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1 Introduction

In [14] we have introduced a hierarchy (GnAω)n∈IN of subsystems of arithmetic in all finite
types where the growth of the definable functions of GnAω corresponds to the well-known
Grzegorczyk hierarchy. For certain (in general) non-constructive analytical axioms ∆ and the
schema of quantifier–free choice AC-qf the following rule is shown:

¿From a proof

GnAω + ∆+AC-qf ⊢ ∀u1, k0∀v ≤τ tuk∃wγA0(u, k, v, w),

(where t is a closed term, A0 is quantifier-free and contains only u, k, v, w free, γ ≤ 2, ρ
is an arbitrary type and ≤τ is defined pointwise) one can extract (by monotone functional
interpretation) a uniform bound Φ on ∃wγ which is given by a closed term of GnAω and does
not depend on v, i.e.

∀u, k∀v ≤ tuk∃w ≤ Φuk A0(u, k, v, w)

holds in the full set-theoretic model.
In particular Φuk is a polynomial (an elementary recursive function) in uM := λx0.maxi≤x u(i)

and k0 in case n = 2 (resp. n = 3).

In a paper under preparation we will show that substantial parts of classical analysis can
be carried out in G3A

ω + ∆+AC-qf and even in G2A
ω + ∆+AC-qf for suitable ∆ (see [14]

for more information on this).

On the other hand there are central theorems in analysis whose proofs use arithmetical
instances of AC, i.e. instances of

ACar : ∀x0∃y0A(x, y) → ∃f1∀x0A(x, fx),
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where A ∈ Π0
∞ (A may contain parameters of arbitrary type), and which are not covered by

the results mentioned above.
Examples are the following theorems

1. The principle of convergence for bounded monotone sequences of real numbers (or equiv-
alently: every bounded monotone sequence of reals has a Cauchy modulus (PCM)).

2. For every sequence of real numbers which is bounded from above there exists a least upper
bound.

3. The Bolzano–Weierstraß property for bounded sequences in IRd (for every fixed d).
4. The Arzelà–Ascoli lemma.
5. The existence of the limit superior for bounded sequences of real numbers.

We will investigate these theorems (w.r.t. to their contribution to the rate of growth of
uniform bounds extractable from proofs which use them) in a subsequent paper using the
method developed in this paper and discuss now only (PCM) in order to motivate the results
of the present paper which is the second one in a sequence of papers resulting from the
authors Habilitationsschrift [12]. All undefined notions are used in the sense of [14] on which
this paper relies. A0, B0, C0, . . . always denote quantifier-free formulas.

Using a convenient representation of real numbers, (PCM) can be formalized as follows:

(PCM) :

{
∀a

1(0)
(·) , c1(∀n0(c ≤IR an+1 ≤IR an)

→ ∃h1∀k0∀m, m̃ ≥0 hk(|am −IR am̃| ≤IR
1

k+1)).

(PCM) immediately follows from its arithmetical weakening

(PCM−) :

{
∀a

1(0)
(·) , c1(∀n0(c ≤IR an+1 ≤IR an)

→ ∀k0∃n0∀m, m̃ ≥0 n(|am −IR am̃| ≤IR
1

k+1))

by an application of ACar to

A :≡ ∀m, m̃ ≥ n(|am −IR am̃| ≤IR
1

k + 1
) ∈ Π0

1

(≤IR∈ Π0
1 follows from the fact that real numbers are given as Cauchy sequences of rationals

with fixed rate of convergence in our theories).
It is well–known that a constructive functional interpretation of the negative translation of

ACar requires so–called bar-recursion and cannot be caried out e.g. in Gödel’s term calculus
T (see [21] and [15] ). ACar is (using classical logic) equivalent to CAar+AC0,0–qf, where

CAar : ∃g1∀x0(g(x) =0 0 ↔ A(x)) with A ∈ Π0
∞,

(and AC0,0–qf is the restriction of ACar to quantifier-free formulas) and therefore causes an
immense rate of growth (when added to e.g. G2A

ω). ¿From the work in the context of ‘reverse
mathematics’ (see e.g. [3],[20]) it is known that 1)–5) imply CAar relatively to (a second-order

version of) P̂A
ω
|\+AC0,0–qf (see [1] for the definition of P̂A

ω
|\). In [12] it is shown that this

holds even relatively to G2A
ω.
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In contrast to these general facts we prove in this paper a meta–theorem which in par-
ticular implies that if (PCM) is applied in a proof only to sequences (an) which are given
explicitely in the parameters of the proposition (which is proved) then this proof can be
(effectively) transformed (without causing new growth) into a proof of the same conclusion
which uses only (PCM−) for these sequences. By this transformation the use of ACar is elim-
inated and the determination of the growth caused (potentially by (PCM)) reduces to the
determination of the growth caused by (PCM−).

More precisely our meta–theorem has the following consequence:
Let T ω :=GnAω and χ denote a closed term of GnAω (having an appropriate type). Then

the following rule holds

(1)





T ω + AC–qf ⊢ ∀u1∀v ≤ρ tu

(∃h1∀k0∀m, m̃ ≥0 hk(| ˜(χuv)m −IR
˜(χuv)m̃| ≤ 1

k+1) → ∃wτA0(u, v,w))

⇒ there exists a Φ ∈ GnAω such that

T ω ⊢
(
(∀u1∀v ≤ρ tu(∀k0∃n0∀m, m̃ ≥0 n(| ˜(χuv)m −IR

˜(χuv)m̃| ≤ 1
k+1)

→ ∃wτA0(u, v,w)))

∧Φ fulfils the mon. funct. interpr. of the negative trans. of ( . . . )
)
.

(Here ã(n) := maxIR(0,min
i≤n

(a(i))). By this construction every sequence a1(0) represents a

decreasing sequence of positive real numbers. The restriction to the special lower bound
c :=IR 0 is convenient but of course not essential.)

In contrast to (PCM) the (negative translation of the) principle (PCM−) has a simple
constructive monotone functional interpretation which is fulfilled by a functional Ψ which
is primitive recursive in the sense of [6]. Because of the nice behaviour of the monotone
functional interpretation with respect to the modus ponens one obtains (by applying Φ to
Ψ) a monotone functional interpretation of

∀u1∀v ≤ρ tu∃wτA0(u, v,w)

and so (if τ ≤ 2) using tools from [11],[14] a uniform bound ξ for ∃w, i.e.

∀u1∀v ≤ρ tu∃w ≤τ ξuA0(u, v,w),

where ξ is primitive recursive in the sense of Kleene [6] (and not only in the generalized sense
of Gödel’s calculus T ).

This conclusion also holds for sequences of instances ∀n0 PCM(χuvn) of PCM(a) instead
of PCM(χuv).

Let us consider the following general situation:
For

F (a) :≡ ∀x0
1∃y0

1 . . . ∀x0
k∃y0

kF0(x1, y1, . . . , xk, yk, a),

where x, y, a are all the free variables of F0, we define the Skolem normal form FS of F
by

FS(a) :≡ ∃f1, . . . , fk∀x0
1, . . . , x

0
k F0(x1, f1x1, . . . , xk, fkx1 . . . xk, a).
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If we could prove that

(2)

{
T ω(+AC–qf) ⊢ ∀u1∀v ≤ρ tu(FS(u, v) → ∃wτA0(u, v,w)) ⇒
T ω ⊢ ∀u1∀v ≤ρ tu(F (u, v) → ∃wτA0(u, v,w)),

then (1) would follow as a special case.

(2) in turn is implied by

(3) T ω(+AC–qf) ⊢ GH ⇒ T ω ⊢ G,

where

GH :≡

{
∀u1∀v ≤ρ tu∀h1, . . . , hk∃y0

1, . . . , y
0
k, w

τ

G0(u, v, y1, h1y1, y2, h2y1y2, . . . , yk, hky1 . . . yk, w)

is the (generalized)1 Herbrand normal form of

G :≡ ∀u1∀v ≤ρ tu∃y0
1∀x0

1 . . . ∃y0
k∀x0

k∃wτG0(u, v, y1, x1, . . . , yk, xk, w).

Since ∀u1∀v ≤ρ tu(F (u, v) → ∃wτA0) can be transformed into a prenex normal form G whose
Herbrand normal form is logically equivalent to

∀u∀v ≤ tu(FS(u, v) → ∃wA0), (2) is a special case of (3).

Unfortunately (3) is wrong (even without AC–qf) for T ω =GnAω, PRAω and much weaker
theories. In fact it is false already for the first-order fragments of these theories augmented by
function variables. For (a second-order fragment of) PRAω +Σ0

1–IA this was proved firstly in
[10] (thereby detecting a false argument in the literature). In §2 below we will prove a result
which implies this as a special case and refutes (3) also for GnAω (and their second-order
fragments even when the universal axioms 9) from the definition of GnAω are replaced by
the schema of quantifier–free induction).

On the other hand we will show that (3) is true for T ω =GnAω (but remains false for
T ω =PRAω) if G satisfies a certain monotonicity condition (see def.26 below) which is fulfilled
e.g. in (1). We may add also axioms ∆ to GnAω having the form ∀xδ∃y ≤τ sx∀zγG0(x, y, z),
where G0 is quantifier-free and s a closed term. As mentioned above such axioms cover
substantial parts of classical analysis relatively to G2A

ω (see [12] and [14] for details).

This result will be used in §3 to determine the growth caused by (sequences of) instances
of the restriction of ACar and CAar to Π0

1 formulas: Π0
1–AC, Π0

1–CA.

In a subsequent paper we will treat the analytical principles mentioned above. It will
turn out that 1)-4) have the same contribution to the growth of uniform bounds as Π0

1 -CA,
whereas 5) may produce a growth of the Ackermann type.

1 The Herbrand normal form is usually defined only for arithmetical formulas, i.e. if u, v, w are not present.
In this case it coincides with our definition. In G2A

+ in §2 below, u, v, v do not occur and the hi are free
function variables.
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2 Elimination of Skolem functions of type 0(0) . . . (0) in higher type theories for
monotone formulas: no additional growth

We first prove a result which in particular refutes (3) from the introduction (even without
AC–qf) for GnAω (with n ≥ 2), G∞Aω and PRAω:

Let G2A be the first-order part of G2A
ω (without the universal axioms 9) from [14]

but only with the schema of quantifier-free induction instead of them) and G2A
+ be G2A

augmented by function variables and a substitution rule

SUB :
A(f)

A(g)
.

G2A
+ contains the schema of quantifier–free induction with function parameters .

Proposition 21 Let A ∈ Π0
∞ be a theorem of (first-order) Peano arithmetic PA. Then one

can construct a sentence Ã ∈ Π0
∞ such that

G2A
+ ⊢ ÃH and G2A ⊢ A ↔ Ã.

Proof: If PA ⊢ A, then there are arithmetical instances (without function parameters) of
the induction schema such that for their universal closure F̃1, . . . , F̃k

G2A ⊢
k∧

i=1

F̃i → A,

since PA ⊂ G2A + Π0
∞–IA−, where Π0

∞–IA− is the induction schema for all arithmetical
formulas without function variables.

Let B be any prenex normal form of (
k∧

i=1
(yi =0 0 ↔ Fi(xi)) → A), where Fi denotes the

induction formula of F̃i, then

Ã :≡ ∃a, x1, . . . , xk∀y1, . . . , yk B(x1, . . . , xk, y1, . . . , yk, a)

is a prenex normal form of

∀a, x1, . . . , xk∃y1, . . . , yk

k∧

i=1

(yi = 0 ↔ Fi(xi)) → A,

where a are the (number) parameters of the induction formulas Fi. Because of

G2A ⊢ ∀a, x1, . . . , xk∃y1, . . . , yk

k∧

i=1

(yi = 0 ↔ Fi(xi)),

we obtain
G2A ⊢ A ↔ Ã.
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Since ÃH is logically implied by

C :≡ ∃a, x1, . . . , xk B(x1, . . . , xk, f1ax1 . . . xk, . . . , fkax1 . . . xk, a),

it remains to show that G2A
+ ⊢ C:

Assume ∀a, x1, . . . , xk

k∧
i=1

(fiax1 . . . xk = 0 ↔ Fi(xi)). Quantifier–free induction applied to

A0(xi) :≡ (fi(a, 0, . . . , 0, xi, 0, . . . , 0) = 0) yields F̃i. Hence

G2A
+ ⊢ ∀a, x1, . . . , xk

k∧

i=1

(fiax1 . . . xk = 0 ↔ Fi(xi)) → A,

i.e. G2A
+ ⊢ C.

Corollary 22 (to the proof) Let G2A[f1, . . . , fk] denote the extension of G2A which is
obtained by adding new function symbols f1, . . . , fk which may occur in instances of QF–IA.
Then G2A[f1, . . . , fk] ⊢ ÃH and G2A ⊢ A ↔ Ã (with A, Ã as in the proof above), where
f1, . . . , fk are the function symbols used in the definition of ÃH .

Corollary 23 1. For each n ∈ IN one can construct a sentence A ∈ Π0
∞ such that

G2A
ω ⊢ AH , but G∞Aω + Σ0

n–IA ⊂ PRAω + Σ0
n–IA ⊢/ A.

2. For each n ∈ IN one can construct sentences A ∈ Π0
∞ and a sentence ∀x0∃y0B0(x, y) ∈ Π0

2

such that

G2A
ω ⊢ AH , but G2A

ω + A ⊢ ∀x0∃y0B0(x, y),

where fx := min y[B0(x, y)] is not < ωn(ω)–recursive.

Proof: 1) Let n ≥ 1 and A ∈ L(PA) be an instance of Σ0
n+1–IA which is not provable in

PRAω +Σ0
n–IA (such an instance exists since every < ωn+1(ω)–recursive function is provably

recursive in PRAω + Σ0
n+1–IA, but in PRAω + Σ0

n–IA only < ωn(ω)–recursive functions are
provably recursive (This follows from [18](thm.5) using the fact that PRAω + Σ0

n–IA has a
functional interpretation by functionals in Parsons calculus Tn−1) and there are < ωn+1(ω)–
recursive functions which are not < ωn(ω)–recursive). Construct now Ã as in prop.21 . It
follows that G2A

ω ⊢ ÃH , but PRAω + Σ0
n–IA ⊢/ Ã.

2) follows from prop.21 and the fact that every α(< ε0)–recursive function is provably
recursive in PA.

The reason for the provability of ÃH in prop.21 is that the schema of quantifier–free
induction is applicable to the index functions used in defining ÃH . This always is the case
in the presence of the substitution rule SUB or ∀1–elimination in theories like G2A

ω where
quantification over functions is possible.
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In the following we show that the same phenomenon occurs if QF–IA in G2A
+ is restricted

to formulas without function variables but instead of this new functional symbols Φmax,n

are added (for each number n ∈ IN) together with the axioms

(max, n) :
n∧

i=1

(yi ≤0 xi) → fy ≤0 Φmax,nfx,

where f is an n–ary function variable.

(max) := ∪n(max, n).

We call the resulting system G2A+(max).

Remark 24 (max, 1) is fulfilled by the functional Φ1fx = max(f0, . . . , fx) from GnAω. By
λ–abstraction and finite iteration of Φ1 one can easily define a functional satisfying (max, n)
(Hence G2A+(max) is a subsystem of G2A

ω). This is the reason for calling this axiom (max).

Of course instead of Φ1 one could also use e.g. Φ2fx =
x∑

i=0
fi.

Proposition 25 Let A ∈ Π0
∞ be a theorem of PA. Then one can construct a sentence

Ã ∈ Π0
∞ such that

G2A + (max) ⊢ ÃH and G2A ⊢ A ↔ Ã.

Proof: Since PA ⊢ A, there are arithmetical instances (without function parameters) of the
induction schema such that for their universal closure F̃1, . . . , F̃k

G2A ⊢
k∧

i=1

F̃i → A.

Lets consider now the so-called collection principle

CP : ∀x̃0(∀x <0 x̃∃y0F (x, y, a) → ∃z∀x <0 x̃∃y <0 z F (x, y, a)),

where x, y, a are all free variables of F . This principle has been studied proof–theoretically in
[17] and also in [19]. By [19] (prop.4.1 (iv)) one can construct for every instance F̃ of Σ0

n–IA
instances Fi of Σ0

n+1–CP (i.e. CP restricted to Σ0
n+1–formulas) such that

∧
i

Fi → F̃ . From the

proof in [19] (which uses only QF–IA and the function −· ) it follows that G2A ⊢
∧
i

Fi → F̃ .

Let F1, . . . , Fl denote such instances of CP whose universal closures imply F̃1, . . . , F̃k. Fi has
the form

Fi :≡ (∀x <0 x̃∃y0Gi(x, y, a) → ∃z∀x < x̃∃y < z Gi(x, y, a)).

Thus G2A proves

(1) ∀a, x̃
l∧

i=1

(∀xi <0 x̃∃y0
i Gi(xi, yi, a) → ∃zi∀xi < x̃∃yi < zi Gi(xi, yi, a)) → A.
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Consider now

B :≡





∀a, x̃, x1, . . . , xl∃y1, . . . , yl
l∧

i=1
(∀ui < x̃∃wiGi(ui, wi, a) → (xi < x̃ → Gi(xi, yi, a))) → A

and

C :≡
( l∧

i=1

(∀ui < x̃∃wiGi(ui, wi, a) → (xi < x̃ → Gi(xi, yi, a))) → A
)
.

Let Cpr be an (arbitrary) prenex normal form of C. Then

Bpr :≡ ∃a, x̃, x1, . . . , xl∀y1, . . . , ylC
pr(x̃, x1, . . . , xl, y1, . . . , yl, a)

is a prenex normal form of B.
We now show i) G2A+(max) ⊢ (Bpr)H and ii) G2A ⊢ Bpr ↔ A.
i) Define

B̂ :≡ ∃a, x̃, x1, . . . , xlC
pr(x̃, x1, . . . , xl, f1ax̃x1 . . . xl, . . . , flax̃x1 . . . xl, a).

The implication B̂ → (Bpr)H holds logically. Hence we have to show that G2A+(max) ⊢ B̂:

B̂ is logically equivalent to

(2) ∀a, x̃
l∧

i=1

( ∀ui < x̃∃wiGi → ∀x(xi < x̃ → Gi(xi, fiax̃x1 . . . xl, a))︸ ︷︷ ︸
Hi:≡

) → A.

By (max) applied to fi, ∀xi(xi < x̃ → Gi(xi, fiax̃x1 . . . xl, a)) implies
∃zi∀xi < x̃∃yi < ziGi(xi, yi, a). Thus

G2A + (max) ⊢ Hi → Fi for i = 1, . . . l.

By (1),(2) this yields G2A+(max) ⊢ B̂.
ii) We have to show that G2A⊢ B ↔ A. This follows immediately from the fact that

∀a, x̃, x1, . . . , xl∃y1, . . . , yl

l∧

i=1

(∀ui < x̃∃wiGi(ui, wi, a)→(xi < x̃ → Gi(xi, yi, a)))

holds logically.

Prop.21 and prop.25 show that for theories like GnAω the Herbrand normal form AH of an
arithmetical formula A in general is much weaker than A with respect to provability in GnAω

(compare cor.23 ). This phenomenon does not occur if A satisfies the following monotonicity
condition:
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Definition 26 Let A ∈ L(GnAω) be a formula having the form

A ≡ ∀u1∀v ≤τ tu∃y0
1∀x0

1 . . . ∃y0
k∀x0

k∃wγA0(u, v, y1, x1, . . . , yk, xk, w),

where A0 is quantifier–free and contains only u, v, y, x,w free. Furthermore let t be ∈ GnRω

and τ, γ are arbitrary finite types.

1. A is called (arithmetically) monotone if

Mon(A) :≡





∀u1∀v ≤τ tu∀x1, x̃1, . . . , xk, x̃k, y1, ỹ1, . . . yk, ỹk( k∧
i=1

(x̃i ≤0 xi ∧ ỹi ≥0 yi) ∧ ∃wγA0(u, v, y1, x1, . . . , yk, xk, w)

→ ∃wγA0(u, v, ỹ1, x̃1, . . . , ỹk, x̃k, w)
)
.

2. The Herbrand normal form AH of A is defined to be

AH :≡ ∀u1∀v ≤τ tu∀hρ1

1 , . . . , hρk

k ∃y0
1, . . . , y

0
k, w

γ

A0(u, v, y1, h1y1, . . . , yk, hky1 . . . yk, w)︸ ︷︷ ︸
AH

0
:≡

,where ρi = 0(0) . . . (0)︸ ︷︷ ︸
i

.

Theorem 27 Let n ≥ 1 and Ψ1, . . . , Ψk ∈ GnRω. Then

GnAω + Mon(A) ⊢ ∀u1∀v ≤τ tu∀h1, . . . , hk

( k∧
i=1

(hi monotone)

→ ∃y1 ≤0 Ψ1uh . . . ∃yk ≤0 Ψkuh∃wγAH
0

)
→ A,

where (hi monotone) :≡ ∀x1, . . . , xi, y1, . . . , yi(
i∧

j=1
(xj ≥0 yj) → hix ≥0 hiy).

Theorem 28 Let A be as in thm.27 and ∆ be as in [14](thm.3.2.2), i.e. a set of sentences
∀xδ∃y ≤ρ sx∀zηG0(x, y, z) where s is a closed term of GnAω and G0 a quantifier-free formula,
and let A′ denote the negative translation2 of A. Then the following rule holds:





GnAω+AC–qf + ∆ ⊢ AH ∧ Mon(A) ⇒
GnAω + ∆̃ ⊢ A and by monotone functional interpretation
one can extract a tuple Ψ ∈ GnRω such that

GnAω
i + ∆̃ ⊢ Ψ satisfies the monotone functional interpretation of A′,

where ∆̃ := {∃Y ≤ρδ s∀xδ, zηG0(x, Y x, z) : ∀xδ∃y ≤ρ sx∀zηG0(x, y, z) ∈ ∆}. (In particular
the second conclusion can be proved in GnAω

i + ∆+ b-AC)3.

2 Here we can use Gödel’s [5] translation or any of the various negative translations. For a systematical
treatment of negative translations see [15].

3 Here b–AC:=
⋃

δ,ρ∈T

{
(b–ACδ,ρ)

}
denotes the schema

(b–ACδ,ρ) : ∀Z
ρδ

(
∀x

δ
∃y ≤ρ Zx A(x, y, Z) → ∃Y ≤ρδ Z∀xA(x, Y x,Z)

)
.
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Remark 29 In theorems 27,28 one may also have tuples ‘∃w’ instead of ‘∃wγ’ in A.

Proof of theorem 27: We assume that

(0)∀u1∀v ≤τ tu∀h1, . . . , hk(
k∧

i=1

(hi monotone) → ∃y1, . . . , yk≤0 Ψuh∃wγAH
0 )

(This assumption follows from the implicative premise in the theorem by taking Ψuh :=
max0(Ψ1uh, . . . , Ψkuh)). By [14](cor.2.2.24 and rem.2.2.25) one can construct a term Ψ∗[u, h]0

such that

1. Ψ∗[u, h] is built up from u, h,A0, . . . , An, S1, 00,max0 only (by application).
2. λu, h.Ψ∗[u, h] s–maj Ψ (see [14] for the definition of s–maj).

1) in particular implies:

1∗) Every occurrence of an hj ∈ {h1, . . . , hk} in Ψ∗[u, h] has the form

hj(rn1
, . . . , rnj

), i.e. hj occurs only with a full stock of arguments but not as a function
argument in the form s(hjrn1

. . . rnl
) for some l < j.

By 2), ∀u1(uM s–maj u) (where uMx := max
i≤x

ui) and (hi monotone → hi s–maj hi) we

have

2∗) GnAω ⊢ ∀u∀h1, . . . , hk(
k∧

i=1
(hi monotone) → Ψ∗[uM , h] ≥0 Ψuh).

(Note the the replacement of hi by hM
i := λx1, . . . , xi. max

x̃1≤x1

...
x̃i≤xi

h(x̃1, . . . , x̃i), which would

make the monotonicity assumption on hi superfluous, would destroy property 1∗) on which
the proof below is based. This is the reason why we have to assume hi to be monotone. In
order to overcome this assumption we will use essentially the monotonicity of A).

Let r1, . . . , rl be all subterms of Ψ∗[uM , h] which occur as an argument of a function
∈ {h1, . . . , hk} in Ψ∗[uM , h] plus the term Ψ∗[uM , h] itself.

Let r̂j [a1, . . . , aqj
] be the term which results from rj if every occurrence of a maximal

h1, . . . , hk–subterm (i.e. a maximal subterm which has the form hi(s1, . . . , si) for an i =
1, . . . , k) is replaced by a new variable and let a1, . . . , aqj

denote these variables. We now
define

r̃ja1 . . . aqj
:= max

(
max
ã1≤a1

...
ãqj

≤aqj

r̂j[ã1, . . . , ãqj
], a1, . . . , aqj

)
.

(r̃j can be defined in GnRω from r̂j by successive use of Φ1).

By the construction of r̃j we get

GnAω ⊢ (λa.r̃ja s–maj λa.r̂j [a1, . . . , aqj
]) ∧ ∀a(r̃ja ≥0 a1, . . . , aqj

).
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Since Ψ∗[uM , h] is built up from r̂j, h only (by substitution) and (hi monotone → hi s–maj
hi), uM s–maj u, this implies

GnAω ⊢ ∀u, h1, . . . , hk(
k∧

i=1

(hi monotone) → Ψ [uM , h] ≥0 Ψ∗[uM , h] ≥0 Ψuh),

where Ψ [uM , h] is built up as Ψ∗[uM , h] but with r̃j(a1, . . . , aqj
) instead of r̂j[a1, . . . , aqj

].

Summarizing the situation achieved so far we have obtained a term Ψ [uM , h] such that

(α) ∀u1∀v ≤τ tu∀h(h monotone → ∃y1, . . . , yk ≤0 Ψ [uM , h]∃wγAH
0 ).

(β) h1, . . . , hk occur in Ψ [uM , h] only as in 1∗), i.e. with all places for arguments filled and not
as function arguments themselves.

(γ) For Ψ [uM , h] and all subterms s which occur as an argument of a function h1, . . . , hk in
Ψ [uM , h] we have GnAω ⊢ ŝ[a1, . . . , aq] ≥0 a1, . . . , aq, where ŝ results by replacing every
occurrence of a maximal h1, . . . , hk–subterm in s by a new variable al.

(β), (γ) do not depend on any assumption and (α) follows from (0):
GnAω ⊢ (0) → (α).
In the following we only use (α)–(γ) and Mon(A).
¿From now on let r1, . . . , rl denote all subterms of Ψ [uM , h] which occur as an argument

of a function ∈ {h1, . . . , hk} in Ψ [uM , h] plus Ψ [uM , h] itself. M := {r1, . . . , rl} (This set
formation is meant w.r.t. identity ≡ of terms and not =0, i.e. ‘s ∈ M ’ means ‘s ≡ r1∨. . .∨s ≡
rl’).

We now show that we can reduce ‘∃y1, . . . , yk ≤ Ψ [uM , h]’ in (α) to a disjunction with
fixed length, namely to the disjunction over M :

(1)

{
∀u1∀v ≤τ tu∀h(h monotone on M → ∃s1, . . . , sk ∈ M∃wγ

A0(u, v, s1, h1s1, . . . , sk, hks1 . . . sk, w)).

Proof of (1): Let h1, . . . , hk be monotone on M . We order the terms ri w.r.t. ≤0. The resulting
ordered tuple depends of course on u, h1, . . . , hk. For notational simplicity we assume that
r1 ≤0 . . . ≤0 rl. We now define (again depending on u, h) functions h̃1, . . . , h̃k by

h̃iy
0
1 . . . y0

i := hi(rjy1
, . . . , rjyi

),where

jyq :=





1, if yq ≤0 r1

j + 1, if rj <0 yq ≤0 rj+1

l, if rl <0 yq.

Since l (and therefore the number of cases in this definition of h̃i) is a (from outside) fixed
number depending only on the term structure of Ψ [uM , h] but not on u, h, the functions h̃i

can be defined uniformly in u, h within GnAω. On M , h̃i equals hi.
By the definition of h̃i and the assumption that h1, . . . , hk are monotone on M we conclude

(a) h̃1, . . . , h̃k are monotone everywhere.
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By (β) we know that h1, . . . , hk occur in Ψ [uM , h] only in the form hi(s1, . . . , si) for certain
terms s1, . . . , si ∈ M . Hence we can define the h–depth of a term s ∈ M as the maximal
number of nested occurrences of h1, . . . , hk in s and show by induction on this rank (on the
meta–level):

(b)





l∧
i=1

(ri =0 r̃i), where r̃i results if in ri ∈ M the functions h1, . . . , hk

are replaced by h̃1, . . . , h̃k everywhere.

In particular Ψ [uM , h̃] =0 Ψ [uM , h].

By (α), (a) and (b) it follows (for all u1, v ≤ tu and all h which are monotone on M) that

(c) ∃y1, . . . , yk ≤0 Ψ [uM , h]∃wγA0(u, v, y1, h̃1y1, . . . , yk, h̃ky1 . . . yk, w).

Let y1, . . . , yk ≤0 Ψ [uM , h] be such that (c) is fulfilled. Because of h̃iy1 . . . yi = hi(rjy1
, . . . , rjyi

)
this implies

(d) ∃wγA0(u, v, y1, h1rjy1
, . . . , yk, hkrjy1

. . . rjyk
, w).

With yq ≤ rjyq
for q = 1, . . . .k (since yq ≤ Ψ [uM , h] ≤ rl –because of Ψ [uM , h] ∈ M and the

yq–assumption– the case ‘yq > rl’ does not occur) and Mon(A) we conclude

∃wγA0(u, v, rjy1
, h1rjy1

, . . . , rjyk
, hkrjy1

. . . rjyk
, w)

and therefore

(e) ∃s1, . . . , sk ∈ M∃wγA0(u, v, s1, h1s1, . . . , sk, hks1 . . . sk, w).

This concludes the proof of (1) which can easily be carried out in GnAω (assuming Mon(A), (α)
and using (β)), i.e.

GnAω ⊢ Mon(A) ∧ (α) → (1).

We now define N :=
k⋃

i=1
Ni, where Ni := {hi(s1, . . . , si) : s1, . . . , si ∈ M} (Again this set

is meant w.r.t. identity ≡ between terms). With the terms in N we associate new number
variables according to their h–depth as follows: Let p the maximal h–depth of all terms ∈ N .

1. Let t ∈ N be a term with h–depth(t) = p. Then t 7→ y1
i , if t ∈ Ni.

2. Let t ∈ N be a term with h–depth(t) = p − 1. Then t 7→ y2
i , if t ∈ Ni.

...
p. Let t ∈ N be a term with h–depth(t) = 1. Then t 7→ yp

i , if t ∈ Ni.

This association of variables to the terms in N has the following properties:

(i) Terms s1, s2 ∈ N with different h–depth have different variables associated with.
(ii) If s1, s2 ∈ N have the same h–depth, then the variables associated with s1 and s2 are

equal iff s1, s2 ∈ Ni for an i = 1, . . . , k.
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For r ∈ M∪N we define r̂ as the term which results if every maximal h–subterm occurring
in r is replaced by its associated variable. Thus r̂ does not contain h1, . . . , hk. For r ∈ N , r̂
is just the variable associated with r. M̂ := {r̂ : r ∈ M}.

We now show that (1) implies a certain index function–free (i.e. h1, . . . , hk–free) disjunc-
tion ((2) below):

For q with 2 ≤ q ≤ p let r̂q
1, . . . , r̂

q
nq

be all terms ∈ M̂ whose smallest upper index i of a

variable yi
j occurring in them equals q (i.e. there occurs a variable yq

j in the term and for all

variables yi
m occurring in the term, i ≥ q holds). Since for r ∈ M the h–depth of h1(r) ∈ N is

strictly greater than those of subterms of r, there are no terms r̂ ∈ M̂ containing a variable
y1

j . r̂p+1
1 , . . . , r̂p+1

np+1
denote those terms ∈ M̂ which do not contain any variable yi

j at all.

We now show that (1) implies (for all u and for all v ≤ tu)

(2)





∀y1
1, . . . , y

1
k; . . . ; y

p
1 , . . . , y

p
k(

(+) →
∨

ŝ1,...,ŝk∈M̂

∃wγA0(u, v, ŝ1, ĥ1s1, . . . , ŝk, ̂hks1 . . . sk, w)
)
,

where4

(+) :≡





∧
q=1,...,p−1

l=1,...,p−q

(yq
1, . . . , y

q
k > r̂q+l

1 , . . . , r̂q+l
nq+l

, yq+l
1 , . . . , yq+l

k )∧

∧
q=1,...,p

(yq
1, . . . , y

q
k > r̂p+1

1 , . . . , r̂p+1
np+1

).

Assume that there are values y1
1, . . . , y

1
k; . . . ; y

p
1 , . . . , y

p
k such that (+) holds and

∧

ŝ1,...,ŝk∈M̂

¬∃wγA0(u, v, ŝ1, ĥ1s1, . . . , ŝk, ̂hks1 . . . sk, w).

We construct (working in GnAω) functions h1, . . . , hk which are monotone on M and satisfy

∀s1, . . . , sk ∈ M¬∃w A0(u, v, s1, h1s1, . . . , sk, hks1 . . . sk, w)

yielding a contradiction to (1): Define for i = 1, . . . , k

hi(x1, . . . , xi) :={
y

min1≤l≤i(ql)−1
i , if ∃r̂q1

j1
, . . . , r̂qi

ji
∈ M̂((x1, . . . , xi) =0 (r̂q1

j1
, . . . , r̂qi

ji
))

00, otherwise.5

4 Here a1, . . . , ak > b1, . . . , bl means
∧

1≤i≤k

1≤j≤l

(ai > bj).

In (2) above we actually show the disjunction ‘
∨

s1,...,sk∈M

∃wγA0(u, v, ŝ1, ĥ1s1, . . .)’ instead of

‘
∨

ŝ1,...,̂sk∈M̂

∃wγA0(u, v, ŝ1, ĥ1s1, . . .)’. However the later follows from the former disjunction by contraction

since ŝ1 ≡ ŝ′1 ∧ . . . ∧ ŝi ≡ ŝ′i implies ̂his1 . . . si ≡ ̂his′1 . . . s′i for s1, s
′
1, . . . , s

′
i, s

′
i ∈ M . Alternatively we could

also use the non-contracted disjunction in the following proof.
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We have to show:

(i) The hi are well–defined functions : IN × . . . × IN︸ ︷︷ ︸
i

→ IN and the definition above can be

carried out in GnAω.
(ii) r̂ =0 r for all r ∈ M ∪ N (for these h1, . . . , hk).

(iii) h1, . . . , hk are monotone on M̂ (and hence –by (ii)– on M).

Ad (i): Consider (r̂q1

j1
, . . . , r̂qi

ji
) and (r̂q̃1

j̃1
, . . . , r̂q̃i

j̃i
). We show that y

min1≤l≤i(ql)−1
i 6= y

min1≤l≤i(q̃l)−1
i

implies (r̂q1

j1
, . . . , r̂qi

ji
) 6= (r̂q̃1

j̃1
, . . . , r̂q̃i

j̃i
):

We may assume min
1≤l≤i

(ql) < min
1≤l≤i

(q̃l). Let l0 be such that ql0 = min
1≤l≤i

(ql) ∧ 1 ≤ l0 ≤ i. r̂
ql0
jl0

contains a variable y
ql0

d for some d = 1, . . . , k. By the property (γ) of Ψ [uM , h] this implies

r̂
ql0
jl0

≥ y
ql0

d

(+),ql0
<q̃l0

> r̂
q̃l0

j̃l0

and thus (r̂q1

j1
, . . . , r̂qi

ji
) 6= (r̂q̃1

j̃1
, . . . , r̂q̃i

j̃i
).

Hence hi can be defined in GnAω by a definition by cases which are pairwise exclusive.
Ad (ii): (ii) follows from the definition of h1, . . . , hk by induction on the h–depth of r.

Ad (iii): Assume
i∧

l=1
(r̂ql

jl
≤0 r̂q̃l

j̃l
). Let l0 (1 ≤ l0 ≤ i) be such that ql0 = min

1≤l≤i
(ql). By

contraposition of the implication established in the proof of (i) one has: min
1≤l≤i

(ql) ≥ min
1≤l≤i

(q̃l).

Case 1: min
1≤l≤i

(ql) = min
1≤l≤i

(q̃l). Then (by hi–definition)

hi(r̂
q1

j1
, . . . , r̂qi

ji
) = y

min(ql)−1
i = y

min(q̃l)−1
i = hi(r̂

q̃1

j̃1
, . . . , r̂q̃i

j̃i
).

Case 2: ql0 = min
1≤l≤i

(ql) > min
1≤l≤i

(q̃l) = q̃
l̃0

(where 1 ≤ l0, l̃0 ≤ i). Then

hi(r̂
q1

j1
, . . . , r̂qi

ji
) = y

ql0
−1

i

(+)
< y

q̃
l̃0
−1

i = hi(r̂
q̃1

j̃1
, . . . , r̂q̃i

j̃i
).

Hence h1, . . . , hk are monotone on M̂ and therefore (by (ii)) on M , which concludes the proof
of (2) from (1) in GnAω (using (β), (γ)). Since (1) follows (in GnAω) from Mon(A) ∧ (α)
(using (β)), and

F :≡ ∀u1∀v ≤τ tu∀h(h monotone → ∃y1, . . . , yk ≤0 Ψuh∃wγAH
0 )

implies (in GnAω) (α), we have shown altogether

(3)





GnAω + Mon(A) ⊢

F→
[
v ≤ tu ∧ (+) →

∨

ŝ1,...,ŝk∈M̂

∃wγA0(u, v, ŝ1, ĥ1s1, . . . , ŝk, ̂hks1 . . . sk, w)
]
.

5 For r̂
qi
ji

∈ M̂ we have qi ≥ 2 since e.g. h1rji
(∈ N) has an h–depth which is strictly greater than those of

subterms in rji
.
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It remains to show that (3) implies

(4) GnAω + Mon(A) ⊢ F → A.

We prove this by a suitable application of quantifier introduction rules: We start with the
variables with smallest upper index, i.e. y1

1, . . . , y
1
k. Under these variables we first take those

of maximal lower index, i.e. with y1
k: We split the assumption

(+) ≡





∧
q=1,...,p−1

l=1,...,p−q

(yq
1, . . . , y

q
k > r̂q+l

1 , . . . , r̂q+l
nq+l

, yq+l
1 , . . . , yq+l

k )∧

∧
q=1,...,p

(yq
1, . . . , y

q
k > r̂p+1

1 , . . . , r̂p+1
np+1

)

as well as the disjunction

Ad :≡
∨

ŝ1,...,ŝk∈M̂

∃wγA0(u, v, ŝ1, ĥ1s1, . . . , ŝk, ̂hks1 . . . sk, w)

into the part in which y1
k occurs and into its y1

k–free part:

(5)





F→
[
v ≤ tu ∧

∧
l=1,...,p−1

(y1
k > r̂1+l

1 , . . . , r̂1+l
n1+l

, r̂p+1
1 , . . . , r̂p+1

np+1
, y1+l

1 , . . . , y1+l
k )

∧
∧′

(. . .)
︸ ︷︷ ︸

y1
k
–free part of (+)

→
∨
j
∃wγA0(u, v, ŝj

1, ĥ1s
j
1, . . . , ŝ

j
k, y

1
k, w) ∨

∨

j′

(. . .)

︸ ︷︷ ︸
y1

k
–free part of Ad

]
.

y1
k does not occur at any place other than indicated. Hence ∀–introduction applied to y1

k

yields:

(6) F → ∀y1
k[v ≤ tu ∧

∧

l

(y1
k > . . .) ∧

∧′
(. . .) →

∨

j

∃wγA0(. . . , y
1
k, w) ∨

∨

j′

(. . .)],

where y1
k does not occur at any place other than indicated.

Using Mon(A) this implies

(7) F → [v ≤ tu ∧
∧′

(. . .) → ∀y1
k

∨

j

∃wγA0(. . . , y
1
k, w) ∨

∨

j′

(. . .)].

(Proof: In (6) put

ỹ1
k := max

1≤l≤p−1
max (y1

k, r̂
1+l
1 , . . . r̂1+l

n1+l
, r̂p+1

1 , . . . , r̂p+1
np+1

, y1+l
1 , . . . , y1+l

k ) + 1 for y1
k.

(6) then gives

F → [v ≤ tu ∧
∧′

(. . .) →
∨

j

∃wγA0(. . . , ỹ
1
k, w) ∨

∨

j′

(. . .)].
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Mon(A) and
∨
j
∃wγA0(. . . , ỹ

1
k, w) imply

∨
j
∃wγA0(. . . , y

1
k, w), since ỹ1

k ≥ y1
k. Now ∀–introduction

applied to y1
k and shifting ∀y1

k in front of
∨
j
, which is possible since y1

k occurs only in this

disjunction, proves (7)).
Again by Mon(A) we obtain

∨

j

∀y1
k∃wγA0(. . . , y

1
k, w)

from ∀y1
k

∨
j
∃wγA0(. . . , y

1
k, w):

Assume
∧
j
∃y1

k∀wγ¬A0(. . . , y
1
k, w). Then ∃y

∧
j
∃y1

k ≤0 y∀wγ¬A0(. . . , y
1
k, w). Using Mon(A)

this implies ∃y
∧
j
∀wγ¬A0(. . . , y, w).

Hence (7) implies (since y1
k does not occur in ŝj

k)

(8)





F → [v ≤ tu ∧
∧′(. . .) →

∨
j
∃x∀y∃wA0(u, v, ŝj

1, ĥ1s
j
1, . . . ,

̂
hk−1s

j
1 . . . sj

k−1, x, y, w) ∨
∨
j′

(. . .)].

Next we apply the same procedure to the variable y1
k−1 and then to y1

k−2 and so on until

all y1
1, . . . , y

1
k are bounded. We then continue with y2

k, y2
k−1 and so on. This corresponds to

the sequence of quantifications used in the usual proofs of Herbrand’s theorem in order to
show that there is a direct proof from the Herbrand disjunction of a first-order formula to
this formula itself: By taking always variables of minimal upper index it is ensured that any
variable to which the ∀–introduction rule is applied occurs in the disjunction

∨
A0 only at

places where it is universal quantified in the original formula A. By quantifying under these
variables firstly the one with maximal lower index one ensures that a universal quantifier
is introduced only if the quantifiers which stand behind this one in A have already been
introduced. In addition to these two reasons for the special sequence of quantifications there
is in our situation another (essentially used) property which is fulfilled only if variables which
have minimal upper index are quantified first: If yi

j has minimal index i (under all variables

which still have to be quantified), then yi
j occurs in the still remaining part of the implicative

assumption (+) only in the form ‘yi
j > (...yi

j–free...)’. So we are in the situation at the begining

for y1
k and are able to eliminate this part of (+) which is connected with yi

j altogether using

Mon(A) (as we have shown for y1
k).

Finally we have derived

(9) F → [v ≤ tu →
∨

∃x0
1∀y0

1 . . . ∃x0
k∀y0

k∃wγA0(u, v, x1, y1, . . . , xk, yk, w)

and therefore (by contraction of
∨

)

(10) F → [v ≤ tu → ∃x0
1∀y0

1 . . . ∃x0
k∀y0

k∃wγA0(u, v, x1, y1, . . . , xk, yk, w)
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which (by ∀–introduction applied to u, v) yields

(11) F → A.

Remark 210 The proof of thm.27 also works for various other systems T and domains of
terms S than GnAω and GnRω. What actually is used in the proof is:

1. Every term Ψρ ∈ S with deg(ρ) ≤ 2 has a majorant Ψ∗[h1] such that
(i) T ⊢ λh.Ψ∗[h] s–maj Ψ ,
(ii) Ψ∗[h] is built up only from h and terms ∈ S of type level ≤ 1 (by substitution).

2. S is (provably in T ) closed under the successor, definition by cases, λ –abstraction and
contains the variable maximum–functional Φ1.

Condition 1) is a sort of an upper bound for the complexity of T , S. E.g. 1) is not satisfied if
S contains the iteration functional Φit defined by Φit0yf =0 y, Φitx

′yf =0 f(Φitxyf) (Note
that Φit is primitive recursive in the usual sense of [6] and not only in the extended sense
of [5]). In the next paragraph we will show that thm.27 becomes false if GnRω is replaced

by P̂R
ω

(see also remark 214 ). Since Φit is on some sense the simplest functional for which
1) fails, this shows that the upper bound provided by 1) is quite sharp. 1) essentially says
that Ψ001 can be majorized by a term Ψ∗[x0, h1] which uses h only at a fixed number of
arguments, i.e. there exists a fixed number n (which depends only on the structure of Ψ∗ but
not on x, h) such that for all h, x the value of of Ψ∗[x, h] only depends on (at most) n–many
h–values. Let us illustrate this by an example: Φ defined by Φhx = max(h0, . . . , hx) depends
on x + 1–many h–values but is majorized by Φ∗ defined by Φ∗hx := hx which for every x
depends only on one h–value, namely on hx. If a term Ψ has a majorant which satisfies 1)
we say that Ψ is majorizable with finite support. One easily convinces oneself that Φit

is not majorizable with finite support.
2) is a lower bound on the complexity of T , S, which also is essential. E.g. take T := L2

and S := {00}, where L2 is first–order logic with =0,≤0 extended by quantification over
functions and two constants 00, 10. Consider now

G :≡ ∃x0∀y0∃z0, f1(F0(f, z) → A0(x, y)),

where F0(f, z) :≡ (fz = 0 ∧ 0 6= 1) and A0(x, y) :≡ (y 6= 0 ∧ x = x → ⊥). Then

L2 ⊢ ∀g1∃x, z ≤0 0∃f(F0(f, z) → A0(x, gx)) ∧ Mon(G), but L2 ⊢/ G,

i.e. thm.27 fails for L2, S. If however L2 is extended by λ–abstraction, then G becomes
derivable since we can form f := λx0.10 now.

Let F− denote the ‘non-standard’ axiom introduced in [14] (def.4.16) and WKL2
seq be

the generalization of the binary König’s lemmas WKL as defined in [14](def.4.25). Theo-
rem 27 combined with the elimination procedure for F− from [14] yields the following new
conservation result for WKL2

seq:



18 Ulrich Kohlenbach

Corollary 211 Let A be as in def.26 and thm.27, n ≥ 3. Then6

1. GnAω ⊕ F− ⊕ AC–qf ⊢ AH ⇒ GnAω + Mon(A) ⊢ A. In particular:
GnAω ⊕ F− ⊕ AC–qf ⊢ A ⇒ GnAω + Mon(A) ⊢ A.

2. GnAω ⊕ WKL2
seq ⊕ AC–qf ⊢ AH ⇒ GnAω + Mon(A) ⊢ A.

In particular:
GnAω ⊕ WKL2

seq ⊕ AC–qf ⊢ A ⇒ GnAω + Mon(A) ⊢ A.

If τ ≤ 1 (in A) then GnAω ⊕ F−⊕ AC–qf can be replaced by
E–GnAω + F−+ACα,β–qf (with (α = 0 ∧ β ≤ 1) or (α = 1 ∧ β = 0)).
An analogous result holds for the corresponding variant of GnAω where the universal

axioms 9) are replaced by the schema of quantifier-free induction.

Proof: 1) By [14](thm.4.21 and remark 3.2.4) GnAω ⊕ F− ⊕ AC–qf ⊢ AH implies the
extractability of a Ψ ∈ GnRω such that

GnAω ⊢ ∀u1∀v ≤τ tu∀h∃y1, . . . , yk ≤0 Ψuh∃wγAH
0 .

Theorem 27 now yields GnAω + Mon(A) ⊢ A.
2) follows from 1) by [14](cor.4.28).

Remark 212 Cor.211 is optimal in the following sense: For simplicity let us consider only
the variant of G3A

ω with the universal axioms replaced by the schema of quantifier-free induc-
tion and let us denote this system for the moment also by G3A

ω. Then G3A
ω⊕WKL2

seq⊕AC0,0-

qf is neither conservative over G3A
ω w.r.t. sentences ∀u2∃w1A0(u,w) nor w.r.t. Π0

3 -sentences,
which do not satisfy Mon(A). The first assertion follows analogously to the proof of 4.11 (ii)
in [8]. The second claim follows from the fact that even G3A

ω⊕AC0,0-qf proves the Σ0
1-

collection principle, whereas G3A
ω – which is conservative over its first-order fragment, i.e.

over the Kalmar–elementary arithmetic – does not prove this principle (see the proof of thm.1
in [17]). Since every instance of the Σ0

1–collection principle (having only arithmetical param-
eters) can be prenexed into a Π0

3–sentence, already G3A
ω⊕AC0,0–qf is not Π0

3–conservative
over G3A

ω. The condition Mon(A) in cor.211 just rules out any non-trivial instances of
collection.

Proof of theorem 28:

GnAω +∆+AC–qf ⊢ AH implies the extractability by monotone functional interpretation
(see [14](thm.3.2.2, rem.3.2.4 and the remarks after 3.2.6)) of uniform bounds Ψ1, . . . , Ψk ∈
GnRω on ∃yi (provably in GnAω

i + ∆̃, where

6 Here ⊕ means that F− and AC–qf must not be used in the proof of the premise of an application of the
quantifier–free rule of extensionality QF–ER. GnAω satisfies the deduction theorem w.r.t ⊕ but not w.r.t +.
In fact the theorem also holds for (GnAω+AC–qf)⊕F− since the deduction property is used in the proof only
for F−.



Elimination of Skolem functions for monotone formulas in analysis 19

∆̃ := {∃Y ≤ρδ s∀xδ, zηG0(x, Y x, z) : ∀xδ∃y ≤ρ sx∀zηG0(x, y, z) ∈ ∆}) which depend only
on u and h:

(1) GnAω
i + ∆̃ ⊢ ∀u∀v ≤ tu∀h∃y1 ≤0 Ψ1uh . . . ∃yk ≤0 Ψkuh∃w AH

0 .

The assumption GnAω + ∆+AC–qf ⊢ Mon(A) implies (by monotone functional interpre-
tation, since Mon(A) is implied by the monotone functional interpretation of its negative
translation) that

(2) GnAω
i + ∆̃ ⊢ Mon(A).

Theorem 27 combined with (1) and (2) yields

GnAω + ∆̃ ⊢ A.

The second part of the theorem now follows by monotone functional interpretation, since ∆̃
also is a set of allowed axioms ∆ in [14](thm.3.2.2) and GnAω

i + ∆+b-AC ⊢ ∆̃.

For our applications in the next paragraph we need the following corollary of theorem 28:

Corollary 213 Let ∀x0∃y0∀z0A0(u
1, vτ , x, y, z) ∈ L(GnAω) be a formula which contains

only u, v as free variables and satisfies provably in
GnAω + ∆+AC–qf the following monotonicity property:

(∗)∀u, v, x, x̃, y, ỹ(x̃ ≤0 x ∧ ỹ ≥0 y ∧ ∀z0A0(u, v, x, y, z) → ∀z0A0(u, v, x̃, ỹ, z)),

(i.e. Mon(∃x∀y∃z¬A0)). Furthermore let B0(u, v,wγ ) ∈ L(GnAω) be a
(quantifier-free) formula which contains only u, v,w as free variables and γ ≤ 2, then the

following rule holds:




From a proof

GnAω + ∆ + AC–qf ⊢
∀u1∀v ≤τ tu(∃f1∀x, z A0(u, v, x, fx, z) → ∃wγB0(u, v,w)) ∧ (∗)

one can extract a term χ ∈ GnRω such that

GnAω
i + ∆ + b-AC ⊢ ∀u1∀v ≤τ tu∀Ψ∗((Ψ∗ satisfies the mon.funct.interpr.

of ∀x0, g1∃y0A0(u, v, x, y, gy)) → ∃w ≤γ χuΨ∗ B0(u, v,w))7.

Proof: We may assume that γ = 2. The property Mon(G) for

G :≡ ∀u1∀v ≤τ tu∃x0∀y0∃z0, w2(A0(u, v, x, y, z) → B0(u, v,w))

follows logically from the monotonicity assumption (∗). By the assumption of the rule to be
proved we have

GnAω + ∆ + AC–qf ⊢ GH + Mon(G).

7 ‘Ψ∗ satisfies the mon. funct.interpr. of ∀x, g∃yA0(u, v, x, y, gy)’ is meant here for fixed u, v (and not uni-
formly as a functional in u, v), i.e. ∃Ψ

(
Ψ∗ s–maj Ψ ∧ ∀x, g A0(u, v, x, Ψxg, g(Ψxg))

)
.
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¿From this we conclude by thm.28 that

GnAω
i + ∆ + b-AC ⊢ χ̃ satisfies the monotone functional interpretation of G′,

for a suitable tuple χ̃ of terms ∈ GnRω which can be extracted from the proof.
G′ is intuitionistically equivalent to (using the fact that GnAω

i ⊢ ¬¬A0 ↔ A0 for quantifier–
free formulas A0)

∀u∀v ≤ tu¬¬∃x0∀y0¬¬∃z,w(A0 → B0)

of G (This follows immediately if one uses the negative translation which is denoted by ∗ in
[15] ). By intuitionistic logic the following implication holds

G′ → ∀u∀v ≤τ tu(∀x¬¬∃y∀z A0(u, v, x, y, z) → ¬¬∃w B0(u, v,w)).

Hence from χ̃ we obtain a term which satisfies the monotone functional interpretation of the
right side of this implication. In particular we obtain a term χ̂ ∈ GnRω such that

GnAω
i + ∆ + b-AC ⊢ ∃W (χ̂ s–maj W ∧ ∀u∀v ≤ tu∀Ψ

(∀x, g A0(u, v, x, Ψxg, g(Ψxg)) → B0(u, v,WuvΨ))).

Define χ ∈ GnRω by χ := λu1, Ψ, y1.χ̂uM (t∗uM )ΨyM , where t∗ ∈ GnRω is such that GnAω
i

⊢ t∗ s–maj t and uM := λx0.max
i≤x

(ui). Then

∀u∀v ≤ tu∀Ψ∗(∃Ψ(Ψ∗ s–maj Ψ ∧ ∀x, g A0(u, v, x, Ψxg, g(Ψxg)))
→ ∃w ≤2 χuΨ∗ B0(u, v,w)),

since χ̂ s–maj W and Ψ∗ s–maj Ψ imply ∀u∀v ≤ tu(χuΨ∗ ≥2 WuvΨ).

Remark 214 At the end of the next paragraph we will show that cor.213 does not hold for

PRAω, P̂R
ω
,PRAω

i (or GnAω+Σ0
1–IA, P̂R

ω
, GnAω

i +Σ0
1–IA) instead of GnAω ,GnRω, GnAω

i

(even for ∆ = ∅). Since the proof of cor.213 from thm.28 as well as the proof of thm.28 from
thm.27 extends to these theories it follows that also the theorems 27 and 28 do not hold for

them. The proof of thm.27 fails for Ψi ∈ P̂R
ω

since P̂R
ω

contains functionals like Φit which
are not majorizable with finite support (see also remark 210 ). The proof of thm.28 fails for
GnAω+Σ0

1–IA since the (monotone) functional interpretation of Σ0
1–IA requires Φit and thus

thm. 27 is not applicable.

The mathematical significance of corollary 213 for the growth of bounds extractable from
given proofs rests on the following fact: Direct monotone functional interpretation of

GnAω + ∆ + AC–qf ⊢ ∀u1∀v ≤τ tu(∃f1∀x, z A0(u, v, x, fx, z) → ∃wγB0(u, v,w))

yields only a bound on ∃w which depends on a functional which satisfies the monotone
functional interpretation of (1) ∃f∀x, z A0 or if we let remain the double negation in front of
∃ (which comes from the negative translation) (2) ¬¬∃f∀x, zA0. However in our applications
the monotone functional interpretation of (1) would require non–computable functionals
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(since f is not recursive) and the monotone functional interpretation of (2) can be carried
out only using bar-recursive functionals. In contrast to this the bound χ only depends on a
functional which satisfies the monotone functional interpretation of the negative translation

of ∀x∃y∀z A0(x, y, z): In our applications such a functional can be constructed in P̂R
ω
. In

particular the use of the analytical premise

∃f1∀x, zA0

has been reduced to the arithmetical premise

∀x0∃y0∀z0A0.

3 The rate of growth caused by sequences of instances of arithmetical
comprehension and choice for Π

0

1
-formulas

Using the results from the previous paragraph combined with the methods from [14] one
can determine the impact on the rate of growth of uniform bounds for provable ∀u1∀v ≤τ

tu∃wγA0–sentences which may result from the use of sequences of instances (which may
depend on the parameters of the proposition to be proved) of:

1. Π0
1–CA and Π0

1–AC.
2. The convergence of bounded monotone sequences of real numbers (PCM).
3. The existence of a greatest lower bound for every sequence of real numbers which is

bounded from below.
4. The Bolzano–Weierstraß property for bounded sequences in IRd (for every fixed d).
5. The Arzelà–Ascoli lemma.
6. The existence of lim sup and lim inf for bounded sequences in IR.

In this paper we only consider Π0
1–CA and Π0

1–AC as well as certain arithmetical con-
sequences of these principles. The treatment of the other analytical principles listed above
needs a careful representation of analytical objects like continuous functions in GnAω as well
as -in the case of 4),5)- the ‘non-standard’ axiom F− introduced in [14] and will be carried
out in a subsequent paper.

Definition 31 Π0
1–CA(f1(0)) :≡ ∃g1∀x0(gx =0 0 ↔ ∀y0(fxy =0 0)).

(Note that iteration of ∀f1(0)(Π0
1–CA(f)) yields CAar).

Definition 32
Define AC

0 (f1(0), x0, y0, z0) :≡ ∀x̃ ≤0 x∃ỹ ≤0 y∀z̃ ≤0 z(fx̃ỹ 6=0 0 ∨ fx̃z̃ =0 0).
AC

0 can be expressed as a quantifier–free formula in GnAω (see [14]).

Proposition 33 For n ≥ 1 one has:

1. GnAω
i proves

∀f, x, x̃, y, ỹ(x̃ ≤0 x ∧ ỹ ≥0 y ∧ ∀z0AC
0 (f, x, y, z) → ∀z0AC

0 (f, x̃, ỹ, z)).
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2. GnAω
i ⊢ ∀f1(0)(∃g1∀x0, z0AC

0 (f, x, gx, z) → Π0
1 -CA(f)).

3. For the functional Φ ∈ P̂R
ω

defined by Φx0h1 := max
i≤x+1

hi(0) we have

PRAω
i ⊢ Φ s-maj Φ ∧ ∀f1(0), x0, h1∃y ≤0 ΦxhAC

0 (f, x, y, hy).

Hence Φ satisfies (provably in PRAω
i ) the monotone functional interpretation of ∀x, h∃y AC

0 (f, x, y, hy)
for all f1(0).

Proof: 1) is obvious.
2) Let g be such that ∀x, z∀x̃ ≤ x∃ỹ ≤ gx∀z̃ ≤ z(fx̃ỹ 6= 0 ∨ fx̃z̃ = 0). By taking x̃ := x

and z̃ := z we obtain ∀x, z∃ỹ ≤ gx(fxỹ 6= 0 ∨ fxz = 0) and thus

∀x(∀ỹ ≤ gx(fxỹ = 0) ↔ ∀z(fxz = 0)).

Hence hx :=

{
0, if ∀ỹ ≤ gx(fxỹ = 0)
1, otherwise

satisfies Π0
1 -CA(f).

3) Assume that

(∗) ∀y ≤ Φxh∃x̃ ≤ x∀ỹ ≤ y∃z̃ ≤ hy(fx̃ỹ = 0 ∧ fx̃z̃ 6= 0).

Case 1: ∃i < x + 1(h(hi0) ≤ hi0):
(∗) applied to y := hi0 ≤ Φxh yields an x̃ ≤ x such that

(∗∗) ∀ỹ ≤ hi0∃z̃ ≤ h(hi0)(fx̃ỹ = 0 ∧ fx̃z̃ 6= 0)

and thus for ỹ := 0 one has a z̃ ≤ h(hi0) such that fx̃z̃ 6= 0. But on the other hand –again
by (∗∗)– one has fx̃z̃ = 0 (since z̃ ≤ h(hi0) ≤ hi0) which is a contradiction.

Case 2: ∀i < x + 1(h(hi0) > hi0):
By the pigeon-hole principle, (∗) implies that there exists i < j ≤ x + 1 and x̃ ≤ x such

that
(1) ∀ỹ ≤ hi0∃z̃ ≤ h(hi0)(fx̃ỹ = 0 ∧ fx̃z̃ 6= 0)

and
(2) ∀ỹ ≤ hj0∃z̃ ≤ h(hj0)(fx̃ỹ = 0 ∧ fx̃z̃ 6= 0).

Hence ∃z̃ ≤ h(hi0)(fx̃z̃ 6= 0) by (1) (take ỹ := 0) and ∀ỹ ≤ hj0(fx̃ỹ = 0) by (2) which is a
contradiction since by the case (and i < j ≤ x + 1) h(hi0) = hi+10 ≤ hj0.

Put together we have proved that ∀f, x, h∃y ≤0 ΦxhAC
0 (f, x, y, hy) which is equivalent to

a purely universal sentence and hence an axiom of GnAω
i (In fact one easily verifies that this

assertion would also be provable in GnAω
i if we would have instead of the universal axioms

only the schema of quantifier–free induction included as axioms of GnAω
i ).

It remains to show that Φ s–maj Φ: Assume that h̃ s–maj1h. By quantifier-free induction
on x one shows that ∀x(h̃x0 ≥ hx0). Hence (by quantifier–free induction on x̃): ∀x̃, x(x̃ ≥
x → Φx̃h̃ ≥ Φxh).

Cor.213 combined with prop.33 yields
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Proposition 34 Let n ≥ 1 and B0(u
1, vτ , wγ) ∈ L(GnAω) be a quantifier-free formula which

contains only u1, vτ , wγ free, where γ ≤ 2. Furthermore let ξ, t ∈GnRω and ∆ be as in thm.28.
Then the following rule holds





GnAω + ∆ + AC–qf ⊢ ∀u1∀v ≤τ tu(Π0
1–CA(ξuv) → ∃wγB0(u, v,w))

⇒ ∃(eff.)χ ∈ GnRω such that
GnAω

i + ∆ + b-AC ⊢ ∀u1∀v ≤τ tu∀Ψ∗((Ψ∗ satifies the mon. funct.interpr.
of ∀x0, h1∃y0AC

0 (ξuv, x, y, hy)) → ∃w ≤γ χuΨ∗ B0(u, v,w))
and in particular
PRAω

i + ∆ + b-AC ⊢ ∀u1∀v ≤τ tu∃w ≤γ χuΨ B0(u, v,w),

where Ψ := λx0, h1. max
i<x+1

(Φiti0h)( = λx0, h1. max
i<x+1

(hi0)).

In the conclusion, ∆+b-AC can be replaced by ∆̃, where ∆̃ is defined as in thm.28. If
∆ = ∅, then b–AC can be omitted from the proof of the conclusion. If τ ≤ 1 and the types of the
∃–quantifiers in ∆ are ≤ 1, then GnAω +∆+AC–qf may be replaced by E–GnAω +∆+ACα,β–
qf, where α, β are as in cor.211.

Remark 35 In general prop.34 only guarantees a primitive recursive (in the sense of Kleene

[6],[7] and not only in the generalized sense of Gödel’s T ) bound Φ := λu.χuΨ ∈ P̂R
ω

on
∃w. This is not avoidable since Π0

1 -CA(ξ(f)) proves Σ0
1-IA(f) relative to GnAω for suitable

ξ. If however the proof applies Ψ only to special functions like e.g. h := S then much better
bounds will result.

We now consider Π0
1–instances of ACar:

Π0
1–AC(f1(0)(0)(0)):≡ ∀l0(∀x0∃y0∀z0(flxyz =00) → ∃g1∀x0, z0(flx(gx)z =0 0)).

Π0
1–AC(f) can be reduced to Π0

1–CA(g) uniformly by

Proposition 36

G2A
ω + AC0,0–qf ⊢ ∀f1(0)(0)(0)(Π0

1–CA(f ′) → Π0
1–AC(f)),

where f ′ := λv0, z0.f(ν3
1(v), ν3

2 (v), ν3
3 (v), z)8.

Proof: By Π0
1–CA(f ′) there exists a function h1 such that

∀v0(hv = 0 ↔ ∀z(f ′vz = 0)).

h̃lxy := h(ν3(l, x, y)). Then

∀l, x, y(h̃lxy = 0 ↔ ∀z(flxyz = 0)).

AC0,0–qf applied to ∀x∃y(h̃lxy = 0) yields ∃g∀x, z(flx(gx)z = 0).

As a corollary of prop.34 and prop.36 we obtain

8 Here νk
i are the coding functions for tuples from [14].
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Corollary 37 For n ≥ 2 proposition 34 also holds with Π0
1–AC(ξuv) (but now with AC

0 ((ξuv)′, x, y, hy)
in the conclusion).

Remark 38 Suppose that n ≥ 2.

1. We may also have finite conjunctions
l∧

i=1
Π0

1 -CA(ξiuv) ∧
j∧

i=1
Π0

1 -AC(ξ̃iuv) of instances of

Π0
1 -CA and Π0

1 -AC in prop. 34 (with a suitable ξ̃ ∈GnRω instead of ξ in the conclusion):
Since instances of Π0

1 -AC reduce to instances of Π0
1 -CA by the proposition above we only

have to verify (in G2A
ω) that Π0

1 -CA(f) ∧ Π0
1 -CA(g) → Π0

1 -CA(ϕfg), where ϕ ∈G2R
ω

is defined by

ϕfgxy :=

{
f(j2x, y), if j1x = 0
g(j2x, y), otherwise.

This however is clear.
2. In prop.34 even sequences ∀l0Π0

1 -CA(ξuvl),∀l0Π0
1 -AC(ξuvl) of instances of Π0

1 -CA,Π0
1-

AC are allowed (instead of Π0
1 -CA(ξuv),Π0

1 -AC(ξuv) only) since such sequences of in-
stances can be reduced to single instances in G2A

ω: ∀l0Π0
1 -CA(fl) follows from Π0

1 -
CA(f ′), where f ′xy := f(j1x, j2x, y). Similarly for Π0

1 -AC (note that the universal closure
under arithmetical parameters has already been incorporated within the definition of Π0

1 -
AC(f)).

By Π0
1–CA−, Π0

1–AC−andΣ0
2–AC− we denote the schemas of Π0

1 -comprehension and Π0
1 ,Σ0

2–
choice for formulas without parameters of type ≥ 1, i.e.

Π0
1–CA− : ∃f∀x0(fx =0 0 ↔ ∀y0A0(x, y, a0)),

Π0
1–AC− : ∀x0∃y0∀z0A0(x, y, z, a0) → ∃f∀x∀z A0(x, fx, z, a),

Σ0
2–AC− : ∀x0∃y0∃z0∀v0A0(x, y, z, v, a0) → ∃f∀x∃z∀v A0(x, fx, z, v, a),

where only x,y,a (x, y, z, a resp. x, y, z, v, a) occur free in A0(x, y, a) (A0(x, y, z, a) resp.
A0(x, y, z, v, a)).

As a special case of prop.34 and cor.37 we have

Proposition 39 Let n ≥ 2 and γ ≤ 2 and B0(u
1, vτ , wγ) contains only u, v,w as free vari-

ables; t ∈ GnRω. Then the following rule holds





GnAω ⊕ AC–qf ⊕ Π0
1–CA− ⊕ Σ0

2–AC− ⊢ ∀u1∀v ≤τ tu∃wγB0(u, v,w)

⇒ ∃Ψ ∈ P̂R
ω

such that
PRAω

i ⊢ ∀u1∀v ≤τ tu∃w ≤γ Ψu B0(u, v,w).

If τ ≤ 1, we may replace GnAω ⊕ AC–qf ⊕ Π0
1–CA− ⊕ Σ0

2–AC− by
E–GnAω+ACα,β–qf +Π0

1–CA− + Σ0
2–AC−, where (α = 0 ∧ β ≤ 1) or

(α = 1 ∧ β = 0).
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In particular




E–GnAω+ACα,β–qf +Π0
1–CA− + Σ0

2–AC− ⊢ ∀u0∃v0R(u, v)
⇒ ∃ primitive recursive function ϕ :
∀uR(u, ϕu) is true,

where R is a primitive recursive relation. If in the definition of GnAω the universal axioms
9) are replaced by the schema of quantifier–free induction one has PRA ⊢ R(u, ϕu)

(Note that this proposition also holds for n = ∞. Since all primitive recursive functions
(but not all primitive recursive functionals of type 2!) can be defined in G∞Aω (see §2 of
[14]) we may assume that G∞Aω ⊃ PRA).

Proof: Since Π0
1 -CA− follows from Σ0

2 -AC− which in turn is implied by Π0
1 -AC− (using

pairing) it suffices to consider an instance A of the later (for simplicity we may assume that
we have only one arithmetical parameter):

A(a0) :≡ ∀x0∃y0∀z0A0(x, y, z, a) → ∃f1∀x, z A0(x, fx, z, a),

where A0(x, y, z, a) is quantifier-free and contains only x, y, z, a as free variables. Let ξ ∈GnRω

be such that ξaxyz =0 0 ↔ A0(x, y, z, a). Then Π0
1 -AC(ξ) implies ∀a0A(a). The corollary

now follows from prop.34, cor.37 and rem.38.1) by the deduction theorem for ⊕.

Remark 310 Even for the second-order fragment G2A
2 of G2A

ω (and without the universal
axioms 9) but only the schema of quantifier–free induction instead of them) the theory
G2A

2 + Π0
1 -CA− + Π0

2 -IR− proves the totality of the Ackermann function (see [13]). This
refutes a result stated in Mints [16] and a fortiori various generalizations of this result stated
in [19] (thm.5.8,cor.5.9,thm.5.13,cor.5.14(ii)). For details see [12](chapter 12) and also [13].

Proposotion 39 also becomes false if the primitive recursive functional Φ̃0yf =0 y, Φ̃x′yf =0

f(x, y, Φ̃xyf) is added to GnAω (see [12](chapter 12)). Therefore any proof of a result like
this proposition has to exploit carefully the structure of the type-2-functionals of GnAω.

Arithmetical consequences of Π0
1–CA(f) and Π0

1–AC(f)

Using Π0
1–CA(f) we can prove (relatively to G2A

ω) every instance of ∆0
2–IA with fixed

function parameters:

∆0
2–IA(f, g):≡





∀l0
(
∀x0(∃u0∀v0(flxuv =0 0) ↔ ∀ũ0∃ṽ0(glxũṽ =0 0)) →

[∃u∀v(fl0uv = 0) ∧∀x(∃u∀v(flxuv = 0) → ∃u∀v(flx′uv = 0))

→ ∀x∃u∀v(flxuv = 0)]
)
.

Define f ′ := λi0, v0.f(ν3
1(i), ν3

2 (i), ν3
3 (i), v) and

g′ := λi0, v0.sg(g(ν3
1 (i), ν3

2 (i), ν3
3 (i), v)). We now show

Proposition 311

G2A
ω + AC0,0–qf ⊢ ∀f, g( Π0

1–CA(f ′) ∧ Π0
1–CA(g′) → ∆0

2–IA(f, g)).
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Proof: Π0
1–CA(f ′) and Π0

1–CA(g′) imply the existence of functions h1, h2 such that for all
l, x, u

h1lxu =0 0 ↔ ∀v(flxuv =0 0) and h2lxu =0 0 ↔ ∃v(glxuv =0 0).

Assume now that

∀x0(∃u0∀v0(flxuv =0 0) ↔ ∀ũ0∃ṽ0(glxũṽ =0 0)).

Then
∀x(∃u(h1lxu = 0) ↔ ∀ũ(h2lxũ = 0)).

With classical logic this yields

∀x0∃z0( [∀ũ(h2lxũ = 0) → z = 0] ∧ [z = 0 → ∃u(h1lxu = 0)]︸ ︷︷ ︸
∈Σ0

1

).

By AC0,0–qf we obtain a function α such that

∀x(αx = 0 ↔ ∃u(h1lxu = 0)).

∆0
2–IA(f, g) now follows by applying QF–IA to A0(x) :≡ (αx = 0).

Next we show that Π0
1–instances (with fixed function parameters) of the collection prin-

ciple
CP : ∀x̃ <0 x∃y0A(x, x̃, y) → ∃y0∀x̃ <0 x∃y <0 y0A(x, x̃, y).

are derivable from Π0
1–AC–instances.

Π0
1–CP(f) :≡

∀l0, x0(∀x̃ < x∃y0∀z0(flxx̃yz =0 0) → ∃y0∀x̃ < x∃y <0 y0∀z(flxx̃yz = 0)).

Proposition 312

G2A
ω ⊢ ∀f(Π0

1–AC(f ′) → Π0
1–CP(f)),

where f ′ such that f ′ix̃yz =0 0 ↔ (x̃ < ν2
2 (i) → f(ν2

1(i), ν2
2 (i), x̃, y, z) =0 0).

Proof: Π0
1–AC(f ′) yields

∀l0, x0(∀x̃ < x∃y∀z(flxx̃yz = 0) → ∃h1∀x̃ < x∀z(flxx̃(hx̃)z = 0)).

Define y0 := 1 + Φ1hx (Recall that Φ1hx := max
i≤x

(hi)).

We conclude this paper by showing that cor.213 is false (even for ∆ = ∅) when GnAω,

GnRω, GnAω
i are replaced by GnAω + Σ0

1–IA, P̂R
ω
, GnAω

i + Σ0
1–IA or PRAω, P̂R

ω
, PRAω

i :
It is well–known that there is an (function parameter–free) instance G of Π0

2–IA such that

G3A
ω + Σ0

1–IA + G ⊢ ∀x0∃y0A0(x, y),
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where ∀x∃y ≤ fx A0(x, y) implies that f has the growth of the Ackermann function.
Let B(x0) :≡ ∀u0∃v0B0(a

0, u, v, x) be the induction formula of G, where B0(a, u, v, x) con-
tains only a, u, v, x as free variables. By applying Π0

1–CA(f) to f(i, v) := tB0
(ν3

1(i), ν3
2 (i), v, ν3

3 (i)),
where tB0

is the characteristic function of B0, G reduces to Π0
1–IA (with function parameters)

and hence to Σ0
1–IA (Π0

n–IA and Σ0
n–IA are equivalent, see [19]). Hence

G3A
ω + Σ0

1–IA ⊢ Π0
1–CA(f) → ∀x∃y A0(x, y).

If cor.213 would apply to G3A
ω + Σ0

1–IA and P̂R
ω

we would obtain (by the proof of prop.

34) a term s1 ∈ P̂R
ω

such that ∀x∃y ≤ sx A0(x, y). This however would contradict the

well–known fact that every s1 ∈ P̂R
ω

is primitive recursive.
The same argument applies to PRAω since PRAω+AC0,0 –qf ⊢ Σ0

1–IA.
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