g \in G_{*s} \subseteq \mathbb{G}$

a direct product

reduce to quotient w.r.t. equivalence \approx induced by local identifications ${\rm R}_e/\rho_e$

e.g., for
$$e = (s, s') \in E$$
 in $I(\mathcal{A})$:
 $(a,g) \approx (a,g \cdot e)$ for $a \in s \cap s'$



reduced products $\mathcal{A} \otimes \mathbb{G}$, $H \otimes \mathbb{G}$, ...

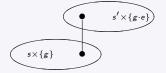
simple idea:

start from disjoint union of copies of hyperedges associated with $s \in S$ indexed by elements $g \in G_{*s} \subseteq \mathbb{G}$

a direct product

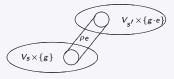
reduce to quotient w.r.t. equivalence \approx induced by local identifications ${\rm R}_e/\rho_e$

e.g., for
$$e = (s, s') \in E$$
 in $I(\mathcal{A})$:
 $(a,g) \approx (a,g \cdot e)$ for $a \in s \cap s'$



e.g., for
$$e \in E_{ss'}$$

and R_e/ρ_e of $H = (V, (V_s), (R_e))$:
 $(v, g) \approx (v', g \cdot e)$ if $\rho_e(v) = v'$



acyclicity in reduced products

lemma (e.g. for coverings)

for hypergraph \mathcal{A} and I-groupoid \mathbb{G} , where I = I(\mathcal{A}):

- $\pi: \mathcal{A} \otimes \mathbb{G} \longrightarrow \mathcal{A}$ is a covering;
- if $\mathbb G$ has no coset cycles of length up to N, then $\mathcal A\otimes \mathbb G$ is N-acyclic
- by construction, $\mathcal{A}\otimes \mathbb{G}$ has full vertical symmetry
- if $\mathbb G$ is I-symmetric, then $\mathcal A\otimes \mathbb G$ lifts all symmetries of $\mathcal A$

acyclicity in reduced products

lemma (e.g. for coverings)

for hypergraph \mathcal{A} and I-groupoid \mathbb{G} , where I = I(\mathcal{A}):

- $\pi: \mathcal{A} \otimes \mathbb{G} \longrightarrow \mathcal{A}$ is a covering;
- if $\mathbb G$ has no coset cycles of length up to N, then $\mathcal A\otimes \mathbb G$ is N-acyclic
- by construction, $\mathcal{A}\otimes \mathbb{G}$ has full vertical symmetry
- if $\mathbb G$ is I-symmetric, then $\mathcal A\otimes \mathbb G$ lifts all symmetries of $\mathcal A$

(a,g) is identified, via \approx , precisely with (a,g')in layers $g' \in g\mathbb{G}[\alpha_a]$, where $\alpha_a = \{(s,s') \colon a \in s \cap s'\}$

— this is why coset cycles matter for acyclicity

further applications of these reduced products

... finite symmetric realisations for specifications of overlap patterns and GF-types, and a new route to

Herwig–Lascar EPPA

construct finite extensions of finite relational \mathcal{A} that extend specified partial isomorphisms of \mathcal{A} to full automorphisms

strengthening: fmp within class $\ensuremath{\mathcal{C}}$ with finitely many forbidden homomorphisms

further applications of these reduced products

... finite symmetric realisations for specifications of overlap patterns and GF-types, and a new route to

Herwig–Lascar EPPA

construct finite extensions of finite relational \mathcal{A} that extend specified partial isomorphisms of \mathcal{A} to full automorphisms

strengthening: fmp within class $\ensuremath{\mathcal{C}}$ with finitely many forbidden homomorphisms

obtain hypergraph with copies of ${\mathcal A}$ as hyperedges

- $\bullet\,$ realisation of local identifications between copies of ${\cal A}\,$
- desired automorphisms arise as symmetries w.r.t. specification

