
On weak Markov’s principle

Ulrich Kohlenbach

BRICS∗

Department of Computer Science

University of Aarhus
Ny Munkegade

DK-8000 Aarhus C, Denmark
kohlenb@brics.dk

Keywords: Markov’s principle, intuitionism, constructive analysis, restricted clas-
sical logic, modified realizability.

AMS Classification: 03F60, 03F10, 03F35, 03F50.

Abstract

We show that the so-called weak Markov’s principle (WMP) which states
that every pseudo-positive real number is positive is underivable in T ω :=E-
HAω+AC. Since T ω allows one to formalize (at least large parts of) Bishop’s
constructive mathematics, this makes it unlikely that WMP can be proved
within the framework of Bishop-style mathematics (which has been open for

about 20 years). The underivability even holds if the ineffective schema of

full comprehension (in all types) for negated formulas (in particular for ∃-free

formulas) is added, which allows one to derive the law of excluded middle for
such formulas.

1 Introduction

The so-called weak Markov’s principle (WMP) has been first considered by Mandelk-

ern in [14],[15] (in the former paper under the name ‘almost separating principle’
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(ASP) and in the latter as ‘weak limited principle of existence’ (WLPE)). Under
the currently common name of weak Markov’s principle it has been investigated
by Ishihara ([8],[9]). WMP plays a crucial role in the study of the interrelations
between various continuity principles within the framework of Bishop-style construc-
tive mathematics ([2],[3],[4]). In order to state WMP we first need the notion of
‘pseudo-positivity’:

Definition 1 1) A real number a ∈ IR is pseudo-positive if

∀x ∈ IR(¬¬(0 < x) ∨ ¬¬(x < a)).

2) a ∈ IR is positive if a > 0.

Remark 2 1) It is clear that we can without loss of generality restrict x ∈ IR in

the definition of pseudo-positivity to x ∈ [0, 1].

2) ‘x > y’ for x, y ∈ IR is to be read as a positive existence statement

‘∃n ∈ IN(x ≥ y + 1
n+1

)’ which has – constructively – to be distinguished from

the negative statement ‘¬(x ≤ y)’.

Definition 3 Weak Markov’s principle is the schema

(WMP): Every pseudo-positive real number is positive.

WMP follows easily from the well-known Markov’s principle as well as from an ap-
propriate continuity principle and also from the extended Church’s thesis ECT0 (see

[10]). So WMP holds both in Russian constructive mathematics as well as in intu-

itionistic mathematics (in the sense of [4]).
Since about 20 years it has been an open problem whether WMP is derivable in
Bishop-style mathematics. The problem is, of course, not completely precise as no
particular formal system has been identified with Bishop-style mathematics. How-
ever, it is commonly agreed that Heyting arithmetic in all finite types HAω (see [17])
plus the axiom of choice AC in all types

ACρ,τ : ∀xρ∃yτA(x, y) → ∃Y ρ→τ∀xρA(x, Y (x))

is a framework which is quite capable of formalizing existing constructive (in the

sense of Bishop) mathematics (see also [1],[6]).
In this note we show that WMP is underivable even in E-HAω+AC, where E-HAω is
Heyting arithmetic in all finite types with the full axiom of extensionality (see again
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[17] for a precise definition). Our proof even establishes that this underivability

remains true if the (highly non-constructive) schema of full comprehension in all
types for arbitrary negated formulas

CA¬ : ∃Φρ→0∀xρ(Φ(x) =0 0 ↔ ¬A(x))

is added to E-HAω+AC which e.g. allows to derive the law of excluded middle for
all negated formulas

¬A ∨ ¬¬A.

Moreover, since E-HAω proves that every ∃-free formula A (i.e. A contains neither

‘∃’ nor ‘∨’) is equivalent to its double negation ¬¬A,1 we also get comprehension

(and consequently the corresponding law of excluded middle) for ∃-free formulas

CA
∃-free : ∃Φρ→0∀xρ(Φ(x) =0 0 ↔ A(x)), A ∃-free,

which allows e.g. to derive the classical binary König’s lemma WKL (and even the
uniform binary König’s lemma UWKL which states the existence of a functional
which selects an infinite path uniformly in an infinite binary tree, see [13]).

Many equivalent formulations of WMP have been found meanwhile. One of those,
due to Ishihara [8], is particularly interesting and reads as follows

Every mapping of a complete metric space into a metric space is strongly extensional

where f : X → Y is strongly extensional if

∀x1, x2 ∈ X(dY (f(x1), f(x2)) > 0 → dX(x1, x1) > 0).

In this formulation, the underivability of WMP is particularly easy to prove as we
indicate at the end of this paper. However, to conclude from there the underivability
of the usual formulation of WMP in E-HAω+AC we would have to undertake the
tedious task of verifying that Ishihara’s equivalence proof can be formalized in E-
HAω+AC. Richman [16] has shown that the proof that WMP implies Ishihara’s
strong extensionality statement requires a weak form of countable choice and fails in
certain sheaf models.

1Note that E-HAω only has prime formulas of the form s =0 t which are decidable and therefore
stable.
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2 The independence result

Definition 4 (Independence-of-premise for negated formulas)
IP¬ : (¬A → ∃xρB) → ∃xρ(¬A → B), where x does not occur free in A.

The following theorem was proved in [12](thm.3.3)

Theorem 5 ([12]) Let δ, ρ, γ be arbitrary types and G be a sentence of the form

G ≡ ∀xδ(A → ∃y ≤ρ sx¬B(x, y))

and
G̃ :≡ ∃Y ≤ s∀x(A → ¬B(x, Y (x))),

where s is a closed term of E-HAω and x1 ≤ρ x2 is pointwise defined as ∀v(x1v ≤0 x2v)

for a suitable tuple v of variables.
Let C(u, v), D(u, v, w) only contain u, v resp. u, v, w as free variables and let t be a
closed term. Then






E-HAω+AC+IP¬ + G ⊢ ∀u1∀v ≤γ tu(¬C(u, v) → ∃w0D(u, v, w))

⇒ there exists a closed term Φ of E-HAω s.t.2

E-HAω+AC+IP¬ + G̃ ⊢ ∀u1∀v ≤γ tu∃w ≤0 Φ(u)(¬C → D(w)).

Note that the bound Φ(u) does not depend on v.

Corollary 6




E-HAω+AC+IP¬+CA¬ ⊢ ∀u1∀v ≤γ tu(¬C(u, v) → ∃w0D(u, v, w))

⇒ there exists a closed term Φ of E-HAω s.t.

E-HAω+AC+IP¬+CA¬ ⊢ ∀u1∀v ≤γ tu∃w ≤0 Φ(u)(¬C → D(w)).

Proof: The corollary follows from the previous theorem by observing that:
(i) we can without loss of generality assume that all instances of CA¬ are parameter-
free since parameters a in A can be taken into the comprehension together with x,
(ii) every parameter-free instance of CA¬ is – relative to E-HAω – equivalent to a

2I.e. Φ is a primitive recursive functional in the sense of Gödel’s T .

4



sentence G as considered in the theorem (with A :≡ 0 = 0, x a dummy variable and

s := λx.1)3

∃Φ ≤ 1¬¬∀x(Φ(x) =0 0 ↔ ¬A(x)),

with G̃ ≡ G. 2

Remark 7 In the presence of CA¬ one can actually derive IP¬.

In order to formalize WMP in the language of E-HAω we have to represent real
numbers in [0, 1]. Furthermore, we show that we can arrange the representation such

that the names of reals in [0, 1] used belong to a compact subspace of the Baire space.

We represent real numbers (as in Bishop’s original treatment) as Cauchy sequences

with a fixed rate of convergence (the latter is inessential in a setting as ours which

contains AC since – using only AC0,0 from integers to integers – we can replace an

arbitrary Cauchy sequence by one with any fixed rate of convergence – e.g. 2−n –
which has the same limit).

Rational numbers in [0, 1] are represented as codes j(n, m) of pairs (n, m) of natural
numbers n, m.
j(n, m) represents the rational number n

m+1
, if n ≤ m + 1 and 0, otherwise.

Here j e.g. is Cantor’s surjective pairing function j(x, y) := 1
2
((x+ y)2 +3x+ y). On

the codes of Q ∩ [0, 1], i.e. on IN, we have an equivalence relation by

n1 =Q n2 :≡ n1, n2 represent the same rational number.

On IN one easily defines a primitive recursive function | ·−Q · | representing the usual

distance function on [0, 1]∩Q and relations <Q ,≤Q which represent the relations on

Q ∩ [0, 1]. For convenience we will write 1
k+1

instead of its code j(1, k) in IN.

By the coding of rational numbers in [0, 1] as natural numbers, sequences of such

rationals are just functions f 1 (and every function f 1 can be conceived as a sequence

of rational numbers in [0, 1] in a unique way). So real numbers in [0, 1] can be

represented by functions f 1 modulo this coding. We now show that every function
can be conceived as a representative of a uniquely determined Cauchy sequence of
rationals in [0, 1] with modulus 1/(k + 1) and therefore can be conceived as an
representative of a uniquely determined real number. Finally we show, that we can
restrict ourselves to codes f ≤1 M for some primitive recursive function M .

3Here 1ρ := λv.10 for a suitable tuple of variables v.
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Definition 8 Primitive recursively in f we define

f̂n :=






fn, if ∀k, m, m̃ ≤0 n(m, m̃ ≥0 k → |fm −Q fm̃| ≤Q
1

k+1
)

f(n0 − 1) for n0 := min l ≤0 n such that

[∃k, m, m̃ ≤0 l(m, m̃ ≥0 k ∧ |fm−Q fm̃| >Q
1

k+1
)],

otherwise.

1) if f 1 represents a Cauchy sequence of rational numbers in [0, 1] with modulus

1/(k + 1), then ∀n0(fn =0 f̂n),

2) for every f 1 the function f̂ represents a Cauchy sequence of rational numbers

in [0, 1] with modulus 1/(k + 1).

Hence every function f gives a uniquely determined real number in [0, 1], namely

that number which is represented by f̂ .

Definition 9 1) f1 =IR f2 :≡ ∀k0(|f̂1(k) −Q f̂2(k)| ≤Q
3

k+1
);

2) f1 <IR f2 :≡ ∃k0(f̂2(k) − f̂1(k) >Q
3

k+1
);

3) f1 ≤IR f2 :≡ ¬(f2 <IR f1);

We can restrict the set of representing functions for [0,1] to the compact (in the sense

of the Baire space) set {f : f ≤1 M}, where M(n) := j(3(n+1), 3(n+1)− 1): Each

fraction r having the form i
3(n+1)

(with i ≤ 3(n + 1)) is represented by a number

k ≤ M(n), i.e. k ≤ M(n) ∧ k codes r. Thus {k : k ≤ M(n)} contains (modulo this

coding) an 1
3(n+1)

–net for [0,1]. Primitive recursively in f we define

f̃(k) = µi ≤0 M(k)[∀j ≤0 M(k)(|f̂(3(k + 1)) −Q j| ≥Q |f̂(3(k + 1)) −Q i|)].

f̃ has (provably in E-HAω) the following properties (using that
̂̃
f =1 f̃):

1) ∀f 1(f̃ ≤1 M).

2) ∀f 1(f =IR f̃).
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Using this construction we can reduce e.g. quantification ∀x ∈ [0, 1] A(x) to quantifi-

cation of the form ∀f ≤1 M A(f) and equivalently ∀f 1A(f) for properties A which
are =IR–extensional.

Theorem 10 E-HAω+AC+IP¬+CA¬ ⊢/ WMP.

Proof: Let T :=E-HAω+AC+IP¬+CA¬ and assume that T ⊢ WMP. Then (re-

stricting w.l.g. a, x to [0, 1])

T ⊢ ∀a ∈ [0, 1](∀x ∈ [0, 1](¬¬(0 < x) ∨ ¬¬(x < a)) → ∃k0(a >
1

k + 1
))

which can – modulo our representation of x, a ∈ [0, 1] in E-HAω – be written in the
form

T ⊢ ∀a ≤1 M(∀x1(¬¬(0 <IR x) ∨ ¬¬(x <IR a)) → ∃k0(a >IR
1

k + 1
)).

This is equivalent to

T ⊢ ∀a ≤1 M(∀x1∃n ≤0 1[(n = 0 → ¬¬(0 <IR x)) ∧ (n 6= 0 → ¬¬(x <IR a))]

→ ∃k0(a >IR
1

k+1
)),

which implies

T ⊢ ∀a ≤1 M ∀N ≤2 1

(∀x1[(N(x) = 0 → ¬¬(0 <IR x)) ∧ (N(x) 6= 0 → ¬¬(x <IR a))] → ∃k0(a >IR
1

k+1
)).

The premise ‘∀x1[(N(x) = 0 → ¬¬(0 <IR x)) ∧ (N(x) 6= 0 → ¬¬(x <IR a))]’ can

easily be proved (relative to E-HAω) to be equivalent to its double negation and
hence is equivalent to a negated formula ¬B. So by corollary 6 we get a closed

number term t0 which can be reduced to a numeral m s.t.

T ⊢ ∀a ≤1 M ∀N ≤2 1

(∀x1[(N(x) = 0 → ¬¬(0 <IR x)) ∧ (N(x) 6= 0 → ¬¬(x <IR a))] → a >IR
1

m+1
).

Using AC this yields

T ⊢ ∀a ≤1 M

(∀x1∃n ≤0 1[(n = 0 → ¬¬(0 <IR x)) ∧ (n 6= 0 → ¬¬(x <IR a))] → a >IR
1

m+1
)
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and hence

T ⊢ ∀a ∈ [0, 1](a pseudo-positive → a >
1

m + 1
)

which obviously is absurd. 2

Final Remark:

1) As mentioned in the introduction, the statement that every mapping f : X →
Y from a complete metric space into a metric space is strongly extensional,
which was shown by Ishihara [8] to be equivalent to WMP, can be seen to be
underivable in the systems considered in this paper particularly easy: choose
as X the Baire space with the usual metric and as Y the discrete space IN. In

E-HAω the extensionality axiom implies that every functional F 2 is a function :

ININ → IN. If the above mentioned principle were derivable in E-HAω+AC then

one could derive that every F 2 is strongly extensional which in this particular
case is equivalent to the statement

∀f 1, g1(F (f) 6=0 F (g) → ∃x0(f(x) 6=0 g(x)).

By modified realizability (which is sound for E-HAω+AC, see [17],[18]) one
could extract a closed term t of E-HAω witnessing ‘∃x’ uniformly in F, f, g.
However, such a term would satisfy the Gödel functional (‘Dialectica’) inter-
pretation of the extensionality axiom for functionals of type 2. As shown by
Howard [7] such a term does not exist in E-HAω as it would not be majoriz-

able whereas all closed terms in E-HAω are.4 Using our theorem 5 instead we
can also extend this proof to the situation where CA¬ is added to E-HAω+AC.
Note that the proof of theorem 5 in [12] uses modified realizability and Howard’s
concept of majorizability too. Our proof for the underivability of the usual for-
mulation of WMP is more direct as the argument sketched in this remark relies
on Ishihara’s proof of the fact that WMP implies the principle mentioned above
which, moreover, would have to be proved to be formalizable in E-HAω+AC
first.

2) Our proof of the underivability of WMP in E-HAω+AC+CA¬ generalizes to
extensions by any further principles whose monotone modified realizability in-
terpretation (in the sense of [12]) is realizable by closed terms of E-HAω.

Acknowledgement: We are grateful to Bas Spitters for bringing the problem
treated in this paper to our attention and providing bibliographic information con-
cerning WMP.

4In this way one can also show that E-HAω+AC (as well as E-HAω+AC+IP¬) is not closed
under Markov’s rule (see [11] for more information on this).
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