FINITE APPROXIMATION OF FREE GROUPS WITH AN
APPLICATION TO THE HENCKELL-RHODES PROBLEM
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ABSTRACT. For a finite connected graph & with edge set E, a finite
E-generated group G is constructed such that the set of relations p = 1
satisfied by G' (with p a word over E U E~!) is closed under deletion of
generators (i.e. edges); as a consequence, every element g € G admits a
unique minimal set C(g) of edges (the content of g) needed to represent
g as a word over C(g) UC(g)~*. The crucial property of the group G is
that connectivity in the graph € is reflected in G in the following sense:
if a word p forms a path u — v in € then there exists a G-equivalent
word g which also forms a path « — v and uses only edges from their
common content; in particular, the content of the corresponding group
element [pl¢ = [¢]¢ spans a connected subgraph of € containing the
vertices u and v. As the free group generated by F obviously has these
properties, the construction provides another instance of how certain
features of free groups can be “approximated” or “simulated” in finite
groups. As an application it is shown that every finite inverse monoid
admits a finite F-inverse cover. This solves a long-standing problem of
Henckell and Rhodes.

1. INTRODUCTION

In the influential paper [15], Henckell and Rhodes stated a series of con-
jectures and two problems. The paper was concerned with the celebrated
question whether every finite block group M (a monoid in which every von
Neumann regular element admits a unique inverse) is a quotient of a sub-
monoid of the power monoid B(G) of some finite group G. Henckell and
Rhodes presented an affirmative answer to the question modulo some con-
jecture, namely about the structure of pointlike sets; a subset X of a finite
monoid M is pointlike (with respect to groups) if and only if in every sub-
direct product 7' C M x G of M with any finite group G there exists an
element g € G with X x {g} C T (that is, all elements of X relate to some
point g € G.) The questions raised by Henckell and Rhodes in [15] con-
cerned the algorithmic recognisability of certain subsets of M and relations
on M for a given finite monoid M. These subsets and relations are defined
by use of the collection of all subdirect products T' C M x G of M with
arbitrary finite groups G.
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Shortly after, all stated conjectures and one of the two problems (about
liftable tuples) were verified respectively solved by Ash in his celebrated
paper [5]. Roughly speaking, Ash proved that in the situations mentioned,
and even beyond those, the collection of all subdirect products T C M x
G of M with finite groups G has the same “computational power” as a
particularly chosen “canonical” subdirect product 7 C M x F of M with
some free group F. This is a strong form of approximation in finite groups
of the free group F'. The algorithmic recognisability of the aforementioned
subsets and relations of M is an immediate consequence. The importance
of Ash’s paper went beyond its immediate task as in the following years
interesting and deep connections with the profinite topology of the free group
[26] and model theory [16] have been revealed and studied |2, 3].

Yet the second problem stated, which was called in [15] a “stronger form
of the pointlike conjecture for inverse monoids”, was not solved in Ash’s
paper and has since then attracted considerable attention [18, 19, 31, 32, 7,
30, 29, 10]. It asked:

Problem 1.1. Does every finite inverse monoid admit a finite F-inverse
cover?

An inverse monoid is F'-inverse if every congruence class of the least group
congruence o of F' admits a greatest element (with respect to the natural
partial order) and an inverse monoid F' is a cover of an inverse monoid M
if there exists a surjective, idempotent separating homomorphism F — M.

The second author was the first to understand that Problem 1.1 admits
a positive solution. In his paper [11] and his dissertation [12] he presented a
proof which strongly relied on a result of the third author [22, 23] about the
existence of certain finite groupoids. Later, some flaws were discovered in
[22, 23] which, however, have been fixed in the meantime [24]. The intention
of the present paper is to give a complete and self-contained presentation
of the solution to Problem 1.1 (up to classical results on inverse monoids),
which is based on the ideas and proofs of [24] but is in a sense tailored for
what is needed in the present context and presented in a language which
(hopefully) makes it more accessible to the semigroup community.

The paper is organised as follows: Section 2 collects prerequisites from
inverse monoids, graphs and a proof that the existence of certain groups
yields a positive solution of Problem 1.1. Since an infinite F-inverse cover
can be constructed for every inverse monoid M by use of a free group F', the
task is, in case M is finite, to replace F' by a suitable finite group H. The
group H needs to have a sufficiently high combinatorial complexity in order
to “simulate” for the monoid M the required behaviour of the free group F.
Section 3 introduces the main graph-theoretic tools while Section 4 presents
two crucial technical results. Finally, in Section 5 we obtain the required
group in a construction which intends to “reflect the geometry” of a given
finite graph € and thereby prove the main result of the paper (Lemma 2.9).
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2. INVERSE MONOIDS

2.1. Preliminaries. A monoid M is inverse if every element x € M admits
a unique element 7!, called the inverse of x, satisfying o'z = 2 and
x lzxz~™! = z~'. This gives rise to a unary operation ~': M — M and
an inverse monoid may equivalently be defined as an algebraic structure
(M;-, =% 1) with - an associative binary operation, 1 a neutral element with
respect to - and a unary operation ~! satisfying the laws

-1 1..—1

(@) =z, (zy) =y e 2

z =z and zz lyy "t = yy taz .

In particular, the class of all inverse monoids forms a variety of algebraic
structures (in the sense of universal algebra), the variety of all groups
(G;-, 71, 1) being a subvariety. By the Wagner-Preston Theorem [19, Chap-
ter 1, Theorem 1], inverse monoids may as well be characterised as monoids
of partial bijections on a set, closed under composition of partial mappings
and inversion. Therefore, while groups model symmetries of mathematical
structures, inverse monoids (or semigroups) model partial symmetries, that
is, symmetries between substructures of mathematical structures.

From basic facts of universal algebra it follows that every inverse monoid
M admits a least congruence such that the corresponding quotient structure
is a group. This congruence is usually denoted ¢ and it can be characterised
as the least congruence on M that identifies all idempotents of M with each
other. Another way to characterise this congruence is this: two elements
x,y € M are o-related if and only if ze = ye for some idempotent e of M
(and this is equivalent to fx = fy for some idempotent f of M).

Every inverse monoid M is equipped with a partial order <, the natural
order, defined by x < y if and only if z = ye for some idempotent e of M (this
is equivalent to = fy for some idempotent f of M). If an inverse monoid
M is represented as a monoid of partial bijections, then the idempotents
of M are exactly the restrictions of the identity function and for z,y € M
we have z < y if and only if x C y, that is, x is a restriction of y. The
order is compatible with the binary operation and inversion of M where the
latter means that 2 < y implies 7! < y~!. In terms of the natural order,
the congruence o can be characterised as the least congruence for which the
natural order on the quotient is the identity relation, and, likewise as the
least congruence that identifies every pair of <-comparable elements. This
leads to yet another description of ¢: two elements x and y are o-related if
and only if they admit a common lower bound with respect to <. For further
information on inverse monoids the reader is referred to the monographs by
Petrich [25] and Lawson [19].

An inverse monoid is F-inverse if every o-class possesses a greatest ele-
ment with respect to <. For recent developments concerning the systematic
study of F-inverse monoids and their relevance in various contexts the reader
is referred to [9] and the literature cited there. An F-inverse monoid F' is an
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F-inverse cover of the inverse monoid M if there exists a surjective idempo-
tent separating homomorphism F — M. As mentioned in the introduction,
it has been an outstanding open problem whether every finite inverse monoid
M admits a finite F-inverse cover. In order to formulate the following very
useful result [25, Theorem VII.6.11] we need the concept of premorphism:
for inverse monoids M and N, a mapping ¢: M — N is a premorphism if
P(1) =1, p(m~Y) = ¢(m)~! and ¥ (m) - ¥ (n) < Y(m-n) for all m,n € M.

Theorem 2.1. Let H be a group and M be an inverse monoid; if op: H — M
is a premorphism such that, for every m € M, there exists h € H with
m < 1(h), then the subdirect product

S:={(h,m) € Hx M:m <1(h)}

is an F'-inverse cover of M. Conversely, every F-inverse cover of M can be
so constructed.

The following is an easy observation.

Observation 2.2. Suppose that v: H — M is as in Theorem 2.1 and
m: M — N is a surjective homomorphism with N an inverse monoid; then
the composition moy: H — N is a premorphism which also satisfies the
condition of Theorem 2.1.

Hence the task for Problem 1.1 is, given a finite inverse monoid N, to
find a finite group H which admits a premorphism H — N satisfying the
condition of Theorem 2.1. Observation 2.2 eases the situation a bit since we
need to do so only for a special kind of inverse monoids (in the roéle of M)
which we shall describe below (see § 2.4).

2.2. A-generated inverse monoids. Throughout, for any non-empty set
X (of letters, of edges, etc.) we let X! := {z~!': 2z € X} be a disjoint
copy of X consisting of formal inverses of the elements of X, and set X =
X U XY The mapping  — z~! is extended to an involution of X by
setting (.QFI)_1 =z, for all z € X. We let X* be the free monoid over
X, which, subject to (z1---ap) L = a1 a7 (where x; € X), is the free
involutory monoid over X. The elements of X* are called words over )N(,
and we let 1 denote the empty word. A word w € X* is reduced if it does
not contain any segment of the form zx~! for z € X.

We fix a non-empty set A (called alphabet in this context). An inverse
monoid M together with a (not necessarily injective) mapping iy : A —
M (called assignment function) is an A-generated inverse monoid if M is
generated by ip/(A) as an inverse monoid, that is, generated with respect
to the operations 1, -, —1. For every congruence p of an A-generated inverse
monoid M, the quotient M/p is A-generated with respect to the map i, Jp =
7y © ipr where 7, is the projection M — M/p. A morphism 1) from the
A-generated inverse monoid M to the A-generated inverse monoid N is a
homomorphism M — N respecting generators from A, that is, satisfying
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iy = Y oip. If it exists, such a morphism is unique and surjective and
is called canonical morphism, denoted ¥: M — N. In this situation, M
is an expansion of N. The special case of A-generated groups will play a
significant role in this paper.

As already mentioned, the assignment function is not necessarily injective,
and, what is more, some generators may even be sent to the identity element
of M. This is not a deficiency, but rather is adequate in our context, since we
want the quotient of an A-generated structure to be again A-generated. In
particular M /o, the quotient of an A-generated inverse monoid M modulo
the least group congruence o, is an A-generated group.

The assignment function i, is usually not explicitly mentioned; it uniquely
extends to a homomorphism | ]pr: A* — M (of involutory monoids). For
every word p € A*, [p|as is the value of p in M or simply the M-value of
p. For two words p,q € ﬁ*, the A-generated inverse monoid M satisfies
the relation p = q if [pl]yr = [¢]m, in which case the words p and ¢ are
M -equivalent, while M avoids the relation p = q if [p|ar # [q]ar-

Using the concept of “A-generatedness” we see that every inverse monoid
admits an F-inverse cover. Indeed, let M be an inverse monoid; choose a set
A with assignment function i3;: A — M so that M becomes A-generated
and let I’ be the free A-generated group. Then the subdirect product

S = {([w]p, [wy) |we A} CFx M (2.1)

is an F-inverse cover of M. This is well known and can be easily seen either
directly or by use of Theorem 2.1. However, the inverse monoid S is infinite,
no matter what M is. The Henckell-Rhodes problem then asks if in case of a
finite inverse monoid M the infinite free group F in (2.1) may be replaced by
some finite (A-generated) group H serving the same purpose. An affirmative
answer to this question will eventually be established in Corollary 2.8.

2.3. Graphs. In this paper, we consider the Serre definition [27] of graph
structures, admitting multiple directed edges between pairs of vertices and
including directed loops at individual vertices. In the literature, such struc-
tures are often called multidigraphs, directed multigraphs or quivers. The
following formalisation is convenient for our purposes. A graph & is a two-
sorted structure (VUK ; a,w, ~') with V its set of vertices, K its set of edges
(disjoint from V'), with incidence functions a: K — V and w: K — V|,
selecting, for each edge e the initial vertex ae and the terminal vertex
we, and involution ~': K — K satisfying ae = we ™, we = ae™! and
e # e~ ! for every edge e € K. Instead of initial/terminal vertex the terms
source/target are also used in the literature. One should think of an edge e
with ae = v and we = v in “geometric” terms as e: o———e and its inverse

el e«———e as “the same edge but traversed in the opposite direction”.
v

u
A graph (V U K;a,w, ') is oriented if the edge set K is partitioned as
K = EUE~! = E such that every ~!-orbit contains exactly one element
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of E and one of E~!; the edges in E are the positive or positively oriented
edges, those in E~! the negative or negatively oriented ones. An oriented
graph & with set of positive edges E will be denoted as € = (VUE; a,w, ~1).

A subgraph of the graph & is a substructure that is induced over a subset
of V.U K which is closed under the operations o and ~! (and therefore
also under w). In particular, every subset S C V U K generates a unique
minimal subgraph (S) of € containing S, which is the subgraph of & spanned
by S. An automorphism of a graph & = (VU K;a,w, ') is a map ¢ =
pyUprg: VUK - VUK with py: V -V, og: K — K being bijections
satisfying for all e € K:

avk(e) = pv(ae), wpk(e) = pv(we), px(e™!) = (v ()"

We note that the second equality is a consequence of the first and third. In
the oriented case we require in addition that ¢z (F) = E and (therefore also)
¢p(E~Y) = E7'. A benefit from our definition of a graph as a two-sorted
functional rather than a relational structure is that there is no distinction
between weak and induced subgraphs and that concepts like homomorphism,
congruence and quotient are easier to handle.

Let A be a finite set; a labelling of the graph & = (V U K; o, w, ~1) by the
alphabet A (an A-labelling, for short) is a mapping ¢: K — A respecting the
involution: £(e~1) = ()~ for all e € K. The labelling £: K — A gives rise
to an orientation of &: setting E := {e € K: {(e) € A} (positive edges) and
E~l:={ee K: l(e) € A~'} (negative edges), it follows that ENE~! = &
and we get K = E.

We consider A-labelled graphs as structures (VUK ; a,w, 1, £, A) in their
own right. By a subgraph of an A-labelled graph we mean just a subgraph
with the induced labelling. Morphisms of A-labelled graphs are naturally de-
fined as follows. Let X = (VUK ; a,w, "1, ¢, A)and £ = (WUL; o,w, 1, £, A)
be A-labelled graphs. A morphism @: X — L of A-labelled graphs is a map-
ping ¢: VU K — W U L, mapping vertices to vertices and edges to edges,
that is compatible with the operations o and ~! (and therefore also w) as
well as with the labelling.

A congruence © on the A-labelled graph X = (VU K;a,w, 1, £, A) is an
equivalence relation on V' U K contained in (V' x V) U (K x K) which is
compatible with the operations o and ~! (therefore also w) and respects ¢:

eOf=aeOaf, weOuwf, e O flforale feck

and
e® f=l(e)=L(f) for alle, f € K.

The definition of the quotient graph X/© for a congruence © is obvious,
and we have the usual Homomorphism Theorem.

A non-empty path m in € is a sequence ™ = ejeg---e, (n > 1) of con-
secutive edges (that is we; = ae;jpq for all 1 < i < n); we set ar = «e;
and wm = we, (denoting the initial and terminal vertices of the path 7);
—1. L. it has initial vertex

the inverse path 7' is the path 77! = e ey
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an~! = wr and terminal vertex wr~! = am. A path 7 is closed or a cycle if

am = wmw. We also consider, for each vertex v, the empty path at v, denoted
e, for which we set ae, = v = we, and ¢ L—¢, (it is convenient to identify
e, with the vertex v itself). We say that 7 is a path from u = an to v = wm,
and we will also say that u and v are connected by m (and likewise by 7~ 1).
A graph is connected if any two vertices can be connected by some path.
The subgraph (7) spanned by the non-empty path 7 is the graph spanned by
the edges of 7; it coincides with (7~!); the graph spanned by an empty path
g, simply is {v} (one vertex, no edge). For a path e; - - - e; in an A-labelled
graph &, its label is £(e1 - - - e},) := £(e1) - - - £(ex) which is a word in A*.

-1

2.4. Cayley graphs of A-generated groups and the Margolis—Meakin
expansion. Given an A-generated group () we define the Cayley graph Q
of @ by the following data; as an A-labelled graph, this graph Q depends on
the underlying assignment function ig:

— the set of vertices of Qis Q, B
— the set of edges of Q is Q x A, and, for g € Q, a € A, the incidence
functions, involution and labelling are defined according to

a(g,a) = g,

w(g,a) = glalq,
(9,a)~" = (glalg,a™),
(g,a) = a.

a1

The edge (g, a) should be thought of as o—>o its inverse as o<—o
g ga’

where ga stands for gla]g. We note that Q acts on Q by left multlphcatlon
as a group of automorphisms via

g—"g:=hg and (g,a) — "(g,a) = (hg,a)

forall g,h € Q and (g,a) € Q x A, where h is an element of the acting group
Q, g a vertex of Q and (g, a) an edge of Q.

We arrive at the important concept of the Margolis—Meakin expansion
M(Q) of an A-generated group @ [20] which, in a sense, is the largest A-
generated inverse monoid expansion M of () for which the inverse image of
1o under the canonical morphism M — (@) consists entirely of idempotents.
It is constructed as an A-generated inverse submonoid of a semidirect prod-
uct S % Q of a certain semilattice S with @), and can be concretely described
as follows.

For a given A-generated group @, the Margolis-Meakin expansion M (Q)
consists of all pairs (K, g) with ¢ € @ and X a finite connected subgraph of
the Cayley graph Q of @) containing the vertices 1 and g. Endowed with the
multiplication

(X, 9)(L; h) = (KUIL, gh)
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and involution
_ —1 _
(K, 9" =(" K,g7)

the set M (Q) becomes an A-generated inverse monoid with identity element
({1},1) and with respect to the assignment function

A= MQ), a~ (((1,a)),[dq).

The value of some word p € A* in M(Q) is
[plarg) = (72 (P): [PlQ),
Q

where 77 (p) is the path in Q starting at 1 and having label p; the natural
partial order on M (Q) is given by

(X,g) < (L,h) if and only if X O £ and g = h.

The Margolis—Meakin expansion M (G) of the A-generated group G is
the inverse monoid version of a special case of a general type of expansions
(called Cayley expansions) which were studied by Elston [14] and which also
appear in the construction of free objects in semidirect product varieties of
semigroups and monoids (see Almeida [1, Section 10]). It plays an important
role in the theory of inverse semigroups; for its universal property the reader
is referred to [20] or [9]. Most relevant for our purpose is the following, which
is a consequence of the results of [20].

Theorem 2.3. Fvery finite inverse monoid M arises as a quotient of the
Margolis—Meakin expansion M(Q) of some finite A-generated group @ for
some finite alphabet A.

Consequently, in order to find, for a finite inverse monoid M, a finite
group H with a premorphism : H — M satisfying the condition of The-
orem 2.1, according to Observation 2.2 it is sufficient to do so for M being
the Margolis—Meakin expansion M (Q) of any finite A-generated group Q.

2.5. F-inverse covers. For a given A-generated group () as above, we now
seek to provide an expansion H of (), which will allow us to use Theorems 2.1
and 2.3 together with Observation 2.2 towards the construction of F-inverse
covers, as in Theorem 2.7 below. First we isolate an important property of
groups generated by an alphabet.

Definition 2.4 (X-generated group with content function). Let X be any
alphabet; an X-generated group R has a content function C if for every
element g € R there is a unique C-minimal subset C(g) of X such that g is
represented as a product of elements of C(g) and their inverses.

We need to define one further property, which will be crucial towards the
construction of a group H admitting a premorphism ¢: H — M(Q) (the
Margolis—Meakin expansion of ) to satisfy the condition of Theorem 2.1.
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Definition 2.5 (group reflecting the structure of a Cayley graph). Let @
be an A-generated group with Cayley graph Q and let £ = ) x A be the
set of positive edges of Q. An E-generated group G reflects the structure of
Q if the following hold.

(1) The action of  on E by left multiplication extends to an action of
@ on G by automorphisms on the left (denoted (g,&) — 9¢ for g € Q
and £ € G).

(2) G has a content function C such that, for any p € E* which forms a
path ¢ — h in Q the following hold:

(a) if C([p]a) = @, that is if [p]g = 1, then g = h,

(b) if C([p]g) # @, that is if [p|¢ # 1, then there exists a word ¢ €
E* which also forms a path ¢ — h and such that [plg = [¢]a
and ¢ uses only edges of the content C([p]a) of [p]¢ (and their
inverses). In particular, the content C([p]s) spans a connected
subgraph of Q containing g and h.

Next let Q be an A-generated group and, for £ = @ x A, let G be an
FE-generated group which reflects the structure of the Cayley graph Q of Q.
Since @ acts on G by automorphisms on the left, we can form the semidirect
product G x @, which consists of the set G x ) endowed with the binary
operation

(v,9)(n, h) = (v-9n,gh),

_ -1y
(r9) = g

and identity element (1, 1¢g). Consider the following A-generated subgroup

Hof GxQ:

inversion

H:=(([(1,a)]¢, [a]g): a € A) <G % Q. (2.2)
Note that the construction of H as a subgroup of G x @) is of a similar type
as the Margolis—Meakin expansion M (Q). Similarly to the value [p] M(©Q)

mentioned above one has that for a word p € A* the value of pin H is

[l = (7 (0)]6: [PlQ) (2.3)

where, again, 7'('19 (p) is the unique path in Q starting at 1 and being labelled
p, interpreted as a word over E. In particular, H is an expansion of () with

canonical morphism ([72(p)]c:, [pl) — [Plo-

Theorem 2.6. Let Q be an A-generated group; for E = Q x A, let G be an
E-generated group (with content function C) which reflects the structure of
the Cayley graph Q of Q (Definition 2.5), and let H be the group defined by
(2.2). Then the mapping

({1Q}71Q) lf (779) = (1G7 1@)
{(C))»9) if (v,9) # (16, 1q)

is a premorphism which satisfies the condition formulated in Theorem 2.1.

Y H— M(Q), (v,9) {
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Proof. Recall that for v € G, C(y) = @ if and only if v = 1. The definition
of ¢ makes sense only if (1¢,9) € H implies g = 1g. Let p € A* be such
that [ply = (1g, g); then 1g = [72(p)]¢ and 7(p) is the path in Q starting
at 1g and being labelled p. By (2.3) the terminal vertex of this path is
[plo = g; but from Definition 2.5 (2a) it follows that this path is closed,
hence [p]g = 1g. So, if [p]g # 1y then [7£(p)]¢ # 1 and, by Definition 2.5
(2b), the content C([71(p)]c) spans a connected subgraph of Q containing 1¢
and [p]g so that ¢¥([pln) € M(Q), as required. Definition 2.5, the equalities
C(y™1 = C(y), C(97y) = 9C(v) and the inclusion C(vy-n) C C(y) U C(n) for
any v,n € G imply that 1) is a premorphism.

Finally, let (X,g) € M(Q) and p € A* be such that Pl = (X, 9).
Then X = (n7(p)), g = [plo and [pln = (v,9) where v = [17(p)]c (the
G-value of the path 72(p)). If C(y) = @, that is, 7 = 1 then g = 1¢, hence
P(v,9) = {1g}, 1g) > (K, 1g) = (K, g). Otherwise, if C(y) # @ then every
edge of C([r{(p)]g) belongs to (77 (p)), hence

(C) = (C([xP()]6)) S (nT (p)),
so that (v, g9) = ((C(7v)),9) > (X, g), as required. O

As a consequence of Theorem 2.1, an F-inverse cover of M(Q) can be
obtained as a subdirect product of H with M(Q). Observation 2.2 in com-
bination with Theorem 2.3 now implies the result promised in Section 1.

Theorem 2.7. Every finite inverse monoid admits a finite F-inverse cover.

It can even be shown that the so constructed F-inverse cover of M(Q) is
A-generated as an inverse monoid.

Corollary 2.8. The F-inverse cover S of M(Q) given by Theorem 2.1 as
guaranteed by Theorem 2.6 coincides with the subdirect product

T = {([plu, plm(q) € Hx M(Q): p € A*}.

In particular, S =T is A-generated as an inverse monoid.

Proof. Tt is clear that for every p € A* the inequality [Plarg) < ¥([plu)
holds, hence T C S. Therefore, according to Theorem 2.1, we need to
show that every pair (h,m) € S, that is, (h,m) € H x M(Q) such that
m < 1(h) belongs to T. Let (h,m) # (1m,1ayg)) be such a pair and
h = [s]y and m = [r]y () for suitable words s,7 € A*. According to (2.3),
(sl = ([7£(8)]a, [s]g) where 71 (s) is the path 1 — [s]g in Q starting at 1
and being labelled s. By Definition 2.5 (2b) there exists a path 7: 1 — [s]g
in Q such that [7(s)]¢ = [7]g and 7 uses only edges from the G-content
C([r(s)]¢) (and their inverses). Let t := £(7) be the label of that path;
then 7 = 7{/(t) and since 7: 1 — [s]g we also have [t]g = [s]g. Altogether,
[tln = [s]lu = h; from

(C(mT Da)): [te) = ¢([t]n) = (k) = m = (] (r)), [r]Q)



FINITE APPROXIMATION OF FREE GROUPS 11

we have that (r2(£)) = (C(r2(t)]e)) € (r2(r)) and [flg = [rlg. For q :=
tr~1r this implies that [¢lz = h and [g] (@) = m, hence (h,m) € T. O

2.6. Excursion: pointlike conjecture for inverse monoids versus F-
inverse cover problem. What can we say about the gap between these
two problems? Recall that for an A-generated inverse monoid M, an A-
generated group H is a witness for the pointlike pairs of M if

Voup,ug € A* Jv e A*: [ur]g # [uglm or [wi]ar, [uslar < [v]ar. (2.4)
On the other hand, the A-generated subdirect product
{([whr, [wlg) | w e A} < M x H
is an F-inverse cover of M provided that

_ ~ [ut]n, [ue)ar < [vlm
Voup,ug € A* Jv e A [ur]g # [ug]g or ¢ and (2.5)

[ulg = [v]lg = [ua]n.

As shown in [6], the expansion H = QAPr of an A-generated group Q wit-
nesses the pointlike sets of the inverse monoid M (Q) and therefore verifies
the pointlike conjecture for inverse monoids; in particular H = Q4Pr sat-
isfies condition (2.4). For any prime p, the so-called universal p-expansion
QAPr of Q) is the largest A-generated expansion R — Q whose kernel is an
elementary Abelian p-group. This expansion can be obtained by the con-
struction in (2.2), except that the F-group G used there is replaced with
the free E-generated Abelian group of exponent p (which is the |E|-fold di-
rect product of cyclic groups of order p), in fact a very transparent group.
Sufficient for the verification of the pointlike conjecture is an E-group which
reflects the structure of the Cayley graph Q of @ in a very weak sense:
the graph spanned by the content of a word over E which forms a path
u — v requires only a connected component containing u and v. The
enormous effort we require in the remainder of the paper to construct an
expansion H of () that satisfies the seemingly innocent, additional condition
[uilg = [v]g = [ue]m in (2.5), indicates that the gap between the pointlike
problem for inverse monoids and the F-inverse cover problem may indeed
be huge.

As already mentioned, Henckell and Rhodes considered Problem 1.1 as
a “stronger form” of the pointlike conjecture for inverse monoids. On the
other hand, in the last sentence of their paper they wrote: “We do not
necessarily believe [the F-inverse cover problem] has an affirmative answer.”
So, in contrast to what is often reported, Henckell and Rhodes did not really
conjecture that every finite inverse monoid does admit a finite F-inverse
cover, but rather seem to have been undecided about this question. In fact,
they seem to have had some feeling that the F-inverse cover problem might
be hard.
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2.7. The main result. In order to prove Theorem 2.6 and hence Theo-
rem 2.7 it is sufficient to construct, for any finite A-generated group ) and
E =@ x A a finite E-generated group G which reflects the structure of the
Cayley graph Q of @) according to Definition 2.5. The existence of such a
group G is guaranteed by the following more general lemma, which is the
main result of the paper. For item (1) recall that every automorphism of an
oriented graph induces a permutation of its set of positive edges.

Lemma 2.9 (main lemma). For every finite connected oriented graph & =
(VU FE;a,w, ™) there exists a finite E-generated group G which has the
following properties:

(1) Ewvery permutation of E induced by an automorphism of € extends
to an automorphism of G. N
(2) The set of relations p = 1 satisfied by G (with p € E*) is closed
under the deletion of generators and thus G has a content function
C (Proposition 3.5).
(3) For any word p € E* which forms a path u — v in & (with u and
v not necessarily distinct vertices of €) the following hold:
(a) if C([plg) = @ then u = v,
(b) if C([pla) # @ then there exists a word q € E* with [plg = [dla
such that q also forms a path u — v and q only uses edges from
the content C([plg) (and their inverses). In particular, C([p]a)
spans a connected subgraph of € containing u and v.

Remark 2.10. The free group generated by E obviously enjoys proper-
ties (1)—(3) of Lemma 2.9. Hence, the main result of the paper is another
instance of when the behaviour of a free group can be “simulated” or “ap-
proximated” by a finite group [2, 3, 5, 16, 21], in contrast to [13] where such
an approximation is not possible.

The remainder of the paper is devoted to proving Lemma 2.9. This re-
quires quite a bit of work. It will be accomplished in Section 5. In order to
achieve this goal we introduce several graph-theoretic constructions which
will be presented in Sections 3 and 4. The results in these two sections are
of a more general nature and are of independent interest.

3. TooLs

In this section we introduce some graph-theoretic constructions, which
later will enable the construction of a group G as mentioned above. The
group itself will be realised as a permutation group defined by its action
graph. It is a well-established approach to construct finite A-generated
groups which avoid certain unwanted relations, to proceed as described in
the following. First encode the relations in a finite A-labelled directed graph
X — the set of unwanted relations will be infinite in most cases, but must
in some sense be regular (recognisable by a finite automaton). If necessary
take a quotient X/= of X which guarantees that the edge labels from A
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induce partial injective mappings on the vertex set. Finally form some
completion X/= of X/=, through extending the partial injective mappings
to total permutations of the vertex set of X/= or of some finite superset.
The letters a € A then act as permutations on the finite set of vertices
of /= and one gets a finite permutation group that avoids the unwanted
relations.

The simplest example of this procedure is the construction of a finite A-
generated group which avoids a single relation p = 1 for a given reduced
word p € A* — this provides a transparent and elegant proof that every free
group is residually finite. A slightly more general application is the Biggs
construction [4] providing a finite group that avoids all relations p = 1 for
all reduced words p of length up to a given bound n — this has been used
for the construction of finite regular graphs of large girth. A meanwhile
classical and more advanced application of this approach is Stallings’ proof
of Hall’s Theorem that every finitely generated subgroup of a free group F' is
closed in the profinite topology of F' [28]. Here a finite A-generated group is
constructed that avoids all the (infinitely many) relations of the form h = p
where h runs through all elements of a finitely generated subgroup H of the
free A-generated group F' and p is a fixed element of F'\ H. Many more
examples can be found in [17, 8] and elsewhere. In his paper [5] Ash defi-
nitely developed some mastership of arguments of this kind. Independently,
the third author has suggested a considerable refinement of this approach
[21]. He proposed a construction which is inductive on the subsets of the
generating set A in the sense that the kth group Gy, satisfies/avoids all rela-
tions p = 1 in at most k letters that should be satisfied /avoided by the final
group G. In the step Gy ~» Gg41 not only new relations p = 1 in more than
k letters are added which are to be avoided (by adding components to the
graph which defines Gi) but, at the same time, the relations in at most k
letters must be preserved. The motivation for this approach has come from
some relevant applications to hypergraph coverings and finite model theory
[21]. The constructions in this section and the results of the next section
are of this flavour and are taken from the third author’s [24].

3.1. E-graphs and FE-groups. We slightly change perspective: since the
edges of the graph &€ of Lemma 2.9 are the letters of the labelling alphabet we
now denote the labelling alphabet by E. An E-labelled graph is an E-graph
if every vertex w has, for every label a € F, at most one edge with initial
vertex u and label a. In the literature, such graphs occur under a variety
of different names, such as folded graph [17] or inverse automaton [6, 8], to
mention just two. In an E-graph X, for every word p € E* and every vertex
u there is at most one path 7 = 7.¢(p) with initial vertex am = u and label
{(m) = p. For a path 7 in K with initial vertex u, terminal vertex v and label
pe A (for A C F) we write u L5 vor p: u —> v and we call 7 an A-path
u — v; the vertices u and v are A-connected in X. The A-component of a
vertex v of the F-graph X, denoted vXK[A], is the subgraph of K spanned by
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all paths in X having initial vertex v and whose labels are in A*. A labelled
graph X is called complete or a group action graph (also called permutation
automaton) if every vertex u has, for every label a € E exactly one edge f
with initial vertex af = u and label ¢(f) = a; in this case, for every word
p € E* and every vertex u there exists exactly one path m = 7k (p) starting
at u and having label p. We set u - p := w(mX(p)), the terminal vertex of
the path starting at u and being labelled p; then, for every p € E*, the
mapping [p]: V — V, u +— u - p is a permutation of the vertex set V of X.
Thus the involutory monoid E* acts on V by permutations on the right.

The permutation group
T(X) == {lp]: p € £} (3.1)

obtained this way, is called the transition group 7 (X) of the graph X. This
transition group .7 (X) is an E-generated group (E-group for short) in a
natural way, the letter e € E induces the permutation [e] which maps every
vertex u to the terminal vertex wmy,(e) of the edge m,(e) which is the unique
edge with initial vertex u and label e. Note that this edge may be a loop
edge for every vertex u (so [e] might be the identity element of .7 (X)).
Moreover, it may happen that distinct letters e # f € E induce the same
permutation.

A crucial fact concerning the transition group G = 7 (X) is the following:
for every connected component C of X and every vertex u of € there is a
unique surjective graph morphism ¢, : § — C from the Cayley graph G of
G onto C for which ¢, (1) = u; we call ¢, the canonical morphism § — C
with respect to u; occasionally we shall leave the vertex u undetermined and
shall speak of some canonical morphism § — €. For easy reference we give
a name to this phenomenon.

Definition 3.1. The Cayley graph G of an E-group G covers a complete,
connected F-graph € if there is a canonical morphism ¢: § — C.

An E-graph (VUE; a,w, 1) is weakly complete if, for every letter a € E,
the partial injective mapping on V induced by a is a permutation on its
domain; in other words, provided that the graph is finite, the subgraph
spanned by all edges with label a is a disjoint union of cycle graphs (a-cycles).
For every weakly complete graph K we denote by X its trivial completion,
that is, the complete graph obtained by adding, for every a € F, a loop edge
with label a to every vertex not already contained in an a-cycle of XK.

3.2. k-retractable groups, content function and k-stable expansions.
For a € E and p € E* let p,_,1 be the word obtained from p by deletion of
all occurrences of @ and a~! in p. Let G be an E-group; for every A C E
let G[A] be the A-generated subgroup of G.
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Definition 3.2. An F-group G is retractable if, for all words p,q € E* and
every letter a € E the following holds: !

[p]G = [Q]G — [pa—>1]G = [Qa—>1]G-
Moreover, G is A-retractable if G[A] is retractable (as an A-group), and,

for k < |E|, G is k-retractable if G is A-retractable for every A C E with
|A| = k.

Of course, k-retractability implies [-retractability for all [ < k, and every
group is 1-retractable. Retractability of an F-group G means that for every
subset A C E the mapping

aifae A
lifag¢ A
extends to an endomorphism 4 of G, which in fact is a retract endomor-
phism onto G[A] (the image of ¥4 is G[A] and its restriction to G[A] is the

identity mapping). For an E-group G and A C E we denote the Cayley
graph of G[A], considered as an A-graph, by G[A]; this graph is weakly com-

E — FEU({l1}, a»—){

plete as an E-graph and, as above, we denote its trivial completion by G[A].
In light of the connection with retract endomorphisms we see the following.

Proposition 3.3. An E-group G is retractable if and only if its Cayley

graph G covers G[A] for every A C E.

Proof. Suppose that G is retractable and A C E. The retract endomorphism
14 is a canonical morphism ¢ 4: G — G[A] if G[A] is considered as an E-
group with all e € E'\ A being identity generators. Its Cayley graph with
respect to E coincides with G[A]. It follows that there is a canonical graph
morphism § — G[A], that is, § covers G[A].

Suppose conversely that for every A C F there is a canonical graph mor-
phism § — G[A]. We note that this morphism must be injective when
restricted to G[A] (considered as a subgraph of G). Let p € Ev*, a € E and
suppose that [p]¢ = 1. Then p labels a closed path 7r;3 (p) at 1 in G. Let
B = E\ {a}. The canonical morphism § — G[B] maps the path 73 (p) to

the path Trf [B] (p) which is also closed. The paths Wf (] (p) and ﬂ? (] (Pa—s1)

traverse the same edges except loop edges labelled a®!, and therefore visit

the same vertices. So 7T;3[B] (Pa—1) is also closed, and as it runs entirely in
§[B], it follows that [ps—1]gp = 1 and therefore [p,1]¢ = 1. O

For a word p € E* the content co(p) is the set of all letters a € E for
which a or a~! occurs in p. The importance of retractable E-groups for our
purpose comes from the fact that such F-groups admit a content function
(Definition 2.4). Indeed, assume that G is retractable. Then, for p,q € E*
and a € E the equality [pl¢ = [¢]l¢ implies [pa—ile = [¢as1]G. Suppose

1t suffices to restrict this postulate to the case ¢ = 1.
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now that a € co(p) but a ¢ co(q). Then the words ¢ and ¢g,—,1 are identical.
Hence [p]¢ = [¢]¢ implies

[Pasi]a = [das1]a = ldla = [Pla-

In this way, we may delete (without changing its value [p|g) every letter in
a word p which does not occur in every other representation ¢ of the group
element [p|g. This leads to the following definition.

Definition 3.4. Let G be a retractable FE-group and g € G. The content
C(g) of g is

Clg) :==[){co(q): ¢ € E* [glc = g}
For a word p € E* the G-content of p is the content C([p]q).
Proposition 3.5. Fvery retractable group has a content function.

In case G is retractable, for any two subsets A, B C E we have
G[A]NG[B] = G[AN B. (3.2)

Groups satisfying this condition for all A, B C E have been called 2-acyclic
by the third author in [21, 24]: condition (3.2) rules out patterns as on the
left-hand side of Figure 1 where g would belong to G[A] N G[B] but not to
G[AN B], and the cosets G[A] and G[B] form a non-trivial 2-cycle. In other
words, condition (3.2) implies that the intersection of two cosets gG[A] and
hG[B] in G is either empty or is a coset of the form kG[A N B]. In terms
of connectivity in the Cayley graph G of G this means that, if two vertices
u and v are connected by an A-path as well as by a B-path, then there is
even an (AN B)-path u — v; this point of view will be frequently used in
the paper.

But indeed, retractable groups also avoid patterns as on the right-hand
side of Figure 1. In the terminology of [21, 24], they are even 3-acyclic. This
means that, for all A, B,C C E and all g, h, k € G the following holds:

9G[A] = hG[A], hG[B] = kG[B] and kG[C] = ¢G[C]
— hG[ANB]NkG[BNCINgGIC N A] £ 2,

as we shall see in passing, in connection with the proof of Lemma 3.11 below.

(3.3)

Remark 3.6. Retractable F-groups are 2- and 3-acyclic in the sense of
satisfying conditions 3.2 and 3.3, meaning that their Cayley graphs do not
admit connectivity patterns of cosets as in Figure 1.

Definition 3.7. For A C E, an expansion H — G of E-groups is A-stable
if the canonical morphism is injective when restricted to H[A]; it is k-stable
(for k < |E|) if it is A-stable for every k-element subset A of E.

We arrive at our first basic construction. Here and in the following we
use U and | | to denote the disjoint union of graphs; recall the definition of
the transition group of a complete graph (3.1).
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FIGURE 1

Theorem 3.8. Let X be a complete E-graph, 1 < k < |E| and suppose that
the transition group G = 7 (X) is k-retractable. Then the transition group

H::y(xuU{m:CgE,yC\:kD

is (k + 1)-retractable and is a k-stable expansion of G. Moreover, every
k-stable expansion of H is also (k + 1)-retractable.

Proof. We first show that H is a k-stable expansion of GG. So, let p € E* be
a word with |co(p)| < k und suppose that [p|¢ = 1. We need to show that
[plr = 1. In order to do so it is sufficient to show that, for every vertex v in
X UL,c1=x S[C] the path 7, (p) which starts at v and has label p is a cycle.

This is obvious for every v € X and v € G[A] when A is a set of k letters
for which p € A*. So, let B C E with |B| = k and suppose that p ¢ B*,
which means that at least one element of the content of p does not belong
to B, and let v be a vertex of §[B]. Let p’ be the word obtained from p
by deletion of all letters from co(p) \ B. Since G is k-retractable, we have
[p'lc = 1 and hence also [p']qp = 1 since p’ contains only letters from B.

It follows that the path il (p') is closed and hence so is oiad (p). Since

the paths 7y (5] (p) and rolB) (p') meet exactly the same vertices — the two

paths differ only in loop edges labelled by letters from co(p) \ B — it follows

that 7y ") (p) is also closed. Altogether, [p]g = 1 and the expansion H - G

is k-stable.

Let K — H be a k-stable expansion; then the expansion K — G is also k-
stable. We show that K is (k+1)-retractable, which then also applies to K =
H. Solet A C E with |A| = k + 1; according to Proposition 3.3 it suffices
to show that for every subset B C A there is a canonical morphism K[A] —
XK[B] where the latter completion is with respect to X[B] as an A-graph,
that is, loop edges labelled by letters form A\ B (and their inverses) are
added to all vertices of X[B]. From the definition of H and the assumption
on K it follows that there is a canonical morphism K — G[B] (here we
use that |B| < k). But K — G is k-stable, hence K[B] = G[B] and
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therefore also K[B] = G[B]. It follows that the restriction of the morphism

K — G[B] = X[B] to X[A] provides the required morphism. O

The principal idea of the paper is to construct a series of E-generated
permutation groups

G1« Gy = G =G (3.4)

defined by an ascending sequence X; C Xg C --- C X|g| of complete E-
graphs such that Gy = 7 (Xy) is k-retractable and Gy — Gy is k-stable
for every k. The crucial property of this sequence in relation to the given
E-graph € is the following:

For every word p € E* on k + 1 letters which forms a path u 25 v in
€ and every letter a € A := co(p) either there is a word ¢ in the letters
A\ {a} such that [plg,., = [d]q,,, and ¢ also forms a path u s vin &,
or otherwise (if no such ¢ exists) there is a component in X1 \ Xx which
guarantees that G4 avoids the relation p = p,—,1, so that a belongs to
the content of [p]g, 4] and therefore to the content of [p]g.

The graph-theoretic constructions to be introduced in the following are
designed to serve this purpose. In order to guarantee that Gyi1 — Gy
is k-stable, the new components of Xy, are constructed in a way so that
their B-components for k-element subsets B of E have already occurred as
subgraphs of X;. This turns out to be a challenging task. It crucially involves
E-graphs whose A-components for (k+ 1)-element subsets A are designed so
that their transition groups avoid certain new relations over A but preserve
all relations over B for every B C A. The latter is guaranteed, as already
mentioned, by the fact that all B-components of the new components in
Xr+1 have been encountered already as subgraphs at earlier stages of the
construction.

3.3. Two crucial constructions: clusters and coset extensions. We
introduce two crucial constructions involving Cayley graphs. Let G be an
E-group; for A C E and g € G, gG[A] has the obvious meaning: it denotes
the A-component of the vertex g of § and is isomorphic (as an A-graph) with
G[A] — we shall call such graphs A-coset graphs or simply coset graphs if the
set of labels is understood. In the following subsections we shall construct
new (bigger) graphs by gluing together disjoint copies of various coset graphs
for different subsets A C E. In this context, the notation vG[A], where v is
some vertex of a graph, means that the A-component of v in the graph in
question is isomorphic with the full A-coset graph G[A].

Proviso 3.9. For the remainder of the section (§ 3.3.1-3) all E-groups G
are assumed to be A-retractable, i.e. G[A] is retractable for the (arbitrary
but fixed) subset A C F under consideration.
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In Sections 3.3.1 and 3.3.2 we discuss families of clusters and coset exten-
sions whose A-components, as subgraphs of the E-graphs X, provide the
essential information for the setup of the expansions in the series (3.4); as
discussed above, we need to account for their B-components for B C A C E.

3.3.1. Clusters. Let G be an E-group, A C E and assume that, as stated in
Proviso 3.9, G[A] is retractable. For every set IP of proper subsets of A, the
graph

CL(G[A],P) == [ ] §[B] € §[A4]

is an A-cluster. Note that CL(G[A],P) is the subgraph of G[A] which is
spanned by all B-paths in G[A] starting at 1, for B € P. The core of
the cluster is the subgraph formed by the intersection (zcp G[B], and by
retractability of G[A], Npep S[B] = G[\pep B]. This core is always non-
empty but may consist of the vertex 1 only; the subgraphs G[B], for B €
P, are the constituent cosets of the cluster CL(G[A],P). Included in the
definition of an A-cluster is, for P = {B}, every graph §[B] with B C
A. The structure of CL(G[A],P) as an A-graph actually only depends on
the collection of the “small” subgroups G[B], B € P rather than on the
entire group G[A]: indeed the cluster can be assembled from the constituents
§[B] by forming their disjoint union and factoring by the congruence which
identifies an element (vertex or edge) of some §[B] and some G[C] if and only
if these elements coincide in §[BNC]. More precisely, let o: | |gcp S[B] — S
be the morphism which maps every coset graph G[B] to itself, considered
as a subgraph of §. Let © be the mentioned congruence on | |z.p G[B].
Then the kernel ker ¢ of ¢ (that is, the equivalence relation induced by ¢
on its domain) contains O; retractability of G[A] even implies the equality
ker ¢ = ©. From the Homomorphism Theorem we get

CL(G[A],P) = im(p) = | | §[B] /©.
BeP

A consequence of this fact is the next lemma which will be of essential use
in the proof of Proposition 5.4.

Lemma 3.10. Let G — H be a (k—1)-stable expansion between k-retractable
E-groups G and H. Then for any A C E with |A| = k and any set P of
proper subsets of A, the labelled graphs CL(G[A],P) and CL(H[A],P) are
1somorphic.

Proof. This follows from the above discussion since (k — 1)-stability implies
that G[C] = H[C] for all C € P as |C] < |A| = k. O

We next analyse the structure of B-components of A-clusters for B C A.
Let P = {Ay,...,Ar} be a set of proper subsets of A and let B C A; let
v € G[A] and v9[B] be the B-component of v in G[A]. For the intersection
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of v§[B] with the cluster we have
k

CL(G[A],P) nwS[B] = | J(5[4:] N vS[BI).
i=1
The intersection §[A;]Nv§[B] is either empty or a (BN A;)-coset v; G[BN A;]
for some (any) v; € G[A;] NvG[B]. For our purposes we may assume that
G[A;] Nv§[B] # @ for every i. Indeed, we may assume that we have already
removed those sets A; for which §[A;] Nv§G[B] = @.

Lemma 3.11. If §[A;]NvS[B] # @ fori=1,...,k then
9[141] MN---N 9[Ak] ﬂvS[B] 75 .

Proof. Let t < k and assume that we have already proved that
t—1
([ S[A]) NvS[B] # 2.
i=1
In order to simplify the notation we set C := A;N---NA;_1 and D := Ay

then N2} §[A;] = S[C]. So, let u € (N!Z; G[A:]) NvS[B] = §[C] NwG[B]
and w € §[D] NvG[B]. Let p € C* be such that [pl¢ = v~ ! and ¢ € D*

FIGURE 2

be such that [¢]¢ = w™!; moroever, let r € B* be a word which labels

a path 4 — w running entirely in v§[B] (recall that all this happens in
G[4]). Let p; and g1 be, respectively, the words obtained from p and ¢ by
deletion of all letters not in B. Since [pg~]¢ = [r]q and r € B*, we have
[plql_l](; = [r]g, by retractability. Let 2 := u-p; = w-q;. Then p~1p; labels
a path 1 — z and so does ¢ '¢;. Since p~'p; € C* and g 'q € IN)*, it
follows that € G[C] N G[D] = §[C N D]. From = = u - p; and p; € B* it
follows that x € uG[B] = v§[B], altogether x € G[C' N D] Nv§[B]. O

The proof of Lemma 3.11 implicitly shows that retractable groups are
3-acyclic in the sense of condition (3.3), as stated in Remark 3.6. (Compare
Figure 1 for coset patterns that are ruled out in the Cayley graph G of any
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E-group G that is retractable; here now, the cosets in question, 1§[C], 1§[D]
and v§[B], have z in their intersection, as indicated in Figure 2.)

In the situation of the proof of Lemma 3.11 we consider the automorphism
of G induced by left multiplication by 7! for some z € G[A;]N---NG[Ax]N
vG[B], then v§[B] = xG[B] and the intersection

k
CL(G[A].P) na§[B] = [ J(S[4i) n2[B])
i=1
is isomorphic with the B-cluster CL(G[B],0) where O = {B N A4;: A; € P}
(some of the sets B N A; may be empty), which perhaps degenerates to a
full B-coset. This allows us to characterise the B-components of A-clusters
for B C A.

Corollary 3.12. Let P be a set of proper subsets of A and B C A. Then
every B-component of the cluster CL(G[A],P) is either a B-coset, that is,
isomorphic with G[B], or isomorphic with the B-cluster CL(G[B], Q) where
O={CnNnB:C P} (some CN B may be empty).

Proof. The intersection CL(G[A],P) Nv§G[B] is either the B-coset v§[B] it-
self (if it is contained in some constituent §[C] with C' € P) or otherwise is
isomorphic with the B-cluster CL(G[B],Q), as indicated above. Now let v
be a vertex of CL(G[A],P); then the B-component B of v in CL(G[A],P) is
certainly contained in CL(G[A],P) Nv§G[B]. Since the latter intersection is a
B-cluster, it is connected and therefore B must coincide with this intersec-
tion. (]

Corollary 3.13. Let B,C C A; then the intersection BNC of a B-component
B with a C-component C of an A-cluster CL is either empty or a BNC-coset
or a (BN C)-cluster.

Proof. As mentioned above, B = CLNvG[B] and € = CL N w§[C] for some
cosets v§[B] and w§G[C]. The latter two have either empty intersection
or their intersection is a (B N C)-coset uG[B N C] from which the claim
follows. ]

We will need a generalisation of clusters, which we are going to present
next. Let again be G[A] be retractable (Proviso 3.9), P be a set of proper
subsets of A, v be a vertex of CL(G[A],P) and B C A. Under these assump-
tions we define

CL(GIALP©OS(B] = ] S[Cluvs(B]
CeP
considered as a subgraph of G[A] and call the latter graph a B-augmented
A-cluster or, more specifically, the B-augmentation of CL(G[A],P) at v. We
have already seen that the intersection CL(G[A],P)Nv§[B] is a B-component
of CL(G[A],P). It follows that the structure of the graph CL(G[A], P)@3G[B]
only depends on the collection {G[C]: C' € P}, the vertex v and G|B] rather
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than on the entire group G[A]. Indeed, as mentioned earlier, the struc-
ture of CL(G[A],P) depends only on the graphs G[C] for C' € P and the
B-component of v is a certain B-cluster B which is isomorphic with a sub-
graph of G[B] via the monomorphism ¢: B — §[B] determined by v — 1.
The augmented cluster CL(G[A],P)@§[B] then can be obtained as the dis-
joint union of CL(G[A],P) and §[B] factored by the congruence whose non-
singleton classes are {z,((z)} for all z € B (z an edge or a vertex). As a
consequence we obtain the following lemma, whose proof is analogous to the
proof of Lemma 3.10; it will similarly be used in the proof of Proposition 5.4.

Lemma 3.14. Let G — H be a (k—1)-stable expansion between k-retractable
E-groups G and H, ¢ the associated canonical morphism. Then, for any
A C E with |A| =k, any set P of proper subsets of A, any B C A and any
vertexr u of CL(G[A],P) with v := p(u) there is an isomorphism of labelled
graphs

CL(GIA], PY@S[B] = CL(H]A], P)YDI[B].

As the last result in this subsection we need to clarify, for B,C C A,
the structure of C-components of B-augmented A-clusters. These turn out
to be (B N C)-augmented C-clusters. As noticed in Corollary 3.12, every
C-component of an A-cluster is a C-cluster (or a C-coset).

Corollary 3.15. Let B,C C A and let G[A] be retractable; then every C-
component of a B-augmented A-cluster is a (B N C)-augmented C-cluster
(which includes C-clusters as a special case).

Proof. Let the group G and A, B,C C E be as in the statement of the
corollary. Let CL(G[A],P)@G[B] be a B-augmentation of the A-cluster
CL(G[A],P) and let u be a vertex of this cluster. If the C-component C
of u in CL(G[A],P) has empty intersection with the B-component B of v in
CL(G[A],P) then C coincides with the C-component of u in the augmented
cluster and we are done as C is a C-cluster (or a C-coset). Now assume
that CN B # & with w a vertex in € N B. We know that CN B is a
(C N B)-cluster (Corollary 3.13) or a (C' N B)-coset and the C-component
of w within v§[B] = w9[B] consists exactly of the coset wG[B N C]. It
follows that the C-component of w in CL(G[A],P)@3G[B] coincides with
CUwSBNC|] = CwY[B N C] which is a (B N C)-augmentation of the
C-cluster C. g

3.3.2. Coset extensions. This second construction can be seen as a gener-
alisation of clusters but is more involved. Let us fix an E-group G and a
set A C E of size |A] > 2. We assume that G is A-retractable, according
to Proviso 3.9. Let K be a connected A-subgraph of the Cayley graph G of
G. We recall that being an A-subgraph means that all labels of edges of K
belong to A (but not necessarily all such letters actually need to occur in
XK). For some set B C A let B = vK[B] be some B-component of X; this
graph is embedded in v§[B] = §[B]. Moreover, for By, By C B any Bj-
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and Bs-components B; and Bg of B are also embedded in v§[B] via their
embedding in B.

Definition 3.16 (admissibility for coset extension). Let G be an E-group,
A C E with |A| > 2, and assume that G is A-retractable (Proviso 3.9). Let K
be a connected A-subgraph of the Cayley graph G of G. Consider all possible
choices of subsets By, By C B C A, of B-components B = vX[B] of X and
for each pair of vertices v1,v9 € B all possible Bi- and Bs-components By =
v1B[B1] = 11X[B1] and By = v9B[Bs| = voXK[Bs]. Then X is admissible for
“A-coset extension (with respect to G) if

Bi1NBy= in B— v19[Bl] N 1}29[32] = @ in UQ[B] cG. (35)

In other words, the patterns depicted in Figure 3 are forbidden in the
context of a graph X that is admissible for “A-coset extension (the right-
hand side picture is for the case By = Bjy). The condition formulated in

v§[B]

01G[B1] = v2G[Bo]

FIGURE 3

Definition 3.16 corresponds to the notion of freeness in [24], here for the
embedded graphs B = vX[B] in v§[B]. We note that, if X is admissible
for “A-coset extension, then, for every B C A, every B-component vXK|[B] is
admissible for “B-coset extension.

Now let K be a subgraph of G that is admissible for “A-coset extension and
fix aset B C A. Let By,..., By be all the B-components of K. For every
i=1,...,k select a vertex v; € B;. Then, in G, the coset v;G[B] contains B;
as a subgraph. Let now CE(G,X; B) be the graph obtained by extending
each component B; in K to the entire coset v;G[B]. So CE(G,X; B) is the
graph obtained by attaching in X to each vertex v; a copy v;G[B] of §[B] and
then identifying all of B; with its copy inside v;G[B], but without performing
any further identification (of vertices and/or edges). The graph CE(G, K; B)
thus appears as a bunch of pairwise disjoint copies of G[B], connected by
edges labelled by letters from A\ B. The union of the latter edges with all
the B; then spans the graph XK.

We give a more formal definition of CE(G,XK; B). Let X be given with
B-components By, ..., By and selected vertices v; € B; for i =1,...,k. For
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every i let ¢;: B; — G[B] be the unique graph monomorphism mapping v;
to 1. Then

k
CE(G,%;B) := (XulJS[B] x {i}) /© (3.6)

where © is the equivalence relation all of whose non-singleton equivalence
classes are exactly the two-element sets

{z, (ti(z),9)} withz € B;, i=1,....k

where x denotes a vertex or an edge of B;. The union on the right-hand
side of (3.6) is a union of pairwise disjoint connected graphs and © is cer-
tainly a congruence relation. The resulting graph CE(G, X; B) is the B-coset
extension of the A-graph XK. The congruence © does not identify any two
elements (edges or vertices) of X with each other, hence CE(G,X; B) con-
tains K as a subgraph in a canonical way which, in this context, is called the
skeleton of CE(G,X; B). For v; € B; C X C CE(G,X; B) the B-component
of v; in CE(G,X; B) is isomorphic with the coset graph G[B]. Hence these
B-components of CE(G, X; B) will also be denoted by v;G[B] and addressed
as constituent cosets of CE(G,X; B) in this role.

For C € B C A, condition (3.5) of Definition 3.16 (by taking B; =
C = By) implies that CE(G, K; C) is realised as a subgraph of CE(G, K; B).
Moreover, for C1,Cy C B, C; # Cs, once more condition (3.5) (this time
taking Cy = By # By = C9) implies that

CE(G,X;C1)Nn CE(G,J{; CQ) = CE(G,K; 4 ﬂCQ) (3.7)

where the intersection takes place in CE(G,X;B). Now let P be a set of
proper subsets of A. Then the P-coset extension of K is defined as

CE(G,%;P) := (U {CE(G,%; B) x {B}: B¢ IP’}) /U (3.8)
where W is the congruence defined on the disjoint union of all B-coset ex-
tensions CE(G, X; B) with B € P, by setting

(.%'1, Bl) 1\ (.%'2, BQ) =T =22 € CE(G,:K; BN Bg).

In other words, an edge or a vertex of CE(G,X; B;) is identified with one
in CE(G,X; By) if they represent the same element in CE(G,X; B; N By).
Transitivity of ¥ follows from (3.7): indeed, for i = 1,2,3, let B; € P and
x; € CE(G,.‘K; BZ) be such that (1‘1,31) v (LUQ,BQ) and (:UQ,BQ) v (xg,Bg).
Then

Tl =T9 € CE(G,:K; BN Bz) and xo = x3 € CE(G,:K; BsnN Bg)
so that
x1 =x3 € CE(G,X; B1 N Bz) NCE(G,X; BaN B3) = CE(G, X;BiNByN Bg)

by application of (3.7) for Cy = By N B, Co = Bo N B3 and B = By, where
the intersection takes place in CE(G,X;Bs). Provided that B € P, the
coset extension CE(G,XK; B) is embedded in CE(G,X;P) via x — (x, B)¥
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where (z, B)U denotes the W-class of (z,B). For v € X and B € P, the
subgraphs v§G[B] of CE(G,X;P) are the constituent cosets of CE(G,XK;P)
and the subgraph X is the skeleton of CE(G, X;P).

Geometrically, the coset extension CE(G,X;P) can be viewed as follows.
For every B € P consider CE(G,X; B) and attach these graphs to each other
by identification of their skeleton X, then form the largest E-graph quotient
(that is, perform all identifications necessary to obtain an E-graph, but no
more). The graph CE(G,X;P) then is the union

CE(G,X;P) = | CE(G,%; B)

BeP
of its subgraphs CE(G,X; B) with B € P. For By, By € P then
CE(G,K; Bl) ﬂCE(G,fK; Bg) = CE(G,X; B; N By). (3.9)

This is reminiscent of (3.7) but By and Bj are now arbitrary members of
P (rather than subsets of some B C A) and the intersection takes place in
CE(G,X;P) (rather than in CE(G,X;B)). Moreover, condition (3.9) can
be reformulated as a condition analogous to (3.5): for any Bj, By € P and
vertices vi,ve € K:

’UliK[Bl] N 'UQ:K:[BQ] = = ’U19[B1] N UQS[BQ] =y (3.10)

where the intersections take place in CE(G,X;P).

If every label of X appears in some member B of P, then CE(G,X;P)
is weakly complete since every edge of CE(G,X;P) occurs in some coset
subgraph vG[B]. Most relevant will be the case P = Py, the set of all proper
subsets of A: we call CE(G,X;P4) the full “A-coset extension of X. In case
K = {v} (one vertex, no edge) the P-coset extension CE(G,X;P) reduces to
the cluster CL(G[A],P).

Remark 3.17. An A-graph X which is admissible for A-coset extension
may actually only contain edges labelled by letters (and their inverses) from
some set B C A. In this case CE(G,X; B) = §[B]; however, this is not in
conflict with the definition of the full “A-coset extension. For sets C C A
with C' ¢ B, the C-components of K coincide with the C'N B-components,
but nevertheless every such C'N B-component is extended to a full C-coset

v§[C] in order to get CE(G,X;C).
We continue with further investigations of “A-coset extensions.

Proposition 3.18. Let KX C G[A] be admissible for “A-coset extension and P
be a set of proper subsets of A. Then the inclusion monomorphism t: KX <
S[A] admits a unique extension to a graph morphism wp: CE(G,K;P) —
S[A].

Proof. We first establish a unique extension tp: CE(G,XK;B) — §[A] for
each B € P. Let Bq,..., By be all B-components of K with selected vertices

v; € B; for all . Then for every ¢ there is a unique graph monomorphism
kit §[B] x {i} — G[A] such that x;(1,7) = v;. The image of k; coincides
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with the coset subgraph v;G[B] of G[A]. Then, the union & := U ", &; is
a morphism

k
k: XU SIB] x {i} — §[4]
=1
for which, for all ¢ and = € B;,

k(z) = u(z) =z = Ki(1i(x),1) = k(Li(z), 1)

where ¢;: B; — G[B] is the unique graph monomorphism mapping v; to
1 that occurs in the definition of CE(G,X;B). It follows that the con-
gruence O in (3.6) is contained in the kernel of x and hence x factors
through CE(G,X; B) as k = tp o mg (where g is the canonical projection
mo(r) = 20).

Next consider the disjoint union

|J CE(G,%; B) x {B}
BeP
and let

kp o= |J es: |J CE(G,X;B) x {B} — §[4]
BeP BeP
where tp: CE(G,K; B)x{B} — G[A] is defined by tp(x, B) = tp(x). Similar
to © and &, the congruence ¥ that occurs in (3.8) is contained in the kernel
of kp, whence kp factors through CE(G, X; P) as kp = tpomy for some unique
morphism tp: CE(G,X;P) — G[A] (with my being again the projection z —
xW). O

The morphism tp: CE(G,X; B) — G[A] is injective when restricted either
to the skeleton X or to any constituent coset vG[B]. However, in general
tp is not injective on its entire domain CE(G,XK; B). Within §[A] it may
happen that for distinct vertices v; # v; (as selected in the above proof)
the corresponding cosets coincide: v;G[B] = v;G[B] =: v§[B]. In this case,
tp maps v;G[B] as well as v;G[B] onto v§[B] C G[A], although ¢p(v;K[B])
and ¢p(v;X[B]) are distinct (and hence disjoint) B-components of K within
v§G[B] C G[A] (see Figure 4). The coset v§[B] then contains (at least) two
distinct B-components B; # B, of K. As a consequence, the vertices v; and
vj can be connected by a B-path in §[A], but there is no B-path connecting
these vertices in K. This alludes to one of the key ideas of the paper and
will eventually lead to the proof of the crucial Lemma 5.6.

Remark 3.19. Suppose that H — G is an expansion whose Cayley graph
JH covers some completion of (some supergraph of) CE(G,X; B). Then the
group H avoids every relation p = ¢ where p is any word labelling a path
in X that connects two distinct B-components of X and ¢ is any E—word,
essentially because the graph CE(G, K; B) unfolds the subgraph XUl Jv;SG[B]
of G[A] that arises as the image of CE(G,K; B) under tp (see Figure 4).
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vi§[B] = v;§[B]
D

v;§[B] v;§[B]
X i K, o N
q p
- > _.

FIGURE 4. Part of X UJ_, v:G[B] C §[A] and of CE(G,K; B)

Let X be a connected A-graph admissible for <A-coset extension, let B C
A and let B = vX[B] C X be the B-component of some vertex v in K. By
construction of CE(G,K;P4),

v e B CwG[B] C CE(G,X; B) C CE(G, K;Py).

We are able to refine this chain as follows: B is itself admissible for “B-coset
extension and hence CE(G, B; Pp) is well defined. Admissibility of K (Defini-
tion 3.16) implies that in this case the morphism tp, : CE(G, B;Pp) — §[B]
of Proposition 3.18 is injective, so that we get the following.

Lemma 3.20. Let X be a subgraph of G[A] which is admissible for =A-
coset extension (in particular G[A] is retractable, cf. Definition 3.16 and
also Proviso 3.9). Let B C A with |B| > 2; then every B-component B of K
is admissible for “B-coset extension and the morphism vp,: CE(G, B;Pp) —
§[B] is injective. In particular, for any vertex v € B,

v e B C CE(G,B;Pg) C vS§[B] C CE(G,K; B) C CE(G,XK;P,).

Another consequence concerns connectivity in the graph X; it will be of
significant use later. In terms of [24] this means that a graph X which is
admissible for “A-coset extension is 2-acyclic.

Lemma 3.21. Suppose that the graph X C G is admissible for “A-coset
extension. Then, for any B,C C A, the intersection B N € of any B-
component B and any C-component C of K is connected and hence is a
(BN C)-component.

Proof. Suppose that B # C and let u, v be vertices of BNC and assume that
they belong to distinct components of B N €. Admissibility of X (by taking
B; = BNC = By) implies that the cosets uG[BNC| and v§[BNC] are disjoint
(that is, distinct), and both cosets are contained in uG[B] = vG[B] as well as
u§G[C] = v§[C]. Consider the graph morphism tp, : CE(G,X;P4) — G[A]. It
maps the cosets uG[B] as well as vG[C] injectively to the corresponding coset
subgraphs of §[A]. Since u§[BNC] and v§[BNC] are disjoint, it follows that
the intersection of the cosets uG[B] and vG[C] (in G[A4]) is disconnected as
it has at least the two components u§[B N C] and v§[B N C1; this, however,
contradicts the assumption that G[A] is retractable. O
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3.3.3. Augmented coset extensions. Similarly to augmented clusters we re-
quire augmented coset extensions. Again fix an E-group G, let A C E with
|A| > 2 and assume that G[A] is retractable, according to Proviso 3.9. Let
XK C G[A] be admissible for “A-coset extension. Recall that the full “A-coset
extension CE(G,X;P4) can be seen as the union |Jz- 4 CE(G, X, B) where
for B,C C A, -

CE(G,X; B) N CE(G, X;C) = CE(G,X,BNC).

Every vertex = of CE(G,X;Py) is sitting in some CE(G,X; B), and, inside
CE(G,X; B) in a unique constituent coset vG[B] with v € K. The vertex v
is not unique, but unique is its B-component vX[B]. In this situation we
say that the pair (B,v) supports the vertex x or provides support for the
vertex x in CE(G, K;P4); the size of this support is | B|. This actually means
that the skeleton K may be accessed from the vertex x by a B-path whose
terminal vertex is v. We say that (B, v) provides unique minimal support if,
whenever (C,w) provides support for z then B C C and vK[B] C wX[C].
Now let J be a subgraph of CE(G,X;Py4); for a set B C A and a vertex
v € K we say that (B, v) provides unique minimal support for J, or that g
has unique minimal support through (B,v), if (B,v) supports some vertex
x of g, and if some pair (C,w) supports any vertex y of J then B C C' and
vK[B] € wX[C]. In this case we say that the unique minimal support of J is
attained at the vertex x. Notice that the condition vX[B] C wX[C] implies
the inclusion v§[B] C wG[C] = vG[C] for the constituent cosets involved.
It follows from (3.9) that every one-vertex subgraph of CE(G,X;P4) has
unique minimal support.

We come to a crucial property, which the full ®A-coset extension of a
graph X may or may not have.

Definition 3.22 (cluster property). The full coset extension CE(G,XK;P4)
has the cluster property if, for every B C A the following hold:

(1) every B-component B of CE(G,XK;P4) which has empty intersection
with the skeleton X is a B-cluster or a full B-coset;

(2) every B of (1) has unique minimal support which is attained at some
vertex x of the core of B (if B is a cluster).

Note that minimal support will typically not be attained at all core ver-
tices. We first show that the cluster property implies that components of
the coset extension intersect nicely, that is, the coset extension is 2-acyclic
in terms of [24].

Proposition 3.23. Suppose that X C G[A] is admissible for “A-coset exten-
sion and that the full “A-coset extension CE(G,XK;P4) has the cluster prop-
erty. Then, for all pairs B,C C A the intersection BNC of any B-component
B and any C-component C is connected and hence is a (B N C)-component

of CE(G,K;Py).

Proof. We consider several cases and start with the most difficult one: sup-
pose that both B and € have empty intersection with the skeleton K. We
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need to show that BNC is connected. We know that B is a B-cluster, Cis a C-
cluster, that is, B = CL(G[B],{ B4, ..., Bi}) and € = CL(G[C], {C4,...,C})
for B; C B and C; C C; it may also happen that K = 1 and/or [ =1 in
which case it may happen that B; = B and/or C; = C (that is, B and/or
C is a B-coset and/or C-coset) — the argument for this subcase is similar
but simpler. Let x be a vertex in the core of B, y a vertex in the core of C,
such that the unique minimal support (M, m) of B is attained at =, and the
unique minimal support (N, n) of € is attained at y. Then B = Ule x§G[B;]
and C = Ué‘:l y9[Cj]. Let uy # ug be vertices of BNC; we may assume that
uy € zG[B1] NyY[C1] and ug € xG[B2] NyG[C2]. The vertices u; and ug also
have unique minimal support (F;,v1) and (Fs, v2), say. Then M, N C Fy, F
and even more holds, namely

m§G[M],nG[N| C m§G[F1] = v1G[F1] = nG[F1]
and  mG[M],nSG[N] C mG[Fs] = vaG[F3] = nG[F3].

The equality m§G[F1] = v1G[F1] follows from the fact that (Fy,v1) provides
some support for B, while (M, m) provides unique minimal support for B
hence M C F; and m € mG[M]| C v1G[F1]; likewise, (F1,v1) provides some
support for € while (N,n) provides unique minimal support for €, hence
N C Fj and n € n§[N] C v1G[Fi] which implies v1§[F1] = nG[F1]. The
remaining two equalities are proved in the same fashion. From

mSG[M] UnSG[N] C v1G[F1] N va§G[Fy]

we get v1G[F1|NveG[Fs] # @, which by (3.10) implies v K[F1|NveK[Fy] # 2.
By Lemma 3.21, this intersection is an F-component of X for F' = Fy N Fy,
that is,

’UlfK[Fl] N UQfK[FQ] = me[F] = an[F]

From the definition of the full coset extension CE(G,X;P4) and (3.9) it
follows that the intersection vy G[F1] N veG[Fy] itself is connected (it is iso-
morphic with m§G[F] = nG[F]). So the subgraph of CE(G,X;P4) formed by
the union vy §[F1]UvaG[F3] is isomorphic with the cluster CL(G[A], {F1, F2}),
see Figure 5.

Moreover, the cosets xG[B;| and v1G[F1] both are contained in some
constituent coset wG[D]. Indeed, xG[B;] arises as the intersection of the
B-component B with some constituent coset, say wG[D], for some vertex
w € K and D C A. Then (D,w) supports u;, whence F; C D and
v1G[F1] € nY[D] = w§[D]. Since G[D] is retractable the intersection
xG[B1] Nv1G[F1] is connected. The same holds for the intersections

CCS[BQ] N UQQ[FQ], yS[C’l] N v19[F1] and yS[CQ] N ’U29[F2].

Setting B = (B1 N Fl) U (BQ N FQ) and C' := (Cl N Fl) U (02 N FQ) we
see that u; and us belong to the same B’- as well as C’-component of the
cluster v1G[F1]| Uv2G[F5], the intersection of which is a (B’ N C’)-component
of that cluster, by Corollary 3.13. Consequently, u; and wuy are in the same
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(B' N C")-component of v1G[F1] U v2G[F5] and hence in the same (B N C)-
component of CE(G,X;P4); the configuration is depicted in Figure 5.

FIGURE 5

Next we consider the case when € has empty intersection with the skeleton
X (as in the previous case), but B has not. Then € = CL(G[C],{C1,...,Ci})
and B = vG[B] for some vertex v € K. We let u; # ug be vertices in B N C,
and we may assume that u; € C; := yG[C4] and uz € Co := yG[Cs] (as in the
previous case), where y is a vertex in the core of € which attains minimal
support of €. In this case (B, v) supports u; as well as ug and therefore also

o

FIGURE 6

Y, so that uy,y,us € B = v§[B], see Figure 6. For the same reason as in the
previous case, the intersections yG[C1] N v§G[B] and y§[C2] NvG[B] both are
connected. Hence there is a (BN C)-path u; — y and also a (B N C)-path
y — ug, and altogether there is a (B N C)-path u; — ug.
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Finally, the case when B as well as € have non-empty intersection with
the skeleton X is obvious, since in this case BN C is a (B N C)-coset. g

We are led to a further construction. Let X be admissible for <A-coset
extension and suppose that the full A-coset extension CE(G,X;P4) has the
cluster property. For a vertex v € CE(G,X;P4) and some B C A the B-
component B of v is either a B-coset vG[B] (in this case, B may or may
not intersect with the skeleton X) or a proper B-cluster (in which case it
does not intersect with the skeleton X). In any case, B embeds into §[B] via
some graph monomorphism ¢: B < §[B] (which is unique if one additionally
assumes that ((v) = 1). We define the B-augmentation at v of CE(G,K;P4)
by

CE(G,X;P4)®S[B] := CE(G,XK;P4)UG[B] / Q2

where ) is the congruence whose non-singleton congruence classes are the
two-element sets {z, ()} for € B. We note that CE(G,X;P4)®9G[B] can

be written as the union
CE(G,X;P4) UvS[B]

of its two subgraphs CE(G,XK;P4) and v9[B] whose intersection is just the
B-component B of v in CE(G,K;P4).

Proposition 3.24. Let B,C C A and X be admissible for A-coset ex-
tension and such that the full “A-coset extension CE(G,XK;P4) enjoys the
cluster property. Then every C-component of any B-augmented full coset
extension CE(G, X;PA)@SG[B] is either a C-coset, a BNC-coset, a C-cluster
or a (BN C)-augmented C-cluster.

Proof. Let € be a C-component of CE(G,X;P4)@®SG[B]. If ¢ C CE(G,XK;P4)
or € C v§[B] we are done: € happens to be a C-coset or a BN C-coset or a
C-cluster. Let us assume that € is contained neither in CE(G,X;P4) nor in
vG[B]. We have

C = (CE(G,XK;Pa)NC)U (GBI NEC)
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and C; is a proper C-cluster (if it were a C-coset it would coincide with €,
which would be contained in CE(G,X;P4)). Let B, be the B-component of v
in CE(G,X;P4). Our assumption implies that CNB,, # &. Let w be a vertex
of €NB,. By Proposition 3.23, CNB, = €1 NB, is the (BNC)-component of
w in CE(G,X;P4), which is a (BN C)-cluster or a (BN C)-coset. Moreover,

C2 = CNoY[B] =CNwl[B] =wl[BNC|.

If ¢, N B, were a (BN C)-coset, then it would coincide with wG[B N C] and
again C C CE(G,X;P4). Hence, under our assumption, €; N B, is indeed a
proper (B N C)-cluster. So we see that € = €¢; UwS[B N C] and

CiNwS[BNC| =CE(G,K;P4) NwS[BNC]
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is the (B N C)-component of w in CE(G,K;P,4). Altogether this just means
that € = C;@S[B N (], that is, € is the (B N C)-augmentation of the C-
cluster G at w. O

4. TWO CRUCIAL INDUCTIVE PROCEDURES

In this section we formulate and prove two important technical results.
They will be essential to set up the inductive procedure to gain the series
(3.4). In order to do so, we need another crucial definition. Assume, as
above, that |A| > 2, that G[A4] is retractable and that K C G[A] is admissible
for “A-coset extension.

Definition 4.1 (bridge freeness). The full coset extension CE(G,K;Py4) is
bridge-free in G[A] if
(1) the morphism tp,: CE(G,X;P4) — G[A] (Proposition 3.18) is an
embedding;
(2) for every B C A, if two vertices u,v € CE(G,X;P4) C G[A] (as
per (1)) are B-connected in G[A], then they are B-connected even
in CE(G,%K;P,).

The two above-mentioned technical results will, in fact, be two induc-
tive procedures — forward induction (Theorem 4.4) and upward induction
(Theorem 4.6). Roughly speaking, forward induction guarantees that bridge
freeness implies the cluster property — in the same group but with the
number of letters being increased by one; upward induction, on the other
hand, guarantees that the cluster property implies bridge freeness — with
respect to the same set of letters but for the next group. For the construc-
tion of the series (3.4), these two procedures are applied alternatingly; the
essence of the whole procedure is as follows (details will be worked out in
Section 5.2). Suppose we have already defined the k-retractable group Gj.
We apply Theorem 3.8 and produce a (k + 1)-retractable and k-stable ex-
pansion Hj of Gi. Then take any connected A-subgraph £ of the Cayley
graph Hy of Hy for a subset A C FE of size k + 1 and assume that £ is
admissible for “A-coset extension (with respect to Hy). For B C A, all
B-components vL[B] of £ are subgraphs of H;[B] and hence of Gi[B], by
k-stability. Assuming inductively that all corresponding coset extensions
CE(Gg,vL[B];Pp) are bridge-free, the same is true for the corresponding
coset extensions CE(Hy,vL[B]; Pp) with respect to Hy. Forward induction
(Theorem 4.4) now implies that the coset extension CE(Hy, L;P4) of the A-
graph £ has the cluster property. Finally, upward induction (Theorem 4.6)
implies that for a suitable k-stable expansion Gji1 of Hy, any Gj1-cover
L of £ is admissible for “A-coset extension (with respect to Gy41) and that
the coset extension CE(Gjq,L;P4) is bridge-free (for a precise definition of
cover see Definition 4.5 below).

The following lemma is the essential technical step to obtain the induc-
tive procedure forward induction (Theorem 4.4). For this lemma take into
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account Lemma 3.20: if some subgraph £ C H[A] of the Cayley graph of
the group H is admissible for “A-coset extension, then all its B-components
vL[B], for B C A, are admissible for “B-coset extension and the morphisms
of Proposition 3.18 are embeddings CE(H,vL[B];Pg) — vH|[B].

Lemma 4.2. Let H be an E-group, A C E, |A| > 3 and suppose that H[A]
is retractable. Let L C H[A] be a connected A-graph which is admissible for

“A-coset extension. Assume that for all B C A and every vertex v € L, the
full “B-coset extension CE(H,vL[B];Ppg)

(1) is bridge-free in H[B], and
(2) has the cluster property.

Then the full “A-coset extension CE(H,L;P4) has the cluster property.

Proof. Let B C A, let B be a B-component of CE(H, L;P,4) and suppose
that B has empty intersection with the skeleton £. We first show the follow-
ing: if B is not fully contained in any one constituent coset of CE(H, L;P4),
then the intersection of B with any constituent coset is either empty or
contains a vertex that is supported by fewer than |A| — 1 elements. Indeed,
let BN H[A1] # @, w.lo.g. |Ai| = |A| — 1, and assume that B is not con-
tained in v;H[A;]. Then some vertex s; € B N v H[A;] must be connected
by an edge e in B to some vertex sy € (B N wveH[Az]) \ v1H[A;] in some
other constituent coset vodH[Asg], for some Ay # A;. Since sy ¢ viH[A4],
also e ¢ v1H[A1]. Then e belongs to a coset v3H[A3] (possibly coinciding
with voH[As]) with A3 # A;. In any case, s1,s2 € v3H[As] (if a graph
contains an edge then also its initial and terminal vertices). It follows that
s1 is supported by (As,v3), that is, s1 € viH[A1] NvsH[A3] = vH[A; N Ajs)
for some vertex v, and |A; N Ag| < |A4| — 1.

Therefore, if no vertex of B has support of size smaller than |A| — 1, then
B is contained in some constituent coset v1H[A1] with |A;| = |A| — 1, and
therefore is a B N Aj-coset with minimal support (Aj,v1).

We are left with the case that B admits support of size strictly smaller
than |A| — 1. We collect some constituent cosets viH[A1],...,v,H[A;] of
CE(H,L;Py) for generator sets A; C A of size |4;| = |A| — 1 such that
B C Ui, viH[A;] and we assume that the choice of the constituent cosets
v; H[A;] is minimal for B C |J;'_; v;H{[A;] in the sense that B is not contained
in any union of fewer than n constituent cosets. Then

i=1 i=1 =1

for B; = BNv;H[A;]. Every B; is a non-empty B;-coset subgraph of v; H[A;]
where B; = BN A; and all B; have size at most |A| —2. (If for some 4, |B;| =
|A| — 1 then B; = A; and B; = v;)H[A;] would have non-empty intersection
with the skeleton £.) In addition, every B; has a vertex supported by fewer
than |A;| = |A| — 1 letters: if n = 1 this is immediate and if n > 1 then B is
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not contained in a single constituent coset, and the situation is as discussed
at the start of the proof.

We need to verify items (1) and (2) of Definition 3.22. Fori =1,...,n de-
note by A; the A;-component v;£[A;] of v; in £. By Lemma 3.20, A; is admis-
sible for “A;-coset extension and the full “A;-coset extension CE(H,A;;P4,)
embeds into v;H[A;] (via the mapping of Proposition 3.18). Since B; ad-
mits vertices supported by fewer than |A;| = |A| — 1 letters, we have that
B;NCE(H, Ai;Py4,) # @ — once more we take into account that

CE(H, Ai;Pa,) C viH[A;] C CE(H, £;Py).
Bridge freeness of CE(H, A;;P4,) (assumption (1)) implies that
B; N CE(H,AZ, PAZ)

is connected. By assumption (2) therefore, B; N CE(H, A;;P4,) has unique
minimal support in CE(H,A;;P4.), say (D;,u;). But then the pair (D;,u;)
also provides unique minimal support of B; in CE(H, L;P4). If n = 1 we are
already done; so let us assume that n > 2. Minimality of (D;, u;) implies in
particular that any path connecting B; to £ in CE(H, L;P4) must use (at
least) all labels in D; and, in case it uses only labels from D;, necessarily leads
to the D;-component u;A;[D;]. So, for every i, there exist vertices s; € B;,

u; € A; and a word m; € Di* labelling a path s; — u; which runs entirely
inside the coset u;H[D;], which in turn is contained in v; H[4;] = u; H[A;].
Since B = |J;_; B; is connected, there are ¢,j such that B; N B, # &;
after some renumbering we may assume that By N By # @&. Then also
v1H[A1]NveH[As] # @; from (3.10) we get A1NAg # & and by Lemma 3.21,
A1NAg is an (A1NAg)-component of £, say vL[A1NAs] for some v € A;NA,.
From (3.9) it follows that v H[A;]NvaH[As] = vIH[A1NAz]. The intersection
B1NBgisa BN A N Ag coset in vH[A; N Ag]. Similarly as for By one
argues that B N By has unique minimal support in CE(H, A1 NA2;Pa,n4,),
(D, u) say, which (as for B;) provides unique minimal support of By N Bs in
CE(H,L;P4). Let s € By NBy be a vertex which attains the support (D, u).
So far, the situation is depicted as in Figure 7. We note that D C A; N Ag

i

m:}{[Alwvgf}qAQ]

FIGURE 7
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and so
uj-C[D] - U}C[Al N Az] = ’Ulj'f[Al] N 'UQJ_C[Al].

Since (D, u) is some support of B, we have D1 C D and u H[D;] C uH[D].
Hence there is a D-path u; — u labelled &, say, which runs inside A;, and
a D-path u — s labelled m. Altogether, there is a D-path s; — s labelled
mikm (this path runs entirely in v;H[A1]). Since s1,s € By, there is also a
Bi-path s1 — s where By = BN Ay, labelled p, say. Again, this path runs
inside v1H([A;]. Since H[A1] is retractable, we have [p]ga,] = [p'] ma,) Where
p’ is the word obtained from p by deletion of all letters not in D. Hence there
is a D-path s; — s which runs entirely in B; N udH[D] and, in particular,
S1 € U}C{D] - U}C[Al QAQ} = Ulg'f[Al]ﬂ’Ugj'qu] so that s; € B1NBs. Since
(D1,u1) supports s1 and therefore also B; N By, it follows that D C D; and
therefore D = D; as the converse inclusion has been already shown. In
particular, (D, ) provides unique minimal support of By which is attained
at s1 € B1 N By. So the configuration in Figure 7 really looks as depicted in
Figure 8. By the same reasoning we obtain that ss € By NBy and Dy = D.

FIGURE 8

Altogether, s, 52 € By NBy and (D, u) provides unique minimal support of
B as well as Bo, attained at s1 as well as so. Now we continue by induction.
Let 2 < k < n and suppose, subject to some renumbering of the cosets B;,
we have already shown that si,...,s; € B1N---N B and all these B; have
unique minimal support (D, u) attained at all these s;. Again there are
je{l,...,k}and i€ {k+1,...,n} such that B; N B; # @ and after some
renumbering we may assume that j = k and ¢ = k+ 1. Then, as for the case
k=1, sk, Sk+1 € BrNBg41 and the unique minimal support of By NBy 1 is
(D,u). Again, s;; € B1N---NBrNBpy and so B;NByyy # @ for all j <k,
therefore s;,s,11 € B; N Byyr and hence s1,...,5,11 € By N--- N By
and (D, u) provides unique minimal support for By attained at sxy1. So
$1,...,8, € B1N---NB, and |J;_; B; has unique minimal support (D, u)
attained at some vertices of () B;.

It remains to argue that B is indeed a B-cluster. From (), B; # & we
have in particular that (', v; H[A;] # @. By induction and using (3.10)
and Lemma 3.21 we can show that (;_; v;H[A4;] = wH[C] for some vertex
w e L and C =, A;. From the definition of CE(H, £;P,) it follows that
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the graph U, v;H[A;] = U, wH[A4;] is isomorphic with the A-cluster
CL(H[A],{A1,...,A,}). Corollary 3.12 now implies that B = (J;; B; is
isomorphic with the B-cluster CL(H[B],{B N Ai,...,BN A,}). O

The case |A| = 2, which is not handled in Lemma 4.2, is actually trivial.

Proposition 4.3. Let H be an E-group, A C E with |A| = 2 and H[A]
be retractable. Then every connected A-subgraph L of H[A] is admissible
for “A-coset extension and the full “A-coset extension CE(H,L;P4) has the
cluster property.

Proof. Definition 3.22 is fulfilled for trivial reasons: only the empty set
C = @ satisfies C C B C A. Every constituent coset of CE(H,L;P4) is
of the form vHla] for some letter a € A. Hence, for B C A, the only
B-components of CE(H,L;P,4) which have empty intersection with £ are
singleton vertices which clearly have unique minimal support. ([

Combination of this with Lemma 4.2 implies the following result; it en-
capsulates the first of the two inductive procedures discussed above.

Theorem 4.4 (forward induction). Let H be an E-group, A C E, |A| > 3
and suppose that H[A] is retractable. Let L C H[A] be a connected A-graph
which is admissible for “A-coset extension. Assume that for all B C A and
every vertex v € L the full “B-coset extension CE(H,vL[B];Pg) embeds into
vH[B] and is bridge-free; then the full A-coset extension CE(H,L;P4) has
the cluster property.

Proof. In order to reduce the claim of the theorem to Lemma 4.2, we merely
need to argue that the graphs CE(H,vL[B];Pg) for B C A have the cluster
property. This is proved by induction on |A|. For |A| = 3 we only need
to consider |B| = 2, so that CE(H,v£[B];Pp) has the cluster property by
Proposition 4.3. For |A| > 3 we can use the inductive claim for all |B| < |A]
(in the role of A) to find that CE(H,vL[B];Pp) has the cluster property. [

For the following recall Definition 3.1 of when a Cayley graph G covers a
graph € (in terms of canonical morphisms), Definition 3.2 of a k-retractable
group and Definition 3.7 of a k-stable expansion.

Definition 4.5. Suppose that a Cayley graph G covers a complete con-
nected graph C via a canonical morphism ¢: § — C and let £ C C be a
connected subgraph. A cover of £ in G (a G-cover for short) is any con-
nected component of the graph ¢~1(£) C G.

Recall that a crucial feature of covers is the path lifting property: if £
admits a path u — v labelled p € E* and u' is any vertex of ¢~ 1(£) such
that ¢(u') = u, then p~1(L) admits a path labelled p with initial vertex u’
that maps onto the original path in £ under ¢.

Theorem 4.6 (upward induction). Let 1 < k < |E| and let H be an E-
group which is (k + 1)-retractable. Let A C E with |A| =k + 1 and let Ly
be a connected A-subgraph of H[A] such that
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(1) Ly is admissible for “A-coset extension (with respect to H ),

(2) the full “A-coset extension CE(H,Lp;P4) has the cluster property.
Let G — H be a k-stable expansion of E-groups such that the Cayley graph
G of G covers all graphs of the form CE(H,Lp;Pa)@H[B] for B C A
and v a vertex of CE(H,Lp;Pa) (thus, in particular, § covers the graph
CE(H,Lp;Py) itself). Let Lo be any cover of L in'G. Then the following
hold:

(i) Lg is admissible for SA-coset extension (with respect to G ),

(i) the full “A-coset extension CE(G,Lg;P4) embeds into G[A4],

(iii) the full “A-coset extension CE(G,Lg;P4) is bridge-free in G[A].

Proof. As for (i), that L¢ is admissible for “A-coset extension follows from
the fact that £y is admissible for $4-coset extension and that the canonical
morphism G — H is k-stable. In this case, the canonical morphism ¢: § —
H is injective on B-components for B C A so that condition (3.5) is satisfied
for L¢ if it is satisfied for Ly = ¢(Lg).

Towards injectivity as required for (ii), let ¢: CE(G,Lg;Pa) — G[A] be
the canonical graph morphism of Proposition 3.18. We first show that for
every B C A the restriction of ¢ to CE(G,Lg; B) is injective. Suppose
this were not the case. Since the restriction to L is an embedding, that
could only happen if two vertices of two distinct constituent cosets uG[B] and
v§[B] of CE(G, L¢; B) were mapped to the same vertex of G[A] and therefore
the cosets uG[B] and vG[B] coincide as cosets of G[A] (see the discussion
leading to Remark 3.19). The result in G[A] is depicted in Figure 9 (left-
hand side). By assumption, G covers the graph CE(H,Lp;P4); so there is

FIGURE 9

a canonical graph morphism ¢: § - CE(H, L;P4) mapping L onto L.
Since the expansion G — H is k-stable and |B| < k, the morphism ¢ maps
u§G[B] = v§[B] isomorphically onto ¢(u)H[B] and likewise onto ¢(v)H[B].
Hence o(u)H[B] = ¢(v)H[B] in CE(H,Lp;P4), so that ¢(u) and ¢(v) are
in the same B-component of Lg. It follows that ¢(u) and ¢(v) can be
connected by a B-path which runs in L. Under ¢ that path lifts to a path
u — v" which runs in L& Nu§G[B]. In particular, v' € u§[B] = v§[B] and
e(v") = p(v). Since ¢ is injective on B-cosets, v = v and therefore u and
v belong to the same B-component of L. It follows that the constituent
cosets uG[B] and v§[B] of CE(G, L¢; B) coincide.
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So, for the injectivity claim of (ii), it remains to consider the case when
vertices of distinct coset extension CE(G,Lg; B) and CE(G, Lg; C) would
violate injectivity. Let B,C C A, B # C and = € CE(G,Lg;B), y €
CE(G, Lg; C) be vertices such that (x) = ¥(y). We need to show that
x =y in CE(G,Lg;Pa) (that is, x and y both are in CE(G,Lq; BN C)
and coincide). From ¥ (x) = 1 (y) we see that in G[A] the situation is as
depicted in Figure 9 (right-hand side) with ¢¥(z) = z = 9(y). That is, u
and z are connected by a B-path while v and z are connected by a C-path,
so that z € uG[B] NvG[C]. Let us consider some canonical graph morphism
G — CE(H,Lp;P4) (according to the statement of the Theorem), which
maps L onto L. Let v/, v, 2/ be the image vertices of u, v, z, respectively,
under this morphism. Then «/,v" € Ly and 2’ € v/H[B]Nv'H[C]. The latter
intersection is a (B N C)-(constituent) coset of CE(H, Lp;P4), having non-
empty intersection with the skeleton £, say u'H[B]Nv'H[C] = cH[BNC]|
for some ¢ € L. Moreover, the intersections £y Nu/'H[B] and £y Nv'H[C|
both are connected (namely B- respectively C-components of Lp). This

situation is depicted in Figure 10. So there are paths v/ — ¢ in £ zNu/H[B],

\

FiGURE 10

v L cin Ly NU'H[C] and ¢ —— 2 in «'H[B] N v'H[C]. In particular,
pr labels a path v/ — 2/, ¢qr labels a path v/ — 2. From k-stability of
the expansion G — H it follows that the morphism § — CE(H, Lp;P4) is
injective on all cosets xG[D] for all D C A. In particular, this morphism is
bijective between uG[B] and «'H[B] as well as between vG[C] and v'H[C].
From this it follows that the paths in «'H[B]Uv'H[C] just mentioned lift to
paths in uG[B] U vG[C]: hence there is a path u — z labelled pr and one
v — z labelled gr. It follows that, in CE(G, Lg;P4),

u.p:z.r_]':q].q_

Since p: ' — cruns in £ and so does ¢q: v — ¢, the path p: u — z-r~!

runs in £¢, and so does the path ¢: v — z - r~1. It follows that

u§[B] = (z - T_I)S[B] and v§[C] = (z - 7“_1)9[0],



FINITE APPROXIMATION OF FREE GROUPS 39

thus u§[B] NvG[C] = (2 -7~ 1)G[B N C] so that, in CE(G, Lg; {B,C}):
=z r =y,

that is, x and y represent the same vertex in CE(G, Lg; BN C), as required.
Altogether, CE(G, L;;P4) embeds in G[A] via the morphism of Proposi-
tion 3.18.

It remains to argue for (iii), that CE(G,Lq;P4) is bridge-free. So we
look at a pair of vertices vi,vy € Lg, subsets A1, Ay C A, and vertices
s1 € 19[A1], s2 € v2G[A41], and assume that, for some B C A, there is a
B-path s; - so running in G[A] (all the following takes place in G[A] as
depicted in Figure 11). In addition, there are an A-path v; 25 vy running in

FiGure 11

L and A;-paths v; A s; running in v;G[A;]. Consider the canonical graph
morphism ¢: § — CE(H, Lp;P4), which maps L onto L. Let v] be the
image of v; in £y under this morphism. The path v 2Ly vy is mapped to
the path v/ —% v} in L. Let us denote the image of s; by si; then the path

v; i> s; running in v;G[A4;] is mapped to the path v} L s; which runs in
v[H[A;]. So far, all these paths run in CE(H,Lp;P4). Further, the path
s1 —2 s9 is mapped to the path sh LN sh, which runs in CE(H,Lpg;Pa).

It follows that there is a B-path s} LN st which runs in CE(H, Lg;P4) (in
fact, p° is the word obtained from p by deletion of the letters which traverse
loop edges of CE(H,Lp;Pa) \ CE(H,Lm;Pa)).

So consider the B-component B of CE(H,Lp;P4) which contains the
two vertices s} and s,. The cluster property of CE(H,L;P4) shows the
following: either B has non-empty intersection with the skeleton Lz, or else
B is a B-cluster (the existence of unique minimal support is not needed in
this context). Assume the latter case first: as a B-cluster, B is the union
B =By U---UB, of (BN C;)-cosets where C; C A, |C;| = |A| — 1 and
assume first that n > 2; the case n = 1 will be handled below. We may
assume that s, € B; for i = 1,2. The pairs (Aj,v]) and (A, v5) provide
support for s and s, respectively. The cosets B = s)H[C1NB] C viH[C1]
and By = s5H[Cy N B] C viH|[Cy] have non-empty intersection (indeed,
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B1 N By contains the core of B). Hence vjH[C1] N viH[Cy] # & so that
VI H[C1] N viH[Cy] = vH[C] for C = Cy N Cy and some vertex v € L.
The situation is depicted in Figure 12. In particular, there is a vertex

By ‘ By
Gm‘ﬂ
BN, s/ BnC

FiGURE 12

s € SH[B N Cy| N shH[B N Cs) and there are B N Cj-paths

p1 p2
s = s = s

labelled p; (i = 1,2). We now consider the B-augmentation of CE(H, L;P4)
at the vertex s and the canonical graph morphism

Y: G — CE(H,Lg;Pa)®H[B]

which maps the covering graph Lg onto L. The graphs CE(H,Lp;Py4)
and CE(H,Lp;P4)®H[B] are almost the same except that the cluster B
in the coset extension CE(H,Lp;P4) is blown up to the full coset sH[B]
in the latter graph. The morphism  now maps the path s; L5 55 to the
path ¢ -2+ s, which runs in sH[B]; but 5| 2% s 225 s} also run in sH[B]
which implies that [p]g = [p1p2]m. Since the expansion G — H is k-stable
and |B| < k, it follows that [p]¢ = [p1p2]c. In addition, k-stability implies
that ¢ provides isomorphisms v;G[C}] — v{H[C}] and v2G[Ca] — v4H[Co]
and therefore also an isomorphism v G[C1] U v2G[Cs] — v]H[C1] U v4H[Cy]
(see Lemma 3.10). It follows that the path s; - s - p; runs in v;G[C1]
while s1 - p1 P26 - p1p2 = So runs in v9G[Cs]. So the path s; P1Pg 6o runs
entirely in v1G[C1] U v29[Cs] C CE(G, Li;P4) and thus provides a B-path
between s; and sy in the coset extension CE(G,Lg;P4). Finally, for the
same reason, we see that in case n = 1, that is, B = B; C v{H[C4] the path
51 222 ) runs in v1G[C1] which is contained in CE(G, Lg;P4).

The remaining case, where B has non-empty intersection with the skele-
ton L, is easy: in this case B is a full B-coset B = vH[B] for some vertex
v € Lp. The canonical morphism ¢: § — CE(H, L;P4) induces an isomor-
phism ¢: $1G[B] = $2G[B] — vH[B] where ¢ = ¢ | s1G[B] is the restriction.
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Then 51G[B] = 52G[B] = ¢~ (vH[B]) = ¢~ (v)G[B]. But ¢—(v) € Lg so
that s1G[B] = s29[B] is contained in CE(G, Lg;Py). O

5. CONSTRUCTION OF THE GROUP G

The group G announced in Lemma 2.9 will be constructed via a series of
expansions

G1<-<—H1«—Gz«—~~-«—G|E‘_1«_H|E‘_1«—G|E‘:G (51)

where, for every k, the expansions Gy «— Hy and Hy « Gy are k-stable
and the groups Hy, and Gy are (k + 1)-retractable. Here the series (3.4)
is interleaved with the intermediate stages Hy in (5.1). The series (5.1) is
defined by an ascending series

X1 CY1CSX2 T C X1 CYg—1 € Xy (5.2)

of complete E-graphs such that each group in the series (5.1) is the transition
group of the corresponding graph in (5.2), that is,

Gr = 7 (Xy) and H, = 7 (Yi)

for all k£ in question. Every graph in the series (5.2) is obtained from its
predecessor by adding certain complete components. These components
are constructed by an inductive procedure, the idea of which is as follows.
The graph X; is obtained as a suitable completion of the given oriented
graph € = (V U E;a,w, 1), here considered as an E-labelled graph where
every edge gets its own label. This serves to initialise the series (5.1) with
Gl = 9(%1)

Suppose that for k& > 1 the graph X, and therefore its transition group Gy
have already been constructed. Then the step X ~ Y, and hence the step
G}, ~ Hy, raises the “degree of retractability” from k to k + 1 and thereby
lays the ground for the transition Hjy ~» Gg4q. That step is intended to
ensure the following: suppose that p is a word over k+ 1 letters which forms
apath u — v in € and a € co(p) for some a € E; if H, satisfies the relation
P = Pa—1, but there is no word ¢ in the letters B := co(p) \ {a} (and their
inverses) forming a path « — v in € such that Hj satisfies the relation
p = q, then some component of Xi1 \ Yi guarantees that Gj11 avoids the

relation p = p,—1 and therefore every relation p = q with ¢ € B*.

5.1. Definition of G; and the transition G ~~ Hj. The idea of the
construction of the graph Xj is to extend the given oriented graph & =
(VUE,a,w,”!) to a complete E-graph on the vertex set V in whose
transition group the permutation [e] corresponding to any non-loop edge
e is the transposition in V' that swaps the two vertices ae and we. Let
E=(Vu E s, w, 1) be a finite connected oriented graph. We let the set of
positive edges E be our alphabet and label every edge e by itself. Thereby
we get the E-labelled graph (V U Eio,w, 10, E) where ¢ is the identity

function mapping every e € F, considered as an edge, to itself, considered
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as a label. The resulting graph is an E-graph for trivial reasons, since every
label appears exactly once.
Next, for every non-loop edge e we add a new edge € and set

aeé = we, we = ae, ((e) :=L(e) =e.

e
We have thus completed every non-loop edge u -—5»+v toa 2-cycle u G .
e

Let us denote the set of all positive edges so obtained (the original ones and
the added ones) by F'; then the oriented E-graph F = (V U ﬁ’; a,w, 1 E)
is weakly complete. Let X1 := F be its trivial completion. The transition
group G := .7 (X;) is an E-group of permutations acting on the vertex set
V. For every e € E, [e]g, is either a transposition (if e is not a loop edge
then [e] swaps ae and we) or the identity permutation (if e is a loop edge).
Note that two distinct labels e, f € E may represent the same permutation
of V' (since we allow multiple edges in &).

Remark 5.1. Instead of completing all non-loop edges to 2-cycles we could
equally well complete every such edge e to an n-cycle for any fixed n > 2,
by attaching to the edge v — v an e-path u +— --- <— v consisting of a
sequence of n — 1 new edges labelled e and n — 2 new intermediate vertices.
In the resulting transition group, the permutation [e] assigned to e then is
a cyclic permutation of length n mapping ae to we. Distinct labels coming
from non-loop edges then automatically represent different permutations
provided that n > 3.

The transition from G to Hy, is easily described. Suppose we have already
defined the graph X and thus the group G = 7 (Xy). We set

Yo := X U | [{Gk[A]: AC E,|A] = k}. (5.3)

Provided that Gy is k-retractable, the transition group Hp = 7 (Yi) is
(k 4 1)-retractable and the expansion Gy, « H} is k-stable (Theorem 3.8).
In particular, H; is 2-retractable.

5.2. The transition Hy ~» Gi11. The expansion Hy «— Gg41 is more del-
icate. We assemble a complete E-graph Xy = Yx U Z; to obtain Gjiq
as the transition group Ggy1 = 7 (Xky1). The new, weakly complete com-
ponents of Z; will be constructed as augmentations of clusters and coset
extensions based on Hy. To this end we first collect, for k > 2, properties
of the precursors GG, and Hy_1 of Hj, which then serve as conditions to be
maintained inductively also in the passage to Gpi+1. At level k, we denote
these inductive conditions as CONDy, for the pair (Gg, Hi—1). So CONDy will
serve as inductive hypothesis for the construction of 2y, and hence Ggy1,
which then needs to guarantee that the conditions CONDy; are satisfied by
the pair (Gg41, Hi). In the following, we identify subgraphs of €& with their
labelled versions inside Xj.
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Condition 5.2. As conditions CONDg, for & > 2, we collect the following:

(i) Hx—1 and Gy, are k-retractable and the expansion Hy_1 « Gy is
(k — 1)-stable,

and, for every B C E with |B| < k, for any Gj-cover Cg, of any connected
component C of B = (B) in & C Xy, the following hold:

(ii) Cg, is admissible for “B-coset extension,
(iii) the full “B-coset extension CE(GYy, Cg, ;Pg) embeds into Gy [B],
(iv) the full *B-coset extension CE(GYy, Cg, ;Pp) is bridge-free.

By Theorem 3.8, (i) implies that Hy — G in particular is k-stable, as
already mentioned in connection with the definition of Hy. Let ¢ : G — X1
be some canonical graph morphism, xr: Hi — Gi the graph morphism
induced by the canonical morphism Hj — Gj, and let ¢ = ¥ o xx. By
k-stability, x is injective on connected B-subgraphs for |B| < k.

Let A C E be aset of |A| = k+ 1 (positive) edges of € C X; and A = (4)
be the subgraph of € spanned by A. Let € be a connected component
of A and Cg¢, be an Hj-cover of C, that is, some connected component
of ¢ 1(C). We show that Cg, is admissible for “A-coset extension (with
respect to Hy) and that the full “A-coset extension CE(Hy, Cy,;P4) has the
cluster property. From this it will follow that augmented coset extensions
of the form CE(Hjy, Cy,; Pa)@H}[B] are well defined; they will be essential
ingredients of the graph Zj to be defined below (Definition 5.3).

Let B C A and let U C Gy, be some B-component of Cy, . Then ¢y (U) C
C is a B-component of € and hence is a connected component of (B) C C.

U c Cyc c Hi

Ll

Pk (u) - C Cc 961

By the inductive hypothesis, any Gi-cover U’ of ¢ (U) is admissible for
“B-coset extension (with respect to Gj) and CE(Gy,UW;Pp) embeds into
Gk[B] and is bridge-free by (ii)—(iv). Since the morphism yj: Hy — G is
injective on B-components (that is, injective on B-cosets), it follows that
U = U and hence also

CE(Gy, W;Pp) = CE(Hy, U; Pp). (5.4)

Altogether, by (iii) we have
CE(Hy, U; Pp) 3 [B]

1% 1%
CE(Gk, ul; ]PB) —> Sk[B]
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so that CE(Hy,U; Pp) canonically embeds into Hy[B]. It follows that con-
dition (3.5) of Definition 3.16 is fulfilled. Since this is true for every B-
component U for every proper subset B of A this implies that Cy, is admis-
sible for “A-coset extension (with respect to Hy,). Once more by the inductive
hypothesis (iv), every graph in (5.4) is bridge-free. Then, by Theorem 4.4,
the full *A-coset extension CE(Hjy, Cy,;IP4) itself has the cluster property.
As already mentioned, this guarantees that the augmented coset extensions
CE(Hy, Cy,; P4)@IH[B] of Definition 5.3 (2) below are well defined. We
therefore can now define the components of the graph Zy.

Definition 5.3. The graph Z; is the disjoint union of
(1) all augmented A-clusters
CL(Hg[A], P)@3HyB]
for A C F with |A| = k+1, P a set of proper subsets of A, v a vertex
of CL(H[A],P) and B C A;
(2) all augmented full “A-coset extensions
CE(Hy, Cy, ; PaA)@Hy[B]

for A C E with |A| = k+ 1, C a connected component of A = (A),
Cq, an Hp-cover of €, P4 the set of all proper subsets of A, v a
vertex of CE(Hy, Cy(,;Pa) and B C A.

We note that the augmented clusters and augmented coset extensions
contain, for B = &, all “plain” clusters and coset extensions. Recall that
Hp = ﬂ(yk) and Gy = ?(DC;CH) = 9(% L Z,k); see (5.3) for Y.

Proposition 5.4. The expansion Hy « Gii1 s k-stable and hence Giyq
is (k + 1)-retractable.

Proof. We need to prove k-stability, the second assertion then follows from
Theorem 3.8 by inductive hypothesis (i) and the definition of Hy. Let C C E
with |C] = k, let p € C* and assume that PlG.
that [p]g, # 1. There exists a component £ of Y or of Z; witnessing the
inequality [p]g,., # 1. That is, in this component there is a vertex v such
that v - p # v. If the witnessing component £ belongs to Y, then we are
done since then [p]g, # 1 immediately follows from Hy = 7 (Yy). If £
is a component of 2, then £ = M where M is of the form (1) or (2) in
Definition 5.3, and the path p: v — v - p runs in the C-component vM[C].
Recall that vM[C] denotes the C-component of v in the graph M while
vM[C] is the trivial completion of vM[C], that is, the trivial completion of
the C-component of v in M. Obviously

# 1; we need to show

vM[C] € vM[C] C vM[C],
and the latter two graphs differ only in loop edges having labels not in C.
Hence C-paths in vM[C] and vM[C] traverse the same edges and meet the

same vertices. It is therefore sufficient to look at vM|C] instead of vM[C].
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From Corollaries 3.12, 3.15 and Proposition 3.24, and since the (plain) coset
extensions in Definition 5.3 (2) have the cluster property, it follows that, for
the graph M in question, the C-component vM[C] must be isomorphic to
one of the following:
(i) a full C-coset Hy[C], or
(ii) a C-cluster CL(Hy[C],P) for some set P of proper subsets of C' (this
includes, for P = { B}, also B-cosets H[B] for B C C), or
(iii) a D-augmented C-cluster CL(Hy[C],P)@XH[D] for some set P of
proper subsets of C, some vertex u of CL(H[C],P) and some proper
subset D of C.
In case (i), vM[C] = H[C], so the claim [p]y, # 1 again follows immedi-
ately. In case (ii) we get

vMIC] 2 CL(HR[C], P) 2 CL(GH[C], P) = CL(Hy1[C], P)

where the second isomorphism is obvious since Hy[C] = G[C] by k-stability
of Hp — (G} while the third isomorphism follows from Lemma 3.10. In
case (iii) we get

oM[C] = CL(Hy[C], P)@3H,[D]
= CL(G[C], P)OSGk[D] = CL(Hy—1[C], P)©Hy—1[D]

where t and s are the images of u under the canonical morphisms Hy — Gy,
and Hyp — Hp_q, respectively, and, again, the second isomorphism is obvious
since Hi[C] = Gi[C] and H[D] = Gx[D] by k-stability of Hy — G}, while
the third isomorphism follows from Lemma 3.14. Hence, in cases (ii) and
(iii), vM[C] is isomorphic with a component of Z;_1 so that [p]g, # 1, from
which again [p]g, # 1 follows. O

From Theorem 4.6 it follows that for every set A C E with |A] =k + 1
and every connected component € of A, every i i-cover Cg, (that is,
every connected component of wk_il((:’) in Gp41 where ¥gy1: Gpr1 > X1 is a
canonical graph morphism) is admissible for “A-coset extension, and the full
“A-coset extension CE(Gpy1,Cg,,;P4) embeds into Sz1[A] and is bridge-
free. If |A| =1 < k+ 1 we have by induction that, for every connected
component C of A, the full “A-coset extension CE(Gy, Cg,;IP4) embeds into
Gi[A]. But the expansion G; « Gy is [-stable whence CE(G), Cg,;P4) =
CE(Gr+1,Cg, 13 P4) and Gi[A] = Gx11[A]. We have thus maintained Condi-
tion 5.2 in the passage from k to k 4+ 1 by having verified CONDgy1:

(i) Hy and Ggy1 are (k + 1)-retractable and the expansion Gy1 — Hy
is k-stable (by Proposition 5.4)
and, for every A C E with |A| < k + 1, for any Gx1-cover Cg, ,, of every
connected component € of A = (A) in € C Xy, the following hold:

(ii) Cg,,, is admissible for “A-coset extension,
(iii) the full “A-coset extension CE(Gy1, Cg, ., ,;P4) embeds into Gz 1[A],
(iv) the full “A-coset extension CE(Ggy1,Cg,.,;P4) is bridge-free.
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We check that the base case for this inductive procedure, CONDs for the pair
(Gg, Hy), goes through. The group H; is 2-retractable and so is G2 since
Gy — Hj is l-stable (cf. Theorem 3.8). By Proposition 4.3, for every set
A C E with |A] = 2, every Hi-cover Cq, of every component € of A is ad-
missible for “A-coset extension (with respect to Hy) and CE(H1, Cy,;P4) has
the cluster property. Theorem 4.6 then implies that the Ga-cover Cg, is ad-
missible for “A-coset extension (with respect to G2) and that CE(G2, Cg,;P4)
embeds in Go[A] and is bridge-free (the assertions for G can also be checked
by direct inspection). In other words, we have shown that conditions CONDg
are satisfied by the pair (G2, H1). Altogether the series of expansions

G« Hy« Gy« o« Gy« Hip < Gig
is well defined and G = G| is retractable.

5.3. Properties of G = G|g. We need to argue that G satisfies the require-
ments of Lemma 2.9. Requirement (2), that G is retractable, and therefore
has a content function by Proposition 3.5, has already been proved.

We are left with showing requirements (1) and (3):

(1) that every permutation of F induced by an automorphism of & ex-
tends to an automorphism of G, and

(3) that for every word which forms a path u — v in € there is a G-
equivalent word which also forms a path v — v and uses only edges
of the (common) G-content, or u = v in case of empty content.

We start with item (1); (3) will then be dealt with in Lemma 5.6 and
Corollary 5.7. In the context of (1), “an automorphism of £” refers to
any automorphism of the unlabelled oriented graph & = (V U E’; a,w, 1),
Recall from the definition of an automorphism of an oriented graph that
every such automorphism of € is required to induce a permutation on the
set E of positive edges of €, hence induces a permutation on our labelling
alphabet F. Similarly, “an automorphism of G” means automorphism of
the mere group G (rather than of G as an E-group, which cannot have
non-trivial automorphisms).

Proposition 5.5. Every permutation E — E induced by an automorphism
of the oriented graph &€ extends to an automorphism of G.

Proof. Let v be a permutation of F induced by an automorphism of &, also
denoted v. We demonstrate the required property for all G and Hy, by
induction on k. First note that v (uniquely) extends to an automorphism
4 of Xy from which the claim follows for the group Gi. Indeed, for every
pair of vertices u,v € Xy and every word p € E*, we have p: v — v if and
only if 7p: Yu — Yv. Consequently, for every word p € E*, G satisfies the
relation p = 1 if and only if it satisfies "p = 1.

So let k£ > 1 and assume inductively that v extends to an automorphism
4 of X (this means that there is an automorphism 4 of the oriented graph
X such that for every edge e € X we have £(7e) = 74(e)); by the same
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reasoning as for kK = 1 we see that in this case v extends to an automorphism
of Gi. From the definition of the graph Y it now follows that v extends to
an automorphism 4 of Y which again implies that v extends to an automor-
phism of Hy. From this in turn it follows that v extends to an automorphism
of Xx4+1 and therefore again to an automorphism of Gy ;. U

The assertion of the last proposition is essentially a direct consequence
of the fact that the entire process behind our construction of G, on the
basis of the given oriented graph €&, is symmetry-preserving. Indeed, none
of the intermediate steps involves any choices that could possibly break
symmetries in the input data, i.e. could be incompatible with isomorphisms
between oriented input graphs €. In particular, the inductive construction
steps reflected in Theorems 4.4 and 4.6 proceed by cardinality of subsets
of E and treat all subsets of the same size uniformly and in parallel.? Any
isomorphism between oriented graphs & = &’ would successively extend to
isomorphisms between the associated graphs X; = X, and Y; = Y, and
induced isomorphisms between their transition groups G; = G, and H; =
H!. In this sense, the entire inductive process underlying the expansion
chain (5.1) is isomorphism-respecting, hence in particular compatible with
permutations of E stemming from automorphisms of €.

Finally, we have to deal with requirement (3) of Lemma 2.9. Recall that

for a word p € E*, co(p) is the set of all letters a € E for which a or o™
occurs in p. The following lemma is crucial for establishing (3).

Lemma 5.6. Let p € E* be a word that forms a path w — v in &; let
A = co(p) and suppose that for some letter a € A and B = A\ {a} there
exists a word r € B* such that [plg = [r]q. Then there exists a word q € B*
such that [plg = [gle and, in addition, q forms a path u — v in E.

Proof. First recall that every loop edge e of € induces the identity permuta-
tion on the set V of vertices of X1, whence [e]g, = 1; then [e]g = 1 follows
from the fact that the expansion G — (7 is l-stable. Hence, if p contains
only loop edges then u = v, the path meets only the vertex u and [p]g = 1
so that for ¢ we may choose the empty word 1, which labels the empty path
u — u and [plg = [1]a-

If e is not a loop edge, then no power e or e~ for n > 2 forms a path;
therefore, if |A| = 1 the only possibilities for p are f(f~1f)" and (ff~1)"*!
for some n > 0 and f € {e,e!}. In these cases the claim is obvious.

In the following we use the notation of the series (5.1) and denote the
Cayley graphs of Hy and G by Hj and G, respectively. So, let |[A| =k + 1
for some k > 1, and let A = (A) = (p) be the subgraph of € spanned by A,
which, by definition, is the same as the subgraph of & spanned by the path
p (which therefore is connected). Abusing notation, we denote the labelled

2This should be contrasted e.g. with constructions based on some enumeration of the
subsets of E, which could well break symmetries.
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version of A inside X; also by A and let ¢,: Hp — X1 be the canonical
morphism mapping 1 € H; to u; let A C Hy be the cover of A in Hj
with 1 € A;, (that is, the connected component of ¢, !(A) which contains
the vertex 1). The path p in &, or, more precisely, the path w1 (p) lifts to
the path 7rf’“ (p). In particular, in Ay there is a p-labelled path starting at
1. We consider the full “A-coset extension CE(Hy,Ax;P4) and note that
CE(Hy, Ay; B) is a subgraph of it. We also have the path 7r§ (p) in G starting

at 1 and being labelled p. The canonical morphism v¢: § — CE(Hy, Ag;P4)

(mapping 1 € § to 1 € Ax) maps 7'('{7(]7) to 771CE(H’“7A’“;PA)(p), but this path

runs entirely in Ay, hence coincides with the path ﬂ'fk (p) mentioned earlier.

By assumption, [pl¢ = [r]g for some word r € B*. The paths i (p)
and 73 (r) have the same terminal vertex, namely [p]¢ = [r]g. The path

7 (r) is mapped by 1 onto the path WfE(Hk’Ak;PA)(r). But the B-component

of 1 in CE(Hy, Ay;P4) is the full B-coset 1Hy[B], which is contained in
CE(Hy, Ax; B). So the latter graph contains a path labelled r starting at 1,

and that path WfE(Hk’A'“;B) (r) actually runs inside 1H[B]. Since the paths

7§ (r) and 77 (p) have the same terminal vertex, so have the paths

m " Py = a ERB) () and ot (p).

It follows that the terminal vertex v’ of Wfk (p) is in A N 1Hi[B]. But
Ak N 1Ky [B] is just the B-component of 1 in Ay, which is a connected B-
graph. Altogether, there exists a path 7: 1 — ¢/ running in Ay N 13;[B];
let ¢ € B* be the label of that path. By construction, [q]m, = [r]m,, hence
[ql¢ = [r]g since the expansion Hj « G is k-stable, and therefore also
l[ql¢ = [plg. Finally, the canonical morphism ¢, : Hp — X; (restricted
to 1H[B]) maps © = ﬂf’“mg{’“(q) to the path mX1(q) with initial vertex
u = pu(1) and terminal vertex v = ¢, (v') and label ¢q. If we ignore the
labelling then the latter path is the sequence ¢ of edges in & which forms a
path © — v. Altogether, ¢ forms a path u — v in €. O

This proof sheds some light on the roles that the components of Z; play
in the transition Hy ~» Gpiq. If there is a word p with co(p) = A and
|A| = k + 1 such that p forms a path u — v in €, and some letter a € A
does not belong to the Hy[A]-content of p then the subgraph CE(Hy, Ay; B)
of CE(Hy, Ag;Pa) (for A = (A) and B = A\ {a}) guarantees that the
next group Gy41 avoids every relation p = r for any r € B* (compare Re-
mark 3.19) unless there exists a word ¢ € B* such that [plm, = lalm, and
q forms a path u — v in €. From this point of view, namely to avoid
all relations that would obstruct Lemma 5.6, it would be sufficient to let
Zi be comprised of all graphs CE(Hy, Ay; B) of the mentioned kind (af-
ter making them weakly complete by extending edges to 2-cycles whenever
needed). However, when attempting this approach, namely letting Zj be
comprised of just all graphs of the mentioned form, the authors failed to
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prove k-stability of the expansion Hy « Gpy1, and it is not clear whether
or not k-stability can be achieved by this procedure. Hence, except for the
graphs CE(Hj, Ag; B), which appear as subgraphs of the full coset exten-
sions CE(Hy, Ax;P4), all the machinery used to set up the graph Z, —
(augmented) clusters, (augmented) full coset extensions, all of Section 4 —
serves to achieve k-stability of the transition Hy ~> Gpy1.

If, in Lemma 5.6, [p]g = 1 then necessarily u = v since in this case the
path 73 (p) is closed and the canonical morphism ¢,: G — X; maps this
path onto the closed path 71 (p). The path p in € obtained by ignoring the
labelling then clearly is also closed. Iterated application of Lemma 5.6 leads
to the following; for the definition of a content function C the reader should
recall Definition 3.4.

Corollary 5.7. Let p € E*Nbe a word which forms a path u — v in &;
then there ezists a word q € E* which uses only letters (i.e. edges) from the
content C([pla) (and/or their inverses) such that [pla = [¢l¢ and q forms a
path u — v in . If C([plg) = @, then uw = v and q is the empty word. If
C([pla) # @, then the graph (C([p]a)) = (co(q)) is connected and contains
the vertices u and v.
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