a basic model-theoretic concern in varied (modal) settings

Martin Otto

TU Darmstadt

#### generic setting:

want concrete & effective syntax for

some class of structural properties

generic setting:

want concrete & effective syntax for

some class of structural properties presented in semantic terms

æ

ヘロン 人間 とくほど くほとう

#### generic setting:

want concrete & effective syntax for

some class of structural properties presented in semantic terms

as a semantic subclass of some given syntactic background class

・ロン ・四 と ・ ヨ と ・ ヨ と

#### generic setting:

want concrete & effective syntax for

some class of structural properties presented in semantic terms

as a semantic subclass of some given syntactic background class

#### examples:

 FO-properties preserved under extensions; corresponding to ∃\*-FO ⊆ FO (Łos–Tarski)

#### generic setting:

want concrete & effective syntax for

some class of structural properties presented in semantic terms

as a semantic subclass of some given syntactic background class

#### examples:

- FO-properties preserved under extensions; corresponding to ∃\*-FO ⊆ FO (Łos–Tarski)
- FO-properties preserved under bisimulation; corresponding to ML ⊆ FO (van Benthem)

$$\rm FO/{\sim}\equiv \rm ML$$

・ロト ・日本 ・ヨト ・ヨト

#### generic setting:

want concrete & effective syntax for

some class of structural properties presented in semantic terms

as a semantic subclass of some given syntactic background class

#### remarks:

• not to be confused with deductive completeness as familiar from modal correspondence theory

・ロン ・四 と ・ ヨ と ・ ヨ と

#### generic setting:

want concrete & effective syntax for

some class of structural properties presented in semantic terms

as a semantic subclass of some given syntactic background class

#### remarks:

• undecidability vs. effective syntax (!)

・ロン ・日本 ・モン・・モン・

#### motivation – from classical model theory

- correspondences between semantic and syntactic features universal algebra + logic
- the non-trivial parts of classical 'preservation theorems'
- usefull syntactic normal forms
- logical transfer phenomena ( $\rightarrow$  upgrading, below)

## motivation – from classical model theory

- correspondences between semantic and syntactic features universal algebra + logic
- the non-trivial parts of classical 'preservation theorems'
- usefull syntactic normal forms
- logical transfer phenomena ( $\rightarrow$  upgrading, below)

#### some classical preservation theorems:

pres. in hom. images — positive FO pres. under homs — positive-existential FO (Lyndon–Tarski) pres. in extensions — ∃\*-FO (Łos–Tarski) monotonicity — positivity

## (A) same motivation — fewer positive results

classical expressive completeness proofs invariably fail

## (A) same motivation — fewer positive results

classical expressive completeness results typically fail some survive – with new proofs that give new insights

#### (A) same motivation — fewer positive results

classical expressive completeness results typically fail some survive – with new proofs that give new insights

• Łos-Tarski thm fails in fmt (Tait, Gurevich)

## (A) same motivation — fewer positive results

classical expressive completeness results typically fail some survive – with new proofs that give new insights

- Łos-Tarski thm fails in fmt (Tait, Gurevich)
- Lyndon-Tarski thm true in fmt (Rossman'08) with new proof & new bounds (!)

## (A) same motivation — fewer positive results

classical expressive completeness results typically fail some survive – with new proofs that give new insights

- Łos-Tarski thm fails in fmt (Tait, Gurevich)
- Lyndon-Tarski thm true in fmt (Rossman'08) with new proof & new bounds (!)
- van Benthem's thm true in fmt (Rosen'97) with new proofs & new bounds (→ below)

## (A) same motivation — fewer positive results

classical expressive completeness results typically fail some survive – with new proofs that give new insights

- Łos-Tarski thm fails in fmt (Tait, Gurevich)
- Lyndon-Tarski thm true in fmt (Rossman'08) with new proof & new bounds (!)
- van Benthem's thm true in fmt (Rosen'97) with new proofs & new bounds (→ below)

#### (B) new motivation & ramifications

- other classes of interest besides 'just finite'
- complexity as another semantic constraint

#### motivation - from modal model theory

#### a different sense of correspondence

variation of the underlying class of frames/models familiar from classical modal correspondence theory

æ

ヘロン 人間 とくほど くほとう

#### motivation – from modal model theory

#### a different sense of correspondence

variation of the underlying class of frames/models familiar from classical modal correspondence theory

 $\longrightarrow$  a clear sense of natural, restricted classes of models/frames varying the domain of (model-theoretic) discourse

ヘロン 人間 とくほど くほとう

#### motivation - from modal model theory

#### a different sense of correspondence

variation of the underlying class of frames/models familiar from classical modal correspondence theory

 $\longrightarrow$  a clear sense of natural, restricted classes of models/frames varying the domain of (model-theoretic) discourse

rather than sticking with basic modal logic ML as the (syntactic) background logic, can look at

semantic criterion of bisimulation invariance over specific classes of frames/models

・ロト ・日ト ・ヨト ・ヨト

#### complexity is a semantic constraint

e.g., the class of all Ptime recognisable properties of finite structures (!)

#### complexity is a semantic constraint

e.g., the class of all Ptime recognisable properties of finite structures (!)

• a priori a *semantic class* in the sense of complexity theory why?

#### complexity is a semantic constraint

e.g., the class of all Ptime recognisable properties of finite structures (!)

• a priori a *semantic class* in the sense of complexity theory because of the hidden condition of ≃-closure

#### complexity is a semantic constraint

e.g., the class of all Ptime recognisable properties of finite structures (!)

- a priori a *semantic class* in the sense of complexity theory because of the hidden condition of ≃-closure
- not known to possess a syntactic characterisation the long-open logic-for-Ptime issue

finding a logic for Ptime is an expressive completeness issue

#### complexity is a semantic constraint

e.g., the class of all Ptime recognisable properties of finite structures (!)

- a priori a *semantic class* in the sense of complexity theory because of the hidden condition of ≃-closure
- not known to possess a syntactic characterisation the long-open logic-for-Ptime issue

## finding a logic for Ptime is an expressive completeness issue

remark: natural positive solution for Ptime *properties of linearly ordered finite structures:* least fixed-point logic LFP (Immermann, Vardi)

#### complexity is a semantic constraint

e.g., the class of all Ptime recognisable properties of finite structures (!)

- a priori a *semantic class* in the sense of complexity theory because of the hidden condition of ≃-closure
- not known to possess a syntactic characterisation the long-open logic-for-Ptime issue

finding a logic for Ptime is an expressive completeness issue

remark: natural positive solution for Ptime *properties of linearly observed finite structures:* least fixed-point logic LFP (Immermann, Vardi)

(日) (종) (종) (종) (종)

## plan

- model-theoretic upgrading & model constructions
- specific constructions/issues in the modal setting
- specific constructions/issues in the guarded setting
- on descriptive complexity in these settings

・ロト ・日ト ・ヨト ・ヨト

#### a general line

## classical lemma (based on compactness)

for fragment  $L \subseteq FO$  (closed under  $\land, \lor$ ) and  $\varphi \in FO$  t.f.a.e.

- $\bullet \ \varphi \equiv \varphi' \in L$
- $\varphi$  preserved under *L*-transfer,  $\Rightarrow_L$

(ロ) (同) (E) (E) (E) (O)(O)

## a general line

## classical lemma (based on compactness)

for fragment  $L \subseteq FO$  (closed under  $\land, \lor$ ) and  $\varphi \in FO$  t.f.a.e.

- $\bullet \ \varphi \equiv \varphi' \in L$
- $\varphi$  preserved under *L*-transfer,  $\Rightarrow_L$

#### non-classical substitute (based on Ehrenfeucht-Fraïssé)

for natural fragments 
$$L \subseteq FO$$
  
can typically replace  $\Rightarrow_L$   
by finite index approximants  $\Rightarrow_L^{\ell}$   
for some  $\ell \in \mathbb{N}$  (which  $\ell = \ell(\varphi)$ ? extra insight:  $\varphi' \in L^{\ell}$ )

伺 ト イヨト イヨト

the technical key to expressive completeness results

## upgrading example:

the technical key to expressive completeness results

## upgrading example:

Łos-Tarski thm

ヘロン 人間 とくほど くほとう

 $\begin{array}{l} \mbox{for } \varphi \in {\sf FO}, \mbox{ equivalence of } \\ \varphi \mbox{ pres. under extensions } \\ \varphi \mbox{ pres. under } \exists^*\mbox{-transfer}, \Rightarrow_\exists \\ \varphi \mbox{ formalisable in } \exists^*\mbox{-}{\sf FO} \end{array}$ 

the technical key to expressive completeness results

## upgrading example:

Łos–Tarski thm

for 
$$\varphi \in \text{FO}$$
, equivalence of   
 $\begin{cases} \varphi \text{ pres. under extensions} & \bullet \\ \varphi \text{ pres. under } \exists^*\text{-transfer, } \Rightarrow_{\exists} & \bullet \\ \varphi \text{ formalisable in } \exists^*\text{-FO} \end{cases}$ 

crux: if  $\varphi \in \mathsf{FO}$  is preserved under extensions,

then  $\mathfrak{A} \Rightarrow_{\exists} \mathfrak{B}$  implies  $\mathfrak{A} \Rightarrow_{\varphi} \mathfrak{B}$ 

the technical key to expressive completeness results

## upgrading example:

Łos–Tarski thm

for 
$$\varphi \in \text{FO}$$
, equivalence of   
 $\begin{cases} \varphi \text{ pres. under extensions} & \bullet \\ \varphi \text{ pres. under } \exists^*\text{-transfer}, \Rightarrow_{\exists} & \bullet \\ \varphi \text{ formalisable in } \exists^*\text{-FO} \end{cases}$ 

crux: if  $\varphi \in \mathsf{FO}$  is preserved under extensions,

then  $\mathfrak{A} \Rightarrow_{\exists} \mathfrak{B}$  implies  $\mathfrak{A} \Rightarrow_{\varphi} \mathfrak{B}$ 

compactness argument yields this upgrading:



・ロン ・団 と ・ ヨ と ・ ヨ と

the technical key to expressive completeness results

## upgrading example:

van Benthem's thm

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・

- $\begin{array}{l} \mbox{for } \varphi \in {\sf FO}, \mbox{ equivalence of } \\ \varphi \mbox{ pres. under bisimulation } \bullet \\ \varphi \mbox{ pres. under ML-transfer } \bullet \\ \varphi \mbox{ formalisable in ML } \end{array}$

the technical key to expressive completeness results

## upgrading example:

van Benthem's thm

- $\begin{array}{l} \mbox{for } \varphi \in {\sf FO}, \mbox{ equivalence of } \\ \varphi \mbox{ pres. under bisimulation } \bullet \\ \varphi \mbox{ pres. under ML-transfer } \bullet \\ \varphi \mbox{ formalisable in ML } \end{array}$

crux: if  $\varphi \in \mathsf{FO}$  is preserved under bisimulation,

then  $\mathfrak{A} \equiv_{\mathsf{ML}} \mathfrak{B}$  implies  $\mathfrak{A} \equiv_{\varphi} \mathfrak{B}$ 

the technical key to expressive completeness results

## upgrading example:

van Benthem's thm

 $\begin{array}{l} \mbox{for } \varphi \in {\sf FO}, \mbox{ equivalence of } \end{array} \begin{cases} \varphi \mbox{ pres. under bisimulation } \bullet \\ \varphi \mbox{ pres. under ML-transfer } \bullet \\ \varphi \mbox{ formalisable in ML} \end{cases}$ 

crux: if  $\varphi \in \mathsf{FO}$  is preserved under bisimulation,

 $\mathsf{then} \ \boxed{\mathfrak{A} \equiv_{\mathsf{ML}} \mathfrak{B}} \ \mathsf{implies} \ \ \mathfrak{A} \equiv_{\varphi} \mathfrak{B}$ 

compactness argument (e.g. modal saturation) yields this upgrading:



・ロト ・日ト ・ヨト ・ヨト

the technical key to expressive completeness results

upgrading example:

van Benthem-Rosen thm, recast
the technical key to expressive completeness results

#### upgrading example:

van Benthem-Rosen thm, recast

ヘロン 人間 とくほど くほとう

 $\begin{array}{l} \mbox{for } \varphi \in {\sf FO}, \mbox{ equivalence of } \\ \varphi \mbox{ pres. under bisimulation} \\ \varphi \mbox{ pres. under } \sim^\ell \mbox{ for some } \ell \\ \varphi \mbox{ expressible in } {\sf ML} \end{array}$ 

the technical key to expressive completeness results

#### upgrading example:

van Benthem-Rosen thm, recast

 $\begin{array}{l} \text{for } \varphi \in \mathsf{FO}, \text{ equivalence of} \\ \begin{cases} \varphi \text{ pres. under bisimulation} & \bullet \\ \varphi \text{ pres. under } \sim^{\ell} \text{ for } \ell = 2^{\operatorname{qr}(\varphi)} \\ \varphi \text{ expressible in } \mathsf{ML}^{\ell} \text{ for } \ell = 2^{\operatorname{qr}(\varphi)} \end{cases}$ 

the technical key to expressive completeness results

#### upgrading example:

van Benthem-Rosen thm, recast

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・

 $\begin{array}{l} \text{for } \varphi \in \mathsf{FO} \text{, equivalence of} \quad \left\{ \begin{matrix} \varphi \text{ pres. under bisimulation} & \bullet \\ \varphi \text{ pres. under } \sim^\ell \text{ for } \ell = 2^{\mathrm{qr}(\varphi)} \end{matrix} \right. \\ \varphi \text{ expressible in } \mathsf{ML}^\ell \text{ for } \ell = 2^{\mathrm{qr}(\varphi)} \end{array}$ 

crux: if 
$$\varphi \in \mathsf{FO}$$
 is preserved under bisimulation,  
then  $\mathfrak{A} \sim^{\ell} \mathfrak{B}$  implies  $\mathfrak{A} \equiv_{\varphi} \mathfrak{B}$  for  $\ell = 2^{\operatorname{qr}(\varphi)}$ 

the technical key to expressive completeness results

upgrading example:

van Benthem-Rosen thm, recast

 $\begin{array}{l} \mbox{for } \varphi \in \mbox{FO}, \mbox{ equivalence of } \end{array} \left\{ \begin{array}{l} \varphi \mbox{ pres. under bisimulation } \bullet \\ \varphi \mbox{ pres. under } \sim^{\ell} \mbox{ for } \ell = 2^{qr(\varphi)} \end{array} \right. \\ \varphi \mbox{ expressible in } \mbox{ML}^{\ell} \mbox{ for } \ell = 2^{qr(\varphi)} \end{array} \right.$ 

crux: if  $\varphi \in FO$  is preserved under bisimulation,

 $\begin{array}{c|c} \mathsf{then} & \mathfrak{A} \sim^{\ell} \mathfrak{B} & \mathsf{implies} & \mathfrak{A} \equiv_{\varphi} \mathfrak{B} \\ \end{array} \quad \text{for } \ell = 2^{\mathrm{qr}(\varphi)} \\ \end{array}$ 

game argument and model construction provides this upgrading, **classically and fmt**:



(ロ) (同) (E) (E) (E)

the technical key to expressive completeness results

upgrading example:

van Benthem-Rosen thm, recast

 $\begin{array}{l} \text{for } \varphi \in \mathsf{FO}, \text{ equivalence of} \\ \begin{cases} \varphi \text{ pres. under bisimulation} \\ \varphi \text{ pres. under } \sim^{\ell} \text{ for } \ell = 2^{\mathrm{qr}(\varphi)} \\ \varphi \text{ expressible in } \mathsf{ML}^{\ell} \text{ for } \ell = 2^{\mathrm{qr}(\varphi)} \end{cases}$ 

crux: if  $\varphi \in FO$  is preserved under bisimulation, then  $\mathfrak{A} \sim^{\ell} \mathfrak{B}$  implies  $\mathfrak{A} \equiv_{\varphi} \mathfrak{B}$  for  $\ell = 2^{\operatorname{qr}(\varphi)}$ 



#### modal logic

Kripke structures: coloured **graphs** 

modal bisimulation: graph bisimulation

 $\rightarrow$  classically: tree unfolding, **tree models** 

#### guarded logic

relational structures: coloured **hypergraphs** 

#### guarded bisimulation: hypergraph bisimulation

 $\rightarrow$  classically: guarded tree unfolding acyclic hypergraph models

ヘロン 人間 とくほど くほとう

크

#### modal logic

Kripke structures: coloured **graphs** 

modal bisimulation: graph bisimulation

 $\rightarrow$  classically: tree unfolding, **tree models** 

## guarded logic

relational structures: coloured **hypergraphs** 

#### guarded bisimulation: hypergraph bisimulation

 $\rightarrow$  classically: guarded tree unfolding acyclic hypergraph models

modal model theory = model theory of
 bisimulation invariance
guarded model theory = model theory of
 guarded bisimulation invariance

AiML 2010

## modal logic

Kripke structures: coloured **graphs** 

modal bisimulation: graph bisimulation

 $\rightarrow$  classically: tree unfolding, **77** tree models

## guarded logic

relational structures: coloured **hypergraphs** 

guarded bisimulation: hypergraph bisimulation

→ classically: guarded tree unfolding acyclic hypergraph models

modal model theory = model theory of
 bisimulation invariance
guarded model theory = model theory of
 guarded bisimulation invariance

AiML 2010

#### specific model constructions for upgrading

#### the classical modal example

for van Benthem-Rosen, it suffices to show:

 $\varphi(x) \in \mathsf{FO} \sim -\mathsf{inv.} \Rightarrow \varphi \ \ell \text{-local for } \ell = 2^{\operatorname{qr}(\varphi)} \ (\mathsf{hence} \sim^{\ell} \text{-inv.})$ 

## specific model constructions for upgrading

#### the classical modal example

for van Benthem-Rosen, it suffices to show:

$$\varphi(x) \in \mathsf{FO} \sim\operatorname{-inv.} \Rightarrow \varphi \ \ell\operatorname{-local}$$
 for  $\ell = 2^{\operatorname{qr}(\varphi)}$  (hence  $\sim^{\ell}\operatorname{-inv.}$ )

ightarrow analysis of q-round Ehrenfeucht–Fraïssé game for  $q=\mathrm{qr}(arphi)$  on



versus



## specific model constructions for upgrading

#### the classical modal example

for van Benthem-Rosen, it suffices to show:

$$\varphi(x) \in \mathsf{FO} \sim\operatorname{-inv.} \Rightarrow \varphi \ \ell\operatorname{-local}$$
 for  $\ell = 2^{\operatorname{qr}(\varphi)}$  (hence  $\sim^{\ell}\operatorname{-inv.}$ )

ightarrow analysis of q-round Ehrenfeucht–Fraïssé game for  $q= ext{qr}(arphi)$  on



FM

## the modal and guarded worlds

#### modal logic

Kripke structures: coloured graphs modal bisimulation: graph bisimulation

 $\rightarrow$  classically: tree unfolding, tree models

## guarded logic

relational structures: coloured **hypergraphs** guarded bisimulation: **hypergraph bisimulation** → classically: guarded tree unfolding **acyclic hypergraph models** 

# acyclicity in (graph) covers

for upgrading  $\sim^{\ell}$  (and its variants) to  $\equiv_q$ 

more generally need { uniform degree of **local acyclicity** & finite saturation w.r.t. multiplicities

modularity of FO Ehrenfeucht–Fraïssé game (locality of FO) then guarantees upgrading

# acyclicity in (graph) covers

for upgrading  $\sim^{\ell}$  (and its variants) to  $\equiv_q$ 

more generally need { uniform degree of **local acyclicity** & finite saturation w.r.t. multiplicities

modularity of FO Ehrenfeucht–Fraïssé game (locality of FO) then guarantees upgrading

local acyclicity = 'local uncluttering'

local normalisation up to  $\sim$  replacing (infinite) tree unfolding

**question:** does every finite Kripke structure possess a finite bisimilar companion without any short undirected cycles?

(ロ) (部) (注) (注) (注) (の)

#### acyclicity in finite bisimilar graph covers

# bisimilar cover $\pi: \hat{\mathfrak{A}} \xrightarrow{\sim} \mathfrak{A}:$

homomorphism with the *back*-property

- = bisimulation induced by a function/projection
- = bounded morphism
- bisimilar tree-unfoldings provide acyclic covers
- if  $\mathfrak{A}$  has cycles, then any *acyclic cover* is infinite

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・

#### acyclicity in finite bisimilar graph covers

bisimilar cover  $\pi: \hat{\mathfrak{A}} \xrightarrow{\sim} \mathfrak{A}:$ 

homomorphism with the *back*-property

- = bisimulation induced by a function/projection
- = bounded morphism
- bisimilar tree-unfoldings provide acyclic covers
- if  $\mathfrak{A}$  has cycles, then any *acyclic cover* is infinite

#### thm

O\_'04

every finite Kripke structure/frame admits bisimilar covers by finite  $\ell$ -locally acyclic structures/frames

 $\ell$ -local acyclicity: no (undirected) cycles  $\begin{cases} in \ \ell\text{-neighbourhoods}, \\ of \ length \leqslant 2\ell + 1 \end{cases}$ 

(ロ) (同) (E) (E) (E) (O)(O)

#### generic construction in the modal world (graphs)

simple idea: natural product with Cayley group of large girth

given such G with generators  $e \in E^{\mathfrak{A}}$ :

lift edge  $e = (a_1, a_2)$  in  $\mathfrak{A}$ to edges  $\hat{e} = ((a_1, g), (a_2, g \circ e))$ in cover with vertex set  $A \times G$ 



▲ロ▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● のへで

#### generic construction in the modal world (graphs)

simple idea: natural product with Cayley group of large girth

given such G with generators  $e \in E^{\mathfrak{A}}$ :

lift edge  $e = (a_1, a_2)$  in  $\mathfrak{A}$ to edges  $\hat{e} = ((a_1, g), (a_2, g \circ e))$ in cover with vertex set  $A \times G$ 



#### a combinatorial group construction (Biggs)

find finite Cayley groups of large girth for any given finite set E of generators, generated by group action on E-coloured trees

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

#### aside: Cayley groups of large girth

given: set E of involutive generators, bound N on girth (length of shortest cycles)

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・

#### aside: Cayley groups of large girth

given: set E of involutive generators, bound N on girth (length of shortest cycles)

on regularly *E*-coloured tree T of depth *N*,

let  $e \in E$  operate through swaps of nodes in *e*-edges:





イロン イヨン イヨン イヨン

#### aside: Cayley groups of large girth

given: set E of involutive generators, bound N on girth (length of shortest cycles)

on regularly *E*-coloured tree  $\mathbf{T}$  of depth *N*,

let  $e \in E$  operate through swaps of nodes in *e*-edges:

$$\bullet \underbrace{\frac{e}{e}}_{e} \bullet$$



 $G := \langle E \rangle^{Sym(T)} \subseteq Sym(T)$ subgroup generated by the permutations  $e \in E$ 

no short cycles:  $e_1 \circ e_2 \circ \cdots \circ e_k \neq 1$  for  $k \leqslant N$ 

## sample results for FO/ $\sim$ and FO/ $\sim_{\forall}$ , FO/ $\sim_{-,\forall}$

| based on lo                | ocally acyclic c | overs               | O_'04, Dawar–O_'09 |
|----------------------------|------------------|---------------------|--------------------|
| $FO/\sim_* \equiv$         | ML[*]            | all (finite) frames | 5                  |
| ${\sf FO}/{\sim}~\equiv$   | $ML[\forall]$    | (finite) rooted fra | ames               |
| ${\sf FO}/{\sim_*}~\equiv$ | ML[*]            | (finite) equivalen  | ce frames          |

◆□> ◆□> ◆三> ◆三> 三三 のへで

#### sample results for FO/ $\sim$ and FO/ $\sim_{\forall}$ , FO/ $\sim_{-,\forall}$

| based on locally acycli                           | O_'04, Dawar–O_'09 |                |
|---------------------------------------------------|--------------------|----------------|
| $\overline{{\sf FO}/{\sim_*}}~\equiv~{\sf ML}[*]$ | all (finite) f     | rames          |
| ${\sf FO}/{\sim}~\equiv~{\sf ML}[orall]$         | (finite) root      | ed frames      |
| ${\sf FO}/{\sim_*}~\equiv~{\sf ML}[*]$            | (finite) equi      | valence frames |
| based on tree interpre                            | Dawar-O_'09        |                |

 $FO/\sim$   $\equiv$  ML

fall transitive trees, finite irreflexive transitive trees

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

## sample results for FO/ $\sim$ and FO/ $\sim_{\forall}$ , FO/ $\sim_{-,\forall}$

| based on locally acyclic c                                          | O_'04, Dawar–O_'09                                         |                                                          |
|---------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|
| $\overline{\rm FO}/{\sim_*}~\equiv~{\rm ML}[*]$                     | all (finite) fr                                            | rames                                                    |
| ${\sf FO}/{\sim}~\equiv~{\sf ML}[\forall]$                          | (finite) root                                              | ed frames                                                |
| ${\rm FO}/\!\!\sim_*~\equiv~{\rm ML}[*]$                            | (finite) equiv                                             | valence frames                                           |
| based on tree interpretati                                          | ons                                                        | Dawar–O_'09                                              |
| $FO/\sim \equiv ML$                                                 | {all t<br>{finit                                           | ransitive trees,<br>e irreflexive transitive trees       |
| ${\rm FO}/\sim~\equiv~{\rm MSO}/\sim~\equiv~{\rm ML}$               | $[\diamondsuit^*] \begin{cases} finit \\ tran \end{cases}$ | e transitive frames,<br>sitive path-finite frames        |
| for new modality $\diamond^* \begin{cases} n \\ r \\ n \end{cases}$ | ot generally<br>eferring to ty<br>on-trivial in            | ~-safe<br>ypes within E-clusters<br>non-irreflexive case |
|                                                                     |                                                            |                                                          |

Expressive Completeness

AiML 2010

Martin Otto

## modal logic

Kripke structures: coloured **graphs** 

modal bisimulation: graph bisimulation

 $\rightarrow$  classically: tree unfolding, **tree models** 

 $\rightarrow$  for fmt: **locally acyclic covers** 

## guarded logic

relational structures: coloured **hypergraphs** guarded bisimulation:

hypergraph bisimulation
→ classically:

guarded tree unfolding acyclic hypergraph models

?? fmt ??

# from graphs to hypergraphs

・ロン ・日ン ・ヨン ・ヨン

#### hypergraph bisimulation & covers

guarded bisimulation  $\sim_{\rm g}$  (hypergraph bisimulation) the game equivalence for guarded fragment GF

Andreka-van Benthem-Nemeti'98

 $\rm FO/{\sim_g} \equiv \rm GF$ 

thm

#### had been open in fmt since!

## hypergraph bisimulation & covers

guarded bisimulation  $\sim_{\rm g}$  (hypergraph bisimulation) the game equivalence for guarded fragment GF

had been open in fmt since!

# hypergraph cover $\pi : \mathfrak{\hat{A}} \xrightarrow{\sim} \mathfrak{A}$

cover of relational structures (hypergraphs)

- w.r.t. guarded bisimulation (hypergraph bisimulation)
- = homomorphism with the *back*-property
- = guarded bisimulation induced by a function/projection

(ロ) (同) (E) (E) (E) (O)(O)

## acyclicity in finite bisimilar hypergraph covers

example:  $H_4^3$ the full width 3 hypergraph on 4 nodes; = tetrahedron with faces as hyperedges



・ロン ・日ン ・ヨン ・ヨン

크

#### acyclicity in finite bisimilar hypergraph covers

example:  $H_4^3$ the full width 3 hypergraph on 4 nodes; = tetrahedron with faces as hyperedges



(日) (同) (三) (三)

unfolds into acyclic hypergraph, with typical 1-neighbourhood



even 1-locally infinite,

#### acyclicity in finite bisimilar hypergraph covers

example:  $H_4^3$ the full width 3 hypergraph on 4 nodes; = tetrahedron with faces as hyperedges



unfolds into acyclic hypergraph, with typical 1-neighbourhood



even 1-locally infinite,

or into *locally finite* hypergraph without *short* chordless cycles



## how much acyclicity in finite hypergraph covers?

## how much acyclicity in finite hypergraph covers?



every finite hypergraph admits a finite conformal cover

applications: reductions from CGF to GF for fmp Herwig–Lascar–Hrushovski results

・ロン ・日ン ・ヨン ・ヨン

## how much acyclicity in finite hypergraph covers?

every finite hypergraph admits a finite conformal cover

applications: reductions from CGF to GF for fmp Herwig–Lascar–Hrushovski results

#### even 1-local acyclic covers may necessarily be infinite: $H_4^3$

N-acyclicity: no small cyclic sub-configurations

relativisation to size N configurations

rather than localisation

AiML 2010

・ロト ・日ト ・ヨト ・ヨト

# N-acyclic guarded covers

#### thm

O\_'10

# every finite hypergraph admits covers by finite N-acyclic hypergraphs

applications: fmp for GF on classes with forbidden cyclic configurations

크

・ロン ・日ン ・ヨン ・ヨン

# N-acyclic guarded covers

#### thm

O\_'10

# every finite hypergraph admits covers by finite N-acyclic hypergraphs

applications: fmp for GF on classes with forbidden cyclic configurations fmt version of Andreka–van Benthem–Nemeti:

| thm | O_'10 |
|-----|-------|
|     |       |

# $\mathrm{FO}/{\sim_{\mathrm{g}}} \equiv \mathrm{GF}$ over all finite structures

크

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・

## hypergraph covers and upgrading $\sim_{\sigma}^{\ell}$ to $\equiv_{q}$

#### using more highly acyclic groups

- to unclutter hyperedges up to  $\sim_{\rm g}$
- for finitary saturation & freeness

stronger form of acyclicity necessary due to unavoidability of local cycles

・ロン ・日ン ・ヨン ・ヨン
## hypergraph covers and upgrading $\sim_{\sigma}^{\ell}$ to $\equiv_{q}$

#### using more highly acyclic groups

- to unclutter hyperedges up to  $\sim_{\rm g}$
- for finitary saturation & freeness

stronger form of acyclicity necessary due to unavoidability of local cycles

hyperedge transitions may or may not contribute to progress along a cycle

short chordless cycles may correspond to long generator sequences



## other new results in the guarded world

#### weakly N-acyclic covers

a weaker notion of acyclic covers allowing for polynomial size covers to unclutter hyperdges just "projectively" Barany-Gottlob-O\_'10

・ロン ・四 と ・ ヨ と ・ ヨ と

## other new results in the guarded world

| weakly | N-a | cyclic | covers |
|--------|-----|--------|--------|
|--------|-----|--------|--------|

a weaker notion of acyclic covers allowing for polynomial size covers to unclutter hyperdges just "projectively"

## yield

- near-optimal small models for GF and CGF
- fmp for GF and CGF over classes with forbidden homomorphic embeddings
   → finite control over conjunctive queries/GF constraints
- Ptime reconstruction of canonical finite models from abstract specification of their  $\sim_{\rm g}$ -class
  - $\rightarrow$  canonisation & capturing (next)

Barany–Gottlob–O\_'10

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・

## descriptive complexity: capturing modal/guarded Ptime

crux of capturing:

semantic constraint on (Ptime) machines  $\simeq$ -invariance: Ptime  $\longrightarrow$  Ptime/ $\simeq$ 

◆□ → ◆□ → ◆目 → ◆目 → ◆□ → ◆□ →

## descriptive complexity: capturing modal/guarded Ptime

crux of capturing:semantic constraint on (Ptime) machines $\simeq$ -invariance:Ptime  $\longrightarrow$  Ptime/ $\simeq$ 

here look at  $\begin{cases} Ptime/\sim & modal Ptime \\ Ptime/\sim_g & guarded Ptime \end{cases}$ 

Ptime in the modal and guarded worlds

how to enforce this (rougher) granularity?

# capturing modal/guarded Ptime

generic pre-processing idea: Ptime canonisation as a filter

$$\mathfrak{A} \stackrel{\mathsf{I}}{\longmapsto} \mathsf{I}(\mathfrak{A}) = \mathsf{I}([\mathfrak{A}]_{\sim}) \stackrel{\mathsf{F}}{\longmapsto} \mathsf{F}(\mathsf{I}(\mathfrak{A})) \in [\mathfrak{A}]_{\sim}$$
  
structure complete invariant/~ canonical representative/~

◆□ → ◆□ → ◆三 → ◆□ → ● ● ● ●

# capturing modal/guarded Ptime

generic pre-processing idea: Ptime canonisation as a filter

$$\mathfrak{A} \xrightarrow{\mathsf{I}} \mathsf{I}(\mathfrak{A}) = \mathsf{I}([\mathfrak{A}]_{\sim}) \xrightarrow{\mathsf{F}} \mathsf{F}(\mathsf{I}(\mathfrak{A})) \in [\mathfrak{A}]_{\sim}$$
  
structure complete invariant/~ canonical representative/~

if in Ptime: **H** := **F** o **I** provides Ptime canonisation & filter pre-processing with H enforces ~-invariance

trivial for  $\sim$ , but not for  $\sim_{
m g}$ 

(□) <□) < E) < E) < E) < E < 000</p>

## Ptime canonisation and Ptime/ $\sim$ and Ptime/ $\sim_{g}$

in both cases, natural complete invariant: bisimulation quotient of associated game graph

# Ptime canonisation and Ptime/ $\sim$ and Ptime/ $\sim_{g}$

in both cases, natural complete invariant: bisimulation quotient of associated game graph

# 

yet another asset of the guarded world

(ロ) (同) (E) (E) (E) (O)(O)

effectively capturing semantic phenomena over interesting classes of structures

e.g., modal/guarded preservation properties

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・

effectively capturing semantic phenomena over interesting classes of structures

e.g., modal/guarded preservation properties

challenges for (finite) model theory: model constructions and transformations

new techniques can yield new insights also into classical results

・ロン ・日ン ・ヨン ・ヨン

effectively capturing semantic phenomena over interesting classes of structures

e.g., modal/guarded preservation properties

challenges for (finite) model theory: model constructions and transformations

new techniques can yield new insights also into classical results

interesting, non-trivial finite model theory of modal and guarded logics

with many further worthwhile variations

・ロト ・日ト ・ヨト ・ヨト

many open problems remain,

e.g., the status of the Janin-Walukiewicz thm

 $\mathsf{MSO}/{\sim} \equiv \mathsf{L}_{\mu}$  (fmt?)

◆□> ◆□> ◆目> ◆目> ◆目> ● ● ●

many open problems remain,

e.g., the status of the Janin-Walukiewicz thm

 $\mathsf{MSO}/{\sim} \equiv \mathsf{L}_{\mu} \text{ (fmt?)}$ 

e.g., modal Lindström theorems ... (even in fmt?)

ML/GF max. expressive  $\sim / \sim_g$ -inv. logics with [ ...?]

(ロ) (同) (E) (E) (E) (O)(O)

many open problems remain,

e.g., the status of the Janin-Walukiewicz thm

 $\mathsf{MSO}/{\sim} \equiv \mathsf{L}_{\mu} \text{ (fmt?)}$ 

e.g., modal Lindström theorems ... (even in fmt?)

ML/GF max. expressive  $\sim /\sim_{g}$ -inv. logics with [ ...?]

# The End

(ロ) (部) (注) (注) (注) (の)