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Abstract

We investigate multi-agent epistemic modal logic with common knowledge
modalities for groups of agents and obtain van Benthem style model-
theoretic characterisations, in terms of bisimulation invariance of classical
first-order logic over the non-elementary classes of (finite or arbitrary)
common knowledge Kripke frames. The technical challenges posed by the
reachability and transitive closure features of the derived accessibility re-
lations are dealt with through passage to (finite) bisimilar coverings of
epistemic frames by Cayley graphs of permutation groups whose gener-
ators are associated with the agents. Epistemic frame structure is here
induced by an algebraic coset structure. Cayley structures with specific
acyclicity properties support a locality analysis at different levels of gran-
ularity as induced by distance measures w.r.t. various coalitions of agents.

∗Research of both authors was partially supported by DFG grant OT 147/6-1: Construc-
tions and Analysis in Hypergraphs of Controlled Acyclicity
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1 Introduction

Modal logics have diverse applications that range from specification of process
behaviours in computer science to the reasoning about knowledge and the inter-
action of agents in all kinds of distributed settings. Across this broad conception
of modal logics bisimulation invariance stands out as the crucial semantic fea-
ture uniting an extremely diverse family of logics. Bisimulation equivalence
is based on an intuitive back&forth probing of transitions between possible in-
stantiations of data, possibly subject to observability by individual agents. As a
core notion of procedural, behavioural or cognitive equivalence it underpins the
very modelling of relevant phenomena in the state- and transition-based format
of transition systems or Kripke structures. In this sense, bisimulation invari-
ance is an essential ‘sanity’ requirement for any logical system that is meant
to deal with relevant phenomena rather than artefacts of the encoding. Not
surprisingly, modal logics in various formats share this preservation property.
Moreover, modal logics can often be characterised in relation to classical logics
of reference as precisely capturing the bisimulation invariant properties of rele-
vant structures – which turns the required preservation property into a criterion
of expressive completeness. This results in a model-theoretic characterisation
that casts a natural level of expressiveness in a new perspective.

For classical basic modal logic, this characterisation is the content of van Ben-
them’s classical theorem, which identifies basic modal logic ML as the bisimula-
tion invariant fragment of first-order logic FO over the (elementary) class of all
Kripke structures. In suggestive shorthand: ML ≡ FO/∼, where FO/∼ stands
for the set of those FO-formulae whose semantics is invariant under bisimulation
equivalence ∼; a fragment that is syntactically undecidable, but equi-expressive
with ML ⊆ FO (identified with its standard translation into FO).

Theorem 1.1 (van Benthem [19]). ML ≡ FO/∼.

Of the many extensions and variations on this theme that have been found,
let us just mention two explicitly.

Firstly, by a result of Rosen [18], van Benthem’s characterisation theorem
ML ≡ FO/∼ is also good as a theorem of finite model theory, where both,
bisimulation-invariance and expressibility in modal logic are interpreted in re-
striction to the non-elementary class of all finite Kripke structures; this drasti-
cally changes the meaning and also requires a completely different proof tech-
nique. A transparent and constructive proof of expressive completeness that
works in both the classical and the finite model theory settings is given in [15]
and also in [12]; like many of the more challenging extensions and variations
in [16, 9, 17], it relies on a model-theoretic upgrading argument that links fi-
nite approximation levels ∼` of full bisimulation equivalence ∼ to finite levels
≡q of first-order equivalence. A combination of bisimulation respecting model
transformations and an Ehrenfeucht–Fräıssé analysis establishes that every ∼-
invariant first-order property must in fact be invariant under some finite level
∼` of bisimulation equivalence. This may be seen as a crucial compactness phe-
nomenon for ∼-invariant FO, despite the unavailability of compactness for FO

3



in some cases of interest.
Secondly, by a famous result of Janin and Walukiewicz, a similar characteri-

sation is classically available for the modal µ-calculus Lµ in relation to monadic
second-order logic MSO.

Theorem 1.2 (Janin–Walukiewicz [14]). Lµ ≡ MSO/∼.

In this case, the arguments are essentially automata-theoretic, and the status
in finite model theory remains open – and a rather prominent open problem
indeed.

Epistemic modal logics deal with information in a multi-agent setting, typ-
ically modelled by so-called S5 frames, in which accessibility relations for the
individual agents are equivalence relations and reflect indistinguishability of pos-
sible worlds according to that agent’s observations. A characterisation theorem
for basic modal logic ML in this epistemic setting was obtained in [9], both
classically and in the sense of finite model theory. Like the van Benthem–Rosen
characterisation, this deals with plain first-order logic (over the elementary class
of S5 frames, or over its non-elementary finite counterpart) and can uniformly
use Gaifman locality in the analysis of first-order expressiveness.

In contrast, the present paper explores the situation for the epistemic modal
logic ML[CK] in a multi-agent setting with common knowledge operators. Com-
mon knowledge operators capture the essence of knowledge that is shared among
a group of agents, not just as factual knowledge but also as knowledge of be-
ing shared to any iteration depth: everybody in the group also knows that
everybody in the groups knows that . . . ad libitum. Cf. [11] for a thorough
discussion. This notion of common knowledge can be captured as a fixpoint
construct, which is definable in MSO and in fact in Lµ. It can also be captured
in plain ML in terms of augmented structures, with derived accessibility relations
obtained as the transitive closures of combinations of the individual accessibil-
ity relations for the relevant agents: we here call these augmented structures
common knowledge structures or CK-structures for short. But be it fixpoints,
MSO, or the non-elementary and locality-averse class of CK-frames, all these
variations rule out any straightforward use of simple locality-based techniques.

Here we use, as a template for highly intricate yet regular patterns of multi-
scale transitive relations, the coset structure of Cayley groups w.r.t. combina-
tions of generators. We can show that Cayley structures, obtained as expansions
of relational encodings of Cayley groups by propositional assignments, are uni-
versal representatives up to bisimulation of S5 structures – both in the general
and in the finite setting. In this picture, generator combinations model coalitions
of agents, cosets w.r.t. generated subgroups model islands of common knowl-
edge or the induced accessibility relations of CK-frames. For the following cf.
Definitions 2.3 and 2.6.

Lemma 1.3 (main lemma). Every (finite) CK-structure admits (finite) bisim-
ilar coverings by Cayley structures (of various degrees of acyclicity w.r.t. their
epistemic or coset structure).
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Cayley groups with suitable acyclicity properties for their coset structure
are available from [17]; they are used here in a novel analysis of first-order
expressiveness and Ehrenfeucht–Fräıssé games. This allows us to deal with the
challenge of locality issues at different scales or levels of granularity as induced
by reachability and transitivity phenomena for different groups of agents in
CK-structures. Our main theorem is the following.

Theorem 1.4. ML[CK] ≡ FO/∼ over CK-structures, both classically and in the
sense of finite model theory.

An equivalent alternative formulation would characterise ML[CK] as the ∼-
invariant fragment of FO[CK], the extension of FO that gives it access to the
derived accessibility relations for common knowledge – now over all (finite)
S5 structures. A preliminary discussion of the technical challenges for the ex-
pressive completeness assertion in this theorem, also in comparison to those in
related approaches to e.g. Theorem 1.1, can be found in Section 2.5.

2 Basics

2.1 S5 and CK Kripke structures and modal logic

For this paper we fix a finite non-empty set Γ of agents; individual agents are
referred to by labels a ∈ Γ. In corresponding S5 Kripke frames (W, (Ra)a∈Γ)
the set W of possible worlds is split, for each a ∈ Γ, into equivalence classes
[w]a w.r.t. the equivalence relations Ra that form the accessibility relations for
the individual agents in this multi-modal Kripke frame. The epistemic reading
is that agent a cannot directly distinguish worlds from the same class [w]a; to
simplify terminology we also speak of a-edges and a-equivalence classes. An
S5 Kripke structure is an expansion of an S5 Kripke frame by a propositional
assignment for a given set of basic propositions (Pi)i∈I . Individual formulae
of the logics considered will only mention finitely many basic propositions, and
we may also think of the index set I for the basic propositions as a fixed finite
set. The propositional assignment is encoded, in relational terms, by unary
predicates Pi for i ∈ I, and a typical S5 Kripke structure is specified as

M = (W, (Ra)a∈Γ, (Pi)i∈I).
1

Basic modal logic ML for this setting has atomic formulae ⊥,> and pi for
i ∈ I, and is closed under the usual boolean connectives, ∧,∨,¬, as well as
under the modal operators (modalities, modal quantifiers) �a and ♦a for a ∈ Γ.
The semantics for ML is the standard one, with an intuitive epistemic reading
of �a as “agent a knows that . . . ” and, dually, ♦a as “agent a regards it as
possible that . . . ”, inductively:

• M, w |= pi if w ∈ Pi;
M, w |= > for all and M, w |= ⊥ for no w ∈W ;

1Where confusion is unlikely, we do not explicitly label the interpretations of the Ra and
Pi by M.
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• boolean connectives are treated as usual;

• M, w |= �aϕ if M, w′ |= ϕ for all w′ ∈ [w]a;

• M, w |= ♦aϕ if M, w′ |= ϕ for some w′ ∈ [w]a.

The extension of ML to common knowledge logic ML[CK] introduces further
modalities �α and ♦α for every group of agents α ⊆ Γ. The intuitive epistemic
reading of �α is that “it is common knowledge among agents in α that . . . ”,
and ♦α is treated as the dual of �α. The semantics of �α in an S5 Kripke
structure M as above is given by the condition that M, w |= �αϕ if ϕ is true in
every world w′ that is reachable from w on any path formed edges from the Ra
for a ∈ α. The relevant set of worlds w′ is the equivalence class [w]α w.r.t. the
derived equivalence relation

Rα := TC(
⋃
a∈αRa),

where TC denotes (reflexive and symmetric) transitive closure.

• M, w |= �αϕ if M, w′ |= ϕ for all w′ ∈ [w]α;

• M, w |= ♦αϕ if M, w′ |= ϕ for some w′ ∈ [w]α.

Note that for singleton sets α = {a}, �α coincides with �a just as Ra
coincides with R{a}. The modal operators �∅ and ♦∅ are eliminable: they
both refer to just truth in [w]∅ = {w}. We use τ := P(Γ) for the labelling of
the expanded list of modalities and the corresponding equivalence relations and
classes, so α will range over τ .

Definition 2.1. With any S5 Kripke frame (or structure) we associate the CK-
frame (or structure) obtained as the expansion of the family (Ra)a∈Γ to the
family (Rα)α∈τ for τ = P(Γ), where Rα = TC(

⋃
a∈αRa).

We use notation MCK to indicate the passage from the S5 Kripke structure
M = (W, (Ra)a∈Γ, (Pi)i∈I) to its associated CK-structure,

MCK =(W, (Ra)α∈τ , (Pi)i∈I),

which is again an S5 Kripke structure. The resulting class of CK-structures is
non-elementary. Indeed, a simple compactness argument shows that the defining
conditions for the Rα cannot be first-order expressible.

Definition 2.2. The syntax of epistemic modal logic with common knowledge,
ML[CK], for the set of agents Γ is the same as the syntax of basic modal logic
ML with modalities �α and ♦α for α ∈ τ = P(Γ). Its semantics, over S5
Kripke structures M for the set of agents Γ, is the usual one, evaluated over the
associated CK-structures MCK.

We next look at a seemingly very special class of CK-structures. In these,
the equivalence relations Rα are induced by the coset structure of an underlying
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group w.r.t. designated (sets of) generators. We use the name Cayley structures
for these special CK-structures whose epistemic structure is induced by the
Cayley graph of a group, which relates its combinatorics to basic algebraic
concepts as explored by Cayley in [7, 8]. As we shall see in Lemma 2.7, which
is a cornerstone for the approach taken in this paper, the class of these Cayley
structures is rich enough to represent any CK-structure up to bisimulation.

2.2 Common knowledge in Cayley structures

A Cayley group is a group G = (G, ·, 1) with a specified set of generators E ⊆ G,
which in our case will always be distinct, non-trivial involutions: e 6= 1 and
e2 = 1 for all e ∈ E. G is generated by E in the sense that every g ∈ G can
be represented as a product of generators, i.e. as a word in E∗, which w.l.o.g.
is reduced in the sense of not having any factors e2. With the Cayley group
G = (G, ·, 1) one associates its Cayley graph. Its vertex set is the set G of
group elements; its edge relations are Re := {(g, ge) : g ∈ G}, which in our
case are symmetric and indeed complete matchings on G. That G is generated
by E means that the edge-coloured graph (G, (Re)e∈E) is connected; it is also
homogeneous in the sense that any two vertices g and h are related by a graph
automorphism induced by left multiplication with hg−1 in the group.

We partition the generator set E into non-empty subsets Ea associated with
the agents a ∈ Γ, and consider subgroups Ga = 〈e : e ∈ Ea〉 ⊆ G generated
by the e ∈ Ea. This allows us to regard left cosets w.r.t. Ga as a-equivalence
classes over G, turning G into the set of possible worlds of an S5 frame. Indeed,
the associated equivalence relation

Ra := {(g, gh) : h ∈ Ga} = TC
(⋃
{Re : e ∈ Ea}

)
is the (reflexive, symmetric) transitive closure of the edge relation induced by
corresponding generators in the Cayley graph. This pattern naturally extends
to sets of agents α ∈ τ = P(Γ). Writing Gα ⊆ G for the subgroup generated by
Eα :=

⋃
{Ea : a ∈ α}, the equivalence relations

Rα := {(g, gh) : h ∈ Gα} = TC
(⋃
{Ra : a ∈ α}

)
are the accessibility relations in the CK-expansion: their equivalence classes are
the left cosets w.r.t. the subgroups Gα generated by corresponding parts of the
Γ-partitioned E.

Definition 2.3. With any Cayley group G = (G, ·, 1) with generator set E of

involutions that is Γ-partitioned according to E =
⋃̇
a∈ΓEa, we associate the

Cayley CK-frame (Cayley frame, for short) GCK over the set G of possible worlds
with accessibility relations Rα for α ∈ τ = P(Γ). A Cayley structure consists
of a Cayley frame together with a propositional assignment.

Note that any Cayley structure is a CK-structure, so that for Cayley struc-
tures M, always MCK = M. In the following we simply speak of α-edges,
-classes, -cosets with reference to the Rα or Gα in any Cayley structure.
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2.3 Bisimulation

We present the core ideas surrounding the notion of bisimulation equivalence
in the language of model-theoretic back&forth games of the following format.
Play is between two players, player I and II, and over two Kripke structures
M = (W, (Ra)a∈Γ, (Pi)i∈I) and N = (V, (Ra)a∈Γ, (Pi)i∈I). A position of the
game consists of a pair of worlds (w, v) ∈W ×V , which denotes a placement of
a single pair of pebbles on w in M and on v in N.

In a round played from position (w, v), player I chooses one of the structures,
M or N, and one of the accessibility relations, i.e. one of the labels a ∈ Γ,
and moves the pebble in the chosen structure along some edge of the chosen
accessibility relation; player II has to move the pebble along an edge of the same
accessibility relation in the opposite structure; the round results in a successor
position (w′, v′).

II loses in any position (w, v) that violates propositional equivalence, i.e.
whenever {i ∈ I : w ∈ Pi} 6= {i ∈ I : v ∈ Pi}; in this case the game terminates
with a loss for II. The unbounded game continues indefinitely, and any infinite
play is won by II. The `-round game is played for ` rounds, it is won by II if she
can play through these ` rounds without violating propositional equivalence.

Definition 2.4. M, w and N, v are bisimilar, M, w ∼ N, v, if II has a winning
strategy in the unbounded bisimulation game on M and N starting from position
(w, v). M, w and N, v are `-bisimilar, M, w ∼` N, v, if II has a winning strategy
in the `-round bisimulation game starting from position (w, v).

When a common background structure M is clear from context we also write
just w ∼ w′ for M, w ∼M, w′, and similarly for ∼`.

It is instructive to compare the bisimulation game on M/N with the game
on MCK/NCK. On one hand,

M, w ∼ N, v iff MCK, w ∼ NCK, v;

the non-trivial implication from left to right uses the fact that every move along
an Rα-edge can be simulated by a finite number of moves along Ra-edges for
a ∈ α. This also means that, in the terminology of classical modal logic, passage
from M to MCK is safe for bisimulation. On the other hand, there is no such
correspondence at the level of the finite approximations ∼`, since the finite
number of rounds needed to simulate a single round played on anRα-edge cannot
be uniformly bounded. This illustrates the infinitary character of passage from
M to MCK, and encapsulates central aspects of our concerns here:

the passage M 7−→MCK is beyond first-order control
and breaks standard notions of locality.

Correspondingly, modal or first-order expressibility over MCK transcends ex-
pressibility over M, and in particular ML[CK] transcends ML while still being
invariant under ∼.

The link between bisimulation and definability in modal logics is the follow-
ing well-known modal analogue of the classical Ehrenfeucht–Fräıssé theorem,
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cf. [4, 12]. Here and in the following we denote as

M, w ≡ML
` N, v

indistinguishability by ML-formulae of modal nesting depth (quantifier rank) up
to `, just as ≡FO

q or just ≡q will denote classical first-order equivalence (elemen-
tary equivalence) up to quantifier rank q. Over finite relational vocabularies all
of these equivalences have finite index, which is crucial for the following.2

Theorem 2.5. For any finite modal vocabularies (here: finite sets of agents
and basic propositions), Kripke structures M and N with distinguished worlds
w and v, and ` ∈ N:

M, w ∼` N, v iff M, w ≡ML
` N, v.

In particular, the semantics of any modal formula (in ML or in ML[CK])
is preserved under full bisimulation equivalence (of either the underlying plain
S5 structures or their CK-expansions). Any formula of ML[CK] is preserved
under some level ∼` over CK-expansions (but not over the underlying plain S5
structures!).

The following notion will be of special interest for our constructions; it de-
scribes a particularly neat bisimulation relationship, mediated by a homomor-
phism (classical modal terminology speaks of bounded morphisms). Bisimilar
tree unfoldings are a well-known instance of (albeit, usually infinite) bisimilar
coverings with many applications.

Definition 2.6. A surjective homomorphism π : M̂→M between Kripke struc-
tures is called a bisimilar covering if M̂, ŵ ∼M, π(ŵ) for all ŵ from M̂.

2.4 Main lemmas

Control of multiplicities and cycles in Kripke structures plays an essential rôle
towards the analysis of first-order expressiveness, simply because they are not
controlled by bisimulation.

Core results from [9] deal with this at the level of plain S5 Kripke structures,
where products with finite Cayley groups of sufficiently large girth suffice to
avoid short cycles. These constructions would not avoid the kind of cycles we
have to deal with in CK-structures. Instead we will have to look to stronger
acyclicity properties, viz. coset acyclicity of Cayley groups in Section 3.1.1. On
the other hand, we can naturally model any CK-scenario up to bisimulation,
indeed up to a bisimilar covering, in a Cayley group directly. The following
Lemma 2.7, which was already stated as Lemma 1.3 in the introduction, forms
a cornerstone of our approach to the analysis of the expressive power of first-
order logic for ∼-invariant properties over CK-structures.

2Finite index is crucial for the definability of the ∼`-equivalence classes by so-called char-
acteristic formulae χ`M,w s.t. N, v |= χ`M,w iff M, w ∼` N, v.
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More fundamentally it says that, as far as bisimulation invariant phenomena
are concerned, Cayley structures can serve as representatives of arbitrary CK-
structures. And this is even true not just within the class of all CK-structures
but also in the more restricted setting of just finite CK-structures.

Lemma 2.7. Any connected (finite) CK-structure admits a bisimilar covering
by a (finite) Cayley CK-structure.

Proof. We may concentrate on the underlying plain S5 structures with acces-
sibility relations Ra for a ∈ Γ (bisimilar coverings are compatible with the
bisimulation-safe passage to CK-structures). Indeed, for the construction of the
covering, we even go below that level and decompose the given accessibility
relations Ra further into constituents induced by individual Ra-edges.

For given M = (W, (Ra), (Pi)) let E :=
⋃̇
a∈ΓRa be the disjoint union of the

edge sets Ra, where we identify an edge e = (w,w′) with its converse (w′, w)
(or think of the edge relations as sets of unordered pairs, or sets of size 1 for
reflexive and size 2 for irreflexive edges). Formally we may represent this dis-
joint union by tagged copies of the individual edge pairs from each Ra for a ∈ Γ
as E = {({w,w′}, a) : a ∈ Γ, (w,w′) ∈ Ra}, which may be partitioned into sub-
sets Ea = {({w,w′}, a) : (w,w′) ∈ Ra} corresponding to the individual Ra. Let
M⊕ 2E stand for the undirected E-edge-labelled graph formed by the disjoint
union of M with the |E|-dimensional hypercube 2E . The vertices of this hyper-
cube are the {0, 1}-valued sequences indexed by the set E, with a symmetric
e-edge between any pair of such sequences whose entries differ precisely in the
e-component. With e ∈ E we associate the involutive permutation πe of the
vertex set V of M ⊕ 2E that precisely swaps all pairs of vertices in e-labelled
edges. We note that W is closed under the action of πe. For e = ({w,w′}, a),
the permutation πe fixes all worlds in W other than w,w′; and if e = ({w,w}, a)
is a reflexive a-edge, then πe �W = idW . In restriction to 2E on the other hand,
πe has no fixed points, and πe 6= πe′ whenever e 6= e′ (even if πe �W = πe′ �W ,
which can occur for a 6= a′ if e = ({w,w′}, a) and e′ = ({w,w′}, a′)).

For G we take the subgroup of the symmetric group on V that is generated
by these πe, which we regard as involutive generators of G. This is justified
since, as just observed, the (πe)e∈E and 1 ∈ G are pairwise distinct due to the
2E-component. We may thus identify πe with e and regard the edge set E as
the subset E = {πe : e ∈ E} ⊆ G, which generates G as a group. We let G act
on V in the natural fashion (from the right): for g = e1 · · · en,

g : v 7−→ ve1 · · · en := (πen ◦ · · · ◦ πe1)(v).

This operation is well-defined as a group action, since by definition e1 · · · en = 1
in G if, and only if, πen ◦ · · · ◦ πe1 fixes every v ∈ V . It also leaves W ⊆ V
invariant as a set, i.e. the action can be restricted to W . Then the map

π̂ : W ×G −→ W
(w, g) 7−→ wg

is a bisimilar covering w.r.t. the following natural S5 interpretations of edge re-
lations Ra as Ra := TC({((w, g), (w, ge)) : w ∈ W, g ∈ G, e ∈ Ea}) over W ×G.
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This bisimilar covering directly extends to the induced S5 frames with accessibil-
ity relations Rα for α ∈ τ (again obtained as transitive closures of corresponding
unions). Moreover, since M is connected, G acts transitively on W and we may
restrict to a single orbit, i.e. to a single connected sheet {w0} ×G of the above
multiple covering. This restriction corresponds to the identification of an (ar-
bitrary) distinguished world w0 ∈ W as a base point. We obtain π as the
restriction of π̂ to the subset {(w0, g) : g ∈ G}, which is naturally isomorphic
with the Cayley frame of G. We may expand the Cayley frame (G, (Rα)) in
a unique manner to a Cayley structure (G, (Rα), (Pi)) for which π becomes a
homomorphism onto MCK. This is achieved by pulling back Pi ⊆ W to its
pre-image π−1(Pi) ⊆ G, which becomes the assignment to proposition Pi on G.
The resulting

π : (G, (Rα), (Pi)) −→MCK

provides the desired bisimilar covering of the CK-structure MCK by a Cayley
structure. Note that G and (G, (Rα), (Pi)) are finite if W is.

We used the hypercube structure 2E in the above as an auxiliary component
to adapt the group to its purposes in the covering, viz. in this case, to turn the
set of individual accessibility edges of M into a set of non-trivial and mutually
independent generators in the Cayley structure that covers M. Different variants
of this idea are available. These allow us to adapt the group structure in order
to make the bisimilar covering more amenable for specific purposes. We discuss
some immediate such variants here; an even more important one will then be
discussed in much greater detail in Section 3.

Firstly, the well-known tree-like bisimilar unfolding of S5 Kripke structures
can be presented in a very simliar fashion based on free groups and their Cayley
graphs. We define the free or acyclic group with involutive generator set E over
the set of reduced words over the alphabet E. An E-word w = e1 . . . en ∈ E∗ is
reduced if ei+1 6= ei, for all 1 6 i < n.

Definition 2.8. The free group F(E) with involutive generator set E is the
group that consists of all reduced words over the alphabet E without any non-
trivial equalities, together with the (reduced) concatenation of words as its
operation and the empty word as its neutral element.

Using F(E) and its Cayley graph in place of the group G (as was abstracted
from permutation group action on M⊕ 2E above), we obtain the following.

Lemma 2.9. Any connected CK-structure admits a bisimilar covering by a
Cayley CK-structure based on the Cayley graph of a free or acyclic group with
involutive generators, which itself is a tree structure.

Note that the resulting bisimilar coverings are infinite in all but the most
trivial cases. Also observe that non-trivial S5- and CK-frames cannot be trees.
Rather, the above bisimilar coverings result in S5- or CK-structures that are
generated from actual tree structures through transitive closure operations; in
a sense they are as close to trees as possible, and coset acyclic in the sense to
be discussed in Section 3 (cf. Definition 3.1).
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Cayley graphs of large girth have been obtained from permutation group
actions in [3] and used in the construction of finite bisimilar coverings of multi-
modal Kripke structures [16] and of S5 structures [9]. We could here similarly
obtain finite bisimilar coverings of CK-structures that are generated through
transitive closures from Cayley graphs of large girth (i.e. without short generator
cycles). It turns out, however, that much stronger acyclicity properties for
Cayley structures are needed for our present purposes. The cyclic configurations
that matter in Cayley frames are induced by Rα-edges (which includes Ra-
edges as a special case). Arising from transitive closures, these edges stem from
paths of a priori unbounded lengths in terms of the underlying generator edges;
and equivalence classes for accessibility relations Rα are cosets w.r.t. generated
subgroups. This is why levels of coset acyclicity, rather than just lower bounds
on girth, will be extensively discussed in Section 3.

As another immediate variation of the main lemma, we consider richness
criteria. Simple variants of the above covering construction allow us to locally
boost multiplicities. The multiplicity of a bisimulation type in an α-class is the
cardinality of the set of its realisations in this class, and k-richness requires that
this multiplicity is at least k (if not 0).

Definition 2.10. A CK-structure M is k-rich, for some k ∈ N, if for every
∅ 6= α ∈ τ the multiplicity of every bisimulation type that is realised in an
α-class is at least k in that class. M is ω-rich if all these multiplicities are
infinite.

By augmenting the number of generators in the group G that are associated
with e ∈ E in the basic construction or its variants we can achieve k-richness in
(finite) bisimilar coverings as in Lemma 2.7 as well as ω-richness in tree-based
coverings as in Lemma 2.9. Technically it suffices to replace E by E×{0, . . . , k}
or by E×ω, and to let the group operation π(e,i) of the copies (e, i) be the same
as πe on W while separating them in the hypercube component for the new E.
This trick boosts multiplicities by a factor of 2k or ω. (In fact the basic covering
construction in the proof of Lemmas 2.7 and 2.9 typically already introduces
quite some boost in multiplicities compared to M since the operation of πe on
W is rich in fixpoints.)

Lemma 2.11. For all k ∈ N, every connected (finite) CK-structure admits a
(finite) bisimilar covering by a Cayley structure that is k-rich. Every connected
CK-structure admits a bisimilar covering by an infinite ω-rich Cayley structure
based on a free or acyclic group with involutive generators whose Cayley graph
is a tree.

The crucial insight of Lemma 2.7 justifies the following, since – up to bisim-
ulation – we may now transfer any model-theoretic question about (finite) CK-
structures to (finite) Cayley structures. Lemma 3.4 will actually offer (finite)
representations by Cayley structures with additional acyclicity and richness
properties. Those are again obtained as coverings by Cayley groups with corre-
sponding properties from [17].
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M, w

∼

∼` N, v

∼

M∗, w∗ ≡q N∗, v∗

Figure 1: Upgrading ∼` to ≡q in bisimilar companions.

Proviso. From now on consider Cayley structures as prototypical representa-
tives of CK-structures.

2.5 Upgrading for expressive completeness

The key to the expressive completeness results from [15] to [9, 17] lies in es-
tablishing the following finiteness or compactness phenomenon for ∼-invariant
FO-formulae ϕ(x) over the relevant classes C of structures:

(†)
{
ϕ ∈ FO : ϕ ∼-invariant over C} =

⋃
`∈N

{
ϕ ∈ FO : ϕ ∼`-invariant over C}.

This finiteness property in turn follows if suitable levels ∼` can be upgraded
in bisimilar companions within C so as to guarantee equivalence w.r.t. the given
ϕ of quantifier rank q. The argument is as follows. Assume that for suitable ` =
`(q), any pair of pointed structures M, w ∼` N, v from C admits the construction
of bisimilar companion structures M∗, w∗ ∼M, w and N∗, v∗ ∼ N, v in C such
that M∗, w∗ ≡q N∗, v∗, as in Figure 1. Then the detour through the lower rung
of Figure 1 shows that over C any ∼-invariant FO-formula of quantifier rank q
is indeed ∼`-invariant, and hence expressible in ML at modal nesting depth `
over C by Theorem 2.5.

Obstructions to be overcome. Considering Figure 1, it is clear that M∗

and N∗ must avoid distinguishing features that are definable in FOq (FO at
quantifier rank up to q) but cannot be controlled by ∼` (for a level ` = `(q) to
be determined). Features of this kind that would beat any level ` involve

– small multiplicities w.r.t. accessibility relations, like fixed but differing
small cardinalities for definable properties of worlds in α-classes, and

– short cycles of fixed lengths w.r.t. combinations of the accessibility rela-
tions Rα.

In the setting of plain Kripke structures rather than our CK-structures, and
thus for many of the more immediate variations on Theorem 1.1, it turns out
that both these obstacles can be eliminated in bisimilar coverings by direct
products: multiplicities can be boosted above critical thresholds in products
with large enough cliques, and short cycles can be eliminated in products with
Cayley groups of large girth.
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We have also seen first indications above how to eliminate differences in-
volving small multiplicities in (finite) bisimilar coverings by Cayley structures
that are sufficiently rich as in Lemma 2.11; and Lemma 2.9 at least allows us
to focus on Cayley structures that avoid cycles as far as possible at the level of
the underlying Cayley graph if finiteness does not matter.

The great challenge, however, lies with the game arguments that are typically
used to establish ≡q. The classical q-round first-order Ehrenfeucht–Fräıssé or
pebble game, which serves to establish ≡q-equivalence of two structures (cf.,
e.g. [13, 10]), has to be based on some useful structural analysis of the target
structures M∗ and N∗. While many earlier upgrading results in this vein could
rely on classical Gaifman locality arguments for this structural analysis, the
situation here is different. Indeed Gaifman locality is completely trivialised in
connected CK-structures, which must form a single Gaifman clique w.r.t. RΓ.
Naively it thus seems all but hopeless to use locality techniques in structures
that are as dense in terms of their edge relations as CK-structures are. But
despite its denseness, the highly regular edge pattern of Cayley structures will
allow us to invoke notions of locality at different levels of granularity, which are
based on the various intermediate Rα between the extremes of the individual
Ra and the trivial RΓ.

3 Coset acyclicity and its structure theory

This section is the technical core of this paper. Here we introduce all tools
required to overcome the immediate obstructions for upgrading ∼` to ≡q for
suitable ` = `(q), over the class of (finite) Cayley structures. To overcome
problems with avoidable short cycles, we introduce notions of coset acyclicity
from [17] for our purposes, and show that every (finite) Cayley structure admits
a bisimilar covering by a (finite) Cayley structure that is coset n-acyclic. We
also introduce the dual hypergraph associated with a Cayley structure. This
dual picture will be an important tool for our upgrading arguments later and
also allows us to relate coset acyclicity to classical hypergraph acyclicity. The
second part of this section, Section 3.2, then introduces freeness as the most
important notion in the structure theory of suitable Cayley structures for our
upgrading arguments, with core results from [6].

3.1 Coset acyclic Cayley structures

In the case of CK-frames and Cayley frames one cannot hope to avoid cycles out-
right.3 Since any Cayley frame is connected, any two of its worlds w and w′ are
linked by a Γ-edge in any Cayley frame. This is of no concern for the upgrading
(in fact, RΓ is trivially FO-definable in Cayley frames). But crucial distinctions
can occur w.r.t. the reducts of Cayley frames without Γ-edges: worlds w and w′

may not be related by any single α-edge for α  Γ, but via a non-trivial short

3This is even true of S5 structures, but at least those cannot have short cycles w.r.t.
long-range edge relations like our Rα.
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path that uses mixed edge relations. Assume we have Cayley structures M
and N, and pairs of worlds (w, v), (w′, v′) ∈ W × V such that M, w ∼` N, v
and M, w′ ∼` N, v′. It is possible to have two different non-trivial short paths
from w to w′ but essentially only one such path from v to v′; and this difference
could be expressible in FOq. The solution is to find bisimilar companions for M
and N that are locally acyclic w.r.t. non-trivial overlaps between α-classes, i.e.
α-cosets [w]α for various α. Simultaneously, every such coset [w]α of the struc-
tures must be locally acyclic, in the same sense, w.r.t. β-classes for β  α. It
turns out that the notion of coset acyclicity from [17] is what we can use.

3.1.1 Coset cycles

Recall from the definition of Cayley structures that the accessibility relations
Ra (for individual agents a ∈ Γ) or Rα (for groups of agents α ∈ τ = P(Γ), of
which the Ra are just a special case) arise from transitive closures of sets of edge
relations induced by individual generators of the underlying group structure.

Cyclic configurations w.r.t. combinations of different Rα are cyclic config-
urations formed by cosets rather than by generators of the underlying group.
Correspondingly we are interested in Cayley frames that avoid short coset cycles
rather than just short generator cycles (i.e. large girth).

Definition 3.1. Let M be a Cayley frame.

(i) A coset cycle of length m > 2 in M is a cyclic tuple (wi, αi)i∈Zm
, where,

for all i ∈ Zm, (wi, wi+1) ∈ Rαi
and

[wi]αi−1∩αi ∩ [wi+1]αi∩αi+1 = ∅.

(ii) M is acyclic if it does not have any coset cycles, and n-acyclic if it does
not contain coset cycles of lengths up to n.

In Section 2.4 we showed that every Cayley structure has a bisimilar cover-
ing by an infinite Cayley structure that is based on a free group with involutive
generators (cf. Lemma 2.9). It is easy to see that this covering is coset acyclic:
any non-trivial coset cycle would stem from a non-trivial generator cycle. The
two kinds of acyclicity coincide at the level of full acyclicity because the blowup
in length in the passage from coset-steps to generator-steps is not taken into ac-
count. Together with the ω-richness property from Lemma 2.11 these coverings
would suffice for proving the classical version of our characterisation theorem.
For the finite model theory version, we need bisimilar coverings that are finite
and, at the same time, sufficiently coset acyclic and sufficiently rich. The rich-
ness part is already covered by Lemma 2.11. Suitable levels of coset acyclicity
in finite Cayley groups were introduced in [17].

Definition 3.2. Let G be a Cayley group with generator set E.

(i) A coset cycle of length m in G is a cyclic tuple (gi, αi)i∈Zm with gi ∈ G
and αi ⊆ E, for all i ∈ Zm, where g−1

i gi+1 ∈ Gαi
and

giGαi−1∩αi
∩ gi+1Gαi∩αi+1

= ∅.
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(ii) G is acyclic if it does not contain any coset cycles, and n-acyclic if it does
not contain coset cycles of lengths up to n.

As shown in [17], every finite Cayley group can be covered by a finite, n-
acyclic Cayley group, for arbitrary n ∈ N.

Lemma 3.3. For every finite Cayley group G with finite generator set E and
every n ∈ N, there is a finite, n-acyclic Cayley group Ĝ with generator set E
such that there is a surjective homomorphism π : Ĝ→ G.

Combining Lemma 3.3 with the main lemmas from Section 2.4, we obtain the
desired coverings for finite CK-structures. We apply Lemma 3.3 to the Cayley
group that underlies the Cayley structure that we get from Lemma 2.11 and
define a bisimilar covering as in the proof of Lemma 2.7.

Lemma 3.4. For all k, n ∈ N, every connected (finite) CK-structure admits
a (finite) bisimilar covering by a Cayley structure that is k-rich and coset n-
acyclic.

Here and in what follows it is important to keep in mind that α-classes in
Cayley frames and structures are nothing but left cosets w.r.t. subgroups Gα
in the underlying Cayley group. This is clearly reflected in the parallelism of
Definition 3.1 and 3.2. Absence of coset 2-cycles in a Cayley frame based on G,
for instance, just says that Gα ∩Gβ = Gα∩β for all α, β ⊆ Γ.

Observation 3.5. Let M be a Cayley frame based on the Cayley group G. M
is 2-acyclic if, and only if, for all w ∈W,α, β ∈ τ , [w]α ∩ [w]β = [w]α∩β, if, and
only if, Gα ∩Gβ = Gα∩β for all α, β ∈ τ .

3.1.2 2-acyclicity

We use Observation 3.5 to show that 2-acyclic Cayley frames display a high de-
gree of regularity that will be essential for many of the notions to be introduced
in this and the following sections. While arbitrary S5- or CK-frames impose
very little structure on the overlap patterns between the equivalence classes
w.r.t. various Rα, we shall see that in 2-acyclic Cayley frames, e.g. any pair of
vertices is connected by Rα for a unique minimal set α ∈ τ .

In the next section, we shall investigate the structure of the dual hypergraph
associated with a Cayley frame (cf. Definition 3.14). We anticipate the definition
of the dual hyperedge which is convenient for notational purposes here as well.

Definition 3.6. In a Cayley frame M define the dual hyperedge induced by a
world w to be the set of cosets

[[w]] := {[w]α : α ∈ τ}.

The following lemma from [6] is straightforward from the definitions. It
shows in particular that two worlds w, v in a 2-acyclic structure are connected
by a unique minimal set of agents α, i.e. a set α for which [w]β = [v]β if and
only if β ⊇ α. This then justifies Definition 3.8.

16



Lemma 3.7. In a 2-acyclic Cayley frame M with worlds w,w1, . . . , wk and sets
of agents α1, . . . , αk ∈ τ :

1. For β :=
⋂

16i6k αi: w ∈
⋂

16i6k

[wi]αi
⇔

⋂
16i6k

[wi]αi
= [w]β.

2. The set
⋂

16i6k[[wi]] has a least element in the sense that there is an α0 ∈ τ
such that [w1]α0

∈
⋂

16i6k[[wi]] and, for any α ∈ τ and 1 6 i 6 k:

[wi]α ∈
⋂

16i6k

[[wi]] ⇔ α0 ⊆ α.

We shall often blur the distinction between a finite set (of worlds) and its
enumeration as a tuple, using notation like w for a finite collection of worlds w.

Definition 3.8. In a 2-acyclic Cayley frame we denote the unique minimal set
of agents that connects the worlds in w by agt(w) ∈ τ .

So, for each one of the worlds w ∈ w, agt(w) =
⋂
{α ∈ τ : w ⊆ [w]α}.

Intuitively, agt(w) sets the scale for zooming-in on the minimal substructure
that connects the worlds w. We shall see later that, regarding distances between
the worlds w, we only need to control cycles and paths with β-steps for β (
agt(w) within the cluster [w]agt(w) for w ∈ w. For intersections between dual
hyperedges, Lemma 3.7 implies that every intersection can be described by the
unique set of agents agt(w). This means, for every w ∈ w:

[w]α ∈
⋂
w∈w

[[w]] ⇔ α ⊇ agt(w).

The following lemma will be vital for many of the constructions to come, as
it allows us to control agt(w) in 2-acyclic frames.

Lemma 3.9. In a 2-acyclic Cayley frame for worlds w, v:

1. For every agent a /∈ agt(w, v) and every v′ ∈ [v]a \ {v}:

agt(w, v′) = agt(w, v) ∪ {a}.

2. For every agent a ∈ agt(w, v) there is at most one v′ ∈ [v]a such that

agt(w, v′) = agt(w, v) \ {a}.

Proof. For (1), the inclusion agt(w, v′) ⊆ agt(w, v) ∪ {a} is obvious; for the
converse, observe that v, a, v′, (agt(v′, w) ∪ agt(w, v)) would be a 2-cycle if a 6∈
agt(w, v′), and that w, agt(w, v), v, agt(w, v′) would be a 2-cycle if agt(w, v) 6⊆
agt(w, v′) = agt(w, v′) ∪ {a}.

Similarly for (2), let a ∈ α := agt(w, v), β := α \ {a} and assume that
agt(w, v′) = agt(w, v′′) = β for two different worlds v′, v′′ ∈ [v]a \ {v}. One
checks that v′, β, v′′, a, v′ would form a 2-cycle.
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3.1.3 Coset acyclicity and hypergraph acyclicity

The dual hypergraph of a Cayley frame or structure will play a crucial rôle
in the Ehrenfeucht–Fräıssé arguments in Section 4. We here investigate the
connections between acyclicity of Cayley frames and hypergraph acyclicity, and
between coset paths in Cayley frames and chordless paths in hypergraphs.

Definition 3.10. A hypergraph is a structure A = (A,S), A its vertex set and
S ⊆ P(A) its set of hyperedges.

All hypergraphs to be considered here have finite width, where width refers
to the maximal size of the hyperedges, max{|s| : s ∈ S}. We denote by S↓ the
closure of S under passage to subsets, and correspondingly let A↓ := (A,S↓). A
hypergraph A = (A,S) has as its induced substructures (sub-hypergraphs) the
hypergraphs A�Q for ∅ 6= Q ⊆ A with vertex set Q and hyperedges s ∩Q.

With a hypergraph A = (A,S) we associate its Gaifman graph G(A) =
(A,G(S)); the undirected edge relation G(S) of G(A) links a 6= a′ if a, a′ ∈ s
for some s ∈ S. Note that G(A) = G(A↓). A hypergraph is called connected
if its Gaifman graph is. An n-cycle in a hypergraph is a cycle of length n in
its Gaifman graph, and an n-path is a path of length n in its Gaifman graph.
A chord of an n-cycle or n-path is an edge between vertices that are not next
neighbours along the cycle or path. The following definition of hypergraph
acyclicity is the classical one from [2], also known as α-acyclicity in [1]; n-
acyclicity was introduced in [17].

Definition 3.11. A hypergraph A = (A,S) is acyclic if it is conformal and
chordal :

(i) conformality requires that every clique in the Gaifman graph G(A) is
contained in some hyperedge s ∈ S;

(ii) chordality requires that every cycle in the Gaifman graph G(A) of length
greater than 3 has a chord.

For n > 3, A = (A,S) is n-acyclic if it is n-conformal and n-chordal :

(iii) n-conformality requires that every clique in G(A) up to size n is contained
in some hyperedge s ∈ S;

(iv) n-chordality requires that every cycle in G(A) of length greater than 3 and
up to n has a chord.

Remark ([17]). If a hypergraph A = (A,S) is n-acyclic, then every induced
substructure A�Q for non-empty subsets Q ⊆ A of up to n vertices is acyclic.

Definition 3.12. A tree decomposition T = (T, δ) of a hypergraph A = (A,S)
consists of a tree T (i.e. an acyclic connected graph, often with a distinguished
root node) together with a map δ : T → S↓ that associates subsets of hyperedges
with every node u of the tree such that

(i) S↓ = image(δ)↓, and

(ii) for every vertex a ∈ A, the set {v ∈ T : a ∈ δ(v)} is connected in T .
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A hypergraph A = (A,S) is tree decomposable if it admits a tree decomposition.4

A tree decomposition T = (T, δ) organises the hyperedges of A or A↓ in
bags δ(u) ∈ S↓ for u ∈ T , so as to reflect the tree-like nature of their overlap
pattern in A. A well-known result from classical hypergraph theory ([2],[1]) is
that a hypergraph is tree decomposable if, and only if, it is acyclic. For finite
hypergraphs A we may moreover bound the depth of the underlying tree T of
a tree decomposition just in terms of the size of the vertex set. Indeed, edges
between nodes with identical bags can be contracted. Then along a simple
directed path from some node u to some node u′ in T , any individual vertex
a ∈ A can legitimise at most two distinct edges (by entering or exiting bags),
which bounds the length of the path by 2|A| − |δ(u)| − |δ(u′)|. On the basis
of further contractions one may also eliminate inclusion relationships between
bags at neighbouring nodes. This yields a bound of |A| for the depth of T , even
after attaching an extra root node to represent some designated member of S↓

(whose bag may be a subset of next neighbour bags). To tree decompositions
satisfying this latter constraint we we refer to as succinct tree decompositions.

The connectivity constraint in the definition of tree decompositions, together
with the fact that all bags form cliques in the underlying Gaifman graph, yields
the following simple but useful insight. As bags are Gaifman cliques a simple
chordless path in G(A) cannot visit the same bag twice. It follows that the edges
between next neighbours along such a path must all be represented in bags that
lie on the minimal connecting path between any two bags that represent the
terminal nodes in the tree decomposition.

Observation 3.13. The edges of chordless simple paths between elements of
different bags δ(u) and δ(u′) of a tree decomposition are represented in the bags
along the shortest connecting path between u and u′ in the tree.

Definition 3.14. Let M = (W, (Rα)α∈τ ) be a Cayley frame. Its dual hyper-
graph is the vertex-coloured hypergraph d(M) := (d(W ), S, (Cα)α∈τ ) where

d(W ) :=
⋃̇

α∈τ
Cα for Cα := W/Rα,

S := {[[w]] ⊆ d(W ) : w ∈W}.

Note that d(M) has width |τ | = 2|Γ|, as [[w]] = {[w]α : α ∈ τ}. As M is
connected, so is its dual d(M), and its diameter is bounded by 2: any two
elements [w]α, [w

′]β are linked to the universal class [w]Γ = [w′]Γ = W ∈ d(W )
by hyperedges [[w]] and [[w′]]. Due to the uniform bound on the width, any d(M)
that is n-conformal for n > |τ | must be outright conformal. The notions of
acyclicity for Cayley frames and hypergraph acyclicity are directly connected
by the following.

4One can, for hypergraphs of finite width, equivalently require a map δ : T → S that
is surjective onto the set of ⊆-maximal members of S, with analogous connectivity require-
ments, see [1]. While irrelevant for the resulting notion of tree-decomposability, passage to A↓

simplifies considerations involving induced sub-hypergraphs, whose hyperedges are subsets of
original hyperedges.
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Lemma 3.15 ([17]). For n > 3, if M is an n-acyclic Cayley frame, then d(M)
is an n-acyclic hypergraph.

When playing the Ehrenfeucht-Fräıssé game in Section 4 to prove the upgrad-
ing theorem over Cayley structures we use their dual hypergraphs as auxiliary
structures to describe a winning strategy. For that we keep track of an invari-
ant involving a substructure that contains the pebbled worlds. This invariant
has an image in the dual hypergraph that we use to maintain and expand the
invariant properly in each round. The key notion to describe this dual image is
the convex m-closure, which was defined in [17] for a similar purpose.

Definition 3.16. Let A = (A,S) be a hypergraph.

(i) A subset Q ⊆ A is m-closed if every chordless path of length up to m
between distinct vertices a, a′ ∈ Q is contained in Q.

(ii) For m ∈ N, the convex m-closure of a subset P ⊆ A is the minimal m-
closed subset that contains P : clm(P ) :=

⋂
{Q ⊇ P : Q ⊆ A m-closed }.

As a direct consequence of Observation 3.13 we obtain the following.

Observation 3.17. Let T = (T, δ) be a tree decomposition of an m-closed
hypergraph A = (A,S). Then the induced sub-hypergraph of A on the elements
covered by T �U for a connected subset U of T , A�

⋃
{δ(u) : u ∈ U}, is m-closed.

In the analysis of the Ehrenfeucht-Fräıssé game it will be important to main-
tain, as part of an invariant, convex closures of the representations of the pebbled
configurations, which means that such convex closures need to be updated to
incorporate newly added elements. The following lemma shows that, in suffi-
ciently acyclic hypergraphs, such extensions of convex closures are well-behaved
and can be controlled. In the statement, distance d(P, q) = min{d(p, q) : p ∈
P} between a set and a vertex refers to distance in the Gaifman graph, and
N1(P ) =

⋃
{N1(p) : p ∈ P} is the 1-neighbourhood of the set P in the Gaifman

graph. Both the following lemmas are from [17].

Lemma 3.18 ([17]). Let m > 1, A = (A,S) be a hypergraph that is sufficiently
acyclic, Q ⊆ A m-closed and a ∈ A some vertex with 1 6 d(Q, a) 6 m. Let
Q̂ := clm(Q ∪ {a}) and consider the region D := Q ∩ N1(Q̂ \ Q) in which this
extended closure attaches to Q. Then Q̂\Q is connected, and D separates Q̂\Q
from Q \D (in the graph-theoretic sense in G(A)), whence

Q̂ = Q ∪ clm(D ∪ {a}).

If Q is even (2m+ 1)-closed, then D = Q ∩N1(Q̂ \Q) is a clique.

As Q̂ = Q ∪ clm(D ∪ {a}) for some clique D ⊆ Q, it will be important
to bound the size of the extension clm(D ∪ {a}). This is the extension that
occurs, in the dual image as part of the invariant, in a single round, and a size
bound will be critical for bounding the required level of `-bisimulation that is
necessary to win the game. As pointed out above, the dual hypergraphs are
of uniform width |τ |, which we regard as constant; we therefore seek functions
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fm(k) that bound the size of m-closures of up to k elements in hypergraphs of
fixed width |τ |, provided they are sufficiently acyclic.

Lemma 3.19 ([17]). For fixed width, there are functions fm(k) such that in
hypergraphs A of that width that are sufficiently acyclic, |clm(P )| 6 fm(k), for
all P ⊆ A of size |P | 6 k.

3.2 Structure theory for n-acyclic Cayley structures

Section 3.1 covered the first part of the upgrading argument and especially
the availability of suitable coverings. This section provides the tools for the
second part, viz. for showing that ∼`-equivalence of two such suitable Cayley
structures implies ≡q-equivalence, by playing the first-order Ehrenfeucht-Fräıssé
game. The central notion of this subsection is freeness, a special property of
sufficiently rich and acyclic Cayley structures. Essentially, freeness governs a
single round in the Ehrenfeucht-Fräıssé game, in the sense that it allows II
to find a suitable response to any move of I. As with richness and acyclicity,
there are different degrees of freeness. The main result of this section is the
freeness theorem, which states that sufficiently rich and acyclic Cayley structures
are sufficiently free. Beside a formal introduction and discussion of freeness,
this section introduces coset paths. They generalise graph-theoretic paths in
the same way that coset cycles generalise graph-theoretic cycles and play an
important part in proving the freeness theorem in Section 3.2.3. Most of the
auxiliary theoretical results on coset paths come from [6].

Many of the definitions and notions that we will introduce from now on
only make sense in 2-acyclic Cayley frames, because they are based on the
notion of the unique minimal connecting set of agents agt(w) defined in the
previous section. As every Cayley structure has a 2-acyclic bisimilar covering,
the following is justified.

Proviso. We assume for the remainder of this section that all Cayley frames
are at least 2-acyclic.

3.2.1 Freeness

Consider playing the i-th round of an Ehrenfeucht-Fräıssé game on Cayley struc-
tures M and N with worlds w1, . . . , wi−1 ∈ W and v1, . . . , vi−1 ∈ V already
pebbled. If player I chooses the world wi ∈ W in his next move, how does
player II respond to this? As usual, II has to maintain a partial isomorphism
between the pebbled worlds. In order to cope with player I’s challenges in future
rounds, she also needs to match short distances between worlds exactly and to
match long distances with long distances. Since we play on Cayley structures,
she has to respect these distances on multiple scales.

The special property of Cayley structures that allows us to make suitable
choices is called freeness and is the topic of this section. Recall from Sec-
tion 3.1.3, Definition 3.14, the dual hypergraph associated with a Cayley frame
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and the notion of Gaifman distance in hypergraphs discussed there. The follow-
ing notation is useful towards the formal definition of freeness: for t,X, Y ⊆ A
in a hypergraph A = (A,S), we denote as dt(X,Y ) the distance between X \ t
and Y \ t in the induced sub-hypergraph A \ t := A � (A \ t). For a set of
worlds z ⊆ W , we write [[z]] for the set {[[z]] : z ∈ z} of associated hyperedges.
A pointed set (of worlds) is a pair (z, z0), where z is a set of worlds and z0 ∈ z.

Definition 3.20. Let M be a 2-acyclic Cayley structure and m, k ∈ N. For v ∈
W and a pointed set of worlds (z, z0) we say that (z, z0) and v are m-free,
denoted as (z, z0)⊥mv, if dt(

⋃
[[z]], [[v]]) > m in d(M), where t = [[v]] ∩ [[z0]].

We say that M is (m, k)-free if, for all v ∈ W , all pointed sets (z, z0) with
|z| 6 k, and all sets of agents γ ⊇ agt(v, z0), there is some v∗ ∼ v such that
agt(v∗, z0) = γ and (z, z0)⊥mv∗.

The main result of this section (Theorem 3.31) states that sufficiently acyclic
and rich Cayley structures are (m, k)-free. Note that the concept of freeness
refers to distance in the dual hypergraph of a Cayley structure (cf. Lemma 3.26).
We shall use dual hypergraphs and freeness criteria in Section 4 to describe a
winning strategy for player II in the Ehrenfeucht-Fräıssé game. There z will
comprise not just the worlds pebbled so far, but a certain small substructure
spanned by the pebbled worlds, and z0 plays the rôle of the world in z that is, in
some sense, closest to a newly pebbled world v. Freeness was introduced in [17]
to define a winning strategy for an Ehrenfeucht-Fräıssé game played on n-acyclic
hypergraphs, in order to show a characterisation theorem for guarded logic. We
adapt the idea for our purposes to use it over Cayley structures and their dual
hypergraphs. Essentially, freeness is applied in the same way as in [17], but
the proof that sufficiently acyclic and rich Cayley structures are (m, k)-free is
new here. Definition 3.20 speaks about worlds in the Cayley structure and
about distances in the Gaifman graph of the dual hypergraph. Our proof of the
freeness theorem finds the desired world v∗, which is far enough away from z
in terms of the dual hypergraph, through constructions on the original Cayley
structure.

A world v and a pointed set (z, z0) are m-free if the distance between [[v]] \ t
and (

⋃
[[z]]) \ t in d(M) \ t is strictly larger than m, for t = [[v]] ∩ [[z0]]. In

other words, a minimal path between [[v]] \ t and (
⋃

[[z]]) \ t in d(M) \ t must be
strictly longer than m. In fact we are only interested in those paths between [[v]]
and

⋃
[[z]] that do not go through t: the paths that go through t are all the

trivial paths between [[v]] and
⋃

[[z]], and the goal is to find some v∗ ∼ v such
that all the non-trivial paths are long. The set t is a set of equivalence classes
in M. By definition, it contains exactly those classes that contain both v and z0,
so that some class [v]β is an element of t if and only if (z0, v) ∈ RM

β , which by
2-acyclicity is equivalently expressed as

t = {[v]β : β ⊇ agt(z0, v)} = {[v]β : [v]β ⊇ [v]agt(z0,v)}.

So the classes in t represent the coset paths of length 1 from z0 to v. These
are the trivial paths, which we cannot and need not avoid. But in order to win

22



the Ehrenfeucht-Fräıssé game we need to be able to ensure that a response in a
given round of the game can match long paths with long paths.

In order to find a suitable v∗, we will deal with each world z ∈ z in turn.
First, we find a copy v0 of v such that dt([[v0]], [[z0]]) > m, then we find a
copy v1 such that dt([[v1]], [[z]]) > m, for another world z ∈ z, while maintaining
dt([[v1]], [[z0]]) > m, and so forth. The last of these copies will be v∗. Take note
of the fact that we always need to avoid the same set t = [[v]] ∩ [[z0]] (rather
than [[v]] ∩ [[z]]) when we want to increase the distance between [[v]] and [[z]].
This complicates things on a technical level. Note that dt([[v]], [[z]]) > 1 implies
[[v]]∩ [[z]] ⊆ t, which means that all the classes that directly connect v and z will
also be avoided.

To find some suitable world v∗ in the Cayley structure M, we consider paths
in d(M) \ t that need to be avoided as paths in M, as certain coset paths to
be introduced below. We close this section with a useful alternative description
of the set t that needs to be avoided. Motivated by freeness, t was defined as
[[v]] ∩ [[z0]], i.e. in terms of v and z0. Since we assume M to be 2-acyclic, t can
also be described in terms of v and the set γ := agt(z0, v) as t = {[v]β : β ⊇ γ},
as we saw above. This motivates the following definition.

Definition 3.21. For a 2-acyclic Cayley frame M with dual hypergraph d(M),
we define the following mapping:

ρM : W × τ −→ P(d(W ))
(v, γ) 7−→ {[v]β : β ⊇ γ}

If it is clear from the context, we drop the superscript M and just write ρ in-
stead of ρM. Note that the set t to be avoided will typically be t = ρ(v, agt(z0, v)).

The following lemma characterises the relationship of the sets [[v]]∩ [[z0]] and
[[v]]∩ [[z]] in d(M) in terms of agt(z0, v) and agt(v, z). We can observe the usual
duality in the transition from Cayley structures to their dual hypergraphs.

Lemma 3.22. Let M be a 2-acyclic Cayley frame, v, z two worlds and γ a set
of agents, then

[[z]] ∩ [[v]] ⊆ ρ(v, γ) ⇔ γ ⊆ agt(z, v).

3.2.2 Coset paths

A special case of the coset paths to be considered here are the non-t coset paths
for some t = ρ(v, γ). Those are the coset paths that correspond to the chordless
paths that avoid t in the dual hypergraph. Based on non-t coset paths we
present a multi-scale measure of distance in Cayley graphs and results from [6]
that tie it to the measure of distance that we use in hypergraphs.

Definition 3.23. Let M be a Cayley frame. A coset path of length ` > 1 is a
labelled path w1, α1, w2, α2, . . . , α`, w`+1

5 such that, for 1 6 i 6 `,

[wi]αi−1∩αi
∩ [wi+1]αi∩αi+1

= ∅,
5A labelled path is a path in the graph-theoretic sense with explicit account for the edge

labels; in our present notation this means that (wi, wi+1) ∈ Rαi .
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where we trivially supplement the path with α0 = α`+1 := ∅.
A coset path w1, α1, . . . , α`, w`+1 of length ` > 2 with α := agt(w1, w`+1) is

– non-trivial if [wi]αi
+ [w1]α

– an inner path if [wi]αi
( [w1]α

for all 1 6 i 6 `. It is

– non-t for some t = ρ(w`+1, γ) with γ ∈ τ , if [wi]αi
+ [w`+1]γ

for all 1 6 i 6 `. A non-t (or non-trivial) coset path from w to v 6= w is minimal
if there is no shorter non-t (or non-trivial) coset path from w to v.

Remark. A non-trivial coset path from w to v is the same as a non-t coset path
for t = ρ(v, agt(w, v)). A coset path w1, α1, . . . , α`, w`+1 of length ` > 2 is an
inner path if agt(w1, w`+1) =

⋃
i αi, and any such inner coset path is non-trivial.

Definition 3.24. Let M be a Cayley frame that is 2n-acyclic. We call a coset
path short if its length is at most n.

Defining a measure of distance in M is a non-trivial matter because of its
highly intricate edge pattern. Every Cayley frame is a single clique with respect
to RΓ, the accessibility relation induced by the set Γ of all agents. So the
diameter of a Cayley frame is at most 1, which trivialises the usual notion of
distance and renders locality techniques seemingly useless.

However, in 2-acyclic structures we can define a sensible notion of distance
that is based on non-t coset paths. Essentially, a non-t coset path between w
and v excludes all trivial connections between w and v and only looks at the
scale that we are interested in, which is set by t.

Definition 3.25. Let M be a 2-acyclic Cayley frame, w 6= v two worlds, γ ⊆ Γ
and t = ρ(v, γ). The t-distance dt(w, v) between w and v is defined as the length
of a minimal coset path from w to v that avoids t (∞ if there is no such path).
For a set of worlds z, the t-distance dt(z, v) between z 6= ∅ and v is defined as

dt(z, v) := min
z∈z

dt(z, v).

Remark. Depending on t, t-distance may allow for distance 1: dt(w, v) = 1 if,
and only if, [v]agt(w,v) /∈ t. However, we are usually interested in cases where
γ ⊆ agt(w, v), which implies [v]agt(w,v) ∈ t, for t = ρ(v, γ) and thus dt(w, v) > 2.

As suggested by our notation, dt(w, v) and dt([[w]], [[v]]) are closely related. It
is shown in [6] that the two measures correspond for sufficiently acyclic Cayley
structures. In a sufficiently acyclic Cayley structure, a non-t coset path

v1, α1, v2, . . . , v`, α`, v`+1

of length ` > 1 induces a chordless path of length `+ 1

[v1]∅, [[v1]], [v2]α1
, . . . , [v`+1]α`

, [[v`+1]], [v`+1]∅
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that does not visit t; conversely, a chordless path of length ` + 1 > 2 in the
dual hypergraph of a 2-acyclic Cayley structure that does not visit t, induces
a non-t coset path in the Cayley structure in the same way. It follows that
dt(w, v) + 1 = dt([w]∅, [v]∅), which implies dt(w, v) = dt([[w]], [[v]]) + 1.

This also means that coset paths in Cayley structures can be analysed and
matched in terms of chordless paths in the dual hypergraphs. Furthermore, it
is shown that in sufficiently acyclic Cayley structures the t-distance between
two worlds is large if all inner non-t coset paths are long. This result is of
crucial importance because it reduces the global distance between w and v
in M to a phenomenon on the scale of agt(w, v). This local scale involves just
the substructure of M on [w]agt(w,v) ⊆W w.r.t. sets of agents α  agt(w, v).

Lemma 3.26 ([6]). Let ` > 1, M a sufficiently acyclic Cayley frame, w, v two
worlds, γ ⊆ Γ and t = ρ(v, γ). If there is no inner non-t coset path of length `
from w to v, then dt(w, v) > ` and dt([[w]], [[v]]) > `− 1.

Hence, given w, v and t, finding some v∗ ∼ v such that dt([[w]], [[v∗]]) > `− 1
reduces to finding some v∗ ∼ v such that dt(w, v

∗) > `, which reduces to the
local matter of eliminating, in some sense, all the short inner non-t coset paths.
In the following section, we prove the freeness theorem. Lemma 3.26 from [6] is
the cornerstone for this undertaking.

3.2.3 The freeness theorem

Let m > 1, M be a Cayley structure, v a world, (z, z0) a pointed set with v /∈ z
and γ = agt(z0, v). The challenge is to find a world v∗ ∼ v with agt(z0, v

∗) =
γ such that v∗ and (z, z0) are m-free, assuming M is sufficiently acyclic and
sufficiently rich. The necessary levels of richness and acyclicity are determined
by m and |z|. Hence, we need a suitable v∗ such that dt(

⋃
[[z]], [[v∗]]) > m, for

t = [[z0]]∩[[v∗]]; by Lemma 3.26 it suffices to have a v∗ such that dt(z, v
∗) > m+1.

Since we need such v∗ for arbitrary m, we will show how to obtain a v∗ such
that dt(z, v

∗) > m in order to make the following more readable. Proving the
freeness theorem involves two steps.

The first step. The first step is to find some v1 ∼ v with agt(z0, v1) = γ
such that dt(z, v1) > 1, for t = [[z0]] ∩ [[v]] = ρ(v, γ) = ρ(v1, γ). The choice
of t immediately implies dt(z0, v) > 1, but we need to look for an appropriate
bisimilar copy of v in [v]γ to increase the t-distance to the other worlds of z. The
condition dt(z, v1) > 1 can be equivalently rephrased as agt(z0, v1) ⊆ agt(z, v1),
for all z ∈ z. Lemma 3.7 guarantees the uniqueness of the minimal connecting
sets of agents agt(·, ·) in 2-acyclic M and thereby implies a triangle inequality
with respect to these:

agt(v, z) ⊆ agt(v, z0) ∪ agt(z0, z).

If we find a bisimilar copy v1 of v with agt(z0, v1) = γ such that

agt(v1, z) = agt(v1, z0) ∪ agt(z0, z),
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then agt(z0, v1) ⊆ agt(z, v1). In other words, in the passage from v to v1 we
need to increase the distance, with regard to connecting agents, from z without
changing the distance from z0. Lemma 3.28 shows that this can be done in
2-acyclic, rich structures for multiple z ∈ z simultaneously.

We use the following argument in the proofs of the Lemmas 3.28 and 3.30
to find suitable bisimilar copies in rich structures.

Lemma 3.27. Let v be a world and (z, z0) a finite pointed set in a Cayley
structure M, with agt(v, z0) ⊆ agt(v, z) for all z ∈ z. Let a ∈ agt(v, z0); if M
is 2-acyclic and sufficiently rich, then there is some v′ ∈ [v]a \ {v} with v′ ∼ v
such that, for all z ∈ z,

agt(v′, z) = agt(v, z).

Proof. Let Bz = {u ∈ [v]a : a /∈ agt(z, u)} for z ∈ z. By Lemma 3.9(2), |Bz| 6 1
for all z ∈ z. Let B =

⋃
z∈zBz; then |B| 6 |z|. Since M is sufficiently rich,

there is some v′ ∈ [v]a \ (B ∪ {v}) with v′ ∼ v. It follows agt(v′, z) = agt(v, z),
for all z ∈ z, from the definition of B.

In the statement of Lemma 3.28, the worlds of z are the ones that have
already been taken care of and u is the world to be processed next.

Lemma 3.28. Let v, u be worlds and (z, z0) a finite pointed set of worlds in a
Cayley structure M, with agt(v, z) = agt(v, z0) ∪ agt(z0, z) for all z ∈ z. If M
is 2-acyclic and sufficiently rich, then there is a world v∗ ∼ v with agt(v∗, z) =
agt(v, z) for all z ∈ z, such that also

agt(v∗, u) = agt(v∗, z0) ∪ agt(z0, u).

Proof. Put α1 := agt(v, z0), α2 := agt(z0, u) and α3 := agt(u, v). By Lemma 3.7,
2-acyclicity implies αi ⊆ αj ∪ αk whenever {i, j, k} = {1, 2, 3}. We show that if
α3 ( α1 ∪ α2, then for every agent a ∈ (α1 ∪ α2) \ α3 there is a world v′ ∈ [v]a
with v′ ∼ v such that

– agt(u, v′) = α3 ∪ {a};
– agt(v′, z0) = α1, and agt(v′, z) = agt(v, z), for all z ∈ z;

– α1 ⊆ α2 ∪ agt(u, v′), α2 ⊆ α1 ∪ agt(u, v′), agt(u, v′) ⊆ α1 ∪ α2.

Since (α1 ∪ α2) \ α3 is finite, applying this argument a finite number of times
leads to a suitable world v∗ with, in particular, (α1 ∪ α2) \ agt(u, v∗) = ∅. Let
a ∈ (α1 ∪ α2) \ α3. Then a ∈ α1 because if we assume a /∈ α1, it follows

a /∈ α1
a∈α1∪α2======⇒ a /∈ α1, a ∈ α2

α2⊆α1∪α3
=======⇒ a ∈ α3.

Since M is sufficiently rich and 2-acyclic and a ∈ α1 ⊆ agt(v, z), for all z ∈ z,
Lemma 3.27 gives us a world v′ ∈ [v]a\{v} with v′ ∼ v and agt(v′, z) = agt(v, z),
for all z ∈ z. Set α′1 := agt(v′, z0), α′2 := agt(z0, u) and α′3 := agt(u, v′).
Lemma 3.9 implies α′3 = α3 ∪ {a} because a /∈ α3 and M is 2-acyclic, a ∈ α1

implies α′1 = α1, and 2-acyclicity gives us α′i ⊆ α′j ∪ α′k whenever {i, j, k} =
{1, 2, 3}.
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The second step. The second step is the more difficult one. We have to
establish dt(z, v

∗) > m, while maintaining agt(v∗, z0) = γ. By Lemma 3.26 this
means that we need to eliminate short inner non-t coset paths between v and
the worlds in z by moving to bisimilar copies of v within [v]γ .

There are many possible bisimilar copies of v to choose from. The key is to
find a suitable a ∈ γ such that an a-step to a bisimilar copy of v in [v]a brings us
closer to v∗. We define the set of “right” agents in γ by describing the “wrong”
agents, i.e. the direction one has to take if one wants to move on a short path
from v towards z. If we can do that, we just move in any other direction.

Again, we resort to a result from [6]. There it is shown that the direction
one has to take if one wants to move from v to z on a short non-t coset path
in a sufficiently acyclic structure is unique in the following sense: there is a
maximal non-empty set α0 such that if v, α, . . . , z is a short non-t coset path,
then α0 ⊆ α (cf. [6] Definition 4.10). We denote this set as

shortt(v, z).

It is shown in [6] that this set exists and is unique if there is a short non-t coset
path from v to z. It is our goal to use shortt(v, z) to find a suitable bisimilar
copy v∗ of v such that the t-distance between v∗ and z increases. This means
that we must take a different direction, i.e. some a /∈ shortt(v, z), and move
to a bisimilar copy in [v]a. The idea is to repeat this procedure with different
suitable agents until we reach a copy of v that has a sufficiently large t-distance
to z.

The agent a /∈ shortt(v, z) can be chosen to be in γ: if v, shortt(v, z), . . . , z
is a short coset path (cf. Definition 3.24) that avoids t (recall that t = ρ(v, γ) =
{[v]β : β ⊇ γ}), then [v]γ * [v]shortt(v,z) implying γ * shortt(v, z). The case
γ ⊆ agt(v, z) is of particular interest in the proof of the freeness theorem.

Remark ([6]). Let M be a 2-acyclic Cayley structure, v, z ∈ M and γ ⊆
agt(v, z) a set of agents. Then, for t = ρ(v, γ), γ * shortt(v, z).

Similar to the set agt(v, z) in 2-acyclic structures, shortt(v, z) behaves in a
controlled manner in sufficiently acyclic structures.

Lemma 3.29 ([6]). Let m ∈ N, M a Cayley frame, z, v two worlds, γ ⊆
agt(v, z) and t = ρ(v, γ). Assume M is (2m + 1)-acyclic, dt(z, v) 6 m, and
that there are a /∈ shortt(v, z) and v′ ∈ [v]a \ {v} such that dt(v

′, z) 6 m. Then
a ∈ shortt(v

′, z).

The agents in shortt(v, z) are the ones that represent the direction one needs
to take if one wants to move from v to z on a short non-t coset path. Lemma 3.29
makes this notion precise and tells us how to use shortt(v, z). We choose an
agent a /∈ shortt(v, z) and move to a world v′ ∈ [v]a \ {v}. If the structure is
sufficiently acyclic, every short non-t coset path from v′ to z must start with a
set that includes agent a.

Lemma 3.29 is the cornerstone for the second step in the proof of the freeness
theorem, which establishes dt(z, v

∗) > m. It will be utilised as follows. Let
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w1, α1, . . . , α`, w`+1 be a short inner non-t coset path from z to v, for t = ρ(v, γ).
Then

(i) every set αi, 1 6 i 6 `, is a proper subset of agt(z, v);

(ii) no class [wi]αi
contains [v]γ ; in other words, if [wi]αi

∩ [v]γ 6= ∅, then γ *
αi.

In particular, the relevant sets of agents αi are bounded in terms of agt(z, v)
and γ.

Assume that we move along an a1-edge from v to v1, then along an a2-edge
from v1 to v2 and so forth, for suitable agents ai ∈ γ until none remain. Then the
set shortt(v1, z) must contain a1, the set shortt(v2, z) must contain a2, etc. Let
v′ ∼ v be the final world in this sequence. If we assume that the distance dt(z, v

′)
is still dt(z, v), then there must be a non-t inner coset path w1, α1, . . . , α`, w`+1

from z to v′ of length ` = dt(z, v
′). It this case it is possible to show that the set

α` contains all ai and the rest of γ, which means γ ⊆ α`. This contradicts the
assumption that w1, α1, . . . , α`, w`+1 is a non-t coset path for t = ρ(v, γ). The
precise statement necessary for this argument is encapsulated in Lemma 3.30
below; its rather technical proof can be found in the appendix.

Lemma 3.30. Let m ∈ N, M be a Cayley structure, v a world, (z, z0) a finite
pointed set, y ⊆ z a possibly empty subset and w ∈ z \ y; let γ = agt(z0, v) and
t = ρ(v, γ). Assume that M is sufficiently acyclic and sufficiently rich, and

– γ ⊆ agt(z, v), for all z ∈ z;

– dt(y, v) > m.

Then there is a world v∗ ∈ [v]γ with M, v∗ ∼ M, v and agt(z, v∗) = agt(z, v),
for all z ∈ z, such that

dt(y ∪ {w}, v∗) > m.

The freeness theorem. This section is devoted to the proof of the free-
ness theorem, which is the crucial tool for choosing suitable responses in the
Ehrenfeucht-Fräıssé game on Cayley structures that are sufficiently rich and
acyclic. The main ingredients are Lemma 3.28 for the first step and Lemma 3.30
for the second step.

Theorem 3.31 (freeness theorem). Let m, k ∈ N. If a Cayley structure M is
sufficiently acyclic and sufficiently rich, then M is (m, k)-free.

Proof. Let v be a world, (z, z0) a pointed set of size |z| = k enumerated as
(zi)06i<k, and γ ⊇ agt(v, z0). We show that there is a world v∗ ∼ v with
agt(v∗, z0) = γ such that v∗ and (z, z0) are m-free.

Preparation: 2-acyclicity and Lemma 3.9, together with sufficient richness,
imply the existence of some v′ ∼ v with agt(v′, z0) = γ. Replace v by this
world v′ so that agt(v, z0) = γ.

We must now find some world v∗ ∼ v with agt(v∗, z0) = γ such that
dt(
⋃

[[z]], [[v∗]]) > m, for t := ρ(v, γ) = [[v]] ∩ [[z0]]. By Lemma 3.26 it suf-
fices to show dt(z, v

∗) > m + 1. We do this in two steps. Step 1 ensures
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agt(z0, v
∗) ⊆ agt(z, v∗) (which is equivalent to dt(z, v

∗) > 1) for all z ∈ z, and
step 2 ensures dt(z, v

∗) > m+ 1.

Step 1 : we show by induction on 0 6 j < k that there are worlds vj ∼ v
such that dt(zi, vj) > 1, for all 0 6 i 6 j. The base case works for j = 0,
v0 := v. For the induction step let j > 1 and assume there is a world vj−1 ∼ v
with agt(z0, vj−1) = γ such that agt(z0, vj−1) ⊆ agt(zi, vj−1) for all 0 6 i < j.
Together with 2-acyclicity we get

agt(z0, zi) ⊆ agt(z0, vj−1) ∪ agt(vj−1, zi) = agt(vj−1, zi), and then

agt(vj−1, zi) ⊆ agt(vj−1, z0) ∪ agt(z0, zi) ⊆ agt(vj−1, zi).

Hence, agt(vj−1, zi) = agt(vj−1, z0) ∪ agt(z0, zi), for all 0 6 i < j. Now
Lemma 3.28 yields a world vj with agt(vj , zj) = agt(vj , z0)∪ agt(z0, zj) so that
agt(vj , zj) ⊇ agt(vj , z0).

In particular, we obtained a world vk−1 ∼ v with agt(vk−1, z0) = γ such that
agt(z0, vk−1) ⊆ agt(zi, vk−1), for all 0 6 i 6 k − 1, or equivalently, dt(z, vk−1) >
1, for t = ρ(vk−1, γ). We set the new v to be vk−1.

Step 2: we show by induction on 0 6 i 6 k that there are worlds vi ∈ [v]γ
such that

– vi ∼ v,

– agt(vi, z) = agt(v, z) , for all z ∈ z, and

– dt(yi, vi) > m+ 1, for yi := {zj ∈ z : 0 6 j < i}.
The base case works for v0 := v with y0 = ∅. For the induction step let 0 6 i < k
and assume there is a world vi ∈ [v]γ with vi ∼ v, agt(vi, z) = agt(v, z), for all
z ∈ z, and dt(yi, vi) > m+ 1. Since γ ⊆ agt(z, v), for all z ∈ z, and zi ∈ z \ yi,
Lemma 3.30 implies a world vi+1 ∈ [vi]γ = [v]γ with

– vi+1 ∼ vi,
– agt(z, vi+1) = agt(z, vi) = agt(z, v), for all z ∈ z, and

– dt(yi ∪ {zi}, vi+1) > m+ 1.

We obtain the desired world v∗ = vk by induction.

4 Characterisation theorem

Our main result is a modal characterisation theorem for common knowledge
logic ML[CK] over (finite) S5 structures. This section contains the final step of
its proof. We described the strategy for the proof at the end of Section 2: if we
can show that an FO-formula ϕ that is ∼-invariant over (finite) CK structures is
∼`-invariant over (finite) CK structures, for some ` ∈ N, then ϕ must be equiv-
alent to an ML-formula over (finite) CK structures by the modal Ehrenfeucht-
Fräıssé theorem. This is done by upgrading `-bisimilarity to FOq-equivalence
over (finite) Cayley structures, i.e. we show for suitable pointed Cayley struc-
tures M, w and N, v that

M, w ∼` N, v ⇒ M, w ≡q N, v,
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where q is the quantifier rank of ϕ and ` depends on q. Upgrading over Cayley
structures suffices because by Lemma 2.7 (Main Lemma 1.3) Cayley structures
are, up to bisimulation, the universal representatives of CK structures. For the
upgrading, we regard a Cayley structure as suitable if it is n-acyclic and k-rich,
for sufficiently large n, k ∈ N that depend on q. The construction of sufficiently
acyclic and rich (finite) coverings for (finite) CK structures, for the first part
of the upgrading argument, was presented in Sections 2.4 and 3.1. It remains
to show that sufficiently acyclic and rich `-bisimilar Cayley structures are FOq-
equivalent. The necessary structure theory for playing first-order Ehrenfeucht-
Fräıssé games on the non-elementary class of Cayley structures was developed in
Section 3 partly based on results from [17, 6]. Its central notion of freeness will
now play a crucial rôle in the analysis of the Ehrenfeucht-Fräıssé game to prove
≡q-equivalence of suitable Cayley structures on the basis of ∼`-equivalence for
sufficiently large `.

Sketch of the core idea. In order to win the q-round Ehrenfeucht-Fräıssé
game on M, w and N, v player II needs to keep track of several features, which
are built into an invariant to be maintained through the successive rounds. First
and foremost we incorporate an increasing chain of partial isomorphisms (σi)i6q
between M and N, where σ0 = {w 7→ v} and, for i < q, σi+1 ⊇ σi covers the
elements newly pebbled in the (i + 1)-st round. As the invariant needs to be
good for the remaining rounds, σi : M �dom(σi) =: Mi ' Ni := N � im(σi) has
to include worlds that lie on short paths between pebbled worlds. What ‘short’
means in relation to the number of rounds still to be played, is specified by a
suitably chosen decreasing sequence of critical distances (mi)i6q. To guarantee
extendability throughout the remaining rounds, we also need σi to preserve
the `i-bisimulation type of elements for a suitably chosen decreasing sequence
(`i)i6q starting from `0 = `, the degree of initial bisimilarity in M, w ∼` N, v.
The extension steps σi+1 ⊇ σi reflect II’s response to I’s challenge in round
i + 1, which also updates the auxiliary information in the invariant. Part of
this auxiliary information resides in the dual hypergraphs d(M) and d(N). The
invariant includes substructures of the dual hypergraphs, which essentially are
the dual images of Mi and Ni (cf. Definition 3.14 for the dual hypergraph). In
fact, the choice of the decreasing sequence of critical distances (mi)i6q (for short
distances in round i) is rooted in the dual hypergraphs, where results from [17]
can be used to bound the sizes of convex mi-closures (cf. Definition 3.16 and
Lemma 3.19); and these bounds in turn determine the decreasing sequence
(`i)i6q of required bisimulation levels between elements of M and N that are
linked by σi. The rather complex overall structure of the invariant, which is
schematically presented in Figure 2, is formally presented, and shown to be
maintainable through q rounds, in Section 4.1. The proof of the upgrading and
the characterisation theorem is then completed in Section 4.2.

30



d(M) M,wdoo σi
partial

// N,v d // d(N)

d(M)�QdM
i

⊆

Mi,w

⊆

σi
'

// Ni,v

⊆

d(N)�QdN
i

⊆

Ti

δ̂M
i

aa

δdM
i

ii

δ̂N
i

>>

δdN
i

66

Figure 2: A snapshot of the invariant, after round i of the game on M, w;N, v,
with pebbles on w = (w,w1, . . . , wi) and v = (v, v1, . . . , vi), based on isomorphic
underlying tree decompositions T dM

i = (Ti, δ
dM
i ) ' (Ti, δ

dN
i ) = T dN

i of acyclic
sub-hypergraphs d(M)�QdM

i ' d(N)�QdN
i .

4.1 The invariant

Definition of the invariant. Player II wins a play in the q-round Ehrenfeucht-
Fräıssé game on the pointed Kripke structures M, w0 and N, v0 if (wi 7→ vi)06i6q

induces a partial isomorphism σq, for the pebbled worlds w0, w1, . . . , wq ∈ W
and v0, v1, . . . , vq ∈ V . Starting with the mapping σ0 = {w0 7→ v0} before the
first round is played, II extends σi, the partial isomorphism after the i-th round
in response to player I’s challenges, round after round. In order to do that for
q rounds in a foresighted manner, she needs to keep track of more information
than just the current σi. This auxiliary information is built into the invariant,
which depicts the current game position and maintains a measure of the similar-
ity between the M- and the N-parts. The required degree of similarity depends
on the number of rounds still to be played (decreasing as q − i with the index i
of rounds). It is governed by two decreasing sequences of natural numbers, a
locality parameter and a bisimilarity parameter. The locality parameter in the
sequence (mi)06i6q indicates that distances up to mi are considered short in
the i-th round; the bisimilarity parameter in the sequence (`i)06i6q specifies the
degree of bisimilarity that worlds w′ ∈ M and v′ ∈ N need to display if they
are matched (by σi) in round i. As usual in Ehrenfeucht-Fräıssé games, the
locality parameter mi decreases by about one half in each round, as reflected in
the recursive definition

mq := 2 and mi−1 := 2mi + 1 for 0 < i 6 q;

and the recursive definition of the sequence (`i)06i6q refers to the functions fm
from Lemma 3.19, which bound the size of m-closed sets, for the levels m = mi:

`q := 1 and `i−1 := `i + fmi(|τ |+ 1) for 0 < i 6 q.

The structural backbone of the invariant is a tree decomposition of match-
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ing representations of relevant substructures Mi ⊆ M and Ni ⊆ N in their
dual hypergraphs d(M) and d(N). These tree decompositions are formalised as
T dM
i = (Ti, δ

dM
i ) and T dN

i = (Ti, δ
dN
i ) based on the same tree Ti but representing,

as tree decompositions, acyclic induced sub-hypergraphs d(M) �QdM
i ⊆ d(M)

and d(N) �QdN
i ⊆ d(N). These tree decompositions serve as the scaffolding for

the updates and extensions that need to be performed from round to round.
The common tree structure Ti in their tree decompositions, in particular, gov-
erns the structural similarity between the M- and N-parts of the current game
position.

With respect to the dual hypergraphs d(M) and d(N) compare Definition 3.6
and discussion there. Note that the underlying frame of M is FO-interpretable
in d(M) through identification of w ∈ W with the vertex d(w) := [w]∅ ∈ C∅ ⊆
d(W ) and note that (w,w′) ∈ Rα iff [w′]α ∈ [[w]] iff there is some vertex a ∈
Cα ⊆ d(W ) that is joined by hyperedges to both [w]∅ and to [w′]∅. We also note
in this connection that [[w]] is the unique hyperedge of d(M) that is incident on
[w]∅; so also (w,w′) ∈ Rα iff [[w]] and [[w′]] overlap in a vertex of colour Cα. In
particular, d(M), [w]∅ and d(N), [v]∅, further augmented by the propositional
assignments, determine whether M, w ≡q N, v. This justifies our focus on the
dual representation of M and N in design and maintenance of the invariant.

The full invariant can be described as follows, assuming that the worlds
w0, w1, . . . , wi ∈ W (where w0 = w) and v0, v1, . . . , vi ∈ V (where v0 = v) have
been pebbled after the i-th round (cf. Figure 2):

(I1) two isomorphic induced substructures Mi ⊆M and Ni ⊆ N that contain
the pebbled worlds in each structure, with an isomorphism

σi : Mi, w0, . . . , wi ' Ni, v0, . . . , vi

that preserves ∼`i-types: M, w ∼`i N, σi(w) for all w ∈Mi;

(I2) mi-closed subsets QdM
i ⊆ d(W ) and QdN

i ⊆ d(V ), that contain the dual
images [wj ]∅ = {wj} ∈ d(W ) and [vj ]∅ = {vj} ∈ d(V ) for j 6 i;

(I3) isomorphic tree decompositions T dM
i = (Ti, δ

dM
i ) and T dN

i = (Ti, δ
dN
i )

of the sub-hypergraphs d(M) � QdM
i ⊆ d(M) and d(N) � QdN

i ⊆ d(N),
respectively;

(I4) associated maps δ̂M
i : Ti → W and δ̂N

i : Ti → V that pick representatives

wu := δ̂M
i (u) ∈

⋂
δdM
i (u) in Mi and vu := δ̂N

i (u) ∈
⋂
δdN
i (u) in Ni for

u ∈ Ti,
6 such that the isomorphism σi : Mi ' Ni of (I1) is given by

σi(wu) = vu, where

Mi = M�{wu : u ∈ Ti} = M�{δ̂M
i (u) : u ∈ Ti},

Ni = N�{vu : u ∈ Ti} = N�{δ̂N
i (u) : u ∈ Ti}.

6Note that, as subsets of the universes d(W )/d(V ) of the dual hypergraphs, δdMi (u)/δdNi (u)

are sets of equivalence classes, i.e. sets of subsets in W/V ; the maps δ̂M/δ̂N on the other hand
go to W/V (and do not in themselves constitute tree decompositions). And, e.g. wu =

δ̂Mi (u) ∈
⋂
δdMi (u) precisely means that δdMi (u) ⊆ [[δ̂Mi (u)]].
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The induced substructures Mi and Ni contain all worlds pebbled during the
first i rounds together with, essentially, their closure under short coset paths.
These closures are induced by the mi-closures QdM

i and QdN
i . The worlds of Mi

and Ni arise as appropriate choices of the representatives δ̂M
i (u) and δ̂N

i (u) in M
and N for the bags of their isomorphic tree decompositions of the acyclic induced
sub-hypergraphs d(M)�QdM

i and d(N)�QdN
i . The matching tree decompositions

of d(M)�QdM
i and d(N)�QdN

i form the structural backbone of the invariant; and
the careful choice of matching representatives in M and N govern player II’s
strategy to maintain the invariant in response to player I’s move, over and
above the actual placement of a single pebble. If player II manages to maintain
the invariant throughout the q-round game, she wins after round q since σq
is a partial isomorphism that matches pebble positions: σq : Mq, w0, . . . , wq '
Nq, v0, . . . , vq for the induced substructures Mq ⊆M and Nq ⊆ N.

The invariant is initialised, for i = 0, as M0 := M � {w0}, N0 := N �
{v0} with σ0 : w0 7→ v0 such that M, w = M, w0 ∼`0 N, v0 = N, v is given;
we let QdM

0 := {[w0]∅} and QdN
0 := {[v0]∅}, which are trivially m0-closed as

singleton sets; and d(M) � QdM
0 and d(N) � QdN

0 are trivially acyclic with tree
decompositions T dM

0 , T dN
0 , based on the trivial tree T0 = {λ} consisting of just

its root.
The idea behind the strategy to maintain the invariant through round i can

be roughly described as follows (cf. Figure 3). We assume w.l.o.g. that player I
puts a pebble on wi ∈ M. We then set QdM

i := clmi
(QdM

i−1 ∪ {[wi]∅}). By our
acyclicity assumptions, the substructure d(M)�QdM

i is acyclic (cf. Lemma 3.19)
and admits a tree decomposition T dM

i = (Ti, δ
dM
i ) extending the tree decompo-

sition T dM
i−1 by a single new subtree (cf. Lemmas 3.18 and 3.19). Elements δ̂M

i (u)
representing the new bags δdM

i (u) for u ∈ Ti \Ti−1 are chosen, governed by just

the condition that δ̂M
i (u) ∈

⋂
δdM
i (u), i.e. such that δdM

i (u) ⊆ [[δ̂M
i (u)]]. It is

noteworthy that already these choices on the side of M introduce an element
of nondeterminism into II’s strategy. In light of conditions (I1) and (I4) for
σi, particulars of these choices (e.g. even w.r.t. their propositional assignments)

will have to be matched in δ̂N
i (u) on the side of N.

As [[wi]] is the unique hyperedge of d(M) that is incident with d(wi) =
[wi]∅ = {wi} ∈ QdM

i , the bag δdM
i (u) containing this element of d(M) �QdM

i is

necessarily represented by δ̂M
i (u) = wi. Putting Mi := M � image(δ̂M

i ), wi is
part of the extension Mi ⊇ Mi−1 which we view as a representation in M of
the tree decompositions T dM

i ⊇ T dM
i−1 of d(M)�QdM

i ⊇ d(M)�QdM
i−1.

The challenge for II lies in matching these extensions QdM
i ⊇ QdM

i−1, T dM
i ⊇

T dM
i−1 with δdM

i ⊇ δdM
i−1, and δ̂M

i ⊇ δ̂M
i−1 on the side of N and d(N) in order to

maintain the invariant with all its constraints (I1)–(I4). The following section
presents a detailed discussion.

Maintaining the invariant. We show how to maintain the invariant through
round i, w.l.o.g. in response to a placement of the i-th pebble on wi ∈ M.
We assume the invariant after round i − 1 provides sets QdM

i−1 ⊆ d(W ) and
QdN
i−1 ⊆ d(V ) inducing acyclic sub-hypergraphs of d(M) and d(N) with tree
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Figure 3: Analysis of pebble placement wi ∈M in round i, in terms of extensions
QdM
i , T dM

i , δdM
i and δ̂M

i towards finding matches QdN
i , T dN

i , δdN
i , δ̂N

i and Ni,vvi.

decompositions T dM
i−1 = (Ti−1, δ

dM
i−1) of d(M) �QdM

i−1 and T dN
i−1 = (Ti−1, δ

dN
i−1) of

d(N) � QdN
i−1 and surjective maps δ̂M

i−1 : Ti−1 → Mi−1 and δ̂N
i−1 : Ti−1 → Ni−1

such that Mi−1 := M� image(δ̂M
i−1) and Ni−1 := N� image(δ̂N

i−1) are isomorphic
via

σi−1 : Mi−1, w0, . . . , wi−1 ' Ni−1, v0, . . . , vi−1,

which preserves ∼`i−1 and is compatible with δ̂M
i−1 and δ̂N

i−1 in the sense that
the following diagram commutes:

Mi−1 σi−1 // Ni−1

Ti−1

δ̂Mi−1

gg

δ̂Ni−1

77

We assume that player I chooses to pebble an element wi of M for which
[wi]∅ 6∈ QdM

i−1: otherwise player II can directly respond with vi := σi−1(wi) and
the invariant is trivially maintained.

First stage: working on the side of M. We include [wi]∅ and analyse the

new configuration on the side of M in terms of extensions QdM
i , T dM

i , δ̂M
i . For

QdM
i := clmi(Q

dM
i−1 ∪ {[wi]∅}) we have that

– [wi]∅ 6∈ QdM
i−1 by assumption;

– 1 6 d(QdM
i−1, [wi]∅) 6 2 6 mi as diam(d(M)) = 2.

As d(M) is sufficiently acyclic, Lemma 3.18 can be applied. Denoting as
DdM := QdM

i−1∩N1(QdM
i \QdM

i−1) the region in which the extended closure attaches
to QdM

i−1, we know that QdM
i \QdM

i−1 is connected, and that DdM separates QdM
i \

QdM
i−1 from QdM

i−1 \DdM so that QdM
i = QdM

i−1 ∪ clmi
(DdM ∪{[wi]∅}). In fact DdM

is a separator in the graph-theoretic sense so that every path linking QdM
i−1 \DdM

to QdM
i \ QdM

i−1 in d(M) �QdM
i must go through DdM. By Lemma 3.18, DdM is

a clique since QdM
i−1 is (2mi + 1)-closed (mi−1 = 2mi + 1). By Lemma 3.19,

the size of clmi
(DdM ∪ {[wi]∅}) is bounded by fmi

(|τ | + 1), which implies that
d(M) �QdM

i is tree decomposable, in fact with a tree decomposition extending
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T dM
i−1 by a subtree that covers the new part. Let

Q := (QdM

i \QdM

i−1) ∪DdM,

and let u0 ∈ Ti−1 be a node of T dM
i−1 representing DdM, i.e. with δdM

i−1(u0) ⊇ DdM.
The rôle of DdM as a separator in d(M) �QdM

i implies that d(M) �QdM
i admits

a tree decomposition obtained as the fusion of the tree decomposition T dM
i−1 of

d(M) � QdM
i−1 and a tree decomposition T dM = (T, δdM) of d(M) � QdM whose

root node λ represents DdM as DdM = δ(λ). Choosing T dM as a succinct tree
decomposition of d(M)�QdM rooted at δ(λ) = DdM, we may assume that it has
no inclusion relationships between neighbouring bags (other than possibly strict
inclusions at the root), and that its depth is bounded by |Q|.7 The resulting
tree decomposition T dM

i = (Ti, δ
dM
i ) extends T dM

i−1 = (Ti−1, δ
dM
i−1) and is obtained

by attaching the root λ of T to the node u0 of Ti−1 that represents DdM. So T
becomes the subtree of new nodes in Ti and δdM

i = δdM
i−1 ∪̇ δ. We finally extend

δ̂M
i−1 : Ti−1 →M to δ̂M

i : Ti →M.

The only relevant constraint in the choices of δ̂M
i (u) for the new nodes u ∈

T is that [[δ̂M
i (u)]] ⊇ δdM

i (u). This condition determines the choice of δ̂M
i (u)

precisely up to an αu-class for αu =
⋂
{α : δ(u) ∩ Cα 6= ∅}. With such choices

for u ∈ T , and in particular choosing δ̂(λ) := δ̂M
i (λ) = δ̂M

i−1(u0) ∈ Mi−1 at
the root node of the tree decomposition T dM = (T, δdM) of d(M) �Q, we put

δ̂M
i = δ̂M

i−1 ∪̇ δ̂ and achieve δdM
i (u) ⊆ [[δ̂M

i (u)]] for all u ∈ Ti.

The extension from d(M) �QdM
i−1 to d(M) �QdM

i , i.e. from QdM
i−1 to QdM

i , is
directly parameterised by the succinct tree decomposition T dM = (T, δdM):

QdM

i = QdM

i−1 ∪QdM = QdM

i−1 ∪
⋃
{δdM(u) : u ∈ T}).

In light of Observation 3.17, the mi-closure of QdM
i guarantees that, for

initial segments U ⊆ T of the tree T , the interleaving extension stages

QdM

i−1 ∪
⋃
{δdM(u) : u ∈ U}

as well as the subsets
⋃
δdM(U) =

⋃
{δdM(u) : u ∈ U} are mi-closed in d(M).

Observation 4.1. For initial tree segments U ⊆ T , the subsets
⋃
δdM(U) ⊆

d(W ) and QdM
i−1 ∪

⋃
δdM(U) ⊆ d(W ) are mi-closed. The corresponding restric-

tions T dM� U and T dM
i � (Ti−1 ∪ U) form tree decompositions of the associated

induced sub-hypergraphs of d(M).

The extension from Mi−1 to Mi, on the other hand, stems from the elements
δ̂M(u) for u ∈ T chosen to represent the bags δdM(u) ⊆ QdM ∩ [[δ̂M(u)]]:

Mi = M�{δ̂M

i (u) : u ∈ Ti} = M�({δ̂M

i−1(u) : u ∈ Ti−1} ∪ {δ̂M(u) : u ∈ T}).8
7Cf. discussion in relation with Definition 3.12.
8These two subsets overlap in δ̂Mi−1(u0) = δ̂M(λ).
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Second stage: finding matches on the side of N. This stage of the
construction is about finding mirror images of the augmentations on the side
of N, so as to instantiate the question marks in Figure 3. These then yield the
desired update of the invariant after round i, and in particular a response move
for player II.

With σi−1(δ̂M
i−1(u0)) =: δ̂N(λ) =: vλ the given invariant from round i − 1

provides an `i−1-bisimilar copy of δ̂M
i−1(u0) = δ̂M(λ) =: wλ ∈ M on the side of

N. This also determines an isomorphic image

DdN ⊆ δdN

i−1(u0)

of the set DdM ⊆ δdM
i−1(u0) ⊆ QdM in d(N). This plays the rôle of δdN(λ) as a

contribution to QdN on the side of N, suitable to match δdM(λ) = DdM. Recall
that local isomorphisms between d(M)� [[wu]] and d(N)� [[vu]] (for any pairing of
wu with vu) are uniquely determined by the Cα-colouring of the elements [wu]α
and [vu]α alone.

Starting from this image vλ for σi(wλ) we need to find suitable vu for σi(wu)
that build up an isomorphic image of that part of Mi that is represented by
the remainder of QdM. This is done in an induction on the structure of the
tree T , which represents QdM in the tree decomposition T dM = (T, δdM) of
d(M) �QdM. The idea is to build up an isomorphic image d(N) �QdN ⊆ d(N)
with tree decomposition T dN = (T, δdN), by induction on the tree T , and starting
at the root node λ and from δdN(λ) := DdN ⊆ δdN

i−1(u0), based on choices for

vu := δ̂N(u) that match wu = δ̂M(u). Any such choice for δ̂N(u) fully determines
δdN(u) and its contribution to QdN, since induced local isomorphisms between
d(M) � [[wu]] and d(N) � [[vu]] are uniquely determined. As for the requirements
that these choices for vu must respect, compare (I1)–(I4) in relation to the
question marks in Figure 3.

So, more formally, we use a subordinate inductive process to take us bottom-
up through T , i.e. from the root λ towards the leaves. The stages of this
subordinate induction involve initial segments U,U ′ ⊆ T , starting at the root
with U := {λ}, and successively treat a next node u in T \U that is an immediate
successor of some node already in U . So the induction step takes us from
an initial segment U ⊆ T to an initial segment U ′ ⊆ T that just extends
U by one next child node u. Correspondingly, we think of Ti−1 ∪ U ⊆ Ti and
Ti−1∪U ′ ⊆ Ti as consecutive initial segments of the tree Ti. By Observation 4.1,
these initial segments represent tree decompositions ofmi-closed initial segments
of d(M) � QdM

i , with isomorphic matches in tree decompositions of mi-closed
initial segments of d(N)�QdN

i . Therefore the natural analogues of the constraints
(I1)–(I4) are meaningful and can be maintained step by step throughout this
subordinate induction that extends d(N)�QdN

i−1 and Ni−1 through

(i) bags δdN(u) ⊆ d(V ) to be joined to QdN
i ,

(ii) elements δ̂N(u) ∈ V to be joined to Ni,

linked according to δdN(u) ⊆ [[δ̂N(u)]], so that

(i) initial segments of the desired tree decomposition T dN
i of d(N) �QdN

i are
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isomorphic to corresponding segments of T dM
i (cf. (I2) and (I3)),

(ii) serve as dual representations of substructures of the desired Ni that are
isomorphic to corresponding substructures of Mi (cf. (I1) and (I4)).

These extension steps are governed by the choices of vu := δ̂N(u) in N, which
then fully determine the choices for δdN(u). For the subordnate induction we
require

N, vu ∼` M, wu for ` = `i−1 − depth(u),

which in particular guarantees that N, vu ∼`i M, wu since we made sure that
`i−1 > `i + depth(T ).

At the root, for u = λ, we use that M, wλ = M, wu0 ∼`i−1 N, vu0 = N, vλ. So
putting vλ := vu0

= σi−1(wu0
) = σi−1(wλ) respects (I1), and δdN(λ) ⊆ δdN

i−1(u0)
is determined as the exact match for δdM(λ) ⊆ δdM

i−1(u0), automatically in line
with (I2)–(I4). This settles the base case for the subordinate induction, with
initial segment U = {λ} of T , or Ti−1 ∪ {λ} of Ti.

The induction step treats some next child to extend the initial segment U
of T by one new element u. Due to the uniformity of pre- and post-conditions
in the generic extension step, the extension step for a first child u of the root
λ is entirely typical and immediately generalises to all further extension steps.
So let u ∈ T be a child of λ, depth(u) = 1 in T .

We need to find a suitable world vu := δ̂N(u) ∈ V with N, vu ∼`i−1−1 M, wu
in order to extend Ni−1, QdN

i−1, and T dN
i−1 accordingly:

– choose vu ∈ N to extend δ̂N
i−1 towards δ̂N

i by δ̂N
i : u 7→ vu,

– put [vu]β ∈ QdN for every [wu]β ∈ QdM to extend QdN
i−1 towards QdN

i ,

– put a bag δdN(u) comprising these [vu]β to extend δdN
i−1 towards δdN

i .

The choice of vu therefore is the crucial step, and vu must not just be an ele-
ment of the α-class of vλ for α = agt(wλ, wu) of the right (`i−1−1)-bisimulation
type. Bad choices could still violate the mi-closure condition for QdN

i or the iso-
morphism condition relating Ni to Mi. The following therefore need to be
guaranteed:

(a) agt(vλ, vu) = agt(wλ, wu) and agt(vs, vu) = agt(ws, wu) for all s ∈ Ti−1,

(b) QdN
i−1 ∪ δdN(u) is mi-closed in d(N) just as QdM

i ∪ δdM(u) is in d(M).

Remark. Any violation of condition (a) would immediately spoil the isomor-
phism condition on σi for agt(vs, vu)-edges. Violation of the mi-closure con-
dition in (b), a requirement for the invariant by (I2), could be exploited by
player I in the continuation of the game if short paths in one configuration can-
not be matched in the other. To make this problem more explicit, consider a
choice of vu such that agt(vs, vu) = agt(ws, wu) for all s ∈ Ti−1. Since T is a
tree decomposition and u is a child of λ, the bag δdM

i (u) intersects bags of T dM
i−1

only within δdM
i (λ), i.e. δdM

i (s) ∩ δdM
i (u) ⊆ δdM

i (λ) ∩ δdM
i (u), for all s ∈ Ti−1.

Together with QdM
i being 2-closed this implies [[ws]] ∩ [[wu]] ⊆ [[wλ]] ∩ [[wu]].9 As

9A vertex [wu]α ∈ δdM(u) \ δdM(λ) cannot be directly edge-related in G(d(M)) to any
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[[vs]]∩ [[vu]] = {[vu]α : α ⊇ agt(vu, vs)} = {[vu]α : α ⊇ agt(wu, ws)} (and similarly
for λ in the place of s) by assumption, this implies that [[vs]]∩ [[vu]] ⊆ [[vλ]]∩ [[vu]]
for all s ∈ Ti−1 ∪ {λ}. We next need to add a vertex [vu]β into QdN

i if and
only if [wu]β ∈ QdM

i . This, however, might result in a set that is not mi-
closed. Since QdM

i is mi-closed, there are no short paths of length up to mi

from QdM
i−1 to δdM

i (u) \ δdM
i (λ) that leave QdM

i . And all such paths need to
pass through δdM

i (u) ∩ δdM
i (λ) since T dM

i is a tree decomposition. Hence, for
t = δdM

i (u) ∩ δdM
i (λ), we have dt(δ

dM
i (u), QdM

i−1) > mi on the side of M and
d(M), which must be matched on the side of N and d(N).

The key to overcoming these problems, i.e. to guarantee choices satisfying (a)
and (b), lies in freeness (cf. Definition 3.20). Since we assumed M and N to
be sufficiently acyclic and rich, both structures are sufficiently free by Theo-
rem 3.31. Let v′ be some world in [vλ]α that is `-bisimilar to wu for ` = `i−1−1,

and let z := image(δ̂N
i−1) = {vs : s ∈ Ti−1}. Then freeness of N implies that

there is some vu ∼ v′ such that

– agt(vλ, vu) = α = agt(wλ, wu), and

– (z, vλ)⊥mi
vu, i.e. (z, vλ) and vu are mi-free.

This world vu is a suitable choice for the extension of Ni−1 towards Ni, with
the corresponding extension of QdN

i−1 towards QdN
i . We put

δ̂N
i (u) := vu =: σi(wu),

δdN
i (u) := {[vu]β : [wu]β ∈ δdM

i (u)},

and add the vertices from δdN
i (u) to QdN

i . Then we have, for t = [[vλ]] ∩ [[vu]],
and since (z, vλ)⊥mi

vu, that

dt([[vu]],
⋃

[[z]]) > mi and dt(δ
dN

i (u),
⋃

image(δdN

i−1)) > mi,

because δdN
i (u) ⊆ [[vu]] and

⋃
image(δdN

i−1) ⊆
⋃

[[z]]. This implies that⋃
image(δdN

i−1) ∪ δdN

i (u)

is mi-closed. Furthermore,

dt([[vu]],
⋃

[[z]]) > 1

⇒ [[z]] ∩ [[vu]] ⊆ [[vλ]] ∩ [[vu]], for all z ∈ z,

⇒ agt(z, vu) ⊇ agt(vλ, vu), for all z ∈ z.

Together with agt(vλ, vs) = agt(wλ, ws), for all s ∈ Ti−1, and agt(vλ, vu) =
agt(wλ, wu) we obtain agt(vu, vs) = agt(wu, ws), for all s ∈ Ti−1.

vertex in δdMi−1(s), due to the connectivity constraint in T dM
i ; so elements of [[ws]] ∩ [[wu]] lie

on chordless paths of length 2 between these vertices, hence are in Qi and, by connectivity in
T dM
i , in δdM(λ).
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This means that, in the subordinate induction step, here exemplified in the
passage from U = {λ} to U ′ = {λ, u} for a child u of λ, we maintain the
conditions (I1)–(I4) for the invariant. To summarise: joining δdN(u) = {[vu]β :

[wu]β ∈ δi(u)} to QdN
i−1 and defining σi(wu) := vu = δ̂N

i (u) conforms to the
isomorphism conditions for σi on M and N and for (tree decompositions of)
initial segments of d(M)�QdM

i and d(N)�QdN
i .

The remainder of the tree T is treated in the same way. As new nodes
δdN(u) ∈ d(N) for u ∈ T are added to QdN

i , the associated new vertices δ̂N
i (u) :=

vu are added into Ni and incorporated into z for the next extension treating a
new node u ∈ T . The distinguished world z0 of the pointed set (z, z0) is the
world that is associated with the parent of the node in T that is to be processed.
The freeness argument works for the whole tree T , node by node, because the size
of Q and the depth of T are a-priori bounded, and M and N could be guaranteed
to be sufficiently free for this argument through all q rounds. In particular, the
bound fmi

(|τ | + 1) on the size of Q translates into a bound on the depth of T
(cf. discussion in connection with Definition 3.12) so that M, wλ ∼`i−1 N, vλ
and `i−1 = `i + fmi(|τ | + 1), guarantee that M, w ∼`i N, σi(w) holds for all
w ∈Mi.

Completion of this construction for round i in particular yields the actual
response for player II, viz. the placement of the pebble on vi ∈ Ni ⊆ N in
response to player I’s pebble placement on wi ∈ Mi ⊆ M. So player II can
maintain the invariant in the i-th round. The following lemma summarises this.

Lemma 4.2. Let q ∈ N, and M, w0 and N, v0 be pointed Cayley structures
that are sufficiently acyclic and sufficiently rich. Given the invariant described
in Section 4.1 after the (i − 1)-th round of the q-round Ehrenfeucht-Fräıssé
game on M, w0 and N, v0, player II has a strategy to update and maintain this
invariant in the i-th round.

4.2 Upgrading and characterisation

This section can be regarded as the culmination of the work so far: the upgrad-
ing theorem and the characterisation of basic modal logic over (finite) Cayley
structures. The elements of structural analysis developed so far contain all the
building blocks for proving those two theorems. We speak of two theorems be-
cause the restriction to finite models and the unconstrained classical reading are
a priori independent. Proving either one does not entail the other even though
our specific proof method allows us to treat the two versions in parallel. In Sec-
tions 2.4 and 3.1 we showed that every (finite) CK structure can be covered by a
bisimilar (finite) Cayley structure that is arbitrarily acyclic and arbitrarily rich.
Recall that the (finite) bisimilar coverings by Cayley structures from Lemma 2.7
were boosted to (finite) bisimilar coverings by Cayley structures satisfying ad-
ditional acyclicity and richness requirements in Lemma 3.4. The main result of
Section 3.2, the freeness theorem, then further showed that sufficient degrees
of acyclicity and richness imply (m, k)-freeness, a special property of suitable
Cayley structures that is essential for the upgrading. In particular we see that
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not just Cayley structures but even Cayley structures of any given finite degree
of acyclicity, richness and freeness can, up to bisimulation, be taken as universal
representatives of all (finite) CK structures.

Finally, the previous development in the current section has provided an
invariant that affords player II a winning strategy in the q-round Ehrenfeucht-
Fräıssé game on sufficiently free pointed Cayley structures that are `-bisimilar
for some sufficiently large `. The upgrading theorem follows easily from that.

Theorem 4.3 (upgrading theorem). Let q ∈ N. For some suitable choice of
` = `(q), any sufficiently acyclic and sufficiently rich Cayley structures M and N
satisfy

M, w ∼` N, v ⇒ M, w ≡q N, v.

Proof. Let (`k)06k6q be the sequence of the same name from Section 4.1. Set
` := `0 and let M, w, N, v be two sufficiently acyclic and rich pointed Cayley
structures such that M, w ∼` N, v. In order to prove that these structures
are FOq-equivalent we provide a winning strategy for player II in the q-round
Ehrenfeucht-Fräıssé game on M, w and N, v. Her strategy is to preserve the
invariant from Section 4.1 according to Lemma 4.2.

We need to check that the invariant can be set up before the first round. That
M, w ∼` N, v implies that the substructures M0 := M �{w} and N0 := N �{v}
are isomorphic via σ0 = {w 7→ v} (w and v are atomically equivalent and all
accessibility relations are reflexive), and that σ0 respects ∼`0 . The singleton sub-
setsQdM

0 := {[w]∅} in d(M) andQdN
0 := {[v]∅} in d(N) arem0-closed because the

Cayley structures, and with them their dual hypergraphs by Lemma 3.15, are
sufficiently acyclic. The induced sub-hypergraphs d(M) � QdM

0 and d(N) � QdN
0

are trivially isomorphic and tree decomposable. By Lemma 4.2 player II can
therefore maintain the invariant through all q rounds, which implies that she
wins the game. In the end, no matter what the moves of player I, the peb-
ble placements are related by the isomorphism σq between induced substruc-
tures Mq and Nq.

The upgrading theorem, together with the existence of suitable bisimilar cov-
erings, implies our main result, the characterisation of ML as the bisimulation-
invariant fragment of FO over the non-elementary classes of all CK-structures
and of all finite CK-structures, respectively.

Theorem 4.4 (main theorem). Over the class of (finite) Cayley structures, and
hence over the class of (finite) CK-structures:

ML[CK] ≡ ML ≡ FO/∼

Proof. The standard translation (cf. Section 1) implies ML ⊆ FO/∼. For the
crucial converse direction, establishing expressive completeness, let ϕ be an FO-
formula with qr(ϕ) = q that is bisimulation-invariant over (finite) Cayley struc-
tures. If we can show that ϕ is ∼`-invariant for some ` ∈ N over (finite) Cayley
structures, then there is an ML formula of modal depth ` that is logically equiv-
alent to ϕ over (finite) Cayley structures (cf. Theorem 2.5).
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M, w

∼

∼` N, v

∼

M̂, ŵ ≡q N̂, v̂

Figure 4: Upgrading ∼` to ≡q.

We choose ` = `(q) from Theorem 4.3 above, and let M, w and N, v be
pointed Cayley structures that are `-bisimilar (compare Figure 4). By Lemma 2.11
(for the unrestricted reading) and Lemma 3.4 (to cover the restriction to finite

structures) there are bisimilar coverings M̂, ŵ ∼ M, w and N̂, v̂ ∼ N, v that
are sufficiently acyclic and rich such that Theorem 4.3 applies. In particular,
Lemma 3.4 gives us such coverings that are finite if M and N are finite. Since
in particular M̂, ŵ ∼` N̂, v̂, Theorem 4.3 implies M̂, ŵ ≡q N̂, v̂, hence

M, w |= ϕ ⇔ M̂, ŵ |= ϕ (ϕ ∼-inv.)

⇔ N̂, v̂ |= ϕ (qr(ϕ) 6 q)
⇔ N, v |= ϕ (ϕ ∼-inv.)

which implies ∼`-invariance of ϕ over (finite) Cayley structures, as desired.

Acknowledgement. We are particularly indebted to an anonymous referee
whose attention to detail, insightful corrections and suggestions have led to
essential improvements in this revision.
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Appendix

Lemma 3.30. Let m ∈ N, M be a Cayley structure, v a world, (z, z0) a finite
pointed set, y ⊆ z a possibly empty subset and w ∈ z \ y; set γ = agt(z0, v) and
t = ρ(v, γ). Assume that M is sufficiently acyclic and sufficiently rich, and

– γ ⊆ agt(z, v), for all z ∈ z;

– dt(y, v) > m.

Then there is a world v∗ ∈ [v]γ with M, v∗ ∼ M, v and agt(z, v∗) = agt(z, v),
for all z ∈ z, such that

dt(y ∪ {w}, v∗) > m.

Proof. If dt(w, v) > m, simply set v∗ = v. Otherwise there is some 1 < ` 6 m
such that dt(w, v) 6 `. Since M is sufficiently acyclic there is an inner coset
path of length ` from w to v that avoids t but no such path of length < `. We
need to show that there is a suitable world v∗ such that there is no inner coset
path of length up to ` from w to v∗ that avoids t. Then the statement follows
from repeated application of the same argument.

Proof outline. We inductively find a sequence of worlds (vn)n>1 in [v]γ that are
bisimilar to v, along with three auxiliary sequences: two sequences of sets of
agents (βn)n>1, (γn)n>1 and a sequence of agents (an)n>1 in γ = agt(z0, v).

We show that these sequences terminate after finitely many steps and that
the last one of the vn can serve as the desired world v∗. Intuitively, every vn will
be, in some sense, further away from v than its predecessor vn−1; βn describes
the direction back to w on short paths that avoid t; γn the steps that still have
to be taken to get far enough away from w; and an is the direction we take to
go from vn−1 to vn.

To construct the sequences we need one more auxiliary statement that says
that, as long as there is a short path from v to w, we can move in a suitable
direction to a copy v′ ∼ v without decreasing the distance to y, i.e. that we
can move away from several worlds simultaneously. It is similar in spirit to
Lemma 3.27.

Claim 1. Let M be a Cayley structure, v a world, (z, z0) a finite pointed set,
y ⊆ z a possibly empty subset and w ∈ z \y; set γ = agt(z0, v), t = ρ(v, γ) and
m > 2. Assume that M is sufficiently acyclic and sufficiently rich, and

– γ ⊆ agt(z, v), for all z ∈ z;

– dt(y, v) > m and dt(w, v) = ` 6 m.

Then γ \ shortt(v, w) 6= ∅, and for every a ∈ γ \ shortt(v, w) there is some
v′ ∈ [v]a \ {v} such that M, v′ ∼M, v, and

dt(y, v
′) > m.

Proof of claim 1. Let w,α1, . . . , α`, v be an inner non-t coset path. In particular,
this means γ * α` and also γ * shortt(v, w) since ∅ 6= shortt(v, w) ⊆ α`. Thus,
we obtain the first statement: γ \ shortt(v, w) 6= ∅.
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For the second statement, let a ∈ γ \ shortt(v, w), z ∈ y and assume there is
some u ∈ [v]a and k 6 m such that there is a non-t coset path z, β1, . . . , βk, u.
We claim that dt(z, u

′) > m for u′ ∈ [v]a\{u}. Firstly, we show a 6∈ shortt(u, z).
Assume a ∈ shortt(u, z), then a ∈ βk because u, βk, . . . , β1, z is a short non-t
coset path. It follows v ∈ [u]a ⊆ [u]βk

= [v]βk
which means that z, β1, . . . , βk, v

or z, β1, . . . , βk−1, v is a short non-t coset path. This implies dt(z, v) 6 m
contrary to dt(y, v) > m, so a 6∈ shortt(u, z). Secondly, dt(z, u

′) 6 m implies
a ∈ shortt(u

′, z) (Lemma 3.29), which again implies dt(z, v) 6 m, contrary to
assumption.

Thus, for any z ∈ y there is at most one uz ∈ [v]a such that dt(z, uz) 6 m.
Since M is sufficiently rich, there remains a world v′ ∈ [v]a\{v} such that v′ ∼ v
and dt(y, v

′) > m.
End of proof of claim 1.

The construction. For n = 1, Claim 1 implies γ \ shortt(v, w) 6= ∅; let a1 ∈
γ \ shortt(v, w). As M is sufficiently rich, there is a world v1 ∈ [v]a1 \ {v} that
is bisimilar to v such that agt(v1, z) = agt(v, z), for all z ∈ z, and dt(y, v1) > m
(cf. Lemma 3.27 and Claim 1). If dt(w, v1) 6 `, set β1 := shortt(v1, w) and
γ1 := (γ \ shortt(v, w)) \ β1. If dt(w, v1) > ` or γ1 = ∅, then the sequence
terminates in v1.

For n > 1, assume that the worlds v1, . . . , vn−1 and the sets β1, . . . , βn−1,
γ1, . . . , γn−1 have been defined and that the sets are non-empty. Let an ∈ γn−1.
Since M is sufficiently rich, by Lemma 3.27 and Claim 1 there is again a vn ∈
[vn−1]an \ {vn−1}, bisimilar to vn−1 such that agt(vn, z) = agt(vn−1, z), for
all z ∈ z, and dt(y, vn) > m. If dt(w, vn) 6 `, set βn := shortt(vn, w), and
γn := γn−1 \ βn. If dt(w, vn) > ` or γn = ∅, then vn is the last world and the
sequence terminates in vn.

We have constructed these four finite sequences:

(vn)n>1 ∈ [v]γ ⊆ [v]agt(w,v) all bisimilar to v;
(an)n>1 ∈ Γ;
(βn)n>1 ∈ τ ;
(γn)n>1 ∈ τ.

Additionally set v0 := v, β0 := shortt(v, w) and γ0 := γ \ β0.

Correctness. We show the following properties of the sequences by induction
on n > 1.

(1) βn = {aj , aj+1, . . . , an}, for some 1 6 j 6 n, or βn ⊇ β0 ∪ {a1, . . . , an}.

(2) The worlds v0, . . . , vn occur on every short inner coset path that avoids t
from w to vn in the order of their indices: let w1, α1, w2, . . . , wk, αk, wk+1

be such a path, and 0 6 i < j 6 n. If 1 6 ki, kj 6 k are minimal such
that vi ∈ [wki ]αki

and vj ∈ [wkj ]αkj
, then ki 6 kj .

(3) γn ( γn−1.
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For n = 1, ad (1) and (2). Together with a1 ∈ γ \ shortt(v, w) and v1 6= v0,
Lemma 3.29 implies a1 ∈ β1 = shortt(v1, w). For every inner short coset path

w = w1, α1, w2, . . . , wk, αk, wk+1 = v1

from w to v1 ∈ [v0]a1 that avoids t we have v0 ∈ [v1]αk
because αk ⊇ β1 3 a1.

Furthermore, since k is the minimal index such that v1 ∈ [wk]αk
, the minimal

index for v0 can only be smaller or equal. If there is one such path with v0 ∈
[wk]αk−1∩αk

, we have β1 = {a1}, because

w = w1, α1, w2, . . . , v0, {a1}, wk+1 = v1

would be a short inner coset path from w to v1. If v0 ∈ [wk]αk
\ [wk−1]αk−1

,
for all short inner coset paths from w to v1, then β0 = shortt(v0, w) ⊆ αk since
every such path is a short inner coset path from w to v0 that avoids t. Thus,
β1 = {a1} or β0 ∪ {a1} ⊆ β1.

For n = 1, ad (3), note that γ1 = (γ0 \ β0) \ β1 = γ0 \ (β0 ∪ β1) implies
γ1 ⊆ γ0, which together with a1 ∈ γ0 ∩ β1 implies γ1 ( γ0.

For n > 1 inductively assume that properties (1)–(3) hold for 1, . . . , n− 1.
For n, ad (1): we chose

an ∈ γn−1 = γn−2 \βn−1 = γn−2 \short(vn−1, w) and vn ∈ [vn−1]an \{vn−1}.

Lemma 3.29 implies that an ∈ βn = shortt(vn, w). If {a1, . . . , an} ⊆ βn, then
βn = {a1, . . . , an} or β0 ∪ {a1, . . . , an} ⊆ βn, similar to the base case. If there
is a 1 6 j < n such that aj /∈ βn, let j be the largest such index. Thus, there is
a short inner coset path

w = w1, α1, w2, . . . , vj , {aj+1, . . . , an}, vn

from w to vn that avoids t, which implies βn = {aj+1, . . . , an}.
For n, ad (2): let w1, α1, w2, . . . , wk, αk, wk+1 be a short inner coset path

from w to vn that avoids t. We showed an ∈ βn ⊆ αk which implies vn−1 ∈
[wk+1]αk

. So

w = w1, α1, w2, . . . , wk, αk, vn−1 or w = w1, α1, w2, . . . , wk−1, αk−1, vn−1

is a short inner coset path from w to vn−1 that avoids t. By induction hypothesis
the worlds v0, . . . , vn−1 must occur on such a path in order of their indices. The
smallest index i such that vn ∈ [wi]αi

is k. Thus, all worlds v0, . . . , vn−1 occur
in equivalence classes [wi]αi

with i 6 k.
For n, property (3) follows from γn = γn−1 \ βn and the fact that an ∈

γn−1 ∩ βn.

First of all, property (3) implies that the four sequences as constructed
terminate after finitely many steps, since there are only finitely many agents. If
vk is the terminal world in the first sequence, we claim that dt(w, vk) > `:

There cannot be an inner coset path that avoids t of length < ` from w
to vk because that would imply an inner coset path from w to v that avoids t of
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length < ` by property (2), which cannot exist by assumption. Hence, for the
sake of contradiction, we assume that there is an inner coset path of length `

w = w1, α1, w2, . . . , w`, α`, w`+1 = vk

from w = w1 to vk = w`+1 that avoids t. Again, property (2) implies that v
occurs somewhere on this path. Furthermore, the smallest index i such that
v ∈ [wi]αi must be `, otherwise there would be an inner coset path from w
to v that avoids t of length < `. In particular, v = v0 ∈ [w`]α`

\ [w`−1]α`−1
.

Property (2) states that all worlds v1, . . . , vk must occur after v0 on all short
inner coset paths from w to vk that avoid t, hence vi ∈ [w`]α`

\ [w`−1]α`−1
, for

all 1 6 i 6 k. This implies
⋃k
i=0 βi ⊆ α` because βi = shortt(vi, w), for all

0 6 i 6 k. Furthermore,

∅ = γk = γ \
⋃k
i=0 βi ⇒ γ ⊆

⋃k
i=0 βi ⊆ α`.

But we also have γ * α` because we assumed that the coset path

w = w1, α1, . . . , α`, w`+1 = vk

avoids t = ρ(v, γ) = ρ(vk, γ), contradicting the assumption dt(w, vk) 6 `.
Thus, since each agent ai, 1 6 i 6 k, is an element of γ and each vi, 1 6 i 6 k,

was chosen such that agt(z, vi) = agt(z, v), for all z ∈ z, dt(y, vi) > m and
M, v ∼M, vi, the world vk =: v∗ is as desired.
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