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1 Introduction

In [14] we have introduced a hierarchy (G, A“),en of subsystems of arithmetic in all finite
types where the growth of the definable functions of G,A% corresponds to the well-known
Grzegorczyk hierarchy. For certain (in general) non-constructive analytical axioms A and the
schema of quantifier—free choice AC-qf the following rule is shown:

(From a proof
GpAY + A+AC-of +Vul, KO0 <, tuk3w? Ag(u, k, v, w),

(where t is a closed term, Ay is quantifier-free and contains only wu, k,v,w free, v < 2,p
is an arbitrary type and <, is defined pointwise) one can extract (by monotone functional
interpretation) a uniform bound ¢ on Jw? which is given by a closed term of G,,A“ and does
not depend on v, i.e.
Vu, kYo < tukJw < duk Ag(u, k, v, w)

holds in the full set-theoretic model.

In particular @uk is a polynomial (an elementary recursive function) in u
and k° in case n = 2 (resp. n = 3).

M= \20. max; <, u(i)

In a paper under preparation we will show that substantial parts of classical analysis can
be carried out in GgA“ + A+AC-qf and even in GaA“ + A+AC-¢f for suitable A (see [14]

for more information on this).

On the other hand there are central theorems in analysis whose proofs use arithmetical
instances of AC, i.e. instances of

ACq : Va'3yP A(z,y) — IfValA(z, fo),
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where A € I12. (A may contain parameters of arbitrary type), and which are not covered by
the results mentioned above.
Examples are the following theorems

1. The principle of convergence for bounded monotone sequences of real numbers (or equiv-
alently: every bounded monotone sequence of reals has a Cauchy modulus (PCM)).

2. For every sequence of real numbers which is bounded from above there exists a least upper
bound.

3. The Bolzano-WeierstraB property for bounded sequences in IR? (for every fixed d).

4. The Arzela—Ascoli lemma.

5. The existence of the limit superior for bounded sequences of real numbers.

We will investigate these theorems (w.r.t. to their contribution to the rate of growth of
uniform bounds extractable from proofs which use them) in a subsequent paper using the
method developed in this paper and discuss now only (PCM) in order to motivate the results
of the present paper which is the second one in a sequence of papers resulting from the
authors Habilitationsschrift [12]. All undefined notions are used in the sense of [14] on which
this paper relies. Ay, By, Cy, . .. always denote quantifier-free formulas.

Using a convenient representation of real numbers, (PCM) can be formalized as follows:

va(, ¢ (vn(c < an i1 < an)
— E|h1Vk‘0vmam >0 hk(|am —R arh| <R ]%}.1))

(PCM) : {

(PCM) immediately follows from its arithmetical weakening
(PCM-) Vaz_()o), ct(vnP(c <R ant1 <R an)
— VE"3nOm, i >0 n(lam —r am| <R 737))

by an application of AC,, to

A=Y, 2 nllon —w anl S ) € 17
(<RE ITY follows from the fact that real numbers are given as Cauchy sequences of rationals
with fixed rate of convergence in our theories).
It is well-known that a constructive functional interpretation of the negative translation of
AC,, requires so—called bar-recursion and cannot be caried out e.g. in Gédel’s term calculus
T (see [21] and [15] ). AC,, is (using classical logic) equivalent to CA.+AC*%—qf, where

CAgr : 3¢'Va'(g(z) =0 0 — A(z)) with A € 1T,

(and AC9—qf is the restriction of AC,, to quantifier-free formulas) and therefore causes an
immense rate of growth (when added to e.g. GoA“). {From the work in the context of ‘reverse
mathematics’ (see e.g. [3],[20]) it is known that 1)-5) imply CA,, relatively to (a second-order
version of) PA” M-AC%0—qf (see [1] for the definition of ﬂwh) In [12] it is shown that this
holds even relatively to GoA¥.
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In contrast to these general facts we prove in this paper a meta—theorem which in par-
ticular implies that if (PCM) is applied in a proof only to sequences (a,) which are given
explicitely in the parameters of the proposition (which is proved) then this proof can be
(effectively) transformed (without causing new growth) into a proof of the same conclusion
which uses only (PCM™) for these sequences. By this transformation the use of AC,, is elim-
inated and the determination of the growth caused (potentially by (PCM)) reduces to the
determination of the growth caused by (PCM™).

More precisely our meta—theorem has the following consequence:

Let 7% :=G,A% and x denote a closed term of G, A¥ (having an appropriate type). Then
the following rule holds
TY + AC—qf F Vulve <, tu
(3RIVEOYm, i > hk(|(xuv),, —r (xuv) ;| < k%rl) — Jw™ Ag(u,v,w))
= there exists a ® € G,,A“ such that

T b ((Vulvo <, tu(VA"InO%m, i >0 n(| (xuv),, —m (xuv),| < £
— Jw" Ag(u,v,w)))

A® fulfils the mon. funct. interpr. of the negative trans. of (... ))

Here a(n) := maxg (0, min(a(i))). By this construction every sequence al(®) represents a
( (n) R (0, min y y seq P

decreasing sequence of positive real numbers. The restriction to the special lower bound
¢ =g 0 is convenient but of course not essential.)

In contrast to (PCM) the (negative translation of the) principle (PCM™) has a simple
constructive monotone functional interpretation which is fulfilled by a functional ¥ which
is primitive recursive in the sense of [6]. Because of the nice behaviour of the monotone
functional interpretation with respect to the modus ponens one obtains (by applying @ to
V) a monotone functional interpretation of

Vu'vo <, tuFw” Ag(u, v, w)
and so (if 7 < 2) using tools from [11],[14] a uniform bound ¢ for Jw, i.e.
Vu'lvo <, tudw <; EuAg(u,v,w),

where ¢ is primitive recursive in the sense of Kleene [6] (and not only in the generalized sense
of Godel’s calculus T').

This conclusion also holds for sequences of instances ¥n® PCM (xuwvn) of PCM(a) instead
of PCM(xuw).

Let us consider the following general situation:

For

F(a) :== V2930 . VY3 Fo(z1, 1, - - - Th, Uks @),
where z,y,a are all the free variables of Fp, we define the Skolem normal form F Sof F
by
FS(Q) = Hfl, ce ,kaw(f, N ,.%‘2 Fo(xl, fl.%'l, ooy Ty kal N xk,g).



4 Ulrich Kohlenbach

If we could prove that

@) T (+AC—qf) - VulVo <, tu(FS (u,v) — Jw™ Ag(u, v, w)) =
T = Vulvo <, tu(F(u,v) — JwT Ag(u, v, w)),

then (1) would follow as a special case.
(2) in turn is implied by

(3) T“(+ACqf) FGH = TY G,

where

GH

{VuIVv <p tuvhy, ..., b3y, ... Y0 wT
Go(u, v, y1, hyt, y2, hav1y2, - - -, Yk, hyi - . - yi, w)

is the (generalized)! Herbrand normal form of
G :=VYu'Vw <, tuIyIvay .. Va3 Go(u, v, y1, 21, - Yk, Ty ).

Since VulVv <, tu(F (u,v) — JwT Ag) can be transformed into a prenex normal form G whose
Herbrand normal form is logically equivalent to

Vuvo < tu(F(u,v) — JwAp), (2) is a special case of (3).

Unfortunately (3) is wrong (even without AC—qf) for 7% =G,,A¥, PRA“ and much weaker
theories. In fact it is false already for the first-order fragments of these theories augmented by
function variables. For (a second-order fragment of) PRAY + X¥-TA this was proved firstly in
[10] (thereby detecting a false argument in the literature). In §2 below we will prove a result
which implies this as a special case and refutes (3) also for G,A“ (and their second-order
fragments even when the universal axioms 9) from the definition of G,A“ are replaced by
the schema of quantifier—free induction).

On the other hand we will show that (3) is true for 7% =G, A“ (but remains false for
7% =PRAY) if G satisfies a certain monotonicity condition (see def.26 below) which is fulfilled
e.g. in (1). We may add also axioms A to G, A having the form Vz°3y <, saV27Go(z,y, 2),
where Gq is quantifier-free and s a closed term. As mentioned above such axioms cover
substantial parts of classical analysis relatively to GoA“ (see [12] and [14] for details).

This result will be used in §3 to determine the growth caused by (sequences of) instances
of the restriction of AC,, and CA,, to IIY formulas: IT{—AC, IT?-CA.

In a subsequent paper we will treat the analytical principles mentioned above. It will
turn out that 1)-4) have the same contribution to the growth of uniform bounds as ITP-CA,
whereas 5) may produce a growth of the Ackermann type.

! The Herbrand normal form is usually defined only for arithmetical formulas, i.e. if u, v, w are not present.
In this case it coincides with our definition. In G2A™ in §2 below, u,v,v do not occur and the h; are free
function variables.
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2 Elimination of Skolem functions of type 0(0)...(0) in higher type theories for
monotone formulas: no additional growth

We first prove a result which in particular refutes (3) from the introduction (even without
AC—qf) for G,A¥ (with n > 2), GooAY and PRA%:

Let G2A be the first-order part of GoA“ (without the universal axioms 9) from [14]
but only with the schema of quantifier-free induction instead of them) and GoA™ be GoA
augmented by function variables and a substitution rule

SUB : M

A(g)

GoA™ contains the schema of quantifier—free induction with function parameters .

Proposition 21 Let A 6]780 be a theorem of (first-order) Peano arithmetic PA. Then one
can construct a sentence A € I19 such that

GoATF A" and GoA FA— A
Proof: If PA - A, then there are arithmetical instances (without function parameters) of
the induction schema such that for their universal closure Fy, ..., F}

k
%AFAEHA
i=1
since PA C GoA + I -TA~, where II-TA~ is the induction schema for all arithmetical
formulas without function variables.

Let B be any prenex normal form of ( 7\ (yi =0 0 <> Fj(x;)) — A), where F; denotes the
induction formula of F}, then -
A= da, 1, kYY1, Yk B(T1, e Tk YLy e Yk @)
is a prenex normal form of

k

\V/Q,xly"' axk‘zlyla"' y Yk /\(yl =0« E('IZ)) - A’
i=1

where a are the (number) parameters of the induction formulas F;. Because of

k

G2A = \V/anla e afkﬂyl,- - Yk /\(yl =0+« E('IZ))’
i=1

we obtain

GoAF A« A.
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Since A is logically implied by
C:=3a,21,...,21 B(xy,..., 2k, frax) ... Tk, ..., fraz) ... g a),

it remains to show that Go AT - C:
k
Assume Va, z1, ...,z A\ (fiaz: ...z =0 < Fj(z;)). Quantifier—free induction applied to
i=1
Ao(z;) := (fi(a,0,...,0,2;4,0,...,0) = 0) yields F;. Hence

k
GoAT FVa,x1,. .., x5 /\ (fiaxy ...xp =0 Fi(x;)) — A,
i=1

ie. GoAT F C.

Corollary 22 (to the proof) Let GoAlf1,..., fr] denote the extension of G2 A which is
obtained by adding new function symbols fi,..., fi which may occur in instances of QF-IA.
Then GoA[f1,...,fs] F A" and GoA - A — A (with A, A as in the proof above), where
fi.. .., [ are the function symbols used in the definition of A .

Corollary 23 1. For each n € IN one can construct a sentence A € I19, such that
GoA“ = AP but GooA¥ 4+ X0 -TA € PRA® + X0 -TA - A.

2. For eachn € IN one can construct sentences A € 112, and a sentence ¥x°3y° By(x,y) € 119
such that

GoAY F AT but GoAY + A F V23 By(x,y),
where fx := miny|[By(z,y)] is not < wy(w)-recursive.

Proof: 1) Let n > 1 and A € L(PA) be an instance of X9 ,,-IA which is not provable in
PRAY + X9-TA (such an instance exists since every < wy,1(w)-recursive function is provably
recursive in PRA® + X0 | -TA, but in PRAY 4+ X9-IA only < wy,(w)-recursive functions are
provably recursive (This follows from [18](thm.5) using the fact that PRA“ + X2-TA has a
functional interpretation by functionals in Parsons calculus 7T,,—1) and there are < wy,41(w)—
recursive functions which are not < wy,(w)-recursive). Construct now A as in prop.21 . It
follows that GoA“ - A but PRA® 4+ X9-TA £ A.

2) follows from prop.21 and the fact that every a(< go)-recursive function is provably
recursive in PA.

The reason for the provability of A in prop.21 is that the schema of quantifier—{ree
induction is applicable to the index functions used in defining A”. This always is the case
in the presence of the substitution rule SUB or V!-elimination in theories like GoA¥ where
quantification over functions is possible.
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In the following we show that the same phenomenon occurs if QF-TA in GoA™ is restricted
to formulas without function variables but instead of this new functional symbols @ax
are added (for each number n € IN) together with the axioms

n

(max, ) = A (4 <o i) = fy <o Pmaxnf2,
1=1

where f is an n—ary function variable.
(max) := Up(max,n).
We call the resulting system GoA+(max).

Remark 24 (max, 1) is fulfilled by the functional &1 fxr = max(f0,..., fz) from G,A“. By
A—abstraction and finite iteration of @1 one can easily define a functional satisfying (max,n)
(Hence GoA+(max) is a subsystem of GoA%). This is the reason for calling this aziom (max).

X
Of course instead of 1 one could also use e.g. Pofx = 3 fi.
i=0

Proposition 25 Let A € II% be a theorem of PA. Then one can construct a sentence
A € 1% such that R R
Gy A + (max) - AT and GuA F A< A

Proof: Since PA - A, there are arithmetical instances (without function parameters) of the
induction schema such that for their universal closure Fi,..., Fj

k
GﬁFAEHA
i=1

Lets consider now the so-called collection principle
CP : Vi'(Vx <o 23OF (z,y,a) — J2Vz <o 33y <o 2z F(z,7,a)),

where z,y,a are all free variables of F'. This principle has been studied proof-theoretically in

[17] and also in [19]. By [19] (prop.4.1 (iv)) one can construct for every instance F' of X)-1A

instances F; of X0 ;~CP (i.e. CP restricted to X9, ;~formulas) such that A F; — F. From the
i

proof in [19] (which uses only QF-TA and the function =) it follows that GoA = A F; — F.

3
Let Fi,..., F; denote such instances of CP whose universal closures imply Fi,..., Fi. F; has
the form
Fy = (Vo <o 33°G;(z,y,a) — I2Ve < 33y < 2 Gi(z, y, a)).

Thus GoA proves
(1) Va, z

(Va; <o 230 Gi(wi, yir a) — FziVa; < 33y; < 2 Gi(wi, yi,a)) — A.

<

1

(2
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Consider now

=] 1
b= A (Vug < 23w,Gi(ui, wiya) — (2 < T — Gi(zi,9i,a))) — A

{\V/Qajaxla"'axlzlyly"wyl
i=1

and
l

C = ( /\ (Vu; < 23w;Gi(ug, wi,a) — (x; < T — Gi(xg,y5,a))) — A).
=1

Let CP" be an (arbitrary) prenex normal form of C. Then
BP':=3a,z,x1,...,5%y1, ...,y CP" (21, .., 2, Y1, - -, YL, Q)

is a prenex normal form of B.

We now show i) GoA+(max) F (BP")H and ii) GoA - BP" « A.

i) Define

B:=3a,7,11,... , ] CP" (2, ... 2y, fraZxy .. ¢y, ..., flaZey ... 2y, 4).

The implication B — (BP")H holds logically. Hence we have to show that GoA+(max) + B:

B is logically equivalent to

l
a,T /\ (Vu, < Tdw;G; — V&(.%’Z <xT— Gi(xi,figiml .. .xl,g))) — A.
=1

Hi:

By (max) applied to f;, Va;(x; < & — Gi(x;, fiaZz ... x,a)) implies
IzVa; < 23y; < z,Gi(wi,yi,a). Thus

GoA + (max) - H; — F; fori=1,...1.

By (1),(2) this yields GoA+(max) + B.
ii) We have to show that GoAF B « A. This follows immediately from the fact that

l
Va,Z,x1,...,23Y1,. .. l/\(VuZ < 23w Gi(ui, wi, a)— (z; < T — Gi(wi,yi,a)))
i=1

holds logically.

Prop.21 and prop.25 show that for theories like G,, A% the Herbrand normal form A of an
arithmetical formula A in general is much weaker than A with respect to provability in G, A“
(compare cor.23 ). This phenomenon does not occur if A satisfies the following monotonicity
condition:
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Definition 26 Let A € L(G,A¥) be a formula having the form
A =VulVo <, tuFydVal .. yRvadIwT Ag(u, v, y1, 21, -« o, Yp, T W),

where Ag is quantifier—free and contains only u,v,y,x,w free. Furthermore let t be € G, R”
and 7,7 are arbitrary finite types.

1. A is called (arithmetically) monotone if

Vu1Vv ST tuvxl)jla s axk‘,fkaylagly cee yk‘agk
k
Mon(A) = (,/\1(551‘ <o i A i 20 ¥i) N 3w Ao (U, v, Y1, T, -+, Yky They W)
1=
- Elw’yAO(uav’glyjl,"'agkajk,w))'

2. The Herbrand normal form A of A is defined to be

A = vulve < tuVh(t o RPEY, Ly w?

AO(uav’yly hlyl, <o Yk hkyl s yk,w)’ where Pi = 0(0) s (0)
—
i

H.
Al

Theorem 27 Letn > 1 and ¥q,... ¥, € Go,R¥. Then

k
GnAY + Mon(A) F YulVy <, tuVhy, ... ,hk< N (h; monotone)
i=1
— Jy; <o Cuh. .. Jyp <o WkuhﬂuﬂAgl) — A,

where (h; monotone) = Vx1,..., T Y1, - -, Yil

J

Theorem 28 Let A be as in thm.27 and A be as in [14](thm.3.2.2), i.e. a set of sentences
Va03y <, sxV2"Go(x,y, z) where s is a closed term of G, A* and Gy a quantifier-free formula,
and let A’ denote the negative translation® of A. Then the following rule holds:

G A+ AC—qf + A+ A" A Mon(A) =

G A + A + A and by monotone functional interpretation

one can extract a tuple ¥ € G,R” such that

GhAY + AF U satisfies the monotone functional interpretation of A’

(j >0 y5) — hiz >0 hiy).

I>-

where A := {3Y <,5 sV2%,2"Go(z, Yz, 2) : Va'Ty <, sa¥z"Go(z,y,2) € A}. (In particular
the second conclusion can be proved in G, AY + A+ b-AC)3.

2 Here we can use Godel’s [5] translation or any of the various negative translations. For a systematical
treatment of negative translations see [15].
® Here b-AC:= |J {(bfAC‘S”J)} denotes the schema

8,peT

(b-AC™?) : vZ*° (Vxéﬂy <, Zzx Alz,y,Z) — 3Y <, ZVmA(x,Ya@Z)).
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Remark 29 In theorems 27,28 one may also have tuples Jw’ instead of Jw?’ in A.

Proof of theorem 27: We assume that

k
(O)Vule <; tuVhy, ..., hi( /\ (h; monotone) — Jyi, ..., yr<o WuhﬂuﬂAé{)
i=1

(This assumption follows from the implicative premise in the theorem by taking Yuh :=
maxo(Y1uh, . .., Yruh)). By [14](cor.2.2.24 and rem.2.2.25) one can construct a term ¥*[u, A
such that

1. W*[u, h] is built up from u, h, Ay, . .., Ay, S*,0° maxg only (by application).
2. A, h.W*[u, h] s—maj ¥ (see [14] for the definition of s—maj).

1) in particular implies:

1*) Every occurrence of an h; € {h1,...,hi} in ¥*[u, ] has the form

hj(Tnys---57n,), i.e. hj occurs only with a full stock of arguments but not as a function
argument in the form s(h;ry, ...ry,) for some I < j.

By 2), Vu!(u™ s-maj u) (where u™z := maxwui) and (h; monotone — h; s—maj h;) we

i<z
have
k
2*) GpAY = VYuVhy, ..., hi( A\ (h; monotone) — ¥*[uM h] >q Wuh).
i=1
(Note the the replacement of h; by hM = \xy,..., ;. max h(Z1,...,&;), which would
T1xT1
#i<mg

make the monotonicity assumption on h; superfluous, would destroy property 1*) on which
the proof below is based. This is the reason why we have to assume h; to be monotone. In
order to overcome this assumption we will use essentially the monotonicity of A).

Let r1,...,7; be all subterms of ¥*[u™, h] which occur as an argument of a function
€ {h1,...,hy} in &*[uM h] plus the term ¥*[uM, h] itself.

Let 7j[a1,...,aq] be the term which results from 7; if every occurrence of a maximal
hi,...,hp—subterm (i.e. a maximal subterm which has the form h;(sy,...,s;) for an i =
1,...,k) is replaced by a new variable and let aj,...,a,; denote these variables. We now
define

7ja1...aq; 1= max ( max rilar, ..., aq,a1,. .. ,aqj).
aq; g

(7j can be defined in G,R* from 7; by successive use of ®1).
By the construction of 7; we get

GpA”Y F (Aa.7ja s-maj Aa.Tjlaq,. .. ,aqj]) AVa(Fja >0 a1, ..., aq;).
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Since ¥*[uM | h] is built up from 7}, h only (by substitution) and (h; monotone — h; s—maj
h;), uM s-maj u, this implies

(h; monotone) — W[uM h] >0 w*[uM, h] >0 Yuh),

<.

GnAw F Vu, hl,. . ,hk(

=1

where W[u®, h] is built up as ¥*[u™, b but with 7;(a1,. .., a,,) instead of 7jlai, ..., aq,]-

Summarizing the situation achieved so far we have obtained a term ¥[uM, h] such that

() YulVo <, tu¥h(h monotone — Jyi,. .., yp <o T[uM, h]Fwr AL).

(B) hi,...,hg occur in ¥[uM k] only as in 1*), i.e. with all places for arguments filled and not
as function arguments themselves.

(7) For ¥[uM,h] and all subterms s which occur as an argument of a function hy, ...,k in
UuM, h] we have G, A% | 3lay,...,a,] >0 a1,...,a,, where 3 results by replacing every
occurrence of a maximal hq,..., hy—subterm in s by a new variable qa;.

(6), (v) do not depend on any assumption and («) follows from (0):

GrAY F (0) — ().

In the following we only use (a)—(y) and Mon(A).

;From now on let ry,...,7; denote all subterms of ¥[u™, h] which occur as an argument
of a function € {hy,...,hx} in T[uM, h] plus U[u, h] itself. M := {ry,...,r;} (This set
formation is meant w.r.t. identity = of terms and not =g, i.e. ‘s € M’ means ‘s =r1V...Vs =
r).

We now show that we can reduce ‘Jyi,...,yx < ¥[uM, k]’ in (a) to a disjunction with
fixed length, namely to the disjunction over M:

(1) Yulvo <, tuvh(h monotone on M — Isy,..., s, € MIw?Y
Ao(u,v, S1, h181, N ) hksl ce sk,w)).

Proof of (1): Let hq, ..., hy be monotone on M. We order the terms r; w.r.t. <g. The resulting
ordered tuple depends of course on u, hy, ..., hg. For notational simplicity we assume that
r1 <o ... <gp ;. We now define (again depending on u, h) functions hq, ..., h; by

7,0 0._
hiyi ... y; == hi(rj, ..., 7j, ), where

17 if Yq <oTi
Jyg = J+ 1 ifry <oyg <orjta
l, if 7 <g Yq-

Since I (and therefore the number of cases in this definition of ;) is a (from outside) fixed
number depending only on the term structure of ¥[u, h] but not on wu, h, the functions h;
can be defined uniformly in u, i within G,AY. On M, ﬁl equals h;.

By the definition of h; and the assumption that hq, ..., hx are monotone on M we conclude

(a) hi,..., i are monotone everywhere.
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By (8) we know that hy,...,hy occur in ¥[u, k] only in the form h;(sy,...,s;) for certain
terms s1,...,8; € M. Hence we can define the h—depth of a term s € M as the maximal
number of nested occurrences of hy,...,hy in s and show by induction on this rank (on the
meta—level):

l

N (r; =0 7;), where 7; results if in r; € M the functions hq, ..., hg
i=1 ~ ~
(b) are replaced by hi, ..., hy everywhere.

In particular U[uM, h] =o T[uM h).
By (), (a) and (b) it follows (for all u!,v < tu and all h which are monotone on M) that
(€) Fyr, - yk <o Plu™, hJFwY Ag(u, v, 91, hay, -, Yk s - - Yy ).

Let y1, ..., yr <o ¥[uM, k] be such that (c) is fulfilled. Because of hiy; . . . y; = hiTjy e sT3y.)
this implies
(d) Fw7 Ap(u,v,y1, hlrjyl e Uk hijyl Ty w).

With y, <rj, for g=1,....k (since y, < U[uM, h] < r; ~because of U[uM, h] € M and the

yq—assumption— the case ‘y, > 1’ does not occur) and Mon(A) we conclude
Jwr Ao (u, v, 15, harj, g, e, T, W)
and therefore
(e) 3s1,...,8k € MIw? Ag(u, v, s1,h181, ..., Sk, hES1 - .. Sk, W).

This concludes the proof of (1) which can easily be carried out in G, A“ (assuming Mon(A), («)
and using (9)), i.e.
GrAY E Mon(A) A (o) — (1).
k
We now define N := (J N;, where N; := {hi(s1,...,8) : S1,...,8; € M} (Again this set
=1

1=
is meant w.r.t. identity = between terms). With the terms in N we associate new number
variables according to their h—depth as follows: Let p the maximal h—depth of all terms € V.

1. Let t € N be a term with h—depth(¢) = p. Then t — y}, if t € N;.
2. Let t € N be a term with h—depth(t) = p — 1. Then t — y?, if t € N;.

p. Let t € N be a term with A—depth(¢) = 1. Then t — y?, if t € N;.
This association of variables to the terms in N has the following properties:

(i) Terms s1,s2 € N with different h-depth have different variables associated with.
(ii) If 1,82 € N have the same h—depth, then the variables associated with s; and s are
equal iff 51,80 € N; forani=1,... k.
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For r € MUN we define 7 as the term which results if every maximal h—subterm occurring

in r is replaced by its associated variable. Thus 7 does not contain hy,..., hy. Forr € N, 7
is just the variable associated with r. M = {r:r € M}.

We now show that (1) implies a certain index function—free (i.e. hy,..., hx—free) disjunc-
tion ((2) below):

For ¢ with 2 < g <plet 7,... ,qu be all terms € M whose smallest upper index i of a

variable y; occurring in them equals ¢ (i.e. there occurs a variable yj in the term and for all
variables y?, occurring in the term, i > ¢ holds). Since for r € M the h-depth of hy(r) € N is
strictly greater than those of subterms of 7, there are no terms 7 € M containing a variable

yj1 ?Ierl, . ,?ﬁ:jl denote those terms € M which do not contain any variable y; at all.

We now show that (1) implies (for all u and for all v < tu)

Vy%,...,y,i;...;yf,...,yz

(2) ((+) - V AE"U),YAO(U,’U,gl,hISh...,/S\k;,hk81...Sk,U))),
21,...,§kEM
where? l l l
q q < 29+ I, at q+
1 1(yl,...,yk>7“1 ""7?%?;17% o YLTN
q=1,...,p—
(+) = I=1,....p—q 1
q q . =P 1
A Wiyl > ,...,?ﬁ:ﬂ).
q=1,....p
Assume that there are values y1,. .. ,yl}u,; T S ,yz such that (+) holds and
/\ —3Jw” Ag(u, v, 81,181, ..., Sk, PEST - - - Sk, W).
gl,...,ngZ/\j
We construct (working in G, A¥) functions hq, ..., hy which are monotone on M and satisfy
Vs1,...,8, € M—3w Ao(u,v, sty hist,..., S, hpst... sk,w)

yielding a contradiction to (1): Define for i = 1,...,k

hi(xh- .o ,.’L‘i) =

{y@inls&i(ql)‘l, it 3P0, e M((1, .. a) =0 (FI, ..., 74))

<

7 Ji? Ji J1?
09, otherwise.’

* Here ai,...,ax > b1,...,by means A (a; > b;).

1<i<k

125<1

In (2) above we actually show the disjunction ¢ \/ Fw? Ao(u, v, 51, h/ls\l, ...) instead of
515eerSpEM

CV Fw Ao (u, v, 51, }Zs\h ...)". However the later follows from the former disjunction by contraction

S1yeerSkEM

since 51 = §1 A ... As; = 5, implies hisl/T. = his’l/i. ) for s1,8,...,s;,s; € M. Alternatively we could

also use the non-contracted disjunction in the following proof.
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We have to show:

(i) The h; are well-defined functions : IN x ... x IN — IN and the definition above can be
_'/_/
carried out in G,AY.
(ii) 7=¢ r for all r € M UN (for these hq,...,hg).

(iii) hq,...,hx are monotone on M (and hence —by (ii)— on M).

i i ming <1<, (q)— ming <;<;(@)—1
Ad (i): Consider (77}, ...,7]') and (?;311, . ) We show that g, =" 7é y, st
Fa 4 =41 =4iY.
1mphes(]1,...,7°ji)7é(7"j1 ...,7"51_). )
W i i Let g b h that g, = AN <lp<i.r”°
e may assume 1rélllgi(ql) < 1I£1l12i(ql) et lp be such that ¢, = 1@;21@( a) <lo <. 7]

contains a variable ygl“ for some d = 1,...,k. By the property () of ¥[uM, h] this implies

(+)a19<dy g . .
~diy qig 0 0 i ~q1 ~qi ~J1 ~Gi
.0 >y, > M and thus (7}, ..., 7)) # (75, ..., 75).

<

Hence h; can be defined in G,,A“ by a definition by cases which are pairwise exclusive.
Ad (ii): (ii) follows from the definition of hy, ..., hy by induction on the h-depth of r.
Ad (iii): Assume /\ (Ag’ <o ?jl’) Let lp (1 < lp < i) be such that ¢, = 1121111 (@1)- By
contraposition of the 1mphcat10n established in the proof of (i) one has: 11r£111n (q) > 1121;2 (@)-
Case 1: 121}21'((11) = gllngli(ql)' Then (by h;—definition)

i i -1 in(q;)—1 i
BilF, . R = g T R,

Case 2: q, = 1rgln (@) > min (@) = g;, (where 1 < lo,lo <i). Then

1<I<i
4 cany _ w0t D T a
h‘(rjll,..., ]l) y, . <yl _hi(rjll”"’rji)'
Hence hi, .. ., hy are monotone on M and therefore (by (ii)) on M, which concludes the proof

of (2) from (1) in G,A% (using (5), (7)). Since (1) follows (in G,A%) from Mon(A) A («)
(using (3)), and

F:=Vu'vo <. tuvh(h monotone — Jy1,...,yr <o LDuﬁEIwWA(I]{)
implies (in G,A“) («), we have shown altogether

nAY + Mon(A) +
(3)3F— [v <tun(+)— V Jw? Ao (u, v, 51, hlsl, vy Sk hksl . Sk, W )}
31, ,skEM

® For r A(“ € M we have gi > 2 since e.g. hirj, (€ N) has an h-depth which is strictly greater than those of
subterms in T
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It remains to show that (3) implies
(4) GRLAY + Mon(A) - F — A.

We prove this by a suitable application of quantifier introduction rules: We start with the
variables with smallest upper index, i.e. 31, ... ,y,i. Under these variables we first take those
of maximal lower index, i.e. with y,ﬁ: We split the assumption

q q - =g+l 1 gt q+l
1/\ 1 (Wi, yp > ,...,A‘}LZ‘H,yl R TR A
q= ey P—
(+) = 1=1,..., pP—q
A ( q />D+1 7P+l )
yl,...,yk yooos PRI
q=1,...,p
as well as the disjunction
q._ o R —
At = \/ Jw¥ Ag(u, v, 81, h181, ..., Sk, AEST -« - . Sg, W)
21,...,§k61\/2

into the part in which yl}u, occurs and into its y,iffree part:

1o wl+ S+ =+l 1,141 1+1
F— [vgtu/\ ANy >m eyt AT e Ty )

=1, p1 »mygp ) ) np+1?
/ 3 - . i
(5) A /\() —>\/Hw'YAo(u,v,s]l,hlsjl,...,si,y,ﬁ,w)\/\/(...) }
——— j .
i—free part of (+) ——

yl-free part of A%

yl}u, does not occur at any place other than indicated. Hence V—introduction applied to yl}u,
yields:

6) F—Vyblo <tu A Nwh > - ) AN () =\ 3w Aol yh,w) v /()]
! j i’

where y,i does not occur at any place other than indicated.
Using Mon(A) this implies

() F—fo<tun N(.)—=Vyt\/ 3w Ao(... gt w) v\/(..)].
)

J

(Proof: In (6) put
p, - 1 opltl o pll pptd Fptl 1+ 141 1
yk.—1<1r?<a;<1maX(yk TL e T T e T U1 55 g )+ 1 for y;.

(6) then gives

Fofw<tun N(.)—\ I 4., g5 w) v V(..
M

J
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Mon(A) and \ Jw Ag(. .., g}, w) imply \/ Jw? Ag(...,yi, w), since §i > yi. Now V-introduction
J J
applied to y} and shifting Vy}, in front of \/, which is possible since yi occurs only in this
J

disjunction, proves (7)).
Again by Mon(A) we obtain

\/ VyiIw Ao (..., yp, w)
j

from Vy; V 3w Ag(. ... L Yh, W)

Assumze A\ JyitvVw = Ag(. .., y},w). Then Jy A\ Jyi <o yYw =Ao(...,y}, w). Using Mon(A)
this implies ]Ely AVWI=Ao(...,y,w). ’

Hence (7) iniplies (since yi does not occur in ’s\i)

F—p<tunN(.)—
(8) V 32VyIwAo(u, v, §{, hls{, e hk_ls{ . Siil, xz,y,w) VV(...)].
j

]/
Next we apply the same procedure to the variable y,ﬁ_l and then to y,ﬁ_2 and so on until
all yi,... ,y,i are bounded. We then continue with y,%, y,%_l and so on. This corresponds to
the sequence of quantifications used in the usual proofs of Herbrand’s theorem in order to
show that there is a direct proof from the Herbrand disjunction of a first-order formula to
this formula itself: By taking always variables of minimal upper index it is ensured that any
variable to which the V—-introduction rule is applied occurs in the disjunction \/ Ay only at
places where it is universal quantified in the original formula A. By quantifying under these
variables firstly the one with maximal lower index one ensures that a universal quantifier
is introduced only if the quantifiers which stand behind this one in A have already been
introduced. In addition to these two reasons for the special sequence of quantifications there
is in our situation another (essentially used) property which is fulfilled only if variables which
have minimal upper index are quantified first: If y; has minimal index ¢ (under all variables
which still have to be quantified), then y; occurs in the still remaining part of the implicative
assumption (4) only in the form ‘y;- > (...yéffree...)’. So we are in the situation at the begining
for y} and are able to eliminate this part of (+) which is connected with y§ altogether using
Mon(A) (as we have shown for y}).
Finally we have derived

(9) F — [v<tu— \/ 3209 .. EIx%VygEluﬂAo(u, Vy 1y YLy - oy Thy Yoy W)
and therefore (by contraction of \/)

(10) F — [v < tu — 30V ... 320V 03w Ag(u, v, 21, 91, . . ., Thy Yoo W)
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which (by V-introduction applied to w,v) yields
(11) F — A.

Remark 210 The proof of thm.27 also works for various other systems 7 and domains of
terms S than G,A“ and G, R“. What actually is used in the proof is:

1. Every term ¥” € S with deg(p) < 2 has a majorant ¥*[h!] such that
(i) 7 F Ah.W*[h] s—maj ¥,
(i1) ¥*[h] is built up only from h and terms € S of type level < 1 (by substitution).

2. S is (provably in 7) closed under the successor, definition by cases, A —abstraction and
contains the variable maximum—functional @.

Condition 1) is a sort of an upper bound for the complexity of 7,S. E.g. 1) is not satisfied if
S contains the iteration functional @;; defined by @0y f =¢ y, Pux’yf =0 f(Pixyf) (Note
that @;; is primitive recursive in the usual sense of [6] and not only in the extended sense
of [5]). In the next paragraph we will show that thm.27 becomes false if G, R“ is replaced
by PR’ (see also remark 214 ). Since @;; is on some sense the simplest functional for which
1) fails, this shows that the upper bound provided by 1) is quite sharp. 1) essentially says
that ¥%! can be majorized by a term ¥*[2° hl] which uses h only at a fixed number of
arguments, i.e. there exists a fixed number n (which depends only on the structure of ¥* but
not on x, h) such that for all h,x the value of of ¥*[x, h] only depends on (at most) n—many
h—values. Let us illustrate this by an example: @ defined by ®hx = max(h0, ..., hz) depends
on x + 1-many h—values but is majorized by ®* defined by ®*hx := ha which for every x
depends only on one h—value, namely on hx. If a term ¥ has a majorant which satisfies 1)
we say that ¥ is majorizable with finite support. One easily convinces oneself that &;;
is not majorizable with finite support.

2) is a lower bound on the complexity of 7,5, which also is essential. E.g. take 7 := £?
and S := {0}, where £? is first-order logic with =g, <o extended by quantification over
functions and two constants 0°,1°. Consider now

G =320y 320, fH(Fo(f.2) — Ao(a,y)),
where Fo(f,z) :=(fz=0A0#1) and Ag(z,y) = (y#0Axz =2 — L). Then
L2V 3z, 2 <o 03f(Fo(f, 2) — Ag(z, gz)) A Mon(G), but L2HG,

i.e. thm.27 fails for £2,S. If however £? is extended by A-abstraction, then G becomes
derivable since we can form f := Az.1" now.

Let F~ denote the ‘non-standard’ axiom introduced in [14] (def.4.16) and WKLZ_ be
the generalization of the binary Konig’s lemmas WKL as defined in [14](def.4.25). Theo-
rem 27 combined with the elimination procedure for F'~ from [14] yields the following new
conservation result for WKLgeq:
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Corollary 211 Let A be as in def.26 and thm.27, n > 3. Then®

1. GuAY @ F~ @ AC—qf F A = G,AY + Mon(A) - A. In particular:
GhAY @ F~ @ ACqf FA= G,AY 4+ Mon(A) - A.

2. GuAY @ WKLZ,® AC—qf + A" = G,AY + Mon(A) - A.
In particular:
G AY @ WK L?

seq

®AC—qf F A= G,A“ + Mon(A) - A.

If 7 <1 (in A) then G,AY & F~& AC—qf can be replaced by

E-GoAY + F~+AC*P —qf (with (a« =0AB<1) or (a=1A3=0)).

An analogous result holds for the corresponding variant of G,A“ where the universal
axioms 9) are replaced by the schema of quantifier-free induction.

Proof: 1) By [14](thm.4.21 and remark 3.2.4) G,AY @ F~ @ AC-—qf F A implies the
extractability of a ¥ € G,R* such that

CnAY FYulVo <, tuVh3yr, . .., yx <o PuhIuw? AL

Theorem 27 now yields G,A¥ + Mon(A) - A.
2) follows from 1) by [14](cor.4.28).

Remark 212 Cor.211 is optimal in the following sense: For simplicity let us consider only
the variant of Gz A¥ with the universal axioms replaced by the schema of quantifier-free induc-
tion and let us denote this system for the moment also by G3A“. Then Gz AY® WKLgeqéBA 00
qf is neither conservative over Gz A w.r.t. sentences Vu?3w' Ag(u, w) nor w.r.t. I19-sentences,
which do not satisfy Mon(A). The first assertion follows analogously to the proof of 4.11 (ii)
in [8]. The second claim follows from the fact that even G3AY®AC*-qf proves the X9-
collection principle, whereas GsAY — which is conservative over its first-order fragment, i.e.
over the Kalmar—elementary arithmetic — does not prove this principle (see the proof of thm.1
in [17]). Since every instance of the X —collection principle (having only arithmetical param-
eters) can be prenexed into a I13-sentence, already G3A“®ACY™0—qf is not IT1—conservative
over GsA¥. The condition Mon(A) in cor.211 just rules out any non-trivial instances of
collection.

Proof of theorem 28:

GpAY + A+AC—qf - AY implies the extractability by monotone functional interpretation
(see [14](thm.3.2.2, rem.3.2.4 and the remarks after 3.2.6)) of uniform bounds ¥1,..., ¥, €
Gn,R¥ on Jy; (provably in G,A¥ + A, where

6 Here @ means that F~ and AC—qf must not be used in the proof of the premise of an application of the
quantifier—free rule of extensionality QF-ER. G, A* satisfies the deduction theorem w.r.t & but not w.r.t +.
In fact the theorem also holds for (G,A“+AC-qf)®F~ since the deduction property is used in the proof only
for F’~.
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A= {3Y <5 sV2°, 2"Go(x, Yr, 2) : Yo'y <, sa¥z"Go(,y, z) € A}) which depend only
on uw and h:

(1) G,AY + A FVuVo < tu¥h3y; <o Wiuh . .. Jyp <o PruhIw AL

The assumption G,A“ + A+AC—qf F Mon(A) implies (by monotone functional interpre-
tation, since Mon(A) is implied by the monotone functional interpretation of its negative
translation) that

(2) G,AY + A + Mon(A).
Theorem 27 combined with (1) and (2) yields
GnAY + A F A

The second part of the theorem now follows by monotone functional interpretation, since A
also is a set of allowed axioms A in [14](thm.3.2.2) and G,AY + A+b-AC - A.

For our applications in the next paragraph we need the following corollary of theorem 28:

Corollary 213 Let V2°3y'V: Ag(ul, v, x,y,2) € L(G,AY) be a formula which contains
only u,v as free variables and satisfies provably in
GpAY + A+ AC—qf the following monotonicity property:

(%) Yu, v, 2, %, 4, (% <o & A G >0y AVZA0(u, v, 2,5, 2) — V20 Ag(u, v, 2,7, 2)),

(i.e. Mon(3xVy3z—Ay)). Furthermore let Bo(u,v,wY) € L(G,AY) be a
(quantifier-free) formula which contains only u,v,w as free variables and v < 2, then the
following rule holds:

From a proof
GrAY + A+ AC—qf +

Vulve <; tu(3f WV, 2 Ag(u, v, x, fz,2) — IwYBy(u,v,w)) A (%)
one can extract a term x € G, R* such that

GpAY + A+ b-AC FYulVo <, tuV0* ((I* satisfies the mon. funct.interpr.
Of \v/xoa glayoAO(U, v,T,Y, gy)) — Jw S'Y XUW* BO(U, v, ZU))7

Proof: We may assume that v = 2. The property Mon(G) for
G = Vulvo <; tu3zy°320 w? (Ag(u, v, z,y, 2) — Bo(u,v,w))

follows logically from the monotonicity assumption (k). By the assumption of the rule to be
proved we have

GpAY + A4+ ACqf - GH + Mon(G).

T @ satisfies the mon. funct.interpr. of Va, g3yAo(u, v, z,vy, gy)’ is meant here for fixed u,v (and not uni-
formly as a functional in w,v), i.e. 3@ (@* s—maj ¥ AVz,g Ao (uw,w,@mg,g(&vxg))).
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From this we conclude by thm.28 that
GpAY + A+ b-AC | x satisfies the monotone functional interpretation of G,

for a suitable tuple x of terms € G, R“ which can be extracted from the proof.
G’ is intuitionistically equivalent to (using the fact that GpAY F ——Ay « Ap for quantifier—
free formulas Ag)
Vuvo < tu=—32y=—=3z, w(Ay — By)

of G (This follows immediately if one uses the negative translation which is denoted by * in
[15] ). By intuitionistic logic the following implication holds

G — VuVv <, tu(Voz——3yVz Ag(u,v,x,y, z) — ~—3Jw Bo(u,v,w)).

Hence from ) we obtain a term which satisfies the monotone functional interpretation of the
right side of this implication. In particular we obtain a term ¥ € G,,R¥ such that

GpAY + A+ b-AC F IW (Y s—maj W A VuVv < tuV¥
(\V/x, g AO(ua v, T, Wl'g, g(Lp,Ig)) - BO(ua v, WU’UW)))

Define x € G,R¥ by x := !, &, yt.gu™ (*u™)WyM, where t* € G,RY is such that G,A¥
Ft* s-maj t and u™ := \z0. m<ax(uz) Then
i<z

Vuvv < tuV&* (3P (P* s—maj ¥ AVx, g Ag(u,v,z,Pxg,g(¥zg)))
— Jw <y xu¥* By(u,v,w)),

since ¥ s=maj W and ¥* s-maj ¥ imply VuVv < tu(xul™* >9 Wuv?).

Remark 214 At the end of the next pamgmph we will show that cor.218 does not hold for
PRA*,PR” PRA% (or G,A“+X9-IA, PR", G, A+ X9-IA) instead of G, A® ,G,R?, G, AY
(even for A =10). Since the proof of cor.213 from thm.28 as well as the proof of thm.28 from
thm.27 extends to these theories it follows that also the theorems 27 and 28 do not hold for
them. The proof of thm.27 fails for ¥; € PR" since PR” contains functionals like @i which
are not magjorizable with finite support (see also remark 210 ). The proof of thm.28 fails for
G AY + X9 -IA since the (monotone) functional interpretation of X9 -IA requires ®; and thus
thm. 27 is not applicable.

The mathematical significance of corollary 213 for the growth of bounds extractable from
given proofs rests on the following fact: Direct monotone functional interpretation of

GpAY + A+ ACof FVulVo <, tu(3fVe, 2 Ag(u, v, z, fz,2) — Jw'By(u, v, w))

yields only a bound on Jw which depends on a functional which satisfies the monotone
functional interpretation of (1) 3fVx, z Ay or if we let remain the double negation in front of
3 (which comes from the negative translation) (2) =—3fVx, z Ag. However in our applications
the monotone functional interpretation of (1) would require non—computable functionals
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(since f is not recursive) and the monotone functional interpretation of (2) can be carried
out only using bar-recursive functionals. In contrast to this the bound x only depends on a
functional which satisfies the monotone functional interpretation of the negative translation
of Vx3IyVz Ag(x,y, z): In our applications such a functional can be constructed in PR’. In
particular the use of the analytical premise

3V, zAg
has been reduced to the arithmetical premise

V203V A,.

3 The rate of growth caused by sequences of instances of arithmetical
comprehension and choice for H?—formulas

Using the results from the previous paragraph combined with the methods from [14] one
can determine the impact on the rate of growth of uniform bounds for provable YulvVy <,
tu3dwY Ap—sentences which may result from the use of sequences of instances (which may
depend on the parameters of the proposition to be proved) of:

1. I19-CA and IT)-AC.

2. The convergence of bounded monotone sequences of real numbers (PCM).

3. The existence of a greatest lower bound for every sequence of real numbers which is
bounded from below.

4. The Bolzano-Weierstra§ property for bounded sequences in IR? (for every fixed d).

5. The Arzela—Ascoli lemma.

6. The existence of limsup and liminf for bounded sequences in IR.

In this paper we only consider I1{~CA and IT)-AC as well as certain arithmetical con-
sequences of these principles. The treatment of the other analytical principles listed above
needs a careful representation of analytical objects like continuous functions in G,,A“ as well
as -in the case of 4),5)- the ‘non-standard’ axiom F~ introduced in [14] and will be carried
out in a subsequent paper.

Definition 31 I19-CA(f'©)) := 3¢'V20(gz =¢ 0 — V3°(fzy =0 0)).
(Note that iteration of V1O (IT)-CA(f)) yields CAgy).

Definition 32
Define AS (f1O) 20 40 20) := Vi <q 237 <o yVZ <o 2(fZJ #0 0V fiZ = 0).
A§' can be expressed as a quantifier—free formula in Gp A% (see [14]).

Proposition 33 For n > 1 one has:
1. GRAY proves

Vf, 2,8y, §(% <ox A >0y AVZAS (f, 2.y, 2) — V2" AT (f, 3,9, 2)).
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2. GpAY VO (3gva0 A8 (f,x, g, 2) — ITV-CA(f)).

3. For the functional @ € PR’ defined by ®a2°h! = max Rt (0) we have
i<z

PRA;U l_ ] S—m(lj@ A \V/fl(O)aan hlzly SO @thg(f’xaya hy)

Hence @ satisfies (provably in PRAY ) the monotone functional interpretation of Va, h3y AS (f,z,y, hy)
for all f10).

Proof: 1) is obvious.
2) Let g be such that Vz, 2VZ < 23y < gaVz < 2(fZy # 0V f2Z = 0). By taking Z := x
and Z := z we obtain Vz, 237 < gx(fxy # 0V frz = 0) and thus

Va(Vy < gx(fzxg = 0) < Vz(fzz = 0)).

Hence hx := 0, if Vg S‘gx(fxy =0)
1, otherwise
3) Assume that

satisfies IT7-CA(f).

(%) Vy < @xh3z < aVy < y3IzZ < hy(fzg =0 A fzz #0).

Case 1: 3i < x + 1(h(h'0) < h'0):
(%) applied to y := h'0 < ®xh yields an Z < x such that

(x%) Vg < h'03Z < h(R'0)(fZy = O A fZZ # 0)

and thus for § := 0 one has a z < h(hiO) such that fZZz # 0. But on the other hand —again
by (#%)— one has fiZ = 0 (since Z < h(h'0) < h'0) which is a contradiction.
Case 2: Vi < z + 1(h(h*0) > h'0):
By the pigeon-hole principle, () implies that there exists ¢ < j < x4+ 1 and & < x such
that
(1) Vg < h'032 < h(R'0)(fij = O A fEZ #0)

and
(2) Vg < W03z < h(W0)(fEg =0 A f2Z #0).

Hence 32 < h(h'0)(f2Z # 0) by (1) (take § := 0) and V§ < h70(f&§ = 0) by (2) which is a
contradiction since by the case (and i < j < = + 1) h(h'0) = hiT10 < RI0.

Put together we have proved that Vf, x, hdy <¢ ®zh Ag(f, x,y, hy) which is equivalent to
a purely universal sentence and hence an axiom of G, A¥ (In fact one easily verifies that this
assertion would also be provable in G,AY¥ if we would have instead of the universal axioms
only the schema of quantifier—free induction included as axioms of G, A¥).

It remains to show that ¢ s—maj ®: Assume that h s—maj; h. By quantifier-free induction
on x one shows that Vz(h*0 > h*0). Hence (by quantifierfree induction on Z): VZ,2(Z >
x — PTh > dxh).

Cor.213 combined with prop.33 yields
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Proposition 34 Letn > 1 and By(u!,v",w") € L(G, A¥) be a quantifier-free formula which
contains only u',v™,wY free, where v < 2. Furthermore let £,t €G, R and A be as in thm.28.
Then the following rule holds

GuAY + A+ AC-qf FVulvv <, tu(IT1{-CA(¢uv) — JwY Bo(u, v, w))

= (eff.)x € G, R* such that

GuAY + A+ b-AC FVulVo <, tuV&*((F* satifies the mon. funct.interpr.
of V20, k1 3yC AS (uv, z,y, hy)) — Fw <., xu¥* Bo(u,v,w))

and in particular

PRAY + A+ b-AC +VulVo <; tudw <, xu¥ Bo(u,v,w),

where W := \x°, h'. max (®;i0h)( = A\z°, k1. max (h'0)).
1<z+1 1<z+1

In the conclusion, A+b-AC can be replaced by A, where A is defined as in thm.28. If
A =0, then b—AC can be omitted from the proof of the conclusion. If T < 1 and the types of the
J-quantifiers in A are < 1, then GpA® 4+ A+AC-qf may be replaced by E-Gp A® + A4+AC*P -

qf, where o, 3 are as in cor.211.

Remark 35 In general prop.34 only guarantees a primitive recursive (in the sense of Kleene

[6],[7] and not only in the generalized sense of Gédel’s T') bound ® := Au.xu¥ € PR" on
Jw. This is not avoidable since I1Y-CA(E(f)) proves XY-IA(f) relative to G A“ for suitable
&. If however the proof applies W only to special functions like e.g. h :== S then much better
bounds will result.

We now consider II)—instances of AC,,:
I)-AC(fFHOO0)). = w0 (va03y 20 (flayz =00) — Fg'Va 2°(fla(gx)z =0 0)).

IT?-AC(f) can be reduced to IT1Y-CA(g) uniformly by
Proposition 36

Go A + ACHO—gf Y HOOO () -CA(f') — IT)-AC(f)),
where f':= M0, 20 f(13 (v), 3 (v), V3 (v), 2)8.
Proof: By ITI)-CA(f') there exists a function h! such that
Vol (hv = 0 < Vz(f'vz = 0)).
hlzy = h(v3(l,2,y)). Then
Vi, z,y(hlzy = 0 — Vz(flryz = 0)).
ACO0gf applied to YaIy(hlzy = 0) yields gV, z(flz(gz)z = 0).

As a corollary of prop.34 and prop.36 we obtain

8 Here v¥ are the coding functions for tuples from [14].
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Corollary 37 Forn > 2 proposition 34 also holds with IT)~AC(Euv) (but now with A§ ((¢uv)’, z,y, hy)
in the conclusion).

Remark 38 Suppose that n > 2.

l J -
1. We may also have finite conjunctions A IIY-CA(&uv) A A II)-AC(&uv) of instances of
i=1 i=1

IT9-CA and IT)-AC in prop. 34 (with a suitable £ € G, R® instead of & in the conclusion):
Since instances of I1Y-AC reduce to instances of I1Y-CA by the proposition above we only
have to verify (in GaA®) that IIY-CA(f) A IIV-CA(g) — IIV-CA(pfg), where p € GoR*
is defined by

J(Gez,y), of 1z =0
plgvy = {g((jgx, y)), otherwise.
This however is clear.

2. In prop.34 even sequences YIVII)-CA(Eunl), VI ITY-AC(€uvl) of instances of I19-CA,IIY-
AC are allowed (instead of IT19-CA(Euv),ITV-AC(Euv) only) since such sequences of in-
stances can be reduced to single instances in G A“: VICIIY-CA(f1) follows from IT9-
CA(f"), where f'zy := f(j1z, jox,y). Similarly for IIY-AC (note that the universal closure
under arithmetical parameters has already been incorporated within the definition of IIY-

AC(S))-

By I19-CA~, [1?-AC~and X9-AC~ we denote the schemas of IT{-comprehension and IT{,39-
choice for formulas without parameters of type > 1, i.e.

I)-CA~ = 3f2%(fo =9 0 = Yy  Ag(x,y,a")),

IY-AC™ - Va3 Ay (z, y, 2,a°) — IfVaVz Ag(x, fz, 2,a),
E9-ACT ¢ Va"3y03:%0 Ay (2, y, 2,0, a°) — FfVrI2Vo Ag(z, fx, 2,0, a),
where only z,y,a (z,y,z,a resp. x,y,z,v,a) occur free in Ag(z,y,a) (Ao(x,y,z,a) resp.
AO(%% Z,’U,Q)).
As a special case of prop.34 and cor.37 we have

Proposition 39 Let n > 2 and v < 2 and Bo(u!,v™,w") contains only u,v,w as free vari-
ables; t € G, R“. Then the following rule holds

G AY @ AC—qf @ IIY-CA~ @ X9-AC™ + YulVo <, tuFw) By(u, v, w)
= 30 € PR” such that
PRAY FVulVv <, tudw <, Yu By(u,v,w).

If T < 1, we may replace G, AY & AC—qf® II?-CA~ @ X9-AC~ by
E-GuA“+ACB—qf +I1)-CA~ + £9-AC~, where (a =0AB < 1) or
(a=1ApF=0).
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In particular

E-Gp A+ ACP—qf +1T0-CA~ + X9-AC~ + VudTOR(u,v)
= 3 primitive recursive function ¢ :
Vu R(u, pu) is true,

where R is a primitive recursive relation. If in the definition of G, A% the universal axioms
9) are replaced by the schema of quantifier—free induction one has PRA + R(u, pu)

(Note that this proposition also holds for n = co. Since all primitive recursive functions
(but not all primitive recursive functionals of type 2!) can be defined in GooAY (see §2 of
[14]) we may assume that GooA“ D PRA).

Proof: Since I1?-CA~ follows from X9-AC~ which in turn is implied by ITY-AC~ (using
pairing) it suffices to consider an instance A of the later (for simplicity we may assume that
we have only one arithmetical parameter):

A(a®) == Va2 Ay (2, y, 2, 0) — Tf IV, 2 Ag(x, fx, 2, a),

where Ag(x,y, z, a) is quantifier-free and contains only z, y, z, a as free variables. Let £ €G,,R¥
be such that Laxyz =¢ 0 « Ag(x,y, z,a). Then IIP-AC(€) implies Va’A(a). The corollary
now follows from prop.34, cor.37 and rem.38.1) by the deduction theorem for @.

Remark 310 Even for the second-order fragment GoA? of GoA® (and without the universal
axioms 9) but only the schema of quantifier—free induction instead of them) the theory
GoA?% + II)-CA~ + II9-IR™ proves the totality of the Ackermann function (see [13]). This
refutes a result stated in Mints [16] and a fortiori various generalizations of this result stated
in [19] (thm.5.8,cor.5.9,thm.5.13,cor.5.14(ii)). For details see [12](chapter 12) and also [13].
Proposotion 39 also becomes false if the primitive recursive functional @0y f =g v, dx'y f =o
f(z,y,Pzyf) is added to G,A¥ (see [12](chapter 12)). Therefore any proof of a result like
this proposition has to exploit carefully the structure of the type-2-functionals of G, A“.

Arithmetical consequences of II)—CA(f) and IT1Y-AC(f)

Using IT)-CA(f) we can prove (relatively to GoA“) every instance of AJ-TA with fixed
function parameters:

19(¥2°(FuOO (flauw =g 0) < Ya'3° (glead = 0)) —
AYTA(f, 9):={BuVu(fl0uv = 0) AVz(FuVo(flzuv = 0) — JuVo(flz'uv = 0))
— VeIuVo(flouv = 0)])

Define f':= \i% 0. f (v} (i), v3(i), V3 (i), v) and
g = X% 00 5g(g(vi (i), V3 (i), V3 (i),v)). We now show

Proposition 311
GaA” + AC™0—gf EYf,g( I} -CA(f') N TY-CA(g") — AY-TA(f, g)).
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Proof: IT{-CA(f') and IT?-CA(g') imply the existence of functions ki, ho such that for all
l,z,u
hilzu =¢ 0 « Yo(flzuv =¢ 0) and holzu =¢ 0 < Jv(glzuv = 0).

Assume now that
Va0 (3uOVo (flazuv =g 0) — Va3 (glzav = 0)).

Then
Va(Ju(hilzu = 0) < Va(halza = 0)).

With classical logic this yields
V2?30 (Va(holzt = 0) — 2z = 0] A [z = 0 — Fu(hilzu = 0)]).

0
€xy

By AC%%qf we obtain a function a such that
Vr(ax = 0 < Ju(hilzu = 0)).
AY-TA(f, g) now follows by applying QF-IA to Ag(z) := (ax = 0).

Next we show that IT)-instances (with fixed function parameters) of the collection prin-
ciple
CP : Vz <o 23y°A(z, &, y) — JyoVz <o 23y <o yoA(z,Z,7).

are derivable from ITY-AC-instances.

IIY-CP(f) =
VIO, 20 (Va < 23y0V20(fledyz =¢ 0) — JyoVE < 23y <o yoVz(flziyz = 0)).

Proposition 312
GoAY BV f(IT-AC(f') — I} -CP(f)),
where f' such that f'i¥yz =¢ 0 < (& < v3(i) — f(vi(i),v3(i),%,y, 2) =0 0).
Proof: ITY-AC(f") yields
VI0, 2% (VE < 23V (flezdyz = 0) — 3nVE < aVz(flzd(hi)z = 0)).
Define yg := 1 + ®1ha (Recall that ¢1ha = r?<a£<(hi)).

We conclude this paper by showing that cor.213 is false (even for A = ()) when G, A%,
GnR¥, GnAY are replaced by G,A® + X9-TA, PR, G,A? + X9-TIA or PRA“, PR”, PRAY:
It is well-known that there is an (function parameter—free) instance G of IT9-TA such that

G3A® + X9 T1A + G V2" Ay (z,y),
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where Vo3y < faz Ag(z,y) implies that f has the growth of the Ackermann function.

Let B(2?) := Va3 By(a®, u, v, ) be the induction formula of G, where By(a, u,v, ) con-
tains only a,u, v, x as free variables. By applying IT?—CA(f) to f(i,v) = tg, (v (i), V3 (i), v, 13 (7)),
where t g, is the characteristic function of By, G reduces to IT)-IA (with function parameters)
and hence to XV-TA (IT2-TA and X9-TA are equivalent, see [19]). Hence

G3A“ + XV-TA + IIV-CA(f) — Va3y Ag(z,y).

If cor.213 would apply to G3A¥ + X9-TA and PR" we would obtain (by the proof of prop.
34) a term s' € PR” such that Va3y < sz Ap(z,y). This however would contradict the

well-known fact that every s' € PR" is primitive recursive.
The same argument applies to PRA% since PRA*+AC%0 —¢f - X9-TA.
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