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Abstract. This paper establishes explicit quantitative bounds on the com-

putation of approximate fixed points of asymptotically (quasi-)nonexpansive
mappings f by means of iterative processes. Here f : C → C is a selfmapping

of a convex subset C ⊆ X of a uniformly convex normed space X. We con-

sider general Krasnoselski-Mann iterations with and without error terms. As
a consequence of our quantitative analysis we also get new qualitative results

which show that the assumption on the existence of fixed points of f can be

replaced by the existence of approximate fixed points only. We explain how the
existence of effective uniform bounds in this context can be inferred already

a-priorily by a logical metatheorem recently proved by the first author. Our

bounds were in fact found with the help of the general logical machinery be-
hind the proof of this metatheorem. The proofs we present here are, however,

completely selfcontained and do not require any tools from logic.

1. Introduction

This paper is part of a series of papers which apply tools from mathematical
logic to metric fixed point theory ([12, 13, 14, 16] and – for the logical background
– [15, 17]). These applications are concerned with both quantitative as well as
qualitative aspects of the asymptotic regularity of various iterations of nonexpan-
sive and other mappings in hyperbolic and normed spaces. More specifically, we
are interested in effective rates of convergence which are uniform w.r.t. many of
the parameters involved. Recently ([15]), the first author proved general logical
metatheorems which a-priorily guarantee the existence of such uniform bounds if
the convergence statement proved has a certain logical form, and the proof can
be carried out in a certain (rather flexible) formal setting. The proofs of these
metatheorems are constructive and allow one to actually extract effective bounds
from a given ineffective convergence proof. In this paper we apply this methodology
to Krasnoselski-Mann iterations of asymptotically quasi-nonexpansive mappings in
uniformly convex normed spaces. We first show how this context fits within the
scope of the metatheorems from [15] and then actually construct uniform effective
bounds in the main part of this paper which is selfcontained and does not rely on
any prerequisites from logic.
In the following, let (X, ‖ · ‖) be a uniformly convex (real) normed linear space and
C ⊆ X a nonempty convex subset.
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The class of asymptotically nonexpansive mappings f : C → C was introduced in
[8]:

Definition 1.1. f : C → C is said to be asymptotically nonexpansive with sequence
(kn) ∈ [0,∞)IN if lim

n→∞
kn = 0 and

‖fn(x)− fn(y)‖ ≤ (1 + kn)‖x− y‖, ∀n ∈ IN,∀x, y ∈ C.
Definition 1.2 ([26]). f : C → C is said to be uniformly λ-Lipschitzian (λ > 0) if

‖fn(x)− fn(y)‖ ≤ λ‖x− y‖, ∀n ∈ IN,∀x, y ∈ C.
In the following we use the notation Fix(f) := {p ∈ C : f(p) = p}. The concept

of quasi-nonexpansive functions was introduced in [6] (based on a similar concept
due to [4, 5]):

Definition 1.3. f : C → C is quasi-nonexpansive if

‖f(x)− p‖ ≤ ‖x− p‖, ∀x ∈ C,∀p ∈ Fix(f).

Finally, combining the notions of asymptotically nonexpansive mappings and
quasi-nonexpansive mappings we obtain the concept of asymptotically quasi-non-
expansive mappings first studied in [29] and [20] and more recently in [22, 23, 24]:

Definition 1.4. f : C → C is asymptotically quasi-nonexpansive with sequence
kn ∈ [0,∞)IN if lim

n→∞
kn = 0 and

‖fn(x)− p‖ ≤ (1 + kn)‖x− p‖, ∀n ∈ IN,∀x ∈ X,∀p ∈ Fix(f).

In the context of asymptotically (quasi-)nonexpansive mappings f : C → C the
so-called Krasnoselski-Mann iteration is defined as follows

x0 := x ∈ C, xn+1 := (1− αn)xn + αnf
n(xn),

where (αn) ∈ [0, 1]IN.

We will also consider Krasnoselski-Mann iterations with error terms

(1) x0 := x ∈ C, xn+1 := αnxn + βnf
n(xn) + γnun,

where αn, βn, γn ∈ [0, 1] with αn +βn +γn = 1 and un ∈ C for all n ∈ IN (this type
of error terms was first considered in [31]).

In this paper we study uniform quantitative versions as well as qualitative
improvements of the following theorem which itself seems to be new (though kind
of implicit in the literature, see below):

Theorem 1.5. Let (X, ‖ · ‖) be a uniformly convex (real) normed linear space and
C be a convex subset of X. Let (kn) be a sequence in IR+ with

∑
kn < ∞. Let

k ∈ IN and αn, βn, γn ∈ [0, 1] such that 1/k ≤ βn ≤ 1− 1/k, αn + βn + γn = 1 and∑
γn < ∞. Let f : C → C a uniformly Lipschitz continuous function such that

there exists a p ∈ Fix(f) with

∀x ∈ C∀n ∈ IN
(
‖fn(x)− p‖ ≤ (1 + kn)‖x− p‖

)
.

Define
x0 := x ∈ C, xn+1 := αnxn + βnf

n(xn) + γnun,

where (un) is a bounded sequence in C. Then the following holds:

‖xn − f(xn)‖ → 0.
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Corollary 1.6. Let (αn), (βn), (γn), (kn), (un), k as well as (X, ‖ · ‖), C as in the-
orem 1.5. If f : C → C is uniformly Lipschitzian and asymptotically quasi-
nonexpansive with sequence (kn) and Fix(f) 6= ∅, then ‖xn − f(xn)‖ → 0.

If f : C → C is asymptotically nonexpansive with a sequence (kn) ∈ IR+ such
that

∑
kn <∞ then f automatically is uniformly Lipschitz continuous hence corol-

lary 1.6 implies:

Corollary 1.7. Let (αn), (βn), (γn), (kn), (un), k, (X, ‖ · ‖), C as in theorem 1.5. If
f : C → C is asymptotically nonexpansive with sequence (kn) and Fix(f) 6= ∅, then
‖xn − f(xn)‖ → 0.

Corollary 1.8. Let (X, ‖ · ‖) be a uniformly convex Banach space, C ⊂ X a
(nonempty) bounded closed convex subset, (αn) ∈ [1/k, 1− 1/k]IN for some k ∈ IN,
f : C → C asymptotically nonexpansive with sequence (kn) such that

∑
kn < ∞

and
x0 := x ∈ C, xn+1 := αnxn + (1− αn)fn(xn).

Then ‖xn − f(xn)‖ → 0.

Proof. Corollary 1.8 follows from corollary 1.7 by omitting the error term (i.e.
taking an arbitrary sequence (un) in C with γn = 0) and using a theorem from [8]
stating that asymptotically nonexpansive mappings f : C → C always have fixed
points (under the given assumptions on X,C). �

The proof of theorem 1.5 is ineffective and the conclusion ‘‖xn − f(xn)‖ → 0’,
i.e.

(2) ∀l ∈ IN∃n ∈ IN∀m ∈ IN(‖xn+m − f(xn+m)‖ < 2−l)

has too complicated a logical form as for our metatheorems to guarantee a com-
putable bound on ‘∃n ∈ IN’, i.e. a computable rate of convergence. Nevertheless,
(2) is (non-constructively) equivalent to

(3) ∀l ∈ IN∀g ∈ ININ∃n ∈ IN(‖xn+g(n) − f(xn+g(n)‖ < 2−l)

which does have the required logical form so that we can extract a computable
bound Φ on ‘∃n’ with g as an additional argument of the bound Φ. The transformed
version (3) of (2) is well-known in logic and called the Herbrand normal form of
(2). Whereas (3) trivially follows from (2), the proof of the converse is ineffective.1

Hence an effective bound on ‘∃n’ in (3)’ does not lead to an effective bound on
‘∃n’ in (2) unless the sequence (‖xn − f(xn)‖) is nonincreasing (where this follows
already from the special case where g ≡ 0) which is e.g. the case for nonexpansive
functions f .
Actually, a slightly more flexible form of (3) still has a the required logical structure2

∀l ∈ IN∀g ∈ ININ∃n ∈ IN∀m ∈ [n, n+ g(n)](‖xm − f(xm)‖ < 2−l)

and we will focus on effective bound Φ(l, g) on this ‘∃n’.
In practice, it will be mostly the special case where g ≡ 0, i.e.

∀l ∈ IN∃n ≤ Φ(l, 0)(‖xn − f(xn)‖ < 2−l)

1Suppose (2) fails for l ∈ IN. Then (3) fails for the same l if we take g(n) := minm(‖xn+m −
f(xn+m)‖ ≥ 2−l).

2Here and below we write m ∈ [n, n+ g(n)] for m ∈ IN ∧m ∈ [n, n+ g(n)].
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which is of relevance. However, this will not always be sufficient. On general logical
grounds though, namely the soundness of the so-called monotone functional inter-
pretation on which our metatheorems are based and the fact that a bound on (3)
realizes the monotone functional interpretation of (the Gödel negative translation
of) (2), it follows that a bound for general g is sufficient for a quantitative analysis
of any use of theorem 1.5 in a proof of a ∀∃-consequence. Our bounds seem to
be (already in the case of asymptotically nonexpansive mappings) the only known
general quantitative results of that kind (see e.g. [2] for a discussion of the lack of
quantitative results in this context).

The qualitative improvement of theorem 1.5 which is obtained via our quantitative
analysis consists in the possibility to replace in order to show ‖xn−f(xn)‖ → 0 for
a given x ∈ C the assumption

∃p ∈ Fix(f)∀y ∈ C∀n ∈ IN
(
‖fn(y)− p‖ ≤ (1 + kn)‖y − p‖)

by

∃d ∈ IN∀ε > 0∃pε ∈ Fixε(x, d, f)∀y ∈ C, n ∈ IN
(
‖fn(y)−fn(pε)‖ ≤ (1+kn)‖y−pε‖),

where

Fixε(x, d, f) := {p ∈ C : ‖x− p‖ ≤ d ∧ ‖f(p)− p‖ ≤ ε}.

This, of course, is of interest mainly for asymptotically nonexpansive mappings
where it replaces the assumption that Fix(f) 6= ∅ by

∀x ∈ C∃d ∈ IN∀ε > 0(Fixε(x, d, f) 6= ∅).

With the stronger assumption on (kn) that
∑

((kn + 1)r − 1) < ∞ for some
r > 1, corollary 1.8 is proved in [25]. For Hilbert spaces X and r = 2 corollary 1.8
is already due to [26]. For Banach spaces satisfying Opial’s condition ([21]) and∑
kn <∞, corollary 1.8 follows from [28] (note, however, that Opial’s condition is

not even satisfied for Lp except for p = 2).3 The result in the literature most close
to corollary 1.6 is the main theorem in [24] whose proof technique – together with
an argument reminiscent of a lemma in [26] – we actually use to prove theorem 1.5
and corollary 1.6. The theorem in [24] is concerned with the convergence of (xn)
towards a fixed point of f and the assumption of C being compact.4 Without that
assumption but assuming that Fix(f) 6= ∅ the proof actually yields that

lim
n→∞

‖xn − fn(xn)‖ = 0

which together with an argument from [26] gives

lim
n→∞

‖xn − f(xn)‖ = 0.

[24] in turn relies on [27] (see also [30]).

3For some generalizations of the main results of [28] see also [30].
4[24] actually considers more general Ishikawa-type iterations. In order to keep the technicali-

ties of our paper down we confine ourselves here to the Krasnoselski-Mann type iterations.
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2. A logical metatheorem with applications in fixed point theory

This section – which is independent from the main part of this paper – requires
some background in logic as developed in [15]. In [15], we have defined a formal
system Aω[X, ‖ ·‖, C, η] for classical analysis over a uniformly convex normed space
(X, ‖ · ‖) (with a modulus of uniform convexity η) and a bounded convex subset
C ⊂ X. The system is formulated in the language of functionals of finite type
over the types X (for variables ranging over X-elements) and IN by closure of these
types under function space formation: with ρ, τ being types, ρ → τ is the type
of all functions mapping objects of type ρ to objects of type τ. The type C is
treated as a subtype of X. The system contains full countable choice (and hence
full comprehension over integers) and even full dependent choice. It is well known
in logic that such a system allows to formalize most of existing proofs in analysis.
Whereas elements of X are treated as ‘primitive’ objects (so-called ‘atoms’) real
numbers are – as usual – explicitly represented via Cauchy sequences of rationals
numbers with fixed rate of convergence. Both equality =IR on IR as well as equality
=X on X are defined notions where x =X y :≡ ‖x − y‖ =IR 0. There are some
subtleties, though, which have to do with the restricted availability of extensionality
of functions w.r.t. =X . These issues, however, are trivial in our applications in
this paper as full extensionality of the functions we will consider follows from the
continuity assumptions made (see below).

Definition 2.1. A formula F is called ∀-formula (resp. ∃-formula) if it has the
form F ≡ ∀aσFqf (a) (resp. F ≡ ∃aσFqf (a)) where aσ = aσ1

1 , . . . , aσkk , Fqf does not
contain any quantifier and the types in σi are IN or C.5

Remark 2.2. The notions of ∀-formula and ∃-formula (as well as the theorem cor-
responding to theorem 2.4 below) from [15] allow more general types. For simplicity
we formulate above just the special case needed in this paper.

Every (real) normed space (X, ‖ · ‖) together with a bounded convex subset C
of X gives rise to the ‘full’ model Sω,X over X,C of Aω[X, ‖ · ‖, C]. If (X, ‖ · ‖) is
uniformly convex and η : IN→ IN a modulus of uniform convexity6 than this model
will be a model of Aω[X, ‖ ·‖, C, η]. We say that a sentence A ∈ L(Aω[X, ‖ ·‖, C, η])
holds in (X, ‖ · ‖) and C if it holds in this model (see [15] for details on all this).

Definition 2.3. For functionals xρ, yρ of type ρ = IN→ IN we define x ≤ρ y by

x ≤ρ y :≡ ∀zIN(x(z) ≤IN y(z)).

Theorem 2.4 ([15]). Let η be a constant of type IN → IN, σ, ρ = IN → IN and
τ = C, IN→ C or C → C. s is a closed term of type σ → ρ and B∀, C∃ are ∀- resp.
∃-formulas.
If the sentence

∀xσ∀y ≤ρ s(x)∀zτ
(
∀uINB∀(x, y, z, u)→ ∃vINC∃(x, y, z, v)

)
5Recall from [15] that the type ‘C’ is a defined type where – using the notation from [15] –

‘∀xCA’ and ‘∃xCA’ stand for ‘∀xX(χC(x) =IN 0 → A)’ and ‘∃xX(χC(x) =IN 0 ∧ A)’, where χC
represents the characteristic function of C in X.

6I.e. ∀x, y ∈ X, k ∈ IN(‖x‖, ‖y‖ ≤ 1 ∧
∥∥∥x+y2 ∥∥∥ ≥ 1− 2−η(k) → ‖x− y‖ ≤ 2−k).
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is provable in Aω[X, ‖ · ‖, C, η], then one can extract a computable functional7 Φ :

ININ × IN× ININ → IN such that

∀y ≤ρ s(x)∀zτ
[
∀u ≤ Φ(x, b, η)B∀(x, y, z, u)→ ∃v ≤ Φ(x, b, η)C∃(x, y, z, v)

]
holds in any non-trivial (real) uniformly convex normed linear space (X, ‖ · ‖) with
convexity modulus η and any non-empty b-bounded convex subset C ⊂ X.

Instead of single variables x, y, z, u, v we may also have finite tuples of variables
x, y, z, u, v as long as the elements of the respective tuples satisfy the same type
restrictions as x, y, z, u, v.
Moreover, instead of a single premise of the form ‘∀uINB∀(x, y, z, u)’ we may have
a finite conjunction of such premises.

Using the so-called standard representation of compact Polish spaces like [0, 1]IN

(with the product metric) theorem 2.4 implies the following corollary (see [15]):

Corollary 2.5. Let B∀, C∃ be ∀- resp. ∃-formulas and ϕ : IN → IN be a primitive
recursive function.
If the sentence

∀nIN, gIN→IN, (ak) ∈ [0, ϕ(n)]IN, xC , (uk)IN→C , fC→C(
∀wINB∀(w)→ ∃vINC∃(v)

)
is provable in Aω[X, ‖ · ‖, C, η], then one can extract a computable functional
Φ(n, g, b, η) such that

∀n, b ∈ IN, g, η ∈ ININ, (ak) ∈ [0, ϕ(n)]IN, x ∈ C, (uk) ∈ CIN, f : C → C(
∀w ≤ Φ(n, g, b, η)B∀(w)→ ∃v ≤ Φ(n, g, b, η)C∃(v)

)
holds in any non-trivial (real) uniformly convex normed linear space (X, ‖ · ‖) with
convexity modulus η and any non-empty b-bounded convex subset C ⊂ X.

Instead of single variables n, g, (an) we may also have finite tuples of each of these
variables.
Moreover, instead of a single premise of the form ‘∀wINB∀(w)’ we may have a finite
conjunction of such premises.

A crucial feature in the above corollary is that the bound Φ(n, g, b, η) does not
depend on (ak), x, (uk) or f at all and on X and C only via η and b.

Theorem 1.5 can be proved in Aω[X, ‖ ·‖, C, η] and even in a weak fragment thereof
(as the proof of the quantitative strengthened form of theorem 1.5 given below
shows, neither dependent choice DC nor countable choice is needed). Problems
in connection with the restricted availability of extensionality in Aω[X, ‖·, ‖, C, η]
(see [15]) do not apply here since the assumption on f being (even uniformly)
Lipschitz continuous implies the extensionality (see the detailed discussion in the
case of nonexpansive functions given in [15]). Hence corollary 2.5 is applicable and
guarantees a-priorily a strong uniform effective version of theorem 1.5 in the sense
explained in the introduction.

7In the sense type-2 computability theory, i.e. Turing computability w.r.t. oracle Turing

machines.
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Remark 2.6 (for logicians). There is a minor problem having to do with the fact
that our formal system proves only weak extensionality of the constant χC repre-
senting the characteristic function of C. As a consequence of this we have to make
sure that the condition (we discuss things for notational simplicity here only for the
special case of constant sequences) α + β + γ = 1 becomes provable which can be
achieved by replacing

(∗) ∀α, β, γ ∈ [0, 1](α+ β + γ = 1→ A(α, β, γ))

officially by

(∗∗)∀α, β ∈ [0, 1]A(α,min(1− α, β), 1− α−min(1− α, β)).

In the following, though, we will continue to write (∗) instead of (∗∗) for better
readability.

The assumptions on αn, βn, γn, kn all become ∀-formulas once we express ‘
∑
kn <

∞’ and ‘
∑
γn <∞’ explicitly with bounds K,E ∈ IN, i.e.

A1 :≡

∀n ∈ IN(αn + βn + γn =IR 1 ∧ 1
k ≤IR βn ≤IR 1− 1

k ∧
n∑
i=0

ki ≤IR K ∧
n∑
i=0

γi ≤IR E).

The existential quantifier ‘∃p ∈ C’ in the premise

∃p ∈ C
(
f(p) =X p ∧ ∀x ∈ C∀i ∈ IN

(
‖f i(x)− p‖ ≤IR (1 + ki)‖x− p‖

))
.

can be moved out as a universal quantifier in front of the whole implication leaving
back the ∀-premise

A2 :≡ f(p) =X p ∧ ∀x ∈ C∀i ∈ IN
(
‖f i(x)− p‖ ≤IR (1 + ki)‖x− p‖

)
.

Finally, we have the condition on f being uniformly Lipschitz continuous which
becomes an ∀-formula once stated with a Lipschitz constant λ ∈ IN

A3 :≡ ∀n ∈ IN∀x, y ∈ C
(
‖fn(x)− fn(y)‖ ≤IR λ · ‖x− y‖

)
.

Hence in total, theorem 1.5 can be reformulated as

∀λ, k, l,K,E ∈ IN, g ∈ ININ, (kn) ∈ [0,K]IN, (αn), (βn), (γn) ∈ [0, 1]IN, xC , pC

∀(un)IN→C , fC→C
(
A1 ∧A2 ∧A3→∃n∀m ∈ [n, n+ g(n)](‖xm − f(xm)‖ <IR 2−l).

Since the conclusion is (relative to Aω[X, ‖ ·‖, C, η] equivalent to) an ∃-formula and
the premise is a conjunction of ∀-formulas, we can apply corollary 2.5 to get an
effective bound Φ(λ, k, l,K,E, g, b, η) on ‘∃n’, i.e.

(4) ∃n ≤ Φ(λ, k, l,K,E, g, b, η)∀m ∈ [n, n+ g(n)](‖xm − f(xm)‖ <IR 2−l),

that does not depend on (αn), (βn), (γn), x, p, f, (kn), (un) but only on λ, k, l,K,E, g
as well as a bound8 b on C and the modulus η.

Corollary 2.5 not only provides an effective bound for the conclusion but also allows

8This requirement will be weakened below.
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one to to replace ∀-premises by approximate versions thereof. We are here only
interested in one of the premises, namely A2, which can be also written as
(5)

∀m ∈ IN
(

(‖f(p)−p‖ ≤IR 2−m)∧∀x ∈ C∀i ∈ IN
(
‖f i(x)−f i(p)‖ ≤IR (1+ki)‖x−p‖

))
,

where

(‖f(p)− p‖ ≤IR 2−m) ∧ ∀x ∈ C∀i ∈ IN
(
‖f i(x)− f i(p)‖ ≤IR (1 + ki)‖x− p‖

)
itself is a ∀-formula. By the corollary we get an effective bound
Ψ := Ψ(λ, k, l,K,E, g, b, η) on ‘∀m’ such that in order to obtain the conclusion (4)
we can replace (5) by

∀m ≤ Ψ
(

(‖f(p)−p‖ ≤IR 2−m)∧∀x ∈ C∀i ∈ IN
(
‖f i(x)−f i(p)‖ ≤IR (1+ki)‖x−p‖

))
and hence – since Ψ does not depend on p – by ∀m ∈ IN∃p ∈ C

(
(‖f(p)− p‖ ≤IR 2−m) ∧ ∀x ∈ C∀i ∈ IN(
‖f i(x)− f i(p)‖ ≤IR (1 + ki)‖x− p‖

))
.

So in effect we have replaced the assumption on f having real fixed points by the
weaker assumption on f having approximate fixed points.

The proof of theorem 2.4 in [15] (and hence that of corollary 2.5) is constructive
and provides an algorithm for actually extracting a bound Φ from the proof of
theorem 1.5 together with a proof verifying the bound which – moreover – only
uses the existence of ε-fixed points of f. The latter will be shown to always exist for
asymptotically nonexpansive mappings by a completely elementary argument, while
the existence of real fixed points requires the completeness of X and closedness of
C and is based on the non-trivial convex intersection property of uniformly convex
Banach spaces, see [8] and also [7]. All this will be carried out in the reminder of
this paper. The explicit extraction of the bounds will, furthermore, show that the
assumption on C being bounded (needed in the conclusion of the application of
theorem 2.4 and hence corollary 2.5) can be replaced by the assumption that (un)
is bounded (as in theorem 1.5) and that there exists a d ∈ IN such that within the
d-neighbourhood of x ∈ C there are approximate fixed points pε ∈ C of f for any
ε > 0 (which is trivially satisfied if Fix(f) 6= ∅). Hence we indeed get in the end a
uniform quantitative version of the ‘original’ theorem 1.5.

3. Some helpful lemmata

Lemma 3.1. Let (an) be a sequence in IR+ with an+1 ≤ an for all n. Then

∀ε > 0∀g : IN→ IN∃n ≤ max
i<ba0/εc

gi(0)
(
an − ag(n) ≤ ε

)
Proof. The inequality can fail in at most ba0/εc− 1 steps of applying g, thus it has
to be true for at least the one remaining. �

Lemma 3.2 (Quantitative version of a lemma by Qihou, [23]). Let (an), (bn), (cn)
be sequences in IR+, A ∈ Q∗+, B, C ∈ Q+, such that an+1 ≤ (1+bn)an+cn; a0 ≤ A;∑
bn ≤ B;

∑
cn ≤ C. Then the following hold:

1) (A+ C)eB is an upper bound on an.
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2) Let

Φ(A,B,C, g, ε) := max
i<b(4BD+4C+D)/εc

gi(0),

where D = (A+ C)eD. Then

(6) ∀ε ∈ (0, 1]∀g ∈ IN→ IN∃n ≤ Φ(A,B,C, g, ε)
(
g(n) > n→ |ag(n) − an| ≤ ε

)
.

3) Let
Ψ(A,B,C, g, ε) = Φ(A,B,C, g, ε/3).

Then

∀ε ∈ (0, 1]∀g : IN→ IN∃n ≤ Ψ(A,B,C, g, ε)

∀i, j (g(n) ≥ j > i ≥ n→ |aj − ai| ≤ ε) .(7)

Proof. 1: By induction on m one shows

an+m ≤ an ·
m−1∏
j=0

(1 + bn+j) +

m−1∑
i=0

cn+i ·
m−1∏
j=i+1

(1 + bn+j)

and also (by the arithmetic-geometric mean inequality)

m−1∏
j=0

(1 + bn+j) ≤ (1 +

∑m−1
j=0 bn+j

m
)m < e

∑m−1
j=0 bn+j

and combined

(8) an+m ≤ (an +

m−1∑
j=0

cn+j) · e
∑m−1
j=0 bn+j ,

am ≤ (A+ C) · eB

for all m ∈ IN.
2: Consider (a∗n) in which a∗0 = a0 and a∗n+1 = (1+bn)a∗n+cn. Note D ≥ a∗n+1 ≥

a∗n+1 − an+1 ≥ (1 + bn)(a∗n − an) ≥ a∗n − an. Build the two series

En = 4(BD + C −
∑
i≤n

(biD + ci))

and
Dn = D − (a∗n − an).

Their sum satisfies the conditions of Lemma 3.1, therefore there exists n ≤
Φ(A,B,C, g, ε), such that En − Eg(n) ≤ ε and Dn −Dg(n) ≤ ε, but this means

g(n)∑
i=n

biD +

g(n)∑
i=n

ci ≤
ε

4
.

Then (using ex ≤ 1 + 2x for 0 ≤ x < 1)

aj − ai < (ai +
ε

4
)e

ε
4D − ai ≤

(ai +
ε

4
)(1 +

ε

2D
)− ai ≤

εD

2D
+
ε

4
+

ε2

8D
< ε
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for all i, j, such that n ≤ i < j ≤ g(n). That is, if the sequence grows (i.e.
ag(n) > an), it will satisfy the inequality. If it decreases, then

an − ag(n) ≤ an − ag(n) + a∗g(n) − a
∗
n = Dn −Dg(n) ≤ ε.

3: By the proof of the previous point, there is an n ≤ Ψ(A,B,C, g, ε), for which
we have |ag(n) − an| ≤ ε/3 if g(n) > n and also ∀i, j(g(n) ≥ j > i ≥ n ∧ aj > ai →
aj − ai ≤ ε/3). Therefore, for any i with g(n) ≥ i ≥ n we have ag(n) − ε/3 ≤ ai ≤
an + ε/3 and hence ∀i, j ∈ [n, g(n)](ai ≤ an + ε/3 ≤ ag(n) + 2ε/3 ≤ aj + ε), from
which the needed inequality follows directly. �

Lemma 3.3. Let D : IN→ Q∗+, B,C : IN→ Q+, and for all q, let (an)q, (bn)q, (cn)q

be sequences in IR+, such that aqn+1 ≤ (1 + bqn)aqn + cqn; aqn ≤ D(q);
∑
bqi ≤ B(q);∑

cqi ≤ C(q) for all n, q ∈ IN. Then:

1) Let

Φ(D,B,C, g, ε,m) = max
i<b 1

ε

∑m−1
q=0 (4B(q)D(q)+4C(q)+D(q))c

gi(0).

Then

∀ε ∈ (0, 1]∀m ∈ IN∀g ∈ IN→ IN∃n ≤ Φ(D,B,C, g, ε,m)

∀q < m
(
g(n) > n→ |aqg(n) − a

q
n| ≤ ε

)
.

2) Let Ψ(D,B,C, g, ε,m) = Φ(D,B,C, g, ε/3,m). Then

∀ε ∈ (0, 1]∀m ∈ IN∀g ∈ IN→ IN∃n ≤ Ψ(D,B,C, g, ε,m)

∀q < m∀i, j
(
g(n) ≥ j > i ≥ n→ |aqj − a

q
i | ≤ ε

)
.

Proof. As in the previous proof, we can represent every (aqn) by two series (Dq
n)

and (Eqn) in a common sum, to which we can apply Lemma 3.1. Then we can carry
on the rest of the proof for the individual sequences. �

Definition 3.4 (Clarkson, [3]). A modulus of uniform convexity of a uniformly
convex space (X, ‖ · ‖) is a mapping η : (0, 2] → (0, 1], such that for all x, y ∈ X,
ε ∈ (0, 2]

‖x‖, ‖y‖ ≤ 1 ∧ ‖x− y‖ ≥ ε→
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− η(ε).

Lemma 3.5 (Groetsch, [9]). Let (X, ‖ · ‖) be uniformly convex with modulus η. If
‖x‖, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε > 0, then

‖λx+ (1− λ)y‖ ≤ 1− 2λ(1− λ)η(ε), 0 ≤ λ ≤ 1.

The next lemma is an adaptation (and improvement) of a lemma from [26] to
our situation, i.e. Mann iterations with error term instead of Ishikawa iterations
without error term as considered by Schu:

Lemma 3.6. Let X be a normed linear space, C ⊆ X a convex subset of X,
f : C → C uniformly l-Lipschitzian, and (xn) be a Krasnoselski-Mann iteration
starting from x ∈ C with error vector (un) where ‖un− xn‖ is bounded by u for all
n ∈ IN.

Then if ‖xn − fn(xn)‖ ≤ εn and ‖xn+1 − fn+1(xn+1)‖ ≤ εn+1, then ‖xn+1 −
f(xn+1)‖ ≤ εn+1 + (εn + γnu)(l + l2).
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Proof.

‖xn+1 − f(xn+1)‖ ≤ ‖xn+1 − fn+1(xn+1)‖+ ‖fn+1(xn+1)− f(xn+1)‖
≤ εn+1 + l‖fn(xn+1)− xn+1‖
≤ εn+1 + l‖fn(xn+1)− αnxn − βnfn(xn)− γnun‖
≤ εn+1 + l‖fn(xn+1)− fn(xn)‖+

+l(αn + γn)‖fn(xn)− xn‖+ lγn‖un − xn‖
≤ εn+1 + lεn + l2‖xn+1 − xn‖+ γnul

≤ εn+1 + lεn + l2‖βnfn(xn)− (βn + γn)xn + γnun‖+

+γnul

≤ εn+1 + lεn + l2βn‖fn(xn)− xn‖+ γnu(l + l2)

≤ εn+1 + (εn + γnu)(l + l2).

�

In [8] it is shown – using that reflexive and hence a-fortiori uniformly convex
Banach spaces have the so-called ‘convex intersection property CIP’ – that asymp-
totically nonexpansive selfmappings of bounded closed convex subsets C ⊂ X have
fixed points. Our quantitative results reduce the need of fixed points to that of ap-
proximate fixed points. For the latter we now give a fully elementary proof which
does not need CIP (nor the completeness/closedness of X/C):

Lemma 3.7. Let (X, ‖·‖) be a uniformly convex space with modulus η, and C ⊆ X
be nonempty, convex and bounded. Let f : C → C be asymptotically non-expansive
with sequence (kn).

Then Fixε(f) := {x ∈ C : ‖f(x)− x‖ ≤ ε} 6= ∅,∀ε > 0.

Proof. Let y ∈ C. Consider

ρ0 := inf
{
ρ ∈ IR+ : ∃x ∈ C∃k ∈ IN∀i > k.‖f i(y)− x‖ ≤ ρ

}
Since C is bounded, the set is non-empty and ρ0 exists. We also have ρ0 ≥ 0 and

(9) ∀δ > 0∃x ∈ C∃k ∈ IN∀i > k.‖f i(y)− x‖ ≤ ρ0 + δ/2.

Case 1. ρ0 > 0:
Let ε ∈ (0, 4] and choose δ ∈ (0, 1] such that

η

(
ε

2(ρ0 + 1)

)
> 1− ρ0 − δ

ρ0 + δ
.

By (9), there is an xδ ∈ C, such that

(10) ∃k ∈ IN∀i > k.‖f i(y)− xδ‖ ≤ ρ0 + δ/2.

Assume that

(11) ∀k ∈ IN∃n > k.‖fn(xδ)− xδ‖ ≥ ε/2.
Let n be large enough that (using (11))

(12) (1 + kn)(ρ0 + δ/2) ≤ ρ0 + δ ∧ ‖fn(xδ)− xδ‖ ≥ ε/2,
and m ≥ n be large enough that (using (10))

‖fk(y)− xδ‖ ≤ ρ0 + δ/2
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for all k ≥ m− n. Then

(13) ‖fn(xδ)− fk(y)‖ ≤ (1 + kn)‖xδ − fk−n(y)‖ ≤ ρ0 + δ

and

(14) ‖xδ − fk(y)‖ ≤ ρ0 + δ/2 ≤ ρ0 + δ

for all k ≥ m.
(12), (13) and (14) yield by uniform convexity and δ ≤ 1∥∥∥∥xδ − fn(xδ)

2
− fk(y)

∥∥∥∥ ≤ (1− η
(

ε

2(ρ0 + 1)

))
(ρ0 + δ) < ρ0 − δ

for all k ≥ m, which contradicts the minimality of ρ0.
Hence (11) is false, i.e.

∃k∀n ≥ k.‖fn(xδ)− xδ‖ < ε/2,

which implies that there exists a k, such that

‖fk+1(xδ)− xδ‖ < ε/2 and ‖fk+2(xδ)− xδ‖ < ε/2

and hence ‖f(x)− x‖ < ε for x := fk+1(xδ).
Since ε ∈ (0; 4] was arbitrary, this implies Fixε(f) 6= ∅.
Case 2. ρ0 = 0:
Let ε > 0. Then (9) implies

∃x ∈ C∃k ∈ IN∀i > k.‖f i(y)− x‖ ≤ ε/2

and therefore xε := fk+1(y) is an ε-fixed point of f , and again Fixε(f) 6= ∅. �

4. Main results

Throughout this section, (X, ‖·‖) will be a uniformly convex space with modulus
of uniform convexity η and C a convex subset of X. f will be a mapping from C
to C, x ∈ C and the series (xn) will be a Krasnoselski-Mann iteration with error
terms (1), and (αn), (βn), (γn), (un) as defined in (1).

Theorem 4.1. Let f be uniformly l-Lipschitzian and

(15) ∀ε > 0∃pε ∈ C


‖f(pε)− pε‖ ≤ ε ∧

‖pε − x‖ ≤ d ∧

∀y ∈ C∀n (‖fn(y)− fn(pε)‖ ≤ (1 + kn)‖y − pε‖)


where d ∈ Q∗+, kn ∈ IR+ and also

∑∞
n=0 kn ≤ K ∈ Q+.

Let 1/k ≤ βn ≤ 1 − 1/k for some k ∈ IN,
∑∞
n=0 γn ≤ E ∈ Q+, and (un) be

bounded with ‖un − x‖ ≤ u ∈ Q+.
Then

∀δ ∈ (0, 1]∀g : IN→ IN∃n ≤ Φ∀m ∈ [n, n+ g(n)] (‖xm − f(xm)‖ ≤ δ)
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where Φ = Φ(K,E, u, k, d, l, η, δ, g) and

Φ(K,E, u, k, d, l, η, δ, g) = hi(0)

h = λn.(g(n+ 1) + n+ 1)

i =

⌊
3(5KD + 6E(U +D) +D)k2

εη (ε/(D(1 +K)))

⌋
D = eK(d+ EU)

U = u+ d

ε = δ/(2(1 + l(l + 1)(l + 2))).(16)

Proof. Let ν ∈ (0, 1)∩Q, p be a pε from (15), and for the moment assume ‖f(p)−
p‖ ≤ νn+1/(n+K) is satisfied for all n. Set U := u+d ≥ ‖un−p‖. Then we also have

‖fn(p)− p‖ = ‖fn−1(f(p))− fn−1(p) + fn−1(p)− p‖ ≤ νn+1

n+K

∑n−1
i=0 (1 + ki) ≤ νn+1

by the third clause in (15), and

‖xn+1 − p‖ = ‖αnxn + βnf
n(xn) + γnun − p‖

= ‖αn(xn − p) + βn(fn(xn)− fn(p)) + γn(un − p) + βn(fn(p)− p)‖
≤ αn‖xn − p‖+ βn‖fn(xn)− fn(p)‖+ γnU + βnν

n+1

≤ αn‖xn − p‖+ βn(1 + kn)‖xn − p‖+ γnU + νn+1

≤ (1 + kn)‖xn − p‖+ γnU + νn+1.(17)

By Lemma 3.2 for all m ∈ IN

(18) ‖xm − p‖ ≤ D,
where D := eK · (d+ EU + ν(1− ν)).

For any n, assume ‖xn − p‖ ≥ ε + νn+1 and ‖fn(xn) − xn‖ ≥ ε + νn+1. The
latter implies

‖(xn − p)− (fn(xn)− fn(p))‖ ≥ ‖xn − fn(xn)‖ − ‖p+ fn(p)‖ ≥ ε.
Hence by Lemma 3.5, using kn ≤ K, and (18),∥∥∥∥(1− βn)

xn − p
(1 + kn)‖xn − p‖

+ βn
fn(xn)− fn(p)

(1 + kn)‖xn − p‖

∥∥∥∥ ≤
(19) 1− 2βn(1− βn) · η

(
ε

(1 +K)D

)
.

Thus

‖xn+1 − p‖ = ‖αnxn + βnf
n(xn) + γnun − p‖

= ‖(1− βn − γn)(xn − p) + βn(fn(xn)− fn(p)− p+ fn(p)) + γn(un − p)‖
≤ ‖(1− βn)(xn − p) + βn(fn(xn)− fn(p))‖+ γn‖un − xn‖+ νn+1

≤ ((1 + kn)‖xn − p‖)
(

1− 2βn(1− βn)η

(
ε

(1 +K)D

))
+ γn(U +D) + νn+1

≤ ‖xn − p‖+ knD + γn(U +D) + νn+1 − ε · 2 1

k2
η

(
ε

(1 +K)D

)
(20)
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but ‖xn − p‖ ≤ ‖xn+1 − p‖+ |‖xn − p‖ − ‖xn+1 − p‖|, therefore (20) implies

0 ≤ |‖xn − p‖ − ‖xn+1 − p‖|+ knD + γn(U +D) + νn+1 − 2εk−2η

(
ε

(1 +K)D

)
,

where the positive additives can be made arbitrarily small by Lemma 3.2, and the
negative is a constant greater than 0. Assume we have made the positive sum
smaller than this constant for two consecutive members of the series starting at n.
By contradiction we will have for both i = n and i = n+ 1

(21) ‖xi − p‖ < ε+ νi+1 or ‖f i(xi)− xi‖ < ε+ νi+1.

Consider the following cases:
Case 1. ‖xn+1 − p‖ < ε+ νn+2.
Here we have

‖f(xn+1)− xn+1‖ ≤ ‖f(xn+1)− f(p)‖+ ‖p− xn+1‖+ ‖p− f(p)‖
≤ (1 + l)‖xn+1 − p‖+ νn+1 ≤ (2 + l)(ε+ νn+1).(22)

Case 2. ‖xn+1 − fn+1(xn+1)‖ < ε+ νn+2 and ‖xn − fn(xn)‖ < ε+ νn+1.
Then, using Lemma 3.6 with εn+1 = εn = ε+ νn+1, we have

‖xn+1 − f(xn+1)‖ ≤ (ε+ νn+1 + γn(U +D))(1 + l + l2).

Case 3. ‖xn+1 − fn+1(xn+1)‖ < ε+ νn+2 and ‖xn − p‖ < ε+ νn+1.
In this case we have (reasoning as in (22))

‖xn − fn(xn)‖ ≤ (2 + l)(ε+ νn+1)

and again using Lemma 3.6

‖xn+1 − f(xn+1)‖ ≤ (ε+ νn+1 + γn(U +D))(1 + l(l + 1)(l + 2)).

In either case, if we denote

pn = |‖xn − p‖ − ‖xn+1 − p‖|
qn = knD + 2γn(U +D) + 2νn+1

and we have

pn, qn < εk−2η

(
ε

(1 +K)D

)
(23)

and

pn+1, qn+1 < εk−2η

(
ε

(1 +K)D

)
,

(note that |‖xn − p‖ − ‖xn+1 − p‖| + knD + γn(U + D) + νn+1 ≤ pn + qn <

2εk−2η
(

ε
(1+K)D

)
) where ε = δ/(2(1 + l(l + 1)(l + 2))), then (using that qn+1 < ε)

(24) ‖xn+1 − f(xn+1)‖ ≤
(
ε+

qn+1

2

)
(1 + l(l + 1)(l + 2)) ≤ δ

Next, construct the two series

an = ‖xn − p‖ and

bn = KD + 2E(U +D) +
2ν

(1− ν)
−
n−1∑
i=0

(kiD + 2γi(U +D) + 2νi+1))
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(note pn = an+1 − an, and qn = bn+1 − bn). We know from (17) that an+1 ≤
(1 + kn)an + γnU + νn+1, and bn+1 ≤ bn, therefore by Lemma 3.3

∀k ∈ IN∀g : IN→ IN∃m < Φν∀i, j(
m− 1 ≤ i < j ≤ m+ g(m)→ |aj − ai|, |bj − bi| ≤ εk−2η

(
ε

(1+K)D

))
,

where

Φν(K,E, u, k, d, l, η, δ, g) = hi(0)

h = λn.(g(n+ 1) + n+ 1)

i =

⌊
3(5KD + 6E(U +D) + 6ν/(1− ν) +D)k2

εη (ε/(D(1 +K)))

⌋
D = eK(d+ EU + ν/(1− ν))

U = u+ d

ε = δ/(2(1 + l(l + 1)(l + 2))).

This is enough to ensure (21) and hence (24) for all n ∈ [m,m + g(m)] and
therefore

∀δ ∈ (0, 1]∀g : IN→ IN

∃n ≤ Φν(K,E, u, k, d, l, η, δ, g)∀m ∈ [n, n+ g(n)] (‖xm − f(xm)‖ ≤ δ) .
It only remains to throw away the assumption that ‖f(p)− p‖ ≤ νn+1/(n+K)

holds for all n. This we can do by simply relaxing it to only the n’s for which the
inequality was used in the proof, i.e. for all n ≤ Φν . This is certainly satisfied by
pνΦν+1/(Φν+K) using (15).

The value of ν was arbitrary within (0, 1) ∩ Q, thus we can take it arbitrarily
small and the bound will get lower at the expense of requiring better approximate
fixed points (which we have). Therefore Φ = infν∈(0,1) Φν will be sufficient for the
bound.

Computing the infimum yields the form (16). �

Remark 4.2. Using the argument about the Herbrand normal form (3) in Section
1, this theorem and all its corollaries allow us to also conclude

‖f(xn)− xn‖ → 0.

In particular, theorem 4.1 implies theorem 1.5 from the introduction and is in fact
a quantitative strengthening of the latter.

Corollary 4.3. Let f be uniformly l-Lipschitzian and asymptotically quasi-nonex-
pansive with sequence (kn), Fix(f) 6= ∅, and also

∑∞
n=0 kn ≤ K ∈ Q+.

Let 1/k ≤ βn ≤ 1 − 1/k for some k ∈ IN,
∑∞
n=0 γn ≤ E ∈ Q+, and (un) be

bounded with ‖un − x‖ ≤ u ∈ Q+.
Then

∀δ ∈ (0, 1]∀g : IN→ IN∃n ≤ Φ∀m ∈ [n, n+ g(n)] (‖xm − f(xm)‖ ≤ δ)
where Φ is as defined in theorem 4.1 with d ≥ ‖x− p‖ for some p ∈ Fix(f).

Proof. Direct corollary of the main theorem, where the first and second clauses of
(15) are satisfied by the existence of real fixed points of f , and the third clause
follows from the assumption on f being asymptotically quasi-nonexpansive. �
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Corollary 4.4. If we only need to find a single xn, which is an approximate fixed
point of the function, taking g(n) ≡ 0 gives

(25) ∀δ ∈ (0, 1]∃n ≤ Φ1(K,E, u, k, d, l, η, δ) (‖xn − f(xn)‖ ≤ δ)

where

Φ1(K,E, u, k, d, l, η, δ) =

⌊
3(5KD + 6E(U +D) +D)k2

εη (ε/(D(1 +K)))

⌋
D = eK(d+ EU)

U = u+ d

ε = δ/(2(1 + l(l + 1)(l + 2))).

Remark 4.5. If the modulus of uniform convexity of the space can be written in
the form η(ε) = εη̃(ε) where η̃ is monotone (0 < ε1 ≤ ε2 ≤ 2→ η̃(ε1) ≤ η̃(ε2)), the
proof of Theorem 4.1 allows to extract a bound with η replaced by η̃ (by changing

η
(

ε
(1+K)D

)
to η

(
ε

(1+kn)‖xn−p‖

)
in (19) we can replace (20) by ‖xn+1 − p‖ ≤

‖xn − p‖ + knD + γn(U + D) + νn+1 − ε · 2 1
k2 η̃

(
ε

(1+K)D

)
and the change carries

on through the proof).

Disregarding the various constants, the ε-dependency of our bounds in the case
g ≡ 0 is ε · η(ε).

It is well-known that the Banach spaces Lp with 1 < p <∞ are uniformly convex

([3]). For p ≥ 2, εp

p2p is a modulus of convexity ([10], see also [12]). Since

εp

p2p
= ε · η̃p(ε)

where

η̃p(ε) =
εp−1

p2p

is monotone, we can apply the previous remark. Hence we get – disregarding again
constants – that the ε-dependency of our bounds in the case of Lp (p ≥ 2) is εp.
For the case X := IR with the Euclidean norm, where we can choose η̃(ε) := 1

2 (since
ε/2 is a modulus of convexity), we have a linear dependency in ε. These results
match in quality the bounds obtained in [11, 12, 14] for the case of nonexpansive
functions and the usual Krasnoselski-Mann iteration (without error terms). In that
case, the deep work in [1] even established a quadratic bound in arbitrary normed
spaces for the special case of constant λn = λ ∈ (0, 1). For general (λn) (satisfying
λn ∈ (0, 1−1/k) and

∑
λn =∞), the first bounds for Krasnoselski-Mann iterations

in arbitrary normed and even hyperbolic spaces were established in [13, 16].
In the case of asymptotically nonexpansive mappings f : C → C (C ⊂ X

bounded, closed and convex) it is an open problem whether Fixε(f) 6= ∅, ∀ε > 0,
for general (i.e. not uniformly convex) Banach spaces X (see [7], p.135).

Corollary 4.6. Let f be asymptotically nonexpansive with sequence (kn), d is such
that Fixε(x, d, f) 6= ∅ for all ε > 0 and also

∑∞
n=0 kn ≤ K ∈ Q+.

Let 1/k ≤ βn ≤ 1 − 1/k for some k ∈ IN,
∑∞
n=0 γn ≤ E ∈ Q+, and (un) be

bounded with ‖un − x‖ ≤ u ∈ Q+.
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Then

∀δ ∈ (0, 1]∀g : IN→ IN∃n ≤ Φ∀m ∈ [n, n+ g(n)] (‖xm − f(xm)‖ ≤ δ)

where Φ is as defined in theorem 4.1 with l = 1 +K.

Proof. Direct corollary to the main theorem, using 1 +K ≥ 1 + kn for any n as the
Lipschitz constant. �

Corollary 4.7. Let C be a bounded convex subset of X with diameter d ∈ Q∗+ and
f be asymptotically nonexpansive with sequence (kn), and also

∑∞
n=0 kn ≤ K ∈ Q+.

Let 1/k ≤ βn ≤ 1− 1/k for some k ∈ IN,
∑∞
n=0 γn ≤ E ∈ Q+.

Then

∀δ ∈ (0, 1]∀g : IN→ IN

∃n ≤ Φ2(K,E, k, d, η, δ, g)∀m ∈ [n, n+ g(n)] (‖xm − f(xm)‖ ≤ δ)

where

Φ2(K,E, k, d, η, δ, g) = hi(0)

h = λn.(g(n+ 1) + n+ 1)

i =

⌊
3(5Kd+ 6Ed+ d)k2

εη (ε/(d(1 +K)))

⌋
ε = δ/(2(1 + (K + 1)(K + 2)(K + 3))).

Proof. Using Lemma 3.7 we can fulfill the conditions of the previous corollary, and
the boundedness of C allows us to replace all bounds on the distances in the proof
with d. �

Concluding remark:

1) With somewhat more complicated bounds our analysis also extends to the
case where f : C → C is instead of being l-uniformly Lipschitzian only
ω-uniformly continuous, i.e.

∀ε > 0, n ∈ IN, x, y ∈ X
(
‖x− y‖ < ω(ε)→ ‖fn(x)− fn(y)‖ < ε

)
,

where ω : IR∗+ → IR∗+ (i.e. ω is what in constructive analysis is called a
modulus of uniform continuity for all fn). In particular, this covers the case
of λ-α-uniformly Lipschitzian functions (see [24]).

2) We expect that our analysis can be adapted also to Ishikawa-type iterations.
However, this would further complicate the technical details.

Errata (June 2007):

1) p.8, l.3.1: Here and below ‘b. . .c’ should be ‘d. . .e’. In lemma 3.2 assume ‘A ≥ 1’.
2) P.9, line 3: ‘D = (A+ C)eB ’ instead of ‘D = (A+B)eD’.
3) P.12-13: In theorem 4.1 b should be ≥ 1 and ‘h = λn.(g(n+ 1) + n+ 1)’ should
be ‘h = λn.(g(n+ 1) + n+ 2)’.
4) p.13, line 22: ‘‖p− fn(p)‖|’ instead of ‘‖p+ fn(p)‖’
5) p.14, lines 4-5 from below: ‘qn’ instead of ‘qn+1’
6) P.14, line 1: ‘pn = |an+1 − an|, and qn = bn − bn+1’ instead of ‘pn = an+1 − an,
and qn = bn+1 − bn’.
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7) P.15, line 4: ‘j ≤ m+ g(m)’ should be ‘j ≤ m+ g(m) + 1.’
8) P. 16, line 5: ‘Φ1 = 2d. . .e.’
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