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Abstract

Recently, Coquand and Palmgren considered systems of intuitionistic arith-
metic in all finite types together with various forms of the axiom of choice and
a numerical omniscience schema (NOS) which implies classical logic for arith-
metical formulas. Feferman subsequently observed that the proof theoretic
strength of such systems can be determined by functional interpretation based
on a non-constructive µ-operator and his well-known results on the strength
of this operator from the 70’s.
In this note we consider a weaker form LNOS (lesser numerical omniscience

schema) of NOS which suffices to derive the strong form of binary König’s

lemma studied by Coquand/Palmgren and gives rise to a new and mathemat-
ically strong semi-classical system which, nevertheless, can proof theoretically
be reduced to primitive recursive arithmetic PRA. The proof of this fact re-
lies on functional interpretation and a majorization technique developed in a
previous paper.
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In [6], systems of intuitionistic arithmetic in all finite types extended by various kinds
of the axiom of choice and the schema of numerical omniscience

NOS: ≡ ∀n(A(n) ∨ ¬A(n)) → ∀n A(n) ∨ ∃n¬A(n),

where n ranges over the natural numbers and A is any formula1, are studied.

In [5], Feferman noticed that the proof theoretic strength of such systems can be
determined by functional interpretation using his non-constructive µ-operator and
his classical results on the strength of systems based on this operator (see [1] for a

survey of those results).

In this note we show that a similar use of functional interpretation combined with
the majorization arguments which we developed in [8] can be used to determine the
strength of systems which instead of NOS are based on the weaker schema of lesser
numerical omniscience

LNOS :≡





∀n0((A(n) ∨ ¬A(n)) ∧ (B(n) ∨ ¬B(n)))∧

¬(∃nA(n) ∧ ∃nB(n)) → ∀n¬A(n) ∨ ∀n¬B(n),

which generalizes the well-known ‘lesser limited principle of omniscience’ (see [2] for

various equivalent formulations of this principle)

LLOP :≡ ∀f 1, g1(¬(∃n(fn = 0) ∧ ∃n(gn = 0)) → ∀n(fn 6= 0) ∨ ∀n(gn 6= 0))

in the same way as NOS generalizes

LPO :≡ ∀f 1(∀n(fn = 0) ∨ ∃n(fn 6= 0)).

We will define a system based on LNOS and the full axiom schema of choice

AC which allows to prove the version of König’s lemma studied in [6] and is Π0
2-

conservative over PRA.

In the following HAω and ĤA
ω

are the systems of arithmetic in all finite types

denoted by WE-HAω and WE-ĤA
ω

in [1], where, however, the quantifier-free rule of
extensionality is defined as

⊢ A0 → s =ρ t

⊢ A0 → r[s] =τ r[t],
1A may contain arbitrary parameters.
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where A0 is quantifier-free.2 ĤA
ω

contains only recursion on type 0 and induction

restricted to Σ0
1-formulas. ĤA

ω
|\ is the still weaker system with quantifier-free in-

duction only.

E-HAω and E-ĤA
ω

are the corresponding systems with full extensionality.

The axiom schema of choice is given by

ACρ,τ : ∀xρ∃yτA(x, y) → ∃Y ρ→τ∀xρA(x, Y x), AC:=
⋃
ρ,τ

{ACρ,τ} .

The axiom schema of unique choice is given by

AC!ρ,τ : ∀xρ∃!yτA(x, y) → ∃Y ρ→τ∀xρA(x, Y x).

Lemma 1 HAω+AC0,0+LLOP ⊢ LNOS. Similarly for ĤA
ω
|\ instead of HAω.

Proof: By intuitionistic logic and 0 6= 1 one proves that

∀n0(A(n) ∨ ¬A(n)) → ∀n0∃k0([k = 0 → A(n)] ∧ [k 6= 0 → ¬A(n)]).

By AC0,0 and the stability of =0 this yields

∃f∀n(f(n) = 0 ↔ A(n)).

Likewise, we get a characteristic function for B(n). So by applying LLOP to f, g

we obtain LNOS. 2

In the following, Mω, IPω
0 denote the Markov principle resp. the ‘independence-of-

premise principle’ from [11](3.5.10).

Theorem 2 1) HAω+AC+Mω+IPω
0+LNOS is Π0

2-conservative over HA.

2) ĤA
ω
+AC+Mω+IPω

0+LNOS is Π0
2-conservative over PRA.

If AC is replaced by AC0,τ plus AC!1,τ (with arbitrary τ) and Mω and IPω
0 are

restricted to instances containing only quantified variables of types ≤ 1, then the
above conservation results also hold for the fully extensional systems E-HAω and

E-ĤA
ω
.

2‘⊢’ indicates that further non-logical axioms are not allowed to be used in the proof of a premise
of that rule. This restriction is necessary for the deduction theorem to hold true which we will use
below. Alternatively, one could (as we have done in previous papers) formulate the rule without
this restriction and then using instead a special symbol ⊕ to indicate that in WE-HAω ⊕ A the
axiom A is not allowed to be used in any proof of the premise of QF-ER.
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Proof: 1) By the lemma above it is sufficient to consider LLOP. So let

HAω+AC+Mω+IPω
0 ⊢ LLOP → ∀x∃y R(x, y),

where ∀x∃y R(x, y) is a Π0
2-sentence in L(HA).

Relative to HAω we can write LLOP equivalently as

∀n, ñ(fn 6= 0 ∨ gñ 6= 0) → ∃k ≤ 1([k = 0 → ∀n(fn 6= 0)] ∧ [k 6= 0 → ∀n(gn 6= 0)]).

The latter is implied by

∃k ≤ 1∀z( ∀n, ñ ≤ z(fn 6= 0 ∨ gñ 6= 0) → ([k = 0 → fz 6= 0] ∧ [k 6= 0 → gz 6= 0])︸ ︷︷ ︸
A0(f,g,k,z):≡

),

where A0 can be written as a quantifier-free formula.
Hence

(∗) HAω+AC+Mω+IPω
0 ⊢ ∀f, g∃k ≤ 1∀z A0(f, g, k, z) → ∀x∃y R(x, y).

By a combination of functional interpretation and majorization as used in [8] one
can reduce the use of

∀f, g∃k ≤ 1∀z A0(f, g, k, z)

to
∀f, g, z∃k ≤ 1∀z̃ ≤ z A0(f, g, k, z̃).

For the sake of completeness we sketch the proof here: (∗) implies

HAω+AC+Mω+IPω
0 ⊢ ∀x∀F ≤ρ 1ρ∃f, g, z, y(A0(f, g, Ffg, z) → R(x, y)),

where ρ := 1 → (1 → 0), ≤ρ is defined pointwise and 1ρ := λf, g.1.

By functional interpretation (see [11](3.5.10)) one extracts a closed term Φ of HAω

such that

HAω ⊢ ∀x∀F ≤ 1(∀f, g A0(f, g, Ffg, ΦFx) → ∃y R(x, y)).

By [7], Φ has a majorizing functional Φ∗ and hence (using basic properties of ma-

jorization in Howard’s sense)

HAω ⊢ ∀x∀F ≤ 1(tx := Φ∗1ρx ≥ ΦFx).

Put together we get

HAω ⊢ ∀x∀F ≤ 1(∀f, g∀z ≤ txA0(f, g, Ffg, z) → ∃y R(x, y))
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and hence

HAω ⊢ ∀z∃F ≤ 1∀f, g∀z̃ ≤ z A0(f, g, Ffg, z̃) → ∀x∃y R(x, y).

Since F can be obtained by primitive recursive definition by cases this yields

HAω ⊢ ∀f, g, z∃k ≤ 1∀z̃ ≤ z A0(f, g, k, z̃) → ∀x∃y R(x, y).

However, ∀f, g, z∃k ≤ 1∀z̃ ≤ z A0(f, g, k, z̃) can easily be verified in PAω and hence

(using negative translation and the fact that this statement can be written as a

purely universal sentence) in HAω. Thus HAω ⊢ ∀x∃y R(x, y). The theorem now
follows by the well-known conservation of HAω over HA.

2) The proof is analogous to 1) using that P̂A
ω

has a negative translation into

ĤA
ω
+Mω and the latter has a functional interpretation in ĤA

ω
|\ which is Π0

2-
conservative over PRA.
The claim for the fully extensional systems follows by the well-known elimination of
extensionality technique (see [10] for details). 2

[6] introduces an extension of the usual weak König’s lemma WKL to binary trees

given by arbitrary formulas Φ(x, m) which are decidable in the variable m which

defines the tree, i.e. ∀m(Φ(x, m) ∨ ¬Φ(x, m)). Let’s call that schema DWKL (see

[6] p.57 for details).

Theorem 3 Both HAω+AC0,0+LNOS and ĤA
ω
|\+AC0,0+LNOS prove DWKL.

Proof: We show the theorem for ĤA
ω
|\+AC0,0+LNOS. Analogously to the proof

of the lemma above one verifies that ĤA
ω
|\+AC0,0 allows us to reduce DWKL to

the usual weak König’s lemma WKL as defined in [12]:

WKL:≡ ∀f 1(T (f) ∧ ∀x0∃n0(lth(n) = x ∧ fn = 0) → ∃b1∀x0(f(bx) = 0)), where

Tf :≡ ∀n0, m0(f(n ∗ m) =0 0 → fn =0 0) ∧ ∀n0, x0(f(n ∗ 〈x〉) =0 0 → x ≤0 1).

Consider the formula3

(+)





∀x0∃n ≤0 1∀k > 0(∃m ≤ 1k(lth(m) = k ∧ f(x ∗ m) = 0)

→ ∃m ≤ 1(k −· 1)(lth(m) = k −· 1 ∧ f(x ∗ 〈n〉 ∗ m) = 0)).

3Here we use that our coding of finite sequences has the property that
∀n, m, f, g(n ≥ m ∧ ∀x(fx ≥ gx) → fn ≥ gm), which can be arranged.
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We first show that P̂A
ω
|\ ⊢ T (f) → (+), where P̂A

ω
|\ is the classical counterpart of

ĤA
ω
|\: Let x be arbitrary but fixed.

Case 1: ∀k > 0∃m ≤ 1k(lth(m) = k ∧ f(x ∗ m) = 0).

Then classical logic yields (using T (f))

∀k > 0∃m ≤ 1k(lth(m) = k ∧ f(x ∗ 〈0〉 ∗ m) = 0)∨

∀k > 0∃m ≤ 1k(lth(m) = k ∧ f(x ∗ 〈1〉 ∗ m) = 0).

Set n = 0 in the case where the first disjunct is true, and set n = 1 otherwise.

Case 2: ∃k > 0¬∃m ≤ 1k(lth(m) = k ∧ f(x ∗ m) = 0). By the quantifier-free least-

number-principle (hence by the schema QF-IA of quantifier-free induction) we find
the least such k. Call it k0.
2.1: k0 = 1 : Choose n ≤ 1 arbitrarily.
2.2: k0 > 1 : Then

∃m ≤ 1(k0 −· 1)(lth(m) = k0 −· 1 ∧ f(x ∗ m) = 0).

choose n := (m)0 for such an m. This finishes the proof of P̂A
ω
|\ ⊢ T (f) → (+). By

negative translation we get

ĤA
ω
|\ ⊢ T (f) → (+)′,

where

(+)′ :≡





∀x0¬¬∃n ≤0 1∀k > 0(∃m ≤ 1k(lth(m) = k ∧ f(x ∗ m) = 0)

→ ∃m ≤ 1(k −· 1)(lth(m) = k −· 1 ∧ f(x ∗ 〈n〉 ∗ m) = 0)).

But ĤA
ω
|\+LLOP ⊢ (+)′ → (+). Hence

ĤA
ω
|\ + LLOP ⊢ T (f) → (+).

Assume T (f) ∧ ∀x∃n(lth(n) = x ∧ fn = 0).

By applying AC0,0 to (+) we get a function g such that





∀x0(gx ≤0 1 ∧ ∀k > 0(∃m ≤ 1k(lth(m) = k ∧ f(x ∗ m) = 0)

→ ∃m ≤ 1(k −· 1)(lth(m) = k −· 1 ∧ f(x ∗ 〈gx〉 ∗ m) = 0))).
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Define h̃(0) := 〈〉, h̃(n + 1) := h̃(n) ∗ 〈g(h̃(n))〉.

Now take h(n) := (h̃(n + 1))n. By quantifier-free induction we show that

(++) ∀n(h̃(n) = h(n)):

n = 0 : h̃(0) = 〈〉 = h(0).

n → n+1 : h̃(n+1) = h̃(n) ∗ 〈g(h̃n)〉
I.H.
= hn ∗ 〈g(h̃n)〉

lth(h̃n)=n
= h(n) ∗ 〈(h̃(n+1))n〉 =

h(n) ∗ 〈hn〉 = h(n + 1).
Let k be arbitrary but fixed. We now show – again by quantifier-free induction on n

– that
∀n < k∃m ≤ 1(k−·n)(lth(m) = k−·n ∧ f(h(n) ∗ m) = 0) :

n = 0 : h(0)∗m = m, hence the claim follows from T (f)∧∀x∃n(lth(n) = x∧fn = 0).
n → n + 1 : We may assume that n + 1 < k : By I.H.

∃m̃ ≤ 1(k−·n)(lth(m̃) = k−·n ∧ f(h(n) ∗ m̃) = 0).

Hence by g-definition

∃m ≤ 1(k−· (n + 1))(lth(m) = k−· (n + 1) ∧ f(hn ∗ 〈g(hn)〉︸ ︷︷ ︸
=h(n+1) (++)

∗m) = 0),

which is the claim for n + 1.
So in total we have shown that T (f) ∧ ∀x∃n(lth(n) = x ∧ fn = 0) implies

∀k∀n < k∃m ≤ 1(k−·n)(lth(m) = k−·n ∧ f(h(n) ∗ m) = 0)

and hence
∀n(f(hn) = 0),

i.e. h satisfies WKL. 2.

Corollary to the proof of the theorem: In the proof of the theorem above we

have only used elementary recursive functionals from ĤA
ω
|\. So the argument also

applies to even weaker systems having the strength of Kalmar elementary arithmetic
EA.

Remark 4 By combining theorems 2 and 3 proved above, one concludes that the
strong version of (weak) König’s lemma from [6] DWKL may be added to the systems
in question without destroying the conservation results. Instead of the rather tedious

proof of weak König’s lemma from LLOP and AC0,0 one could also more easily
directly apply the proof of theorem 2 to the situation where weak König’s lemma is
added and use the WKL-elimination from [8]. However, we preferred the first route
as an application of LLOP.
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Remark 5 If one is not interested in proof theoretic reductions to systems of low
proof theoretic strength but in the more applied aspect of extracting algorithms or

bounds from proofs of semi-classical systems, then (at least in the absence of Mω)4

much stronger results can be obtained as we have shown in [9]. E.g. consider the
comprehension principle for negated formulas in all types

CA¬ : ∃Φρ→0∀xρ(Φ(x) = 0 ↔ ¬A(x))

(where A is an arbitrary formula) and the full double negation shift schema

DNS : ∀xρ¬¬A → ¬¬∀xρA

and define T := ĤA
ω
+AC+DNS+CA¬. Then the provable5 functions of T are

bounded by primitive recursive functions although T allows us to interpret full clas-

sical type theory via negative translation. For weak subsystems instead of ĤA
ω
, even

polynomial bounds are guaranteed.

Remark 6 Intuitionistically one can allow certain induction principles which classi-
cally would go beyond the strength of PRA and still obtain conservation over PRA.
E.g. [13] considers function parameter free forms of induction rules for fomulas like

∃f 1∀x0A0 (with quantifier-free A0). It seems likely that also in this context one may
add LNOS and still preserve PRA-reducibility.
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