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Abstract—We investigate multi-agent epistemic modal logic
with common knowledge modalities for groups of agents and
obtain van Benthem style model-theoretic characterisations, in
terms of bisimulation invariance of classical first-order logic
over the non-elementary classes of (finite or arbitrary) common
knowledge Kripke frames. The fixpoint character of common
knowledge modalities and the rôle that reachability and transitive
closures play for the derived accessibility relations take our
analysis beyond classical model-theoretic terrain and technically
pose a novel challenge to the analysis of model-theoretic games.
Over and above the more familiar locality-based techniques we
exploit a specific structure theory for specially adapted Cayley
groups: through the association of agents with sets of generators,
all epistemic frames can be represented up to bisimilarity by
suitable Cayley groups with specific acyclicity properties; these
support a locality analysis at different levels of granularity as
induced by distance measures w.r.t. various coalitions of agents.

I. INTRODUCTION

Bisimulation invariance may be regarded as the crucial
semantic feature of modal logics broadly conceived, with all
their many and diverse applications in computer science that
range from specification of process behaviours to reasoning
about knowledge and agents in all kinds of distributed settings.
Bisimulation equivalence is based on an intuitive back&forth
probing of transitions between and/or passages between possi-
ble instantiations of data, possibly subject to observability by
individual agents. As a core notion of procedural, behavioural
or cognitive equivalence it underpins the very modelling of
relevant phenomena in the state- and transition-based format
of transition systems or Kripke structures. In this sense,
bisimulation invariance is an essential ‘sanity’ requirement for
any logical system that deals with relevant phenomena rather
than artefacts of the encoding. Not surprisingly, modal logics
in various formats share this preservation property. Moreover,
modal logics can often be characterised in relation to classical
logics of reference as precisely capturing the bisimulation
invariant properties of relevant structures – which turns the
required preservation property into a criterion of expressive
completeness, and hence a model-theoretic characterisation of
a natural level of expressiveness.

For classical basic modal logic, this characterisation is the
content of van Benthem’s classical theorem, which identifies
basic modal logic ML as the bisimulation invariant fragment
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of first-order logic FO over the (elementary) class of all
Kripke structures. In suggestive shorthand: ML ≡ FO/∼,
where FO/∼ stands for the set of those FO-formulae whose
semantics is invariant under bisimulation equivalence ∼; a
fragment that is syntactically undecidable, but equi-expressive
with ML ⊆ FO (identified with its standard translation to FO).

Theorem 1 (van Benthem [17]). ML ≡ FO/∼.

Of the many extensions and variations on this theme that
have been found, let us just mention two explicitly.

Firstly, by a result of Rosen [16], van Benthem’s charac-
terisation theorem ML ≡ FO/∼ is also good as a theorem of
finite model theory, where both, bisimulation-invariance and
expressibility in modal logic are interpreted in restriction to
the non-elementary class of all finite Kripke structures; this
drastically changes the meaning and also requires a completely
different proof technique. A transparent and constructive proof
of expressive completeness that works in both the classical
and the finite model theory settings is given in [13] and also
in [8]; like many of the more challenging extensions and
variations in [14], [5], [15], it relies on a model-theoretic
upgrading argument that links finite approximation levels ∼`
of full bisimulation equivalence ∼ to finite levels ≡q of first-
order equivalence. A combination of bisimulation respecting
model transformations and an Ehrenfeucht–Fraı̈ssé analysis
establishes that every ∼-invariant first-order property is in
fact invariant already under a finite level ∼` of bisimulation
equivalence – a compactness phenomenon for ∼-invariant FO,
despite the unavailability of compactness for FO in cases of
interest.

Secondly, by a famous result of Janin and Walukiewicz, a
similar characterisation is classically available for the modal
µ-calculus Lµ in relation to monadic second-order logic MSO.

Theorem 2 (Janin–Walukiewicz [11]). Lµ ≡ MSO/∼.

In this case, the arguments are essentially automata-
theoretic, and the status in finite model theory remains open
– and a rather prominent open problem indeed.

Epistemic modal logics deal with information in a multi-
agent setting, typically modelled by so-called S5 frames,
in which accessibility relations for the individual agents
are equivalence relations and reflect indistinguishability of
possible worlds according to that agent’s observations. A
characterisation theorem for basic modal logic ML in this978-1-5090-3018-7/17/$31.00 c©2017 IEEE



epistemic setting was obtained in [5], both classically and in
the sense of finite model theory. Like the van Benthem–Rosen
characterisation, this deals with plain first-order logic (over
the elementary class of S5 frames, or over its non-elementary
finite counterpart) and can uniformly use Gaifman locality in
the analysis of first-order expressiveness.

In contrast, the present paper explores the situation for
epistemic modal logic ML[CK] in a multi-agent setting with
common knowledge operators that capture the essence of
knowledge that is shared among a group of agents, not just as
factual knowledge but also as knowledge of being shared to
any iteration depth: everybody in the group also knows that
everybody in the groups knows that . . . ad libitum. Cf. [7]
for a thorough discussion. This notion of common knowledge
can be captured as a fixpoint construct, which is definable in
MSO and in fact in Lµ. It can also be captured in plain ML
in terms of augmented structures, with derived accessibility
relations obtained as the transitive closures of combinations
of the individual accessibility relations for the relevant agents:
we here call these augmented structures common knowledge
structures or CK-structures for short. But be it fixpoints, MSO,
or the non-elementary and locality-averse class of CK-frames,
all these variations rule out any straightforward use of simple
locality-based techniques.

Here we use, as a template of highly intricate yet regular
patterns of multi-scale transitive relations, the coset struc-
ture of Cayley groups w.r.t. various combinations of gener-
ators. We can show that (finite) Cayley structures, obtained
as expansions of relational encodings of Cayley groups by
propositional assignments, are universal representatives up to
bisimulation of (finite) S5 structures. In this picture, generator
combinations model coalitions of agents, cosets w.r.t. gener-
ated subgroups model islands of common knowledge or the
induced accessibility relations of CK-frames. For the following
cf. Definitions 9 and 10.

Lemma 3 (main lemma). Every (finite) CK-structure admits
(finite) bisimilar coverings by Cayley structures (of various
degrees of acyclicity w.r.t. their coset, i.e. epistemic structure).

Cayley groups with suitable acyclicity properties for their
coset structure are available from [15]; they are used here in a
novel analysis of first-order expressiveness and Ehrenfeucht–
Fraı̈ssé games. This allows us to deal with the challenge of
locality issues at different scales or levels of granularity, which
are induced by reachability and transitivity phenomena for
different groups of agents in CK-structures.

Our main theorem is the following.

Theorem 4. ML[CK] ≡ FO/∼ over CK-structures, both
classically and in the sense of finite model theory.

An equivalent alternative formulation would characterise
ML[CK] as the ∼-invariant fragment of FO[CK], the extension
of FO that gives it access to the derived accessibility relations
for common knowledge—now over all (finite) S5 structures.

A preliminary discussion of the technical challenges for
the expressive completeness assertion in this theorem, also in
comparison to those in related approaches to e.g. Theorem 1,
can be found in Section II-D. The proof of the classical version
over the class of all, finite or infinite CK-structures is given
in Section IV. The techniques used there also pave the way
to the more involved technical development in Section V that
supports the finite model theory version.

II. BASIC NOTIONS AND TERMINOLOGY

A. S5 and CK Kripke structures and modal logic

For this paper we fix a finite set Γ of agents; individual
agents are referred to by labels a ∈ Γ. In corresponding S5
Kripke frames (W, (Ra)a∈Γ) the set W of possible worlds is
split, for each a ∈ Γ, into equivalence classes [w]a w.r.t. the
equivalence relations Ra that form the accessibility relations
for the individual agents in this multi-modal Kripke frame. The
epistemic reading is that agent a cannot directly distinguish
worlds from the same class [w]a; to simplify terminology
we also speak of a-edges and a-equivalence classes. An S5
Kripke structure is an expansion of an S5 Kripke frame by a
propositional assignment, for a given set of basic propositions
(Pi)i∈I . As individual formulae of all logics considered will
only mention finitely many basic propositions, we may also
think of the index set I for the basic propositions as a
fixed finite set. The propositional assignment is encoded, in
relational terms, by unary predicates Pi for i ∈ I , so a typical
S5 Kripke structure is specified as

M = (W, (Ra)a∈Γ, (Pi)i∈I).
1

Basic modal logic ML for this setting has atomic formulae
⊥,> and pi for i ∈ I , and is closed under the usual boolean
connectives, ∧,∨,¬, as well as under the modal operators
(modalities, modal quantifiers) �a and ♦a for a ∈ Γ. The
semantics for ML is the standard one, with an intuitive epis-
temic reading of �a as “agent a knows that . . . ” and, dually,
♦a as “agent a regards it as possible that . . . ”, inductively:
• M, w |= pi if w ∈ Pi;

M, w |= > for all and M, w |= ⊥ for no w ∈W ;
• boolean connectives are treated as usual;
• M, w |= �aϕ if M, w′ |= ϕ for all w′ ∈ [w]a;
• M, w |= ♦aϕ if M, w′ |= ϕ for some w′ ∈ [w]a.
The extension of ML to common knowledge logic ML[CK]

introduces further modalities �α and ♦α for every group of
agents α ⊆ Γ. The intuitive epistemic reading of �α is that
“it is common knowledge among agents in α that . . . ”, and
♦α is treated as the dual of �α. The semantics of �α in an
S5 Kripke structure M as above is given by the condition that
M, w |= �αϕ if ϕ is true in every world w′ that is reachable
from w by any path formed by edges in Ra for a ∈ α, i.e., for
any w′ in the equivalence class [w]α of the derived equivalence
relation

Rα := TC(
⋃
a∈αRa),

1Where confusion is unlikely, we do not explicitly label the interpretations
of the Ra and Pi by M.



where TC denotes (reflexive and symmetric) transitive closure.
• M, w |= �αϕ if M, w′ |= ϕ for all w′ ∈ [w]α;
• M, w |= ♦αϕ if M, w′ |= ϕ for some w′ ∈ [w]α.
Note that for singleton sets α = {a}, �α coincides with �a

just as Ra coincides with R{a}. The modal operators �∅ and
♦∅ are eliminable: they both refer to just truth in [w]∅ = {w}.
We also use τ := P(Γ) for the labelling of the expanded list
of modalities and the corresponding equivalence relations and
classes, so α will range over τ .

Definition 5. With any S5 Kripke frame (or structure) we as-
sociate the CK-frame (or structure) obtained as the expansion
by the family (Ra)a∈Γ to the family (Rα)α∈τ for τ = P(Γ),
where Rα = TC(

⋃
a∈αRa).

We use notation MCK to indicate the passage from the S5
Kripke structure M = (W, (Ra)a∈Γ, (Pi)i∈I) to its associated
CK-structure,

MCK =(W, (Ra)α∈τ , (Pi)i∈I),

which is again an S5 Kripke structure. The resulting class of
CK-structures is non-elementary since the defining conditions
for the Rα are not first-order expressible.

Definition 6. The syntax of epistemic modal logic with
common knowledge, ML[CK], for the set of agents Γ is the
same as the syntax of basic modal logic ML with modalities
�α and ♦α for α ∈ τ = P(Γ). Its semantics, over S5 Kripke
structures M for the set of agents Γ, is the usual one, evaluated
over the associated CK-structures MCK.

B. Bisimulation

We present the core ideas surrounding the notion of
bisimulation equivalence in the language of model-theoretic
back&forth games of the following format. Play is between
two players, player I and II, and over two Kripke structures
M = (W, (Ra)a∈Γ, (Pi)i∈I) and N = (V, (Ra)a∈Γ, (Pi)i∈I).

A position of the game consists of a pair of worlds (w, v) ∈
W ×V , marked by placement of single pebbles in M and N.

In a round played from position (w, v), player I chooses
one of the structures, M or N, and one of the accessibility
relations, i.e., one of the labels a ∈ Γ, and moves the
pebble in the chosen structure along some edge of the chosen
accessibility relation; player II has to move the pebble along
an edge of the same accessibility relation in the opposite
structure; the round results in a successor position (w′, v′).

Either player loses when stuck, II loses in any position
(w, v) that violates propositional equivalence, i.e., whenever
{i ∈ I : w ∈ Pi} 6= {i ∈ I : v ∈ Pi}; in this case the game
terminates with a loss for II.

The unbounded game continues indefinitely, and any infinite
play is won by II. The `-round game is played for ` rounds,
it is won by II if she can play through these ` rounds without
violating propositional equivalence.

Definition 7. M, w and N, v are bisimilar, M, w ∼ N, v, if
II has a winning strategy in the unbounded bisimulation game
on M and N starting from position (w, v). M, w and N, v are

`-bisimilar, M, w ∼` N, v, if II has a winning strategy in the
`-round bisimulation game starting from position (w, v).

When a common background structure M is clear from
context we also write just w ∼ w′ for M, w ∼ M, w′, and
similarly for ∼`.

It is instructive to compare the bisimulation game on M/N
with the game on MCK/NCK. On one hand,

M, w ∼ N, v iff MCK, w ∼ NCK, v;

the non-trivial implication from left to right uses the fact
that every move along an Rα-edge can be simulated by a
finite number of moves along Ra-edges for a ∈ α. This
also means that, in the terminology of classical modal logic,
passage from M to MCK is safe for bisimulation. On the other
hand, there is no such correspondence at the level of finite
approximations ∼`, since the finite number of rounds needed
to simulate a single round played on an Rα-edge cannot be
uniformly bounded. This illustrates the infinitary character of
passage from M to MCK, and encapsulates central aspects of
our concerns here:
• M 7→MCK breaks standard notions of locality;
• M 7→MCK is beyond first-order control.

Correspondingly, modal or first-order expressibility over MCK

transcends expressibility over M, and in particular ML[CK]
transcends ML while still being invariant under ∼.

The link between bisimulation and definability in modal
logics, is the following well-known modal analogue of the
classical Ehrenfeucht–Fraı̈ssé theorem, cf. [3], [8]. Here and
in the following we denote as

M, w ≡ML
` N, v

indistinguishability by ML-formulae of modal nesting depth
(quantifier rank) up to `, just as ≡FO

q or just ≡q will denote
classical first-order (elementary) equivalence up to quantifier
rank q. Over finite relational vocabularies all of these equiva-
lences have finite index, which is crucial for the following.2

Theorem 8. For any finite modal vocabularies (here: finite
sets of agents and basic propositions), Kripke structures M
and N with distinguished worlds w and v, and ` ∈ N:

M, w ∼` N, v iff M, w ≡ML
` N, v.

In particular, the semantics of any modal formula (in ML or
in ML[CK]) is preserved under full bisimulation equivalence
(of either the underlying plain S5 structures or their CK-
expansions). Any formula of ML[CK] is preserved under some
level ∼` over CK-expansions (but not over the underlying
plain S5 structures!).

The following notion will be of special interest for our
constructions; it describes a particularly neat bisimulation
relationship, mediated by a homomorphism (classical modal

2Finite index is crucial for the definability of the ∼`-equivalence classes by
so-called characteristic formulae χ`M,w s.t. N, v |= χ`M,w iff M, w ∼` N, v.



terminology speaks of bounded morphisms). Bisimilar tree un-
foldings are a well-known instance of (albeit, usually infinite)
bisimilar coverings with many applications.

Definition 9. A surjective homomorphism π : M̂ → M
between Kripke structures is called a bisimilar covering if
M̂, ŵ ∼M, π(ŵ) for all ŵ from M̂.

Control of multiplicities and cycles in Kripke structures
plays an essential rôle towards the analysis of first-order
expressiveness, simply because they are not controlled by
bisimulation.

Core results from [5] deal with this at the level of plain S5
Kripke structures, where products with finite Cayley groups
of sufficiently large girth suffice to avoid short cycles. These
constructions would not avoid the kind of cycles we have to
deal with in CK-structures: on one hand we will have to look
to stronger acyclicity properties, viz. coset acyclicity of Cayley
groups in Section III-A; on the other hand, we can naturally
model any CK-scenario directly in a Cayley group.

That highly regular and homogeneous CK-structures can be
obtained directly from Cayley groups, and that these structures
are in fact generic up to bisimulation, forms a corner-stone of
our approach to the analysis of the expressive power of first-
order logic for ∼-invariant properties over CK-structures (cf.
Main Lemma 3 in the introduction, and Lemma 11 below).

C. Common knowledge in Cayley structures
A Cayley group is a group G = (G, ·, 1) with a specified

set of generators E ⊆ G, which in our case will always be
distinct, non-trivial involutions: e 6= 1 and e2 = 1 for all
e ∈ E. G is generated by E in the sense that every g ∈
G can be represented as a product of generators, i.e., as a
word in E∗, which w.l.o.g. is reduced in the sense of not
having any factors e2. With the Cayley groupG = (G, ·, 1) one
associates its Cayley graph. Its vertex set is the set G of group
elements; its edge relations are Re := {(g, ge) : g ∈ G}, which
in our case are symmetric and indeed complete matchings on
G. That G is generated by E means that the edge-coloured
graph (G, (Re)e∈E) is connected; it is also homogeneous in
the sense that any two vertices g and h are related by a graph
automorphism induced by right multiplication with g−1h in
the group.

Partitioning the generator set E into subsets Ea associated
with the agents a ∈ Γ, we consider subgroups Ga = 〈e : e ∈
Ea〉 ⊆ G generated by the e ∈ Ea, and regard cosets w.r.t.
Ga as a-equivalence classes over G, turning G into the set
of possible worlds of an S5 frame. Indeed, the associated
equivalence relation

Ra := {(g, gh) : h ∈ Ga} = TC
(⋃
{Re : e ∈ Ea}

)
is the (reflexive, symmetric) transitive closure of the edge
relation induced by corresponding generators in the Cayley
graph. This pattern naturally extends to sets of agents α ∈
τ = P(Γ). Writing Gα ⊆ G for the subgroup generated by
Eα :=

⋃
{Ea : a ∈ α}, the equivalence relations

Rα := {(g, gh) : h ∈ Gα} = TC
(⋃
{Ra : a ∈ α}

)

are the accessibility relations in the CK-expansion: their equiv-
alence classes are the cosets w.r.t. the subgroups Gα generated
by corresponding parts of the Γ-partitioned E.

Definition 10. With any Cayley group G = (G, ·, 1) with gen-
erator set E of involutions that is Γ-partitioned, E =

⋃̇
a∈ΓEa,

we associate the Cayley CK-frame (Cayley frame, for short)
GCK over the set G of possible worlds with accessibility
relations Rα for α ∈ τ = P(Γ). A Cayley structure consist
of a Cayley frame together with a propositional assignment.

Note that any Cayley structure is a CK-structure, so that for
Cayley structures M, always MCK = M. In the following we
simply speak of α-edges, -classes, -cosets with reference to
the Rα or Gα in any Cayley structure.

Lemma 11. Any connected (finite) CK-structure admits a
bisimilar covering by a (finite) Cayley CK-structure.

Proof. We may concentrate on the underlying plain S5 struc-
tures with accessibility relations Ra for a ∈ Γ (bisimilar cover-
ings are compatible with the bisimulation-safe passage to CK-
structures). For given M = (W, (Ra), (Pi)) let E :=

⋃̇
a∈ΓRa

be the disjoint union of the edge sets Ra, partitioned into
subsets Ea corresponding to the individual Ra. Let M ⊕ 2E

stand for the undirected E-edge-labelled graph formed by the
disjoint union of M with the |E|-dimensional hypercube 2E .
With e ∈ E we associate the involutive permutation πe of
the vertex set V of M ⊕ 2E that precisely swaps all pairs
of vertices in e-labelled edges. For G we take the subgroup
of the symmetric group on V that is generated by these πe,
which we identify with involutive generators e. Due to the
2E-component, these e = πe ∈ E ⊆ G are pairwise distinct
and distinct from 1 ∈ G. We let G act on V in the natural
fashion (from the right): for g = e1 · · · en,

g : v 7→ we1 · · · en := (πen ◦ · · · ◦ πe1)(v).

This operation is well-defined as a group action, since by
definition e1 · · · en = 1 in G if, and only if, πen ◦ · · · ◦ πe1
fixes every v ∈ W . It also leaves W ⊆ V invariant as a set,
i.e. the action can be restricted to W . Then the map

π̂ : W ×G −→ W
(w, g) 7−→ wg

is a surjective homomorphism w.r.t. the edge relations Ra
as interpreted in the direct product of M and in the Cayley
frame associated with G. This homomorphism directly extends
to the induced CK-frames with accessibility relations Rα for
α ∈ τ . Moreover, since M is connected, G acts transitively
on W and we may restrict to a single connected sheet of the
above multiple covering, corresponding to the identification
of an (arbitrary) distinguished world w0 ∈ W as a base
point. We obtain π as the restriction of π̂ to the subset
{(w0g, g) : g ∈ G}, which is naturally isomorphic with G
itself. We may expand the Cayley frame (G, (Rα)) in a
unique manner to a Cayley structure (G, (Rα), (Pi)) for which
π becomes a homomorphism onto MCK – by pulling back
Pi ⊆ W to its pre-image π−1(Pi) ⊆ G. The resulting



M, w

∼

∼` N, v

∼

M∗, w∗ ≡q N∗, v∗

Fig. 1. Upgrading ∼` to ≡q in bisimilar companions.

π : (G, (Rα), (Pi)) → MCK is a bisimilar covering. Note that
G and (G, (Rα), (Pi)) are finite if W is.

This crucial insight justifies the following, since – up to
bisimulation – we may now transfer any model-theoretic ques-
tion about (finite) CK-structures to (finite) Cayley structures.3

Proviso 12. From now on consider Cayley structures as
prototypical representatives of CK-structures.

D. Upgrading for expressive completeness

The key to the expressive completeness results from [13]
to [5], [15] lies in the establishment of the following finiteness
or compactness phenomenon for ∼-invariant FO-formulae
ϕ(x) over the relevant classes C of structures:

(†)
{
ϕ ∈ FO : ϕ ∼-invariant over C} =⋃

`∈N
{
ϕ ∈ FO : ϕ ∼`-invariant over C}.

This finiteness property in turn follows if suitable levels ∼`
can be upgraded in bisimilar companions within C so as to
guarantee equivalence w.r.t. the given ϕ of quantifier rank q as
follows. If, for suitable ` = `(q), any pair of pointed structures
M, w ∼` N, v from C admits the construction of bisimilar
companion structures M∗, w∗ ∼ M, w and N∗, v∗ ∼ N, v
such that M∗, w∗ ≡q N∗, v∗, as in Figure 1, then, over C,
any ∼-invariant FO-formula of quantifier rank q is indeed ∼`-
invariant, and hence expressible in ML at modal nesting depth
` over C by Theorem 8.

Obstructions to be overcome: Considering Figure 1, it
is clear that M∗ and N∗ must avoid distinguishing features
that are definable in FOq (FO at quantifier rank up to q)
but cannot be controlled by ∼` (for a level ` = `(q) to
be determined). Potential features of this kind involve small
multiplicities w.r.t. accessibility relations and basic proposi-
tions (i.e., small class sizes [w]α, possibly in restriction to
some Pi) or short non-trivial cycles w.r.t. combinations of
the accessibility relations Rα. In the setting of plain Kripke
structures rather than our CK-structures, and thus for many of
the more immediate variations on Theorem 1, it turns out that
both these obstacles can be eliminated in bisimilar coverings
by direct products: multiplicities can be boosted above critical
thresholds in products with large enough cliques; short cycles
can be eliminated in products with Cayley groups of large
girth. While these aspects will play a rôle here, too, the
greater challenge lies with the game arguments that typically

3Lemma 33 offers (finite) representations with specific acyclicity and
richness properties, obtained as coverings by Cayley groups from [15].

allow us to establish ≡q . The classical q-round first-order
Ehrenfeucht–Fraı̈ssé or pebble game, which serves to establish
≡q-equivalence of two structures (cf., e.g. [10], [6]), has to be
based on some useful structural analysis of the target structures
M∗ and N∗. While many earlier upgrading results in this
vein could rely on classical Gaifman locality arguments for
this structural analysis, the situation here is different, because,
naively, Gaifman locality is completely trivialised in connected
CK-structures, which form a single Gaifman clique. In fact, it
seems all but hopeless to use locality techniques in structures
that are as dense in terms of their edge relations as CK-
structures are. This is where Cayley structures, whose edge
pattern is not only very dense but also highly regular and
therefore amenable to structured analysis, provide a promising
scenario. In this scenario we can perform a structural analysis
that can deal with locality at different levels of granularity,
depending on the combinations of Rα that are taken into
account, and thus perform locality analysis at different scales
of distance measures.

III. CAYLEY GROUPS OF CONTROLLED ACYCLICITY

To win the classical q-round first-order Ehrenfeucht–Fraı̈ssé
or pebble game over two Cayley structures, player II must
answer player I’s moves in such a way as to respect distances
between pebbled worlds: short distances must be matched
exactly, and long distances must be matched by distances that
are also long. Since distances in Cayley structures can be
measured on different scales, distance must be respected on all
scales simultaneously. To control distances in this manner, we
must in particular be able to avoid undesired short paths w.r.t.
various combinations of Rα. Connected CK-structures have
diameter 1 at the level of RΓ, so non-trivial distances only arise
when we zoom in to the level of α-steps for subsets α  Γ
that do not allow direct edges from source to target world.
The notion of non-trivial short coset paths (formally defined
in Definition 19) formed by overlapping α-classes, i.e. by α-
cosets (cosets w.r.t. Gα), therefore becomes a key ingredient in
achieving the desired control over distances at varying scales
in Cayley groups that avoid (all or at least short) coset cycles.

A. Coset acyclicity vs. large girth

In the case of CK-frames and Cayley frames one cannot
hope to avoid cycles outright.4 Since any Cayley frame is
connected, any two of its worlds w and w′ are linked by a
Γ-edge in any Cayley frame, this is of no concern for the
upgrading (in fact, RΓ is trivially FO-definable in Cayley
frames). But crucial distinctions can occur w.r.t. the reducts
of Cayley frames without Γ-edges: worlds w and w′ may
not be related by any single α-edge for α  Γ, but via a
non-trivial short path that uses mixed edge relations. Assume
we have Cayley structures M and N, and pairs of worlds
(w, v), (w′, v′) ∈ W × V such that M, w ∼` N, v and
M, w′ ∼` N, v′. It is possible to have two different non-trivial
short paths from w to w′ but essentially only one such path

4This is even true of S5 structures, but at least those cannot have short
cycles w.r.t. long-range edge relations like our Rα.



from v to v′; and this difference could be expressible in FOq .
The solution is to find bisimilar companions to M and N
that are locally acyclic w.r.t. non-trivial overlaps between α-
classes, i.e. α-cosets [w]α for various α. Simultaneously, every
such coset [w]α of the structures must be locally acyclic, in the
same sense, w.r.t. β-classes for β  α. This is meant by multi-
scale acyclicity, and it turns out that the following notions of
coset acyclicity from [15] are what we can use.

Definition 13. Let M be a Cayley frame. A coset cycle of
length m in M is a cyclic tuple (wi, αi)i∈Zm

, where, for all
i ∈ Zm, (wi, wi+1) ∈ Rαi and

[wi]αi−1∩αi
∩ [wi+1]αi∩αi+1

= ∅.

Definition 14. A Cayley frame is acyclic if it does not contain
a coset cycle, and N -acyclic if it does not contain a coset cycle
of length up to N .

In Section IV and V we use bisimilar companions that are
fully acyclic, or finite and N -acyclic, respectively.

Because of the transitive nature of the edge relations in Cay-
ley frames, we cannot hope to construct bisimilar companions
that have unique paths between any two vertices. However,
paths in acyclic Cayley frames are unique in the sense that any
two paths between worlds w and w′ are just different variations
of one and the same core path. In the case of N -acyclic Cayley
frames arbitrary paths between worlds w and w′ do not have
to be related in any sense, but short paths behave as well
as all paths would in fully acyclic frames. If the degree of
acyclicity N is sufficiently high, this will be enough to show
≡q-equivalence between two `-bisimilar structures.

The rest of this section is mostly concerned with the investi-
gation of 2-acyclicity. It assumes a special rôle in the analysis
of Cayley frames. We begin with a useful characterisation.

Lemma 15. Let M be a Cayley frame. M is 2-acyclic if, and
only if, for all w ∈W,α, β ∈ τ we have

[w]α ∩ [w]β = [w]α∩β .

Proof. ”⇐” and [w]α∩β ⊆ [w]α ∩ [w]β obvious. For ”⇒”
consider a configuration [w]α∩β  [w]α∩[w]β . For v ∈ [w]α∩
[w]β \ [w]α∩β , [w]α∩β ∩ [v]α∩β = ∅ so that (w,α, v, β, w)
forms a 2-cycle.

We use this characterisation to show that 2-acyclic Cayley
frames display a high degree of regularity (and most of
the notions that we will introduce in this and the following
sections only make sense in 2-acyclic frames). In 2-acyclic
Cayley frames, every family of α-classes (cosets) with non-
trivial intersection intersects in a unique coset; and for any
two vertices, there is a unique smallest set α ∈ τ that
connects these vertices. In contrast, arbitrary S5- or CK-frames
impose very little structure on the overlap patterns between the
equivalence classes formed by their accessibility relations.

We shall later draw on the structure of the dual hypergraph
associated with a Cayley frame (cf. Definition 22).

Definition 16. In a Cayley frame M define the dual hyperedge
induced by a world w to be the set of cosets

[[w]] := {[w]α : α ∈ τ}.

The following lemma collects some fundamental properties
of 2-acyclic Cayley frames to be used throughout.

Lemma 17. In a 2-acyclic Cayley frame M with worlds
w,w1, . . . , wk and groups of agents α, α1, . . . , αk ∈ τ :
(1) If w ∈

⋂
16i6k[wi]αi

, then
⋂

16i6k[wi]αi
= [w]β for

β :=
⋂

16i6k αi.
(2) If [w]α ∈

⋂
16i6k[[wi]], then also [w]α′ ∈

⋂
16i6k[[wi]]

for any α′ ∈ τ s.t. α ⊆ α′.
(3) The set

⋂
16i6k[[wi]] has a minimal element, i.e. there is

an α0 ∈ τ s.t. [w1]α0
∈
⋂

16i6k[[wi]] and, for any α′ ∈ τ :
[wi]α′ ∈

⋂
16i6k[[wi]] iff α0 ⊆ α′.

Proof. (1) and (2) are obvious from the definitions. For (3)
we observe that 2-acyclicity implies that the collection

{α ∈ τ : [w1]α ∈
⋂

16i6k[[wi]]}

is closed under intersections: otherwise there would be
[w1]α, [w1]β ∈

⋂
16i6k[[wi]] and 1 6 i, j 6 k such that

[wi]β∩α ∩ [wj ]α∩β = ∅. But this, together with [w1]α =
[wi]α = [wj ]α and [w1]β = [wi]β = [wj ]β would constitute a
2-cycle (wi, α, wj , β, wi).

In a 2-acyclic Cayley frame we denote the minimal group
of agents that connects the worlds in w by agt(w) ∈ τ (as
justified by (3) in the lemma). Intuitively, agt(w) sets the scale
for zooming in to the link structure among w to α  agt(w).
In 2-acyclic frames, it can be controlled in a regular manner.

Lemma 18. In a 2-acyclic Cayley frame for worlds w, v:
(i) For every agent a /∈ agt(w, v) and every v′ ∈ [v]a \ {v}

we have agt(w, v′) = agt(w, v) ∪ {a}.
(ii) For every agent a ∈ agt(w, v) there is at most one v′ ∈

[v]a such that agt(w, v′) = agt(w, v) \ {a}.

As mentioned above, our upgrading has to deal with paths
on all scales simultaneously. The real challenge in playing the
pebble game lies in controlling all short paths. In sufficiently
acyclic Cayley structures we only need to consider paths that
link two worlds w, v via α-edges for α ( agt(v, w); all other
cases are trivial, as we shall show later. The quintessential
kind of short paths to be controlled is isolated in the following
definition of non-trivial coset paths.

Definition 19. Let M be a 2-acyclic Cayley frame. A
coset path of length ` from w1 to w`+1 is a labelled path
(w1, α1, w2, α2, . . . , α`, w`+1) in M such that, for 1 6 i 6 `:
[wi]αi−1∩αi

∩ [wi+1]αi∩αi+1
= ∅, with α0 = α`+1 = ∅.

A coset path (w1, α1, . . . , α`, w`+1) in a 2-acyclic Cayley
frame is non-trivial if αi ( agt(w1, w`+1), for all 1 6 i 6 `.
A non-trivial coset path from v to w 6= v is minimal if there
is no shorter non-trivial coset path from v to w.

As we shall later show, the problem of avoiding short non-
trivial coset paths does not pose great difficulties in Cayley



frames that are fully acyclic in the sense of Definition 14; this
will be dealt with in Section IV. Avoidance of non-trivial short
paths in sufficiently acyclic finite Cayley frames, on the other
hand, is the main focus of Sections V-A and V-B.

B. Coset acyclicity and hypergraph acyclicity

In this section we introduce the dual hypergraph of a Cayley
frame or structure, and investigate the connections between
acyclicity of Cayley frames and hypergraph acyclicity, and
between coset paths in Cayley frames and chordless paths in
hypergraphs. The dual hypergraph is an important part in de-
scribing the winning strategy for player II in the Ehrenfeucht–
Fraı̈ssé game. First, some basic notions.

Definition 20. A hypergraph is a structure A = (A,S), A its
vertex set and S ⊆ P(A) its set of hyperedges.

With a hypergraph A = (A,S) we associate its Gaifman
graph G(A) = (A,G(S)); the undirected edge relation of
G(A) links a 6= a′ if a, a′ ∈ s for some s ∈ S.

An n-cycle in a hypergraph is cycle of length n in its
Gaifman graph, and an n-path is a path of length n in its
Gaifman graph. A chord of an n-cycle or n-path is an edge
between vertices that are not next neighbours along the cycle
or path. The following definition of hypergraph acyclicity is
the classical one from [2], also known as α-acyclicity in [1].

Definition 21. A hypergraph A = (A,S) is acyclic if it is
conformal and chordal:

(i) conformality requires that every clique in the Gaifman
graph G(A) is contained in some hyperedge s ∈ S;

(ii) chordality requires that every cycle in the Gaifman
graph G(A) of length greater than 3 has a chord.

For N > 3, A = (A,S) is N -acyclic if it is N -conformal
and N -chordal:
(iii) N -conformality requires that every clique in G(A) up to

size N is contained in some hyperedge s ∈ S;
(iv) N -chordality requires that every cycle in G(A) of length

greater than 3 and up to N has a chord.

If a hypergraph is N -acyclic, then every induced substruc-
ture of size up to N is acyclic.

A hypergraph (A,S) is tree decomposable if it admits a tree
decomposition T = (T, δ): T is a tree and δ : T → S is a map
such that image(δ) = S and, for every node a ∈ A, the set
{v ∈ T : a ∈ δ(v)} is connected in T . A well-known result
from classical hypergraph theory ([2],[1]) is that a hypergraph
is tree decomposable if, and only if, it is acyclic.

Definition 22. Let M = (W, (Rα)α∈τ ) be a Cayley frame.
Its dual hypergraph is the vertex-coloured hypergraph

d(M) := (d(W ), S, (Qα)α∈τ ) where

d(W ) :=
⋃̇

α∈τ
Qα for Qα := W/Rα,

S := {[[w]] ⊆ d(W ) : w ∈W}.

The notions of acyclicity for Cayley frames and hypergraph
acyclicity are directly connected by the following.

Lemma 23. [15] For N > 3, if M is an N -acyclic Cayley
frame, then d(M) is an N -acyclic hypergraph.

Simple arguments also show that similarly the notions of
non-trivial coset paths in a 2-acyclic Cayley frame and of
chordless paths in its dual hypergraph are closely related as
follows. A minimal non-trivial coset path

(w1, α1, w2, . . . , w`, α`, w`+1)

from w1 to w`+1 in a 2-acyclic Cayley frame M induces, for
t = [[w1]]∩[[w`+1]], a chordless path [w1]α1 , [w2]α2 , . . . , [w`]α`

in d(M) \ t. A minimal (hence chordless) path

([w1]α1
, [[w2]], [w2]α2

, . . . , [[w`]], [w`]α`
)

from [w1]α1 to [w`]α`
in d(M) that stays clear of

t := [[w1]] ∩ [[w`]], induces a non-trivial coset path
(w1, α1, w2, . . . , w`−1, α`−1, w`) in M.

IV. IF FINITENESS WERE NOT AN ISSUE

In this section we prove the classical version of the charac-
terisation theorem, Theorem 4, for ML[CK] over the class of
all (finite or infinite) CK-structures, which by Lemma 11 is
represented up to ∼ by the class of all Cayley structures.

A. Free ω-unfoldings

For the upgrading argument in the spirit of Figure 1 we
need to construct bisimilar companions to Cayley structures
that avoid features that can be distinguished by FO-formula up
to fixed quantifier rank q. As discussed in Section II-D, these
concern small multiplicities and short non-trivial cycles. In the
classical case we may use infinitely branching tree unfoldings,
which may here directly be generated as bisimilar coverings
by Cayley structures similar to Lemma 11. The differences
are that here we want to put countably many generators for
every edge of the original CK-frame (to boost multiplicities)
and do not impose any non-trivial identities between generator
words (to achieve full acyclicity). In other words, unlike for
Lemma 11, we here use free Cayley groups, whose Cayley
graphs are actual trees, i.e., acyclic. So, in order to boost all
multiplicities uniformly to ω, we just replace the partition set
of Ea-generators, which previously was the set of a-tagged
individual irreflexive Ra-edges, by

Eωa := Ra × ω × {a}.

Picking any distinguished world w in the given CK-structure
M as a base point, we may proceed as in Lemma 11 to
obtain a bisimilar covering of M by a Cayley structure Mω[w]
that is acyclic in the sense of Definition 14 (and associates
the identity element of the underlying Cayley group with w).
Besides full acyclicity, this bisimilar covering by the infinite
Cayley structure Mω[w] has, for every α-neighbour u of any
element w, u ∈ [w]α, countably infinitely many sibling worlds
u′ ∈ [w]α that are bisimilar to u: we call this ω-richness. So
we may, up to ∼ in the world of all (finite and infinite!) CK-
structures, assume to be dealing with such free, ω-rich Cayley
structures, as can be obtained as free ω-unfoldings of arbitrary
CK-structures.



Proviso 24. For the remainder of this section, we consider
free and ω-rich Cayley structures only.

B. Upgrading in free, ω-rich Cayley structures

We aim to show that for some suitable choice of ` = `(q),
any free, ω-rich Cayley structures M and N satisfy:

M, w ∼` N, v ⇒ M, w ≡q N, v.

We prove the statement by giving a winning strategy for
player II in the standard q-round Ehrenfeucht–Fraı̈ssé game
on M, w and N, v. In order to find suitable responses for II we
use the dual hypergraphs d(M) and d(N) (cf. Definition 22)
associated with M and N and employ techniques from [15]
that were developed for playing Ehrenfeucht–Fraı̈ssé games
on α-acyclic hypergraphs. These techniques are critical in
showing that the necessary level of ∼` can be bounded in
terms of q.

To win the q-round Ehrenfeucht–Fraı̈ssé game on M and N
player II upholds the following invariant throughout her play.
In round i− 1 she finds substructures Mi−1 ⊆M and Ni−1 ⊆
N that contain the pebbled worlds and an isomorphism
f : Mi−1 → Ni−1 such that Mi−1, u ∼`i−1 Ni−1, f(u), for
all u ∈Mi−1 and a degree ∼`i−1 of bisimulation equivalence
that depends on the current round i, and thus the number of
rounds still to be played. Simultaneously, she keeps track of
two subsets Qi−1 ⊆ d(M) and Q′i−1 ⊆ d(N) that induce
isomorphic substructures d(M) � Qi−1 and d(N) � Q′i−1,
as well as tree decompositions Ti−1 and T ′i−1 of these. The
substructures Mi−1 and Ni−1 will be representations, in M
and N, of these two tree decompositons. Conversely, and
roughly speaking, Qi−1 and Q′i−1 are the dual hypergraph
images of Mi−1 and Ni−1.

If I places a pebble in M say, then the structures Mi−1

and Qi−1 get expanded in a certain manner, and an analysis
of these expansions tells II how to respond in N. Essentially,
if I places a pebble on a world w′ ∈M in round i, we have
to add w′ to the substructure Mi−1; for every equivalence
class [w′′]α that is on a short coset path between Mi−1 and w′,
we have to add a representative w′′ to Mi−1; and for every
equivalence class on a short coset path between Mi−1 and
the new vertices we have to add yet another representative
and so forth. For the argument to work we need to figure out
which representatives to choose and how to uniformly bound
the number of vertices added to Mi−1.

We have seen above that short coset paths in a Cayley struc-
ture correspond to short chordless paths in its dual hypergraph.
For this reason we investigate subsets of acyclic hypergraphs
that are closed under short chordless paths.

Definition 25. Let A = (A,S) be a hypergraph.
(i) A subset Q ⊆ A is m-closed if every chordless path up

to length m between nodes a, a′ ∈ Q is contained in Q.
(ii) For m ∈ N, the convex m-closure of a subset P ⊆ A is

the minimal m-closed subset that contains P :

clm(P ) :=
⋂
{Q ⊇ P : Q ⊆ A m-closed }.

In our Ehrenfeucht–Fraı̈ssé game on M and N, the auxiliary
set Qi−1 ⊆ d(M) (as a record of Mi−1 in the dual) is chosen
to be 2m+1-closed, for some m = mi ∈ N that is considered
a short distance for round i. If I chooses a world w′ for his
move in round i, we take a closer look at the structure of the set
Qi := clm(Qi−1 ∪ {[w′]∅}). Lemmas 26 and 27 show that in
sufficiently acyclic hypergraphs, the addition of [w′]∅ = {w′}
to Qi−1 and closure of this set under short chordless paths
updates Qi−1 to Qi in a well-behaved manner. The following
three lemmas are from [15]. Here N1(P ) =

⋃
{N1(p) : p ∈

P} refers to the 1-neighbourhood of the set P in the Gaifman
graph; distance d(P, q) = min{d(p, q) : p ∈ P} between a set
and a vertex similarly refers to distance in the Gaifman graph.

Lemma 26. Let A = (A,S) be sufficiently acyclic, m > 1,
Q ⊆ A m-closed, a ∈ A some vertex with 1 6 d(Q, a) 6 m.
Let Q̂ := clm(Q∪ {a}) and consider the region in which this
extended closure attaches to Q:

D := Q ∩N1(Q̂ \Q).

Then Q̂\Q is connected, and D separates Q̂\Q from Q\D,
hence Q̂ = Q ∪ clm(D ∪ {a}).

Since we additionally assumed that Qi−1 is 2m+ 1-closed,
we can employ the following lemma, as well.

Lemma 27. Let A = (A,S) be sufficiently acyclic, Q ⊆ A
m-closed, a ∈ A some vertex with 1 6 d(Q, a) 6 m, and
Q̂ := clm(Q ∪ {a}). If Q is even (2m+ 1)-closed, then D =
Q ∩N1(Q̂ \Q) is a clique.

D being a clique implies that it is contained in a single
bag of the tree decomposition of d(M) � Qi−1. This bag
corresponds to some world u in Mi−1, in the sense that D ⊆
[[u]], which is mapped to f(u) ∈ Ni−1. This is our starting
point for finding II’s response in N to I’s move to w′ in M.

Now that we know Qi = Qi−1∪clm(D∪{[w′]∅}), for some
clique D ⊆ Qi−1, we want to obtain a bound on the size of
the extension clm(D ∪ {[w′]∅}) that can occur in a single
round; such a bound is critical in bounding the required level
of ∼`. Since our (dual) hypergraphs have a uniform width of
|τ |, which we regard as constant, we seek functions fm(k)
that bound the size of m-closures of sets or tuples of size k
in those hypergraphs, provided they are sufficiently acyclic.

Lemma 28. For fixed width, there are functions fm(k) s.t.
in hypergraphs A of that width that are sufficiently acyclic,
|clm(P )| 6 fm(k) for all P ⊆ A of size |P | 6 k.

The closures that we encounter in a single step of the
Ehrenfeucht–Fraı̈ssé game will be generated by a hyperedge
and a single extra vertex, hence by at most |τ | + 1 vertices.
We can therefore bound the size of these closures, which also
allows us to bound the depth of tree decompositions of the
relevant sub-hypergraphs induced by the closures. Availability
of suitable tree-like extensions of bounded depth, which can
be used to cover the newly pebbled worlds, is controlled by
bisimulation types of corresponding depth.



So we aim to describe the tree decomposition T = (T, δ)
of d(M) � Q, for Q := (Qi \ Qi−1) ∪ D by an ML-
formula. Since every bag δ(u) is a clique, it is covered a
hyperedge [[wu]] of d(M). Let δ̂ : V [T ] → M be a map such
that δ(u) ⊆ [[δ̂(u)]] for all u ∈ V [T ]. In general, there is not a
unique choice for δ̂, but we know w′ ∈ image(δ̂), since [[w′]]
is the only hyperedge that includes [w′]∅. The set image(δ̂)
contains the vertices to be added to Mi−1 in round i, i.e.
we define Mi as the substructure of M that is induced by
Wi−1 ∪ image(δ̂) – and we want to find a corresponding
extension of Ni−1 through a description of T = (T, δ) in
ML. To prepare for that, we observe that in dual hypergraphs
of 2-acyclic Cayley structures the set of equivalence classes
[[u]] ∩ [[u′]] is fully determined by the single set of agents
agt(u, u′) (cf. Lemma 17).

Let wu := δ̂(u), for u ∈ V [T ], and and λ ∈ V [T ] the
vertex with D ⊆ δ(λ). We regard λ as the root of T . We
describe the existential ML-type of M � image(δ̂), wλ by a
formula ϕT := ϕT ,λ ∈ ML. For every vertex u ∈ V [T ] we
define a formula ϕT ,u by induction on the depth of u in T :

— For a leaf u let ϕT ,u be the formula of modal depth 0
that describes the atomic type of wu ∈M.

— For a non-leaf u with children u1, . . . , uk and associated
formulae ϕT ,uj

, let αj = agt(wu, wuj
). Let χ ∈ ML0 be the

formula that describes the atomic type of wu, then

ϕT ,u := χ ∧
∧
j ♦αj

ϕT ,uj
.

Note that the modal nesting depth of ϕT is uniformly
bounded by the depth of T , which in turn was bounded by
the size of the relevant m-closures. This means that values
`i−1 for the bisimulation level that needs to be respected by
the isomorphism f : Mi−1 ' Ni−1 can be chosen such that
in round i of the game, ϕT is preserved by f . So, as clearly
Mi, wλ |= ϕT by construction, also Ni, f(wλ) |= ϕT . This
will eventually allow us to expand Ni−1 ⊆ N to Ni to keep
our invariant alive. But there are two further obstacles:

Consider a subformula ♦αϕT ,u of ϕT ,λ. By construction,
α = agt(wλ, wu), and Ni, f(wλ) |= ♦αϕT ,u only implies
that there is a suitable world vu ∈ [f(wλ)]α, but we might
only have agt(f(wλ), vu) ( α. This is the first obstacle.

The second one comes in the form of undesirable non-trivial
short paths. Assuming we had overcome the first obstacle,
there might still be non-trivial short paths between f(wλ)
and vu. On the other hand, such paths do not exist between wλ
and wu in M: as discussed in connection with Lemma 23, a
short non-trivial coset path would induce a short chordless
path between [[wλ]] and [[wu]] that is incompatible with the
m-closed nature of Q.

Both problems can be solved in the same vein. We need
to find a world x that is bisimilar to vu and has the right
reachability properties in relation to f(wλ). In acyclic Cayley
frames this is easily done because coset paths between two
vertices are in some sense unique.

Remark 29. An acyclic Cayley frame M has unique coset
paths between any two vertices w and v in the single agent

reduct (W, (Ra)a∈Γ). Any coset path between w and v in M
is a contraction of this unique path.

Recall that α = agt(wλ, wu), so that non-trivial short paths
from f(wλ) to vu are based on sets β  α. Starting at vu,
we move to bisimilar copies of vu via a-edges for a ∈ α
that are not on the path between f(wλ) and vu. If we move
through all the agents a ∈ α sufficiently often, we arrive at a
copy x of vu that is not linked to f(wλ) by any non-trivial
coset paths of length up to m. This is due to the fact that
every set of agents β ( α that gets used in a non-trivial coset
path can contain at most |α| − 1 agents. Hence, after cycling
through all the agents in α sufficiently many times, we need
more than m edges to arrive at x on a non-trivial coset path.
We thus obtain the following lemma.

Lemma 30. Let M be an acyclic, ω-rich Cayley structure,
agt(w, v) ⊆ α for some w, v ∈ W , and m ∈ N. Then, there
is a world v′ ∼ v with agt(w, v′) = α that is not linked to w
by non-trivial coset paths of length up to m.

Lemma 30 allows us to expand Ni−1 to Ni and Q′i−1 to Q′i
such that our invariant still holds after round i, because we can
exactly replicate every intersection of hyperedges in Qi and
respect the propositional assignments. Furthermore, ω-richness
allows us use a fresh branch of N for the new part of Ni. The
following sums up the results of this section.

Lemma 31. For some suitable choice of ` = `(q), any free,
ω-rich Cayley structures M and N satisfy:

M, w ∼` N, v ⇒ M, w ≡q N, v.

Proof. Let (mk)06k6q and (`k)06k6q be two sequences with
mq > 2, mk−1 > 2mk+1 and `q > 1, `k−1 > `k+fmk

(|τ |+
1), where fm is the bound on m-closures in sufficiently acyclic
hypergraphs from Lemma 28. Put ` := `0.

We give a winning strategy for II in the q-round
Ehrenfeucht–Fraı̈ssé game on M, w and N, v. She must uphold
the following invariant: assume that after 0 6 i 6 q rounds the
pebbled vertices are w0, w1, . . . , wi ∈M and v0, v1, . . . , vi ∈
N, with w0 = w and v0 = v. Then, there are substructures
Mi ⊆M and Ni ⊆ N that contain the pebbled vertices and an
isomorphism fi : Mi → Ni such that Mi, u ∼`i Ni, f(u), for
all u ∈Mi, and fi(wj) = vj , for all 0 6 j 6 i. Furthermore,
there are mi-closed subsets Qi ⊆ d(M) and Q′i ⊆ d(N)
and tree decompositions Ti = (Ti, δi) and T ′i = (T ′i , δ

′
i) of

d(M) � Qi and d(N) � Q′i, and mappings δ̂i : Ti → Mi

and δ̂′i : T
′
i → Ni with δi(u) ⊆ [[δ̂i(u)]], for all u ∈ Ti, and

δ′i(u) ⊆ [[δ̂′i(u)]], for all u ∈ T ′i .
Obviously, the invariant holds before the first round for

M0 ⊆ M induced by {w0}, N0 ⊆ N induced by {v0},
Q0 = {[[w0]]} and Q′0 = {[[v0]]} because M, w0 ∼`0 N, v0.

Assume the invariant after completion of the (i−1)-st round.
In order to show that II can update the invariant for another
round, we work in the expansions M`i and N`i of M and N by
predicates that mark the `i-types of vertices. This means that
fi−1 is compatible with ∼`i−1−`i over the expansions, and we
need fi to be just a local isomorphism w.r.t. these expansions.



W.l.o.g. we may assume that player I chooses a world wi ∈M.
Put Qi := clmi(Qi−1 ∪ {[wi]∅}). Since Qi−1 is (2mi + 1)-
closed and M is acyclic, Lemmas 26 and 27 imply that Qi =
Qi−1 ∪ clmi

(D ∪ {[wi]∅}), Qi \ Qi−1 is connected, and D
separates Qi \Qi−1 from Qi−1 \D, for D = Qi−1∩N1(Qi \
Qi−1). Lemma 28 implies |Qi\Qi−1| 6 |clmi

(D∪{[wi]∅})| 6
fmi(|τ |+1). We extend Ti−1 to Ti in a straightforward manner
and choose a suitable extension of δ̂i−1 to δ̂i for all of Ti. Mi

is the substructure that is induced by image(δ̂i). Let λ ∈ V [Ti]
be the vertex with D ⊆ δi(λ), wλ = δ̂i−1, and Tλ ⊆ Ti the
subtree that represents clmi

(D ∪ {[wi]∅}). We know that Tλ
has at most depth fmi(|τ | + 1) 6 `i−1 − `i, which means
that the ML-formula ϕi that describes it has at most modal
depth `i−1−`i. Therefore, N`i

i−1, fi−1(wλ) |= ϕi and we may
expand Ni−1 to Ni according to ϕi in a fresh branch that starts
at fi−1(wλ) such that the distances on all scales are exactly
the same as in Mi (Lemma 30). This gives us an extension of
fi−1 to fi : Mi → Ni and II’s move goes to vi := fi(wi). If
we correspondingly extend Q′i−1, T ′i−1 and δ̂′i−1 to Ni, then
Q′i is mi-closed and the substructures induced by Qi and Q′i
are isomorphic, because we made sure that there are no non-
trivial coset paths in Ni that are not in Mi. Thus, II can keep
the invariant alive for q rounds and wins the game.

The previous lemma provides the upgrading needed for our
main theorem over the class of all (finite or infinite) CK-
structures (cf. Figure 1 and its discussion in Section II-D):

Theorem 32. ML[CK] ≡ FO/∼ over the class of all Cayley
structures, and hence over the class of all CK-structures.

V. WHERE FINITENESS IS ESSENTIAL

In this section we obtain the finite model theory version of
our modal characterisation theorem. The argument follows the
same pattern inspired by Figure 1: we upgrade `-bisimulation
equivalence to ≡q-equivalence for some ` that depends on q.
But this time the upgrade has to be conducted over finite
Cayley structures. This makes both the construction of the
bisimilar companions and the analysis of the Ehrenfeucht–
Fraı̈ssé game considerably more involved.

The following main lemma is based on the same construc-
tion as Lemma 11 using compatible finite Cayley groups
from [15] with the desired level of coset acyclicity after
straightforward pre-processing to boost multiplicities.

Lemma 33. Any connected finite CK-structure, and in par-
ticular any Cayley structure admits finite bisimilar coverings
by Cayley structures that realise any given lower bounds for
acyclicity and multiplicities.

A. Structure theory for N -acyclic Cayley groups

Definition 34. Let M be a Cayley frame that is 2N -acyclic.
We call a coset path short if its length is 6 N .

The main obstacle in the upgrading is to avoid short coset
paths. To be more precise, for a pair of worlds w, v and a
tuple of other worlds z without short non-trivial coset paths

to v, we want to find a world v′ ∼ v, still without short non-
trivial short links to z, and such that there is also no short
non-trivial coset path from w to v′.5 In free ω-unfoldings this
task could be accomplished because we had, at every world,
an unbounded supply of copies of each branch and could thus
move arbitrarily far away in an independent direction. Finite
structures do not afford quite that luxury. But in a finite Cayley
frame of sufficiently high finite acyclicity and richness, we can
still repeatedly find suitable bisimilar variants v′ that are good
enough to win the q-round game. We call this property freeness
and will define it formally in Definition 37. The main lemma
of this section will be Lemma 38: it states that sufficiently
acyclic Cayley structures with sufficiently high multiplicities
have sufficiently free dual hypergraphs.

But first we treat a technical matter that also gives a glimpse
of an intriguing structure theory for N -acyclic Cayley frames.

Very little can be said in general about two paths joining
the same pair of vertices in arbitrary finite Cayley structures,
or even in highly acyclic ones. Two short paths, however, will
necessarily overlap in an interesting fashion if the structures
are sufficiently acyclic. In fact, here short paths will be
essentially unique, or just minor and local variations of one
another; the following two lemmas make this precise. We first
look at coset paths from one world to itself – a relaxation of
the notion of a coset cycle in that it omits the condition on
trivial intersection at the point of return.

Lemma 35. Let w be a world in a Cayley frame M. If M is
N -acyclic, then there is no coset path of length up to N that
starts at w and ends at w.

Proof. The claim is shown by induction on the length m of
the coset path, for 1 6 m 6 N . For m = 1, Definition 19
obviously rules out coset loops of the form (w,α,w).

Inductively, assume there are no coset paths in M of length
1 6 m < N from any world back to itself. Let w ∈ W and
consider a coset path

(w1, α1, w2, . . . , wm+1, αm+1, wm+2)

of length m + 1 with w1 = wm+2 = w. N -acyclicity of M
implies [w1]αm+1∩α1 ∩ [w2]α1∩α2 6= ∅ or [w1]α1∩αm+1 ∩
[wm+1]αm+1∩αm

6= ∅. W.l.o.g. we assume that there is some
w′ ∈ [w1]α1∩αm+1

∩[wm+1]αm+1∩αm
. If w′ /∈ [α2]α1∩α2

, then
(w′, α1, w2, . . . , wm, αm, w

′) is a coset path of length m that
starts and ends at w′. Otherwise (w′, α2, w3, . . . , wm, αm, w

′)
is a coset path of length m − 1 that starts and ends at w′.
In both cases, such a coset path cannot exist according to the
induction hypothesis.

From Lemma 35 we obtain the following lemma, a quasi-
uniqueness property for short coset paths.

Lemma 36 (Zipper Lemma). Let M be a 2N -acyclic Cay-
ley frame w, v ∈ W , and (w,α1, u1, α2, . . . , α`, v) and

5In context, the tuple z will represent the previously pebbled worlds, and
v′ is meant to be made ‘independent’ from w.



(w, β1, r1, β2, . . . , βk, v) be two coset paths from w to v of
length up to N . Then
(1) [w]β1∩α1

∩ [u1]α1∩α2
6= ∅ or

[w]β1∩α1 ∩ [r1]β2∩β1 6= ∅;
(2) [v]α`∩βk

∩ [u`−1]α`−1∩α`
6= ∅ or

[v]α`∩βk
∩ [rk−1]βk∩βk−1

6= ∅.

Proof. Since M is 2N -acyclic we know that [w]β1∩α1
∩

[u1]α1∩α2 6= ∅, or [r1]β2∩β1∩[w]β1∩α1 6= ∅, or [u`−1]α`−1∩α`
∩

[v]α`∩βk
6= ∅, or [v]α`∩βk

∩ [rk−1]βk∩βk−1
6= ∅ occurs. Now

assume we had, for instance,

[w]β1∩α1
∩ [u1]α1∩α2

= ∅ and [r1]β2∩β1
∩ [w]β1∩α1

= ∅.

This would imply a coset path of length 2N from v to itself,
contradicting Lemma 35.

Essentially, the lemma means that two short coset paths
that share start and target vertex behave like a zipper that
can be closed from both sides. This has some interesting
consequences:

— if we have two short coset paths (w,α1, . . . , α`, v) and
(w, β1, . . . , βk, v), then there is a short coset path from w to v
that starts with an (α1 ∩ β1)-edge.

— if (w1, α1, w2, α2, . . . , α`, w`) is a short coset path and
α = agt(w1, w`), then there are w′i ∈ [wi]αi−1∩αi

, for 2 6
i < `, such that (w1, (α1 ∩α), w′2, (α2 ∩α), . . . , (α` ∩α), w`)
is a short coset path.

— if (w1, α1, w2, α2, . . . , α`, w`) is a coset path in a 2N -
acyclic Cayley structure with [w1]agt(w1,w`)∩ [wi]αi−1∩αi = ∅
for some 2 6 i < `, then ` > N . I.e. a coset path
from w1 to w` must be long if one of its links is disjoint
from [w1]agt(w1,w`).

Hence, if two distinct worlds are not linked by a short non-
trivial coset path, then any path between them must be long
or of length 1.

B. Freeness and control of short paths

Recall the two challenges for player II in finding a suit-
able response to player I’s move from Section IV. For a
world v ∈ [w]α, we must find a world v′ ∼ v such that
agt(w, v′) = α and such that there is no short non-trivial coset
path between w and v′. Additionally, certain distance relations
between v and worlds z must be preserved in the passage
to v′. The property that allows her to find such a v′ is here
called freeness. Establishing that sufficiently acyclic Cayley
structures with sufficiently high multiplicities are sufficiently
free is the essential step in proving that we can maintain our
invariant in the q-round pebble game on finite structures.

Freeness essentially is a property of the dual hypergraph
d(M) of a Cayley structure M (cf. Definition 16). The rôle
of the worlds z is played by a set Z of hyperedges.

For t,X, Y ⊆ A in a hypergraph A = (A,S), we denote as
dt(X,Y ) the distance between X \ t and Y \ t in the induced
sub-hypergraph A � (A \ t).

Definition 37. Let M be a 2-acyclic Cayley structure
and d(M) = (d(W ), S, (Qα)α∈τ ) its dual hypergraph.

Let [[v]] ∈ S be a hyperedge, Z ⊆ S a set of hyperedges,
and [[w]] ∈ Z. We say that [[v]] and Z are n-free over [[w]] if
dt([[v]], (

⋃
Z)) > n, where t = [[v]] ∩ [[w]].

We say that M is (n,K)-free, for some K ∈ N, if, for
all v ∈ W , [[w]] ∈ Z ⊆ S with |Z| 6 K and all sets of
agents α ⊇ agt(v, w), there is a v′ ∼ v in M such that
agt(v′, w) = α and such that [[v′]] and Z are n-free over [[w]].

The remainder of this section is devoted to a proof outline
of the following main lemma.

Lemma 38. Let n,K ∈ N. If a Cayley structure M is
sufficiently acyclic and has sufficiently high multiplicities, then
d(M) is (n,K)-free.

Proofsketch. For the remainder of this section let M
be a Cayley structure with dual hypergraph d(M) =
(d(W ), S, (Qα)α∈τ ) that is sufficiently acyclic and has suf-
ficiently high multiplicities, and let [[v]], Z, [[w]] and α be as
above. We need to find a world v′ ∼ v with agt(v′, w) = α
such that [[v′]] and Z are n-free over [[w]]. Lemma 18 yields
a world v0 ∼ v with agt(v0, w) = α; put t := [[v0]] ∩ [[w]].
Distances remain to be adjusted, which is achieved in two
steps.
Step 1. We find v1 ∼ v0 with agt(v1, w) = α such that [[v1]]∩
[[z]] ⊆ [[v1]] ∩ [[w]], which implies dt([[v1]], [[z]]) > 1, for all
[[z]] ∈ Z. The idea is to boost the sets agt(v0, z) to agt(v1, z)
such that we have agt(v1, z) ⊇ agt(v1, w). This can easily
be done by using Lemma 18 multiple times on all worlds z
with [[z]] ∈ Z in an inductive process. The second statement
in Lemma 18 and sufficiently high multiplicities of M ensure
that it is possible to boost all the connecting sets of agents
simultaneously. Then 2-acyclicity implies

agt(v1, z) ⊇ agt(v1, w)⇒ [[v1]] ∩ [[z]] ⊆ [[v1]] ∩ [[w]].

Step 2. The goal of the second step is to find v2 ∼ v1

with agt(v2, w) = α such that dt([[v2]], [[z]]) > n, for all
[[z]] ∈ Z (while preserving the properties already achieved
in Step 1). We crucially use that minimal coset paths in M
correspond to minimal paths in d(M). Assume the distance
between [[v1]] \ t and [[z]] \ t in d(M) \ t is 6 n, for some
[[z]] ∈ Z. This implies a short path from a vertex of [[v1]]
to a vertex of [[z]] that runs outside [[v1]] ∩ [[z]]. Since M is
sufficiently acyclic this implies a non-trivial short coset path
from v1 to z. Hence, establishing dt([[v2]], [[z]]) > n boils down
to avoiding short non-trivial coset paths in M. The basic idea
is the same as for Lemma 30. However, in the case of finite
Cayley structures the proof is considerably more involved.
In an inductive process we avoid short coset paths to the
worlds z, one after the other, by moving multiple times to
bisimilar copies of v1 via a-edges for a ∈ agt(v1, z). Cycling
through all agents in agt(v1, z) sufficiently often, we arrive at
a suitably removed copy of v1. The major complication in the
finite case, compared to the treatment in Section IV, is that we
do not have an unbounded supply of fresh unbounded branches
to choose the next copy from. Hence, we must guarantee that
we can move away from the current world z without getting



closer to any one of the other worlds that have already been
dealt with. Two key ingredients make this possible. Firstly,
the Zipper lemma implies a kind of uniqueness for short
coset paths in sufficiently acyclic structures. This essential
uniqueness also gives rise to a direction in the sense of a
set of agents for the first step on any short non-trivial path
towards a target world. Secondly, up to inessential variations
any pair of worlds can be connected by at most one short non-
trivial coset path; so short links to Z can only rule out a few
directions, and sufficiently high multiplicity gives us enough
remaining possibilities to choose the next copy from.

Thus, we eventually find a world v′ ∼ v with agt(v′, w) =
α such that [[v′]] and Z are n-free over [[w]].

C. Upgrading in sufficiently acyclic Cayley structures

The upgrading argument follows the same pattern as in
Section V, cf. Figure 1 in Section II-D. For two Cayley
structures M and N that are sufficiently acyclic and have
sufficiently high multiplicities we want to show

M, w ∼` N, v ⇒ M, w ≡q N, v,

for some ` = `(q) by providing a winning strategy for II in
the q-round Ehrenfeucht–Fraı̈ssé game.

As before, we maintain isomorphic substructures Mi ⊆M
and Ni ⊆ N that contain all worlds pebbled so far. These
substructures need to be consistently extended in each round.
However, in the case of finite Cayley structures this extension
is more involved. Free ω-unfoldings of Cayley structures are in
some sense tree-like; this made it rather easy to expand Ni−1

to Ni because there is always a fresh branch to choose which
allows us to ensure that long distances are duplicated correctly.
We do not have this advantage in the finite case, but a sufficient
degree of acyclicity implies that small substructures are tree-
like and that short coset paths are essentially unique by the
Zipper Lemma. Together with sufficiently high multiplicities,
this is enough for the upgrading to go through.

The possibility for player II to maintain the invariant that
links the actual game to the auxiliary structure in the dual
picture is the crucial step in the proof of the upgrading
lemma that goes through due to a sufficient degree of freeness.
Two things are essential in this approach. Firstly, because we
essentially match tree decompositions in the dual picture, just
two vertices need to be considered at a time, viz. parent and
child in the tree decomposition. Secondly, the sufficiently free
choice of the new vertex ensures that long distances in Mi

are matched by long distances in Ni.
We obtain the following upgrading lemma, and through it

the crucial argument for our main theorem over the class of
all finite CK-structures, again following Figure 1.

Lemma 39. For some suitable choice of ` = `(q), any finite
sufficiently acyclic Cayley structures with sufficiently high mul-
tiplicities M and N satisfy: M, w ∼` N, v ⇒ M, w ≡q N, v.

Theorem 40. ML[CK] ≡ FO/∼ over the class of finite CK-
structures.

VI. CONCLUSION

Characterisations of natural levels of modal expressiveness
beyond basic ML, and strictly between FO and full monadic
second-order logic MSO, have primarily been obtained by
automata-theoretic methods. The great success of those meth-
ods, most prominently the characterisation of Lµ in [11], but
also of CTL∗ in [9], [12] or of PDL in [4] in terms of natural
fragments of MSO (over typically infinite trees), has so far
not been matched for corresponding questions in finite model
theory. Our approach in this paper applies rather more purely
model-theoretic methods, of established significance in finite
model theory and also in the modal setting [14], [5], [15],
and takes them in a new direction beyond their customary
first-order range. In particular, we use locality arguments in a
seemingly locality-averse setting of structures with a complex,
multi-scale connectivity pattern. This is facilitated by a direct
algebraisation of the relevant frames and their special non-
elementary frame properties in our main Lemma 3, which
(unlike the classical use of tree unfoldings) does also work in
the finite. Due to other inherent limitations, these new methods
may not hold much promise for the great open problem
concerning the status in finite model theory of the Janin–
Walukiewicz result, but further extensions may treat other
frame classes and/or extensions of ML of interest in a similar
vein, by combinations of direct use of generic algebraic-
combinatorial structures with suitable logical interpretations.
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