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Abstract

This paper is the first one in a sequel of papers resulting from the authors Habilitationsschrift
[22] which are devoted to determine the growth in proofs of standard parts of analysis. A
hierarchy (GnA“)nem of systems of arithmetic in all finite types is introduced whose definable
objects of type 1 = 0(0) correspond to the Grzegorczyk hierarchy of primitive recursive functions.
We establish the following extraction rule for an extension of G, A“ by quantifier—free choice
AC—qf and analytical axioms I' having the form Vz°3y <, saVz"Fy (including also a ‘non—
standard’ axiom F~ which does not hold in the full set—theoretic model but in the strongly

majorizable functionals):

From a proof G,A“+AC—qf + T F Vu', KOV <, tukIw® Ao(u, k, v, w)
one can extract a uniform bound & such that

Vul, kO <, tukIw < PukAo (u, k,v,w) holds in the full set—theoretic type structure.

In case n = 2 (resp. n = 3) duk is a polynomial (resp. an elementary recursive function) in
k,u™ := Az.max(u0,...,uz). In the present paper we show that for n > 2, G, A +AC—qf+F~
proves a generalization of the binary Koénig’s lemma yielding new conservation results since the
conclusion of the above rule can be verified in Gpax(3,n)A” in this case.

In a subsequent paper we will show that many important ineffective analytical principles
and theorems can be proved already in GoA“+AC—qf+TI for suitable I'.

1 Introduction

This paper is the first one in a sequel of papers resulting from the authors Habilitationsschrift [22]
which are devoted to determine the growth in proofs of standard parts of analysis.

Let U be a complete separable metric space, K a compact metric space and A € Y. As we
have elaborated in [21] many numerically interesting theorems in analysis can be transformed into
sentences having the form

() Vue U, ke INVv € K3w € IN A(u, k, v, w)



and one is interested in a uniform bound ®uk on w which does not depend on v € K, i.e.
Vu e Uk € WWo € KJw < Puk A(u, k, v, w).

Quite often A is monotone with respect to w, i.e.
Au, kyv,w1) Awe > wy — Alu, k, v, ws)

and hence the bound ®uk in fact realizes ‘Juw’ (see [21] for a discussion of this phenomenon).
What do we know about the rate of growth of ® if we know that (1) is proved using certain parts
of analysis?

In [14],[15], [19],[20] we have developed a proof-theoretic method suited for the extraction of such
bounds from proofs in analysis which guarantees the extractability of primitive recursive bounds for
large parts of analysis. Moreover this method has been applied to concrete (ineffective) proofs in
approximation theory yielding new a—priori estimates for numerically relevant data as constants of
strong unicity and others which improve known estimates significantly (see [19],[20],[21]).

In analyzing these applications we developed in [21] a new monotone functional interpretation which
has important advantages over the method from [15] and provides a particular perspicuous procedure
of analyzing ineffective proofs in analysis.

The starting point for the investigation carried out in the present paper is the following problem:
Whereas the general meta—theorems in [15], [19] and [21] only guarantee the existence of a primitive
recursive bound ®, the bounds which are actually obtained in our applications to approximation
theory have a very low rate of growth which is polynomial (of degree < 2) relatively to the growth
of the data of the problem. Thus the problem arises to close the still large gap between polynomial
and primitive recursive growth.

Before we start to discuss this question let us note that using a suitable representation of spaces

like U,X and the basic notions of real analysis, sentences (1) can be formalized in the language of

arithmetic in all finite types such that (1) gets (a special case of) the following logical form®

(2) Vu'', k"o <, tu kFw® Ag(u, k, v, w).

Here u! :=ul,... ul, E*:=k9,... kO tis a closed term, 7 an arbitrary finite type, 1 = 0(0) and
Ao(u, k,v,w) a quantifier—free formula containing only the free variables u, k,v,w. <, is defined
pointwise.

By a uniform bound we now mean a functional ® such that
Vu', Ko < tu k3w <o SukAo(u, k, v, w).

Again the predicate ‘uniform’ for the bound ® refers to the fact that ® does not depend on v.
Coming back to our question from above we are interested in the determination of those parts
of classical analysis, where the extractability of bounds ® having only polynomial growth (resp.
elementary recursive growth) relatively to the data is guaranteed.

In order to address this question we introduce a hierarchy G, A“ of subsystems of classical arith-
metic in all finite types and investigate the rate of growth caused by various analytical principles

relatively to G, A“+AC—qf. The definable functionals t'(*) in G,,A* are of increasing order of growth:

IFor the weak system G2A® discussed below more subtle representations than those which are used in [19] are
necessary. Such representations are developed in 3 of [22] and will be published in a paper under preparation.



If n =1, then tf'2° is bounded by a linear function in M, «,

if n = 2, then tf'2° is bounded by a polynomial in f™, x,

if n = 3, then tf12° is bounded by an elementary recursive (i.e. a (fixed) finitely iterated

exponential) function in fM x,

where fM := \2°. max(f0,..., fr) and ®fx is called linear (polynomial, elementary recursive) in
fra if VL, 20 (@ fo = ®[f, x]) for a term ®[f, 2] which is built up from 0°,z°, f1, 8!, +
(respectively 0°, 29, f1, S1 +,-and 00,20, 1, 81+, - A2, y°.2¥) only. In our results the term &D[f, x]
can always be constructed.

Let us motivate this notion for the polynomial case:
If ®fx is a polynomial in f! 2%, then in particular for every polynomial p € IN[z] the function

Az?.®px can be written as a polynomial in IN[z]. Moreover there exists a polynomial ¢ € IN[z]

(depending only on the term structure of </IS) such that

For every polynomial p € IN[z] one can construct a polynomial r € IN[z] such that

V(S <1p— V2 (@fx <o r(z))) and deg(r) < q(deg(p))-

Since every closed term ¢t'(Y) in GyA“ is bounded by a polynomial ®f™z in f™ 2 and f <; p —
M <q p (since p is monotone) this also holds for ¢fz instead of ® fz.

k
—

In particular every closed term t! (£° (0)... (0)) of GoA¥ is bounded by a polynomial p; € IN[z]
(resp. a polynomial p; € IN[xq, ..., xg]).

For general n € IN, n > 1, every closed term t' of G,,A“ is bounded by some function f; € £" where
E™ denotes the n—th level of the Grzegorczyk hierarchy.

It turns out that many basic concepts of real analysis can be defined already in GoA¥: e.g.
rational numbers, real numbers (with their usual arithmetical operations and inequality rela-
tions), d—tuples of real numbers (for every fixed d), sequences and series of reals, continuous
functions F : IR? — IR and uniformly continuous functions F : [a,b] — TR, the supremum of
F € C([a,b]*,R) on [a,b]?, the Riemann integral of F' € C[a,b]. Furthermore the trigonometric
functions sin, cos, tan, arcsin, arccos, arctan and 7 as well as the restriction exp, (Ing) of the expo-
nential function (logarithm) to [—k, k] for every fixed number k can be introduced in GoA“ (The
unrestricted functions exp and In can be defined in GgA¥).

G2 A“Y+AC—qf proves many of the basic properties of these objects.

In this paper we determine the growth of extactable bounds ® for G,A+AC—qf+F~, where F~
is a certain analytical axiom which allows (relatively to GoA“+AC—qf) very short and perspicuous
proofs of fundamental theorems of analysis as e.g.

e every pointwise continuous function f : [0,1]¢ — IR is uniformly continuous and possesses a
modulus of uniform continuity

e the attainment of the maximum value of f € C([0,1]¢,IR) on [0, 1]¢

e the sequential form of the Heine-Borel covering property for [0, 1]¢



e Dini’s theorem together with a modulus of uniform convergence
e the existence of a uniformly continuous inverse function for every strictly increasing continuous

function f:[0,1] — IR.

In particular we show the following:
Let A be a set of sentences having the form Va3y <, sa¥z"By (By quantifier—free). Then the
following rule holds:

From a given proof G,A“+AC-—qf+A + F~ FVu', 'V <, tw kJuw® Ao (u, k, v, w)
(%) one can extract a uniform bound ® such that
Gmax(n,3)AY + A+ b-AC +Vul, E"Vo <; tu kJw <o Puk Ao(u, k, v, w),

where

®u k is a polynomial in M,k if n =2

du k is an elementary recursive function in u™, k if n = 3.
Here b—AC denotes the schema

(b-ACP) : vz (Vﬁ}ly <, Zx A(z,y,2) — Y <,5 ZVzA(z,Y,Z)), b-AC := U {(bfAC&p)} .
4,peT

If A consists of sentences B which hold in the full set—theoretic type S (where set—theoretic refers
to say ZFC) then one can conclude that

S¥ = Vu', KV <, tukFw <o Puk Ag(u, k,v,w),

i.e. the bound @ is verified in the full set—theoretic model although F'~ is not valid in & but only
in the model M¥ of so—called strongly majorizable functionals (see 4).

(If A = 0 then we have a verification already in Gyax(n,3)A¢, i.e. without b-AC).

In a subsequent paper we will show that substantial parts of classical analysis can be developed in
GoA“+AC—qf+A + F~ for suitable A or if the proof uses functions having e.g. exponential growth
in GsAY+AC—qf+A 4+ F~ (In the later case one obtains bounds which are polynomial relatively

to these exponential functions. If these functions are not used iterated in the given proof one gets
bounds having essentially simple exponential growth instead of being merely elementary recursive;

see remark 3.2.6 for a discussion of this point), e.g. in addition to the theorems mentioned above we
have

e the fundamental theorem of calculus

e Fejér’s theorem on the uniform approximation of 2r—periodic continuous functions by trigono-
metric polynomials

e the equivalence (local and global) of e-d—continuity and sequential continuity of F': R — IR
e Mean value theorems for differentiation and integrals

e Cauchy—Peano existence theorem for ordinary differential equations

e Brouwer’s fixed point theorem for continuous functions F : [0, 1]¢ — [0, 1]¢.



In a further paper we will consider the growth caused by single sequences of instances of principles
like

e the convergence of bounded monotone sequences of real numbers

e the existence of a greatest lower bound for sequences of reals which are bounded from below

e the Bolzano—Weierstra property for bounded sequences in R?
e the Arzela—Ascoli lemma.

relatively to Gg/3A“+AC—qf+A + F~. Whereas the full versions of these principles are equivalent
to the schema of arithmetical comprehension (provably in GoA“) and thus prove the totality of
every o< go)-recursive function, it turns out that single sequences of instances (which however
may depend on the parameters of the conclusion) of these principles contribute to the growth of
bounds at most by certain primitive recursive functionals (in the sense of [11],[12]). There are even

important special cases where their contribution is only polynomial. In contrast to this, single
instances of the principle of

e the existence of the limit superior of bounded sequences in IR

may contribute a growth of the Ackermann type.
For these results a combination of the techniques developed in this paper with a new method of
eliminating Skolem functions for monotone formulas will be used.

The present paper is devoted mainly to establish (x). Furthermore as a proof-theoretic application
of (*) we obtain (see 4 below) conservation results for a generalization WKL, of the binary Koénig’s

lemma WKL to sequences of trees: We give a new formulation VVKL%Se @ of WKL 4.q) which avoids

the need of a coding functional @, fx = fx (which is not available in GoA* but only in G,A* for
n > 3) by the use of functionals of higher type (relatively to GgA“ both formulations turn out to
be equivalent). WKLZ,_, is provable in GoA¥ + F~+AC"0—qf+AC%'—qf. Thus () also applies to
proofs using WKLgeq and in particular we obtain the following rule

From a proof GaA“+AC-qf+WKLZ,, F VuVu <. tudw®Ag(u, v, w)

one can extract constants k, ci, co € IN such that

G3AY F Vu'vo <, tudw <o cyuf + o Ag(u, v, w).

Finally let us emphasize that our systems based on GoA“+AC—qf must not be confused with systems
of ‘feasible analysis’ as defined e.g. (in a second-order setting) in [6]. In GoA“ one can define for

instance functionals which compute fol f(@)dx or sup,¢(o q) f(2) for uniformly continuous functions
f € C[0,1] (endowed with a modulus of uniform continuity) although these notions are not (known

to be) feasible (see [13]). Thus the formula A in (1) above may involve terms like fol f(x)dx or
SUP,e(o,1) f () and it is only by this fact that (1) covers many theorems in analysis. Nevertheless
we obtain polynomial bounds p € IN[k] such that Vk € INVv € K3w < p(k) A(k, v, w) from proofs of
Vk € NVv € KJw A(k,v,w) in GoA“+AC—qf+A+ F~ (and in the presence of u € U polynomials in
u™). By monotonicity of A in w these bounds usually yield realizations for Jw (which in particular
are computable in polynomial time and therefore ‘feasible’ since p is a polynomial!).
Acknowledgment: I am grateful to Prof. H. Luckhardt who encouraged me to investigate proof—
theoretically substantial subsystems of analysis producing mathematical bounds of low — in particular
polynomial — growth.



2 Subsystems of primitive recursive arithmetic in all finite
types

2.1 Classical and intuitionistic predicate logic PL* and HL"” in the lan-
guage of all finite types

The set T of all finite types is defined inductively by
(1) 0 € T and (é) p,7€ T=71(p) € T.

Terms which denote a natural number have type 0. Elements of type 7(p) are functions which map

objects of type p to objects of type 7.
The set P C T of pure types is defined by

(1) 0 € P and (ii) pe P = 0(p) € P.

Brackets whose occurrences are uniquely determined are often omitted, e.g. we write 0(00) instead
of 0(0(0)). Furthermore we write for short 7py ...p; instead of 7(pg)...(p1). Pure types can be
represented by natural numbers: 0(n) := n+1. The types 0,00, 0(00),0(0(00)) ... are so represented
by 0,1,2,3.... For arbitrary types p € T the degree of p (for short deg(p) ) is defined by deg(0) := 0
and deg(7(p)) := max(deg(7),deg(p) + 1). For pure types the degree is just the number which
represents this type. Functions having a type whose degree is > 1 are usually called functionals.
The language £(HL“) of HL“ contains variables a”,y”, 2#, ... for each type p € T together with
corresponding quantifiers Vz”, Jy” as well as the logical constants A, V,— and an equality relation
=¢ between objects of type 0. Furthermore we have a propositional constant L (‘falsum’). Negation
as a defined notion: —=A := A — L. Finally £L(HL*) contains ‘logical’ combinators II, » and X5, -
of type prp and 76(pd)(7pd) for all p, 7,6 € T.

HL“ has the usual axioms and rules of intuitionistic predicate logic (for all sorts of variables) plus the
equality axioms for = (e.g. see [34] ). Equations s =, t between terms of higher type p = Opj, ... p1
are abbreviations for the formulas Vz{*, ... 2" (s21 ... 2, =0 tz1 ... zp).

II, -, %5~ are characterized by the corresponding axioms of typed combinatory logic:

pyTs
I, xy" =, x and 35, rxyz =, xz(yz) where x € Tpd,y € pd, z € 4.
Furthermore we have the following quantifier—free rule of extensionality

A0—>S:pf

F-ER:
Q Ay — rls] =; rt]

, where Aj is quantifier—free.

Classical predicate logic in all finite types PL® results if the tertium—non—datur schema AV —A is

added to HL¥. The enrichment of HL* (resp. PL¥ ) obtained by adding the extensionality axiom
(Ep) V2P yP 2P (x =p y — 22 =7 2y)

for every type p is denoted by E-HL* (resp. E-PL¥).

Remark 2.1.1 UsingII, ; and X5, . one defines (e.g. as in [34] ) A\—terms AzP .t [x] for each term
t7[zP] such that

HL® & (Axf.t7[x])s” =; t[s]. In particular one can define a combinator II, - = Xz, y".y such that
I, aPy™ =,y (E.g. take II" := I(XIII) for ¥,11 of suitable types).

Notational convention: Throughout this paper Ay, By, Co, ... always denote quantifier—free for-
mulas.



2.2 Subsystems of arithmetic in all finite types corresponding to the
Grzegorczyk hierarchy

In the following we extend PL* and HL* by adding certain computable functionals and universal
axioms including the schema of quantifier—free induction. The following definition from [28] is a
variant of a definition due to [1] and can be used for a perspicuous definition of the well-known
Grzegorczyk hierarchy from [9] (see def.2.2.27 ).

Definition 2.2.1 For each n € IN we define (by recursion on n from the outside) the n-th branch
of the Ackermann function A, :IN x IN — IN by

Ao(z,y) :=y" (Here and in the following ©' stands for the successor Sz of x),

z, ifn=20
A,H_l(.T,O) = 0, fn=1
1, ifn>2,

An+1(.’L', yl) = An(,iE, An+1 (:Ea y))

e

Remark 2.2.2 1) Aj(z,y) =x+vy, Az(x,y) =x-y, As(z,y) =¥, As(z,y) = x””" (y times).

2) For each fired n € IN the function A, is primitive recursive. But: A(x) := Ay(x,z) is not
primitive recursive.

We now define the Grzegorczyk arithmetic G,,A“ of level n > 1 in all finite types and their
intuitionistic variant G, AY :

L(GpA%) is defined as the extension of £(PL)*) by the addition of function constants S (successor),

max)? ming?, AQ, ... A%0 and functional constants ®°, ... &Y% 1,901 (hounded p-operator),

R, € p(p0)(p00)p0 (for each p € T). Furthermore we have a predicate symbol <.
In addition to the axioms and rules of PL¥ the theory G, A“ contains the following:

1) <p-axioms: z <oz, 2 <oyVy<ox, T <oyAy<oz—2<0z z<oyAy<oT T =0y
S—axioms: Sz =¢ Sy — = =gy, -0 =¢ Sz, x <o Sx.
(max) : maxo(z,y) >0 , maxo(z,y) >0y, maxo(z,y) =o =V maxo(z,y) =o y.

)
)
4) (min) : ming(x,y) <o &, ming(z,y) <o y, ming(z,y) =¢ = V ming(x,y) =o y.
) The defining recursion equations for Ay, ..., A, from the definition 2.2.1 above.
)

Defining recursion equations for ®q,...,®,:

;0 =0 fO
(I)ifl'/ =0 Ai,l(f:c’, (I)ZfSC) for ¢ Z 2

and

@, f0=¢ fO
Dy fo' =g maxo(fz', Py fx).



(For i > 2, ®; is the iteration of the (i — 1)-th branch A;_; of the Ackermann function on the

f—values fO0,..., f for variable x).

y <oz A fO%y =00 — fe(ufz) =00,
(6) : 4y <o mfr — fay #0,
o fr =0 0V (fr(ufz) =0 0 A mwfr <o x)
(These axioms express that upfe = miny <o z(faxy =¢ 0) if such an y < x exists and = 0

otherwise).

Defining recursion equations for Rp (bounded and predicative recursion, since only type—0—

values are used in the recursion):

R,0yzvw =¢ yw

R,x"yzvw = ming(z(R,zryzvw)rw, vrw),

where y € p=0pp...p1, w=w{" ... w*, ze€ p00, v e po.

All ]N,ININ, ]N(]N]N)ftrue purely universal sentences Yz Ag(z), where z is a tuple of variables
whose types have a degree < 2, i.e. all such sentences which are true in the full type—structure
S¥ of all set—theoretic functionals, where ‘set—theoretic’ refers to say ZFC (The constants
introduced so far have an interpretation in S which is uniquely determined by the axioms
1)-8). By this interpretation S“ becomes a model of the theory axiomatized by 1)-8). It is

this model we refer to if we speak of ‘truth’ in §¥).

G, AY is the variant of G, A“ with intuitionistic logic only.
If we add (E) = U,{(Ep)} to GoA¥,G,A¥ we obtain theories which are denoted by E-G,A*,

E-G,

A¥. G,R¥ denotes the set of all closed terms of G, A“.

Remark 2.2.3 1) The functionals ®1, P2 and P53 have the following meaning:

2)

3)

<I>1fx:maX(f0,f1,...,f:C), (I)sz:Z;:Ofya (I)3fz:HZ:0fy

Our definition of Gn, A% contains some redundances (which however we want to remain for
greater flexibility of our language): E.g. ®; (i > 1) can be defined from A;, R,ming and ®:
With fM = \x.®, fz, 2.2.18 below implies ®;fr < A;(fMz + 1,2+ 1). Hence ®; can be
defined by R using A;(fMx+ 1,2+ 1) as boundary function v.

The axiom of quantifier—free induction
(1) V2 (f0 =0 0 AVy < z(fy =00 — fy' =0 0) — fz =0 0)

can be expressed as an universal sentence V1, 20Aq by prop.2.2.6 below and thus is an aziom
of GnAY. (1) implies every instance (with parameters of arbitrary type) of the schema of

quantifier—free induction
QF-IA : V2" (A (0) AVy < 2(Ao(y) — Ao(y')) — Ao(z))

since again by prop.2.2.6 there exists a term t such that tx =9 0 <> Ag(z): QF-IA now follows
from (1) applied to f :=t.



4)

Because of the axioms in 9), our theories are not recursively enumerable. The motivation for
the addition of these sentences as axioms is two—fold:

(i) As G. Kreisel has pointed out in various papers, proofs of N—true universal lemmas have
no impact on bounds extracted from proofs using such lemmas. For the methods we use for
the extraction of bounds (e.g. our monotone functional interpretation) this applies even for

arbitrary universal sentences VaxP Ay where p may be an arbitrary type. Taking such sentences
as azxioms usually simplifies the process of the extraction of bounds enormously. The reason
for our restriction to those sentences for which p < 2 is that on some places in this paper we
deal with principles which are valid only in the type structure M of the so—called strongly

magjorizable functionals (see 4 below) but not in the full type structure S¥ of all set-theoretic
functionals. Since both type structures coincide up to type 1 and for the type 2 the inclusion
M4 C 8% holds, the implication 8¥ | VaPAg = M¥ | VaP Ay holds if p < 2. The same is
true if we replace M“ by the type structure ECF of all extensional continuous functionals over
IN™N (see [34] for details on ECF).

(i) Many important primitive recursive functions such as sg,3g, |x —y| and so on are already
definable in Gy A¥. However the usual proofs for their characteristic properties (which can be
expressed as universal sentences) often make use of functions which are not definable in Gy A

(as e.g. x-y). Thus we would have to carry out the boring details of a proof for these properties
m G1 Av.

Using Ry the following primitive recursive functions can be defined easily in GqA%:

1)

2)

3)

4)
5)
6)

Definition 2.2.4

prd(0) =0 0
prd(z') =¢ © (predecessor),

Sg(O) =0 0 @(O) =0 1 (1 = SO)
sg(e') =o 1, 5g(x") =0 0,
r=0=¢x

x =y = prd(z=y),
|z — y| =0 max(x ~y,y ~x) (symmetrical difference),
e(z,y) =0 sg(lx —y|) (characteristic function for =),

d(x,y) =0 35g(lx —y|) (characteristic function for #).

Remark 2.2.5 Because of the universal azioms in 9), the theory Gy AY proves the usual properties

of the functions max, min, prd, sg,3g, = |z — y|,e and §, e.g.
sg(r) =02 =0, 35g(r) =0 x#0, sg(x) <1, 3g(z) <1, prd(x) < =,
[t —yl=0—z=y, x=0Va=S(prdx)), max(z,y) =0—x=0Ay =0,

min(z,y) =02 =0Vy =0, max(z,y) =0y < = <p y.



Proposition: 2.2.6 Let n be > 1. For each formula A € L(G,A¥) which contains no quantifiers
except for bounded quantifiers of type 0 one can construct a closed term ta in G, AY such that

Gn Ay BVt alr (tA:cl cooxp =0 0 & A(xl,...,xk)),
where x1,. ..,z are all the free variables of A.

Proof: Induction on the logical structure of A using the remark above. Bounded quantifiers are
captured by :

GpAY F 3y <o zA(z,y, a) ) Az, (A, y.tazya, x), a).

Proposition: 2.2.7 Let n > 1, Ag(z) € L(GpAY), where x = ' ... a}* are all free variables of
Ao, and t9PF P 19PRP gre closed terms of GnAY. Then there exists a closed term ®%%r1 ip
G, A% such that

tiz, if Ao(z)

GrAY EVz | Pz =g
tox, if 2 Ao(z).

Proof: Define t} := \y%,u®.to, t§ := Mul.ts. One easily verifies that ® := \z. R, (ta,z)t1thtyz with
ta, as in the previous proposition and p = Opy . .. p1 fulfils our claim.

Definition 2.2.8 (and lemma) For n > 2 we can define the surjective Cantor pairing function j

(’diagonal counting from below’) with its projections® in Gy, R*:

_ minu <o (z +y)? + 32 + y[2u = (v +y)? + 3z + y] if evistent
j(a®,y°) =
0%, otherwise,?

jlz :=minz <o Z[Hy < Z(](iﬂ,y) = Z)]a

Jez i=miny <o z[3x < 2(j(z,y) = 2)].

Using j, j1,J2 we can define a coding of k—tuples for every fixed number k by

vi(zo) := z0, V3(20,21) := j(z0,71), V" (20,.. ., 28) = j(w0, V* (21, .., 2%)),
1o (G2) Na), if1<i<k
vE(zy, .. 1) = jre (G2 (@), 1< (if k>1)
(j2)F M (2), if1<i=k
One easily verifies that vF(V*(z1,...,xx)) = z; for 1 <i <k and v*(vf(2),...,vi(2)) = .

Finite sequences are coded (following [34] ) by
(=0, (xo,...,z) = Sk, " (xo,...,21))).

Using R one can define functions lth, II(k,y) € Gn,RY such that for every fized k

Ty, ify <k .
Ith(()) =0, ith({zo,...,zx)) = k+1, l(z,y) = if e = (xg,...,x).

0°, otherwise

2For detailed information on this as well as various other codings see [33] and also [5] (where j is called 'Cauchy’s
pairing function’).

30ne easily shows that (x 4 y)2 4 3z + y is always even (This can be expressed as a purely universal sentence, i.e.
as an axiom in G, A%). Hence the case 'otherwise’ never occurs and therefore 2j(z,y) = (z +y)2 + 3z +y for all 2, y.
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Define

0%, ifx =9 0
Ith(z) := fe=o
ji(x=1)+1, otherwise,

0%, if lthe <y
M(z,y) =0 & jio (o) T (z=1), if 0<y < Ithe =1
(o) (), if Ithe > 0 Ay = lthe -1

We usually write (x), instead of II(x,y).
In order to verify that (x,y) is definable in GaR* it suffices to show that the variable iteration
wry = (j2)¥(x) of jo is definable in GoR¥. This however follows from the fact that pxy < x for all

x,y. Thus we can define pxy by R using \y.x as bounding function.
For n > 3 we can code initial segments of variable length of a function f in G,A%, i.e. there is a

functional ®(, € G3R¥ such that ® fo = (f0,..., f(z+1))*
As an intermediate step we first show the definability of

fo=ro
fa' = j(fx, fa'), where j(x,y) := j(y, )
in G3R¥: One easily verifies (using j(x,z) < 422) that fr < 4% (fo)TE for all x. Hence the

definition of f can be carried out by R using )\z.43m/ (fM:E’)Qm € G3R“ as bounding function. f:r

means j(...7(5(f0, f1), f2)... fx). Hence fo = ()\y.f/(;c/; y))x has the meaning
J(f0,...i(f(x —=2),5(f(x = 1), fx))...). We are now able to define &, € GzR:

00, ifz=0
<I><>fac = o )
(fz)x + 1, otherwise,
where
z, ify=20
fzy =

fly=1), otherwise.
We usually write fx for @ fx. Furthermore one can define a function x in Gz R such that

(X0y oy TEY * Y0y v+ s Ym) = {X0s -« oy Thy YOy« - + s Y )-
Define

n*m = ®y(fnm)(lth(n) + Ith(m)), where

40f course we cannot write (f0, ..., f(z = 1)) for variable . However the meaning of ®) fz can be expressed via
(®(y fr)y = fy for all y < = (and = 0 for y > x) and Ith(®P ) fr) = z, which both are purely universal (and therefore
axioms in G3AY).
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(frm)(k) = 4 W TR <Uth(n)

(M)} = 1thns Otherwise.

Note that ®(y and * are not definable in GaR” since their definitions involve an iteration of the

polynomaal j.

Definition 2.2.9 Between functionals of type p we define relations <, (’less or equal’) and s-maj,,

(’strongly majorizes’) by induction on the type:
11 <o w2 = (21 <o T2),
1 S'rp X2 1= vyp(xly ST 1'2y>;
x* s—maj, T :=2* >0z,
T s-maj,, v =VYP yP(y* s-maj, y — vy s-maj. vy, vy).

Remark 2.2.10 ’s—-maj’ is a variant of W.A. Howard’s relation 'mag’ from [10] which is due to [2].
For more details see [16].

Lemma: 2.2.11 G, AY proves the following facts:

1) =, 2" NT=px AN2" s-maj, x — T s-maj, T.
2) x* s-maj, * — ¥ s-maj, z* ([2]).

3) T1 s-maj, v2 A2 s-maj, 3 — 11 s-maj, 3 ([2]).
4) z* s-maj, x AT >,y — " s-maj, y.

5) For p=rT1pi ...p1 we have

T s—maj, © < VY1, Y1, .-, Yg, Yk
k
( A (i s=maj,, yi) — T Y7 ... yp s—maj, Y1 .. Yk, TY1 - .yk).
i=1
6) z* s-maj, < x* monotone Az* >; z,

where x* is monotone iff Vu,v(u <g v — x*u <o T*v).
7) ¥ s-maj, v — )\yl.x*(q)ly) >5 .

Proof: 1)-4) follow easily by induction on the type (in the proof of 3) one has to use 2) ). 5) follows
by induction on k using 2) (for details see [16] ). 6) is trivial. 7) follows from Vy*(®1y s—maj,y).

Remark 2.2.12 In contrast to >, the relation s-maj, has a nice behaviour w.r.t. substitution (see
5) of the lemma above). This makes it possible to prove results on majorization of complex terms
simply by induction on the term structure. For types < 2 (which are used in our applications to
analysis) we can infer from a majorant to a ’real’ >-bound by 6) and 7) of lemma 2.2.11.
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Next we need some basic properties of A; which are formulated in the following lemmas (since these

properties are purely universal we only have to verify their truth in order to ensure their provability
in G,A¥ for j <n):

Lemma: 2.2.13 Assume j > 1. Then VaVy > 1(A;j(z,y) > ).

Proof: j-Induction: j=1: Aj(z,y)=x+y > z.
jrj+1: y—induction: Aj41(z,1) = A,(x,Aj11(x,0)) =

Ai(z,0)=z+0>z, if j=1
= j—I.H.
Ai(x, 1) >z ifj>2.

j—I.H.
y—y+1: Aj+1($,y+1):Aj(.’L',Aj+1(.’L‘,y)) > .
————

>z (y—I.H.)
Lemma: 2.2.14 For all j € IN the following holds:
Ve, 7,y,9(F > e > 1AG >y — Aj(F,9) > Aj(z,y)).

Proof: j-Induction. For j = 0,1,2 the lemma is trivial. j — j + 1: To begin with we verify (for
x > 1) by y—induction

(%) Yy (Ajp1(zy + 1) > Aja(2,y)) -

2.2.13 j>2
I Aj+1($, 1) > rx>1°= Aj+1($,0).)

j—I.H.
My—y+1: Aji(r,y+2)=A4;(x,Aj+1(z,y+1) > Az, Aj+1(x,y) =A411(x,y+1).
—_————

y—1I.H.
>Ajp1(z,y)

(x) implies

(k) YyVG > y(Aj1 (2, 9) > Ajpa(z,9)).

Again by y—induction we show (for & >z > 1):

(* * *) vy(Aj-H(‘i'a y) = Aj+1(x’y)) :

y=0: Ajyi—definition! y —y+1:
- . . j—I.H.
Aj(@y+1) =4, An@y) ) = A A y) = Ajaley +1).
——

>Aj11(zy) (y—1.H.)

(%) and (* * x) yield the claim for j + 1.
Lemma: 2.2.15 If j > 2, then Vy(A4,;(0,y) <1).

Proof: j-Induction: The case j = 2 is clear.

j—1.H.
Aj+1 (Oa 0) =1, Aj+1(0’y + 1) = Aj (Oa Aj-i-l(oay)) < L

Proposition: 2.2.16 f* > 1A f* s=maj f Ax* >z — ®;f*z* > ®; fx.
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Proof: Assume f* > 1A f* s—majif Ax* >¢x. j = 1:
Dy fra* = ZIJIEZ)E ffy > I;l<a;( fy=®1fx. The case j = 2 also is clear.
j > 3: By induction on z* we show Va*Va < 2*(®; f*z* >¢ @, fz) :
z*=0: &, f*0 = f*0> f0 = @, f0.
D f*(x*+1)=

é @, /0
Aj i (ff(a* +1), @5 f*2*) ¢ .
> A1 (flz+1),2fz)=P;f(x+1) forz+1<z*+1.
Ad!: If @;f*z* = 0 then also ®;f0 = 0 by induction hypothesis. If ®;f*2z* > 1 then the claim
follows from 2.2.13 and f*(z* +1) > f0 = &, f0.
Adll: z*-1.H. yields ®; f*z* > ®; fx. Because of f* s—maj f it follows that f*(z* +1) > f(z +1).
Case 1: f(x+1) > 1. Then !’ follows from 2.2.14 .
Case 2: f(z+1) =0: Lemma 2.2.15 yields A;_1(f(z + 1), P, fx) < 1.
By lemma 2.2.13 and f* > 1 we have A;_1(f*(z* + 1),®,f*z*) > 1, if &;f*z* > 1 (If
0=7;f*x* > ®;fx, then A;_1(f(z +1),P,;fz) < A;_1(f*(x* +1), P, f*z*) follows immediately
from the definition of 4;_1).

Lemma: 2.2.17 For every j > 1 the following holds:

Vf(f monotone A f>1—Va(A;(fr,z+1) >0 ®;fx)).
Proof: The case j = 1 is trivial. Assume j > 2. We proceed by induction on z:

fO=®;f0 for j =2
Aj(fO, 1) = Aj—l(foa Aj(foa 0)) = 2.2.13 )
Aj,l(fO, 1) > fO = CIDJfO for 7> 2.

A(F@t+1)a+2) = A (f+ 1, A+ Do+ 1) 27 A (F+ 1), Ay (fa @+ 1))(2.2.14)
I.H.,2.2.14

> A],l(f(erl),(I)]fx) :(I)]f(1'+1)

Proposition: 2.2.18 For all j > 1: M\f,z.A;(fx + 1,2+ 1) s-maj ;° .

Proof: Assume f* s-maj f and 2* >¢ . By prop.2.2.16 we know ®,(f* + 1)a* > @, fz.
L.2.2.11 6) yields that f* + 1 is monotone. Hence — by 1.2.2.17 ,2.2.14 — A,;(f*(«*) + 1,2* + 1) >
Aj(fe+ 1Lz +1),@;(f* + 1)

Lemma: 2.2.19 If A%(z,y) := max(4;(z,y),1). Then A} s-maj A;.
Proof: For j < 2 the lemma is trivial. Assume j > 3: We have to show
Viﬂ,f,y,@(f >TANYy >y — A;(jag) > A;(xay)’Aj(x’y)) :

If x > 1 this follows from 1.2.2.14.
Assume z = 0. By 1.2.2.15 Vy(A%(0,y), A;(0,y) < 1) and therefore

Vi, §,y(A5(,9) = A5(0,), 4;(0,y)) (since A5(z,7) > 1).

5For j = 1 the more simple functional \f, z.fz already majorizes ®1.
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Definition 2.2.20 1) The subset G, RY CG,R“ denotes the set of all terms which are built up
from 1, -, 55 5.7y Ao, - - ., Ap, 0°, S, prd, ming and maxo only (i.e. without ®1,...,®P,, Rp or
)

2) G, R“[®4] is the set of all term built up from G, R¥ plus D;.

Proposition: 2.2.21 For alln > 1 the following holds: For each term tP € G, R¥ one can construct
by induction on the structure of t (without normalization) a term t*f € G, R¥ such that

Gp A7 F 1" s—maj, t.

Proof: 1. Replace every occurrence of Rp in ¢t by G,, where
G, = Az, y, z,v,w. maxo(yw, v(prd(z), w)).

G, is built up from II, 3 (which are used for defining the A-operator) and the monotone functions
maxg and prd. One easily verifies that

(i) G, > R, and (ii) G, s-maj G,,.

Together with 1.2.2.11, (i) and (ii) imply G, s-maj R,,.
2. Replace all occurrences of ®4,...,P,, u, in t by

o1 = M2 fa, Q7 = ML Aj(fr+ 1,2+ 1) for j > 2, pj = AfHO) 20
By prop. 2.2.18 we conclude
GpAY - @F s—maj ®; A py s—maj pup.

3. Replace all occurrences of Ay, ..., A, int by Af,..., A} from 2.2.19.

4. The constants II, 33, .S, prd, ming, maxy majorize themselves and therfore need not to be replaced.
The term t* which results after having carried out 1.-3. is € G,R¥. t* is constructed by replacing
every constant ¢ in ¢ by a closed term s} such that s} s—maj c. Since ¢ is built up from constants
only this implies using lemma 2.2.11.1),5) that t* s—maj t.

Corollary to the proof:
Since A\x%.2° s-maj; prd and A; s-maj maxg, ming, the term ¢* can be constructed even without
prd, maxo and ming (One now uses G, := Az, y, z, v, w.(yw + vrw) and Aj(z,y) = A(x + 1,y) +1

as majorants for Rp and A;. A% s-maj A; follows analogously to the proof of 2.2.19). However

estimating maxy by A; may give away interesting numerical information. For the extraction of
bounds from actually given proofs we may use not only max or min but any further functions which
are convenient for the construction of a majorant which is numerically as sharp as possible.

The majorizing term t* constructed in prop.2.2.21 will have (in general) a much simpler form than
t since t* does not contain any higher mathematical functional but only the ’logical’ functionals IT
and . In the following we show that if t* has a type p with deg(p) < 2, than it can be simplified
further by eliminating even these logical functionals. This will allow the exact calibration of the rate

of growth of the definable functions of G,,A“ and will be crucial also for our elimination of monotone
Skolem functions in chapters 10 and 11 below.
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Proposition: 2.2.22 Assume n > 1, deg(p) < 2 (i.e. p = Opg...p1 where deg(p;) < 1 for i =

1,...,k) and t* € G,R¥. Then one can construct (by ’logical’ normalization, i.e. by carrying out
all possible T1, S-reductions) a term tz*, ... xt*] such that

1) ﬂxl, ..., &) contains at most x1 ..., xy as free variables,

2) tlay, ..., xx) is built up only from x1, ..., xx, Ao, ..., An, S*,0°, prd, ming, max,

3) GpAY I—Vac’fl,...,$zk(ﬂx1,...,xk] =0 tx1...Tk)-

Proof: We carry out reductions IIst ~ s and Xstr ~ sr(tr) in tz1 ...z as long as no further

such reduction is possible and denote the resulting term by ﬂxl, ..., xg]. The well-known strong
normalization theorem for typed combinatory logic ensures that this situation will always occur after
a finite number of reduction steps. Since Ilzy = x and Xayz = xz(yz) are axioms of G,A¥ the
quantifier—free rule of extensionality yields

GpAY F V2l ks (Ha, .. ] =0 toy ... xp).

It remains to show that ﬂxl, ..., 2] does not contain the combinators II, 3 anymore:

Assume that #[zy, . .., x;] contains an occurrence of ¥ (resp. II). Then X (IT) must occur in the form
3, Xt; or Xtity (I1,IIt1) but not in the form Xtitots (resp. Iltqte) since in the later case we could
have carried out the reduction Xt1tats ~» t1t3(tats) (resp. Ilt1te ~ t1) contradicting the construction
of . All the terms s = 3, Xty, Xt1te, I1, I1t; have a type whose degree is > 1. Hence s can occur
in ¢ only in the form r(s), where r = X, Xt4, Styts, I or IIty since these terms are the only reduced
ones requiring an argument of type > 1, which can be built up from zf',...,zf*, £,1I, 4;, S*, 0% and
maxg (because of deg(p;) < 1). Now the cases r = Xt4t5 and r = Ity can not occur since otherwise
r(s) would allow a reduction of ¥ resp. II. Hence r(s) is again a II, X—term having a type of degree
> 1 and therefore has to occur within a term 7’ for which the same reasoning as for r applies etc.

.... Thus we obtain a contradiction to the finite structure of £.

Remark 2.2.23 Proposition2.2.22 becomes false if deg(p) = 3: Define p := 0(0(000)) and t* :=

/\zO(OOO).z(Hoﬁo). Then tx =¢ x(Ilp) contains II but no I-reduction applies.

Corollary 2.2.24 Assumen > 1, deg(p) < 2 (i.e. p=0py...p1 where deg(p;) <1 fori=1,...,k)
and t* € G, R¥. Then one can construct (by majorization and subsequent ‘logical’ normalization) a

term t*[x", ..., at¥] such that
1) t*[x1,...,x] contains at most x1 ..., xk as free variables,
2) t*xy, ..., xx] is built up only from x1,..., 2k, Ao, ..., An, S, 0°, prd, ming, maxo,

3) GhAY F Az, ... xpt*[xy,. .., 28] s—maj t.

k
In particular: Vxi,x1,. .. ,zz,:ck( N (&f s—majp, x; — t¥[xF, ...z} >0 tzr .. xk)
i=1

Proof: The corollary follows immediately from prop.2.2.21 and prop.2.2.22 (using lemma 2.2.11
(1))-
Remark 2.2.25 As before, 2) can be strengthened in that t*[x1,...,x] is built up only from

0
xl,...,xk,AO,...,An,O .
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The use of the concept of majorization combined with logical normalization has enabled us to
majorize a term ¢ of type < 2 by a term ¢* which does not contain any functionals of type > 1.

This allows the calibration of the rate of growth of the functions given by t' € G,R“ in usual
mathematical terms without any computation of recursor terms (which would require the

reduction of closed number terms to numerals):

Definition 2.2.26 ([9] ,[28]) The function f(x,y) is defined from g(x),h(z,y,z) and b(z,y) by
limited recursion if

f(z,0) =0 g()
flzy+1) =0 h(z,y, f(z,y))
f(z,y) <o bz, y).

Definition 2.2.27 (n-th level of the Grzegorczyk hierarchy) For each n > 0, £" is defined
to be the smallest class of functions containing the successor function S, the constant—zero function,
the projections Ul(x1,...,Tpn) = x;, and Ap(z,y) which is closed under substitutions and limited
TECUTSION.

Remark 2.2.28 Grzegorczyk’s original definition of E™ uses somewhat different functions g,(x,y)
instead of An(x,y). Ritchie ([28] ) showed that the same class of E™ of functions results if the g,
are replaced by the (more natural) A,, (which are denoted by f,, in [28] ). See also [5] for a proof of
this result.

Proposition: 2.2.29 Assume n > 1 and t' €G,R¥. Then one can construct a function f; € E"
such that ¥a°(tz <o fix) and every function f € E™ can be defined in G, R¥, i.e. there is a term
ty € GuRY such that Vz°(fx = tx).

In particular for n = 1,2,3 the following holds:

tl e GiRY = 3e1,c0 € N1 GhAY Va2 (te <o e1x + ¢2) (linear growth),
t' € GoRY = Fk,c1,c0 € IN: GoAY V2 (tz <o c12¥ + c2) (polynomial groth),
th € GsRY = Fk,c € IN: G3AY FVal(tx <o 20%), where 28 = a, 2§, = 2%

(finitely iterated exponential growth).

More generally, if t* (where p=0(0)...(0)), defines an m—ary function:
—_———

m—times

tP € GiRY = Jer, .. yeme1 €N GLAY Fval o 20 (tx <o c1m1 + ..+ CnTn + Cmr1),
tP € GoR” = Jp € Nxy,...,Tm] 1 G2AY FVz(tz <o px),
tP e Gng = dk,c1,..., 2 € IN: G3A;U H Vg(tg <o 221x1+...+cmxm).

The constants c;,k € IN and the polynomial p € WN[x1,..., x| can be effectively written down for
each given term t.

Proof: To t!' we construct t]z] (according to cor.2.2.24 and the corollary to the proof of 2.2.21
) such that #[z] is built up from z°,0° and Ao,..., A,, and Az.f]z] s-maj; t. The later property
implies V20 (t[z] > tz). By [28] (p. 1037) we know that Ag,..., A, € £". Since £" is closed under
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substitution it follows that f; := \z.t[z] € £™.

For the other direction assume f € ™. Since G,R“ contains S, A\z.0°, the projections UF and

Ay, and it is closed under substitution (because A—abstraction is available) and limited recursion

(because of R) it follows that f is definable in G, R¥.

We now consider the special cases n =1, 2, 3:

n = 1: Assume t* € GR¥ where p = 0(0)...(0). t[z9,...,20] is built up from z9,..., 22 ,0°, Ay
~——

m
m

and A; only. Both Ag(z1,z2) = 0-z1+1-29+1 and Ay (z1,22) = 1-21+1-2240 are functions having

the form cyx1 + cox2 + c3 or — more generally — c121 + ... + &k + ck4+1. Since substitution of such

functions again yields a function which can be written in this form it follows that t]zy,...,z,] =

171 + ... + &y + Cpy1 for suitable constants ¢y, ..., ¢pt1.

n = 2: Assume t* € GoR¥. t[z9,...,2% ] is built up from 9,...,29, 00, Ay, A1, As. Since Ag, A

and A, are polynomials (in two variables) and substitution of polynomials in several variables yields

a function which can be written again as a polynomial, it is clear that t]z1, ..., Zm] = p(z1, ..., Tm)

for a suitable polynomial in IN[x1,...,2,,]. In the case m = 1, p(z) can be bounded by c;z* + o

for suitable numbers ¢y, cs.

n = 3: Assume t* € G3R¥. For Az(z,y) := Az(maxo(z,2), maxo(y,2)) the following holds:

(%) As s—maj Ay, A1, As, As. Replace in ﬂxl, ..., Zm] all occurrences of A; with i < 3 by Ag and

denote the resulting term by #[z1, ..., xm,]. (x) yields

Vo, ... ,xm(f[xl, cey D] > ﬂxl, cey X)) >ty .xm).
Let k be the number of As—occurrences in £[zy,...,2y]. Then [z, ..., x,] can be bounded by .,
where yo := 0, ypr := y¥* and y := max(z1,...,Zm,2) and hence VQ(Q% > tg) for a suitable k > k,

where 2% =x1+...4+ 2, and 2%, — 2%,

Remark 2.2.30 This proposition provides a quite perspicuous characterization of the rate of growth
of the functions which are definable in G,A“. Of course for concrete terms t the bounds given for
n =1,2,3 may be to rough. To obtain better estimates one will use combinations of any convenient

functions like e.g. max, min (instead of replacing them by x + y) and (for n = 3) the growth of t
will be expressed using max, min, Ag, A1, Ao and As and not Az allone. Thus one can treat also all
intermediate levels between e.g. polynomial and iterated exponential growth.

By cor.2.2.24 and the remark on it, the estimates for n = 1,2, 3 generalize to function parameters
as follows: Let t'") € G,R“, then tf' can be bounded by a linear (polynomial resp. elementary
recursive) function in f* where f* s-maj f (for f* we may take e.g. fM). By 'tf1x° is linear
(polynomial, elementary recursive) in f, x’ we mean that ¢t fo =g t[z, f] for all z, f, where {[x, f]
is a term which is built up only from x, f,0°, 8%, + (x, f,0°,S*, +, - resp. z, f,0°, S, +,-,(-))).6 In
particular this implies that if f* is a linear (polynomial, elementary recursive) function then tf* can
be written again as a linear (polynomial, elementary recursive) function. This holds even uniformly
in the following sense (which we formulate here explicitly only for the most interesting polynomial
case):

61n our results [z, f] can always be constructed by majorization and ‘logical’ normalization.
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Proposition: 2.2.31 Let t'(Y) € Gy R¥. Then one can construct a polynomial q € IN[z] such that

For every polynomial p € IN[z]

one can construct a polynomial r € (x| such that

V(S <1p— Val(tfz <o r(2))) and deg(r) < q(deg(p))

This extends to the case where t has tuples fi,..., ft,2%,....2¥ of arguments with f1,..., fir <1 p
and r € W(zq,..., 2]

Proof: Let p € IN[z]. Since p is monotone, f < p implies p s—maj f. By the corollary to the proof
of prop.2.2.21 one can construct a term t* € GoR¥ (without prd, ming, maxg) such that ¢* s—mayj t.
Let ﬂf, z] be constructed to t* fa according to prop.2.2.22. Then ﬂp, x] >¢ tfx for all f <; p and
ﬂp, ] is built up from z,0°, Ag, A; and p only. As in the proof of prop.2.2.29 one concludes that
ﬂp, x] can be written as a polynomial r in z. The existence of the polynomial ¢ bounding the degree
of r in the degree of p follows from the fact that the degree of a polynomial p; € IN[x1, ..., xy]
obtained by substitution of a polynomial ps for one variable in a polynomial ps is < deg(p2)-deg(ps)
and that deg(pz + ps), deg(pz - p3) < deg(pz)+deg(ps).

2.3 Extensions of G, A%

Definition 2.3.1 1) Let Goo A¥ denote the union of the theories Gp A for allm > 1 and Goo AY

1ts intuttionistic variant.
E-GA¥ and E-Go AY are the corresponding theories with full extensionality.

G RY is the set of all closed terms of these theories, i.e. GoRY := |J G,R“.
nelN

2) PRAY is the theory obtained from GooAY by adding the Kleene—recursor operators }ABP (on
which S. Feferman’s theory PA” N is based on; see [4] ):

ﬁp()yzy =0 yu
R

o (ST)yzv =0 z(ﬁpxyzg)xy,

where y € p,z € p00 and v = v{* ... V" are such that yv is of type 0.
Correspondingly we have the theories PRAY, E-PRA and E-PRAY .

The set of all closed terms of PRA% is denoted by PR”.

Thus PRAY is equivalent to PA" N-all true Va? Ag—sentences for p < 2. We now show that the same
theory results if we only add the (unrestricted) iteration functional ®;; together with the axioms

@, 0yf =0y
Qix'yf =o f(Puxyf) ie.Pyxyf = f*y

instead of the constants ]?Ep:

We define ﬁp through one intermediate step:
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Firstly we show that ép can be defined from & (= Ry), where

D0y f =0y
da'yf =o f(dxyfle (f € 0(0)(0)).

One easily verifies that Ep can be defined as Ep = Az, y, 2, 0.9z (yv) (A, 29221 290).
® in turn is definable using Py This follows from the fact that for fz =
max (P (Ay1.P1 (Ay2. frrye)z)x, ') (= max (fy1y2, ")) one has ®yxyf >o Pxyf for all z,y, f.

Y1,Y2>o0%
Thus using ®;; as a bound in the recursion one can define ® by the bounded recursor operator R.
Put together we have shown that ﬁp is definable in PRA“. Since on the other hand ®;; is trivially
definable using R our claim follows.

On the level of type 1 the theories PRA“ and G, A coincide: The functions given by the closed
terms of type level 1 of both theories are just the primitive recursive ones: For PRA“ this follows

from [4]. Since GooA¥ is a subtheory of PRA it suffices to verify that all primitive recursive func-
tions are definable in it. This however follows immediately from prop.2.2.29 and the well-know fact
(due to Grzegorczyk) that the class of all primitive recursive functions is just the union of all £™.
In contrast to this, both theories differ already on the type—2-level:

Proposition: 2.3.2 The functional ®;; is not definable in G A%, i.e. there is no term t € Goo R¥
such that t satifies the defining equations of ®;;.

Proof: Assume that ®;; is definable in GocA%¥. Then there exists an n such that ®;; is already
definable in G,A“. On the hand from the proof above we know that within G,A% + ®;; the

unbounded recursors ﬁp and therefore all primitive recursive functions (in particular A,y; ) are
definable. Hence A, 41 could be defined in G, A contradicting prop.2.2.29, since A, 11 cannot be
bounded by a function from E™ (see [28] ).

Finally we introduce the theory PA“ which results from PRAY if

1) Ep is replaced by the Godel-recursor operators R, characterized by

R,0yz =,y
R,2'yz =, z(Ryxyz)x, wherey € p,z € pOp,

2) the schema of full induction
(TA) : A(0) AVz(A(x) — A(z')) — VzA(z)

for arbitrary formulas A € £L(PA¥) is added.

The set of all closed terms of PA* is denoted by T (following Godel).

PAY is the intuitionistic variant of PA“. E-PA“ E-PAY are the corresponding theories with
full extensionality (E).

GoAY, ..., PRAY of subsystems of arithmetic in all finite types PA“. Furthermore we have deter-

mined the growth of the functionals t'(!) which are definable in these theories. In particular for
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n < 3 it turned out that ¢ can be majorized by a term t* of type 1(1) such that

t* f120 is a linear function in f,z, if n =1,
t* f129 is a polynomial function in f,z, if n = 2,

t*f129 is an elementary recursive function in f,z, if n = 3,

and in the case n = 2, for every polynomial p' there is a polynomial r! such that t* fo <q ra for all
f<1p.

3 Monotone functional interpretation of G, A, PRA“ ,PA%
and their extensions by analytical axioms: the rate of
growth of provable function(al)s

3.1 Godel functional interpretation

Definition 3.1.1 The schema of the quantifier—free axiom of choice is given by
ACPT—qf : VI Ao(x,y) — Y7V’ Ap(z, Y ),

where Ag is a quantifier—free formula of the respective theory.

AC—qf= ) {AC—qf}.

p,T€T

If
GrAY FV2’3y" Ao(x, y),
then
GrAY + AC”"—qf F AY"PVzP Ap(z, Y ).

In order to determine the growth which is implicit in the functional dependency Va?3dy”™’ we have to
determine the rate of growth of a functional term which realizes (or bounds) ’3Y"*’. Let A’ denote
one of the well-known negative translations of A (see [25] for a systematical treatment) and A" be
the Godel functional interpretation of A (as defined in [25] or [34] ).

AP has the logical form

JzVyAp(z,y, a),

where Ap is quantifier—free, z,y are tuples of variables of finite type and a is the tuple of all free

variables of A. For our theories this functional interpretation holds:

Theorem 3.1.2 Let T' be a set of purely universal sentences H = YuYHy(u) € L(G,A%) and
n € NU{oo} (n>1). Then the following rule holds

G, AY + T+ AC—qf H A= Tt e G,R” such that
G, AY +T FVy ((A’)D(t_a,g,g)) .

t can be extracted from a given proof

(An analogous result holds if G, A, G, R”, G, A? are replaced by PRAY, ]Sl\%w, PRAY or PA“, T,
PAY ).
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Proof: For PA¥ the proof is given e.g. in [34]. The interpretation of the logical axioms and rules
only requires the closure under A—abstraction, definition by cases and the existence of characteristic

functionals for the prime formulas. All this holds in G,R* and PR’. The interpretation of the
universal axioms is trivial.

Corollary 3.1.3 Let I' be as above and Ao(z,y) is a quantifier—free formula which has only x,y as

free variables. Then

G AY +T + AC—qf = VazIyAo(z,y) = 3t € G,R* such that:
Gr A7 +T FVzAy(z, tx)

(Analogously for PRAY and PAY).

By the well-known elimination procedure for the extensionality axiom (E) one may replace G, A%
by E-G,, A% if the types of x are < 1 and the types in AC—qf are somewhat restricted:

Corollary 3.1.4 Assume that (¢ = 0A [ < 1) or (a =1A[3 =0), and z = 2{*,...,2}" where
pi <1 fori=1,...,k. Then

E-GnA* +T + AC*P—qf +Va3yAo(z,y) = 3t € G,R* such that :
G AY + T F VAo (z, tz)

(Analogously for E-PRA“ and E-PA¥ ).

Proof: The corollary follows from the previous corollary using the elimination of extensionality
procedure as carried out in [25] and observing the following facts:

1) The hereditary extensionality of R, (i.e. Ex(R) in the notation of [25] ) can be proved by
(QF-TA). Similarly for ®;. The heriditary extensionality of p; follows easily from the axioms
Hb-

2) (ACH9—qf), is provable by bounded search using y; and prop. 2.2.6 .

3) For H €T the implication H — H, holds logically.

3.2 Monotone functional interpretation

In [21] we introduced a new monotone functional interpretation which extracts instead of a
realizing term ¢ for Jy in cor.3.1.3 a ’bound’ ¢* for ¢ (in the sense of s—maj, which for types < 2
provides a >-bound by lemma 2.2.11.7). This is sufficient in order to estimate the rate of growth
of t. The construction of ¢t* does not cause any rate of growth in addition to that actually involved
in a given proof since besides the terms from the proof only the functionals max,” and ®; are
used (For the theories G, A¥ even ®; is not necessary for the construction of ¢* but only for the
very simple transformation of t* into a >-bound for type < 2 by lemma 2.2.11 ). This has been
confirmed in applications to concrete proofs in approximation theory where t* could be used to
improve known estimates significantly (see [19] ,[20] ,[21] ). In most applications in analysis the

formula Vz3yA(z,y) (A € X9) will be monotone w.r.t. y, i.e.

vzaylva(yQ > 1 A A(zayl> - A(zayQ))a

7maxfp(a:‘{p,ar72—p) = A\y?. maxr (z1y, T2y).
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and thus the bound ¢* in fact also realizes ’Jy’ (This phenomenon is discussed in [21] ).

The monotone functional interpretation has various properties which are important for the following
but do not hold for the usual functional interpretation:

1)

The extraction of t* by monotone functional interpretation from a given proof is much easier
than the extraction of ¢ provided by the usual functional interpretation: E.g. no decision of
prime formulas and no functionals defined by cases are needed for the construction of t* (but
only for its verification) since the logical axioms A — AA A and AV A — A have a simple
monotone functional interpretation (whereas these axioms are the difficult ones for the usual
functional interpretation). Because of this also the structure of the term t* is more simple
than that of ¢, in particular t* € G,,R* whereas t € G,,R“.

The bound ¢* obtained by monotone functional interpretation for 327 in sentences
ValVy <, sz327Ay(x,y, 2z) does not depend on y, i.e. Vo'Vy <, sz3z <, t*z Ay(z,y, 2)
(Here 7 < 2 and s is a closed term).

The most important property of our monotone functional interpretation however is
the following

Sentences of the form
(%) V&' dy <5 saVz"Ap(x,y, 2)

have a simple monotone functional interpretation which is fulfilled by any term s* such that
s* s-maj s (see [21] ). This means that sentences (x) although covering many strong non—
constructive analytical theorems which usually do not have a functional interpretation in the
usual sense not even in T (as we will see in 4 below) do not contribute to the growth of the

bound t* by their proofs but only by the term s and therefore can be treated simply as axioms.

Definition 3.2.1 (bounded choice) The schema of 'bounded’ choice is defined as

(b*AC‘S’p) : VZP5(Vx55|y <, Zz Alz,y,Z) — 3Y <5 ZVxA(:E,Y:Z:,Z)),

b-AC = | {(bfAC‘S’p)}.

4,peT

(a discussion of this principle can be found in [16] ).

Theorem 3.2.2 Letn > 1 and A be a set of sentences having the form YuYJv <5 tuVw" Ho(u, v, w),
where t € G, R“. Then the following rule holds

From a proof G, A + A+AC—qf - A
one can extract by meg. transl. and monotone functional interpretation a tuple ¥ € G, R :

GnAY + A+b-AC + (¥ satisfies the monotone functional interpretation of (A)),

where (A)' denotes the negative translation of A.

In particular for Ao(z,y,z) containing only x,y,z free and s € G,R¥ the following rule holds for
T<2:

From a proof G,A* + A+ AC—qf +Vz'Vy <, sa3z" Ap(z,y, 2)
by monotone functional interpretation one can extract a ¥ € G, RY [®1] such that

GpAY + A+ b-AC FVz'Vy <, sz3z <; Uz Ay(z,y,2).
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U s built up from 0°,19, max,, 1 and majorizing terms® (for terms t occurring in those quantifier
azioms YaGxr — Gt and Gt — JxGx which are used in the given proof) by use of A—abstraction
and substitution. If 7 < 1 (resp. T = 2) then ¥ has the form ¥ = Xz’ Woax™ (resp. ¥ =
Aty WoaMyM) where 2™ = &1z and Yo does not contain ®1 (An analogous result holds for

PRA“ PR", PRAY resp. PA“,T,PA%).
Corollary 3.2.3 For 1 <n < 3 the following holds (for Ag(x°,y*, 2°) containing only x,y, = free)

GuA® + A+ AC-qf FVa'Vy <, s232"Ao(x,y, 2) =

Jer,00 EIN: GLAY + A+ b-AC +V2Vy <, sa3z <g 12 + ¢2 Ao(z,y,2), ifn=1
Jk,c1,c0 € IN: GoAY + A+ 0-AC + vzOVy <, sr3z <o 1k + ¢y Ao(z,y,2), ifn=2
Jk,c € N : GzAY + A+ b-AC F V2'vy <, sxdz <o 2§07 Ao(z,y, 2), if n=3.

This generalizes to the case Vz°, &'Vy <, sx3329Ag: One obtains a bound which is linear (polyno-
mial, elementary recursive) in x°, 3™ in the sense of chapter 1 forn =1 (n = 2,n = 3) and for
n =2 prop.2.2.31 applies.

Remark 3.2.4 1) For §,p < 1 the theory G,A“ may be strengthened to E-G, A“ in thm.3.2.2
and cor.3.2.3 if AC—qf is restricted as in 3.1.4 .

2) Theorem 3.2.2 and cor.3.2.3 generalize immediately to tuples z,y,z of variables instead of

x,y,z, if b-AC is formulated for tuples. Furthermore instead of Iw™ Ay we may also have
32732’ Ag where 2’ is of arbitrary type: It still is possible to bound 3z7.

Remark 3.2.5 Cor.3.2.3 is a considerable generalization of a theorem due to Parikh ([27] ): Parikh
shows for a subsystem (called PB) of the first order fragment of Go A¥: If PB-Va3yA(x,y) (where
A contains only bounded quantifiers and only x,y as free variables) then there is a polynomial p such
that PB- Vady < p(z) A(x,y).

Proof of thm.3.2.2 : For PA“ the theorem is proved in [21] . We only recall the treatment of A:
The negative translation ~—Vu?——3v <s5 tuVw’-—Hy of H := Vudv < tuVw Hy is intuitionistically
implied by H. The functional interpretation transforms H into

HP := 3V < tVu,w Ho(u,Vu,w). Let t* be such that t* s-maj t. Then (by lemma2.2.11.4)
V <t — t* s=maj V. Hence t* satisfies the monotone functional interpretation of H (provable by
HP and thus in the presence of b-AC by H). The same proof applies to PRA. For G,,A“ one has
to use prop.2.2.21 to show that the majorizing terms for the terms occuring in the quantifier axioms
can be choosen in G,R¥ (and not only in G,R%).

Proof of cor.3.2.3 : The corollary follows immediately from thm.3.2.2 and prop.2.2.29 using the
embedding z° — A\y°.2° of type 0 into type 1. The assertion for the case Yz, #'Vy <, szz3:°4,
follows using prop.2.2.22,remark 2.2.25 and the fact that # s-maj; 7.

Remark 3.2.6 The size of the numbers k,c1,ca,c in the cor.8.2.3 above depends on the depth of
nestings of the functions +, - resp. x¥ occuring in the given proof. Such nestings may occur explicitly

by the formation of terms like (x - (x - (...))) by substitution or are logically circumscribed. In the

8Here t*[ a] is called a majorizing term if Aa.t* s-maj Aa.t, where g are all free variables of .
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later case they are made explicit by the (logical) normalization of the bound extracted by monotone
functional interpretation. The process of normalization may increase the term depth enormously (In
fact by an example due to [29] even non—elementary recursively in the type degree of the term). This
corresponds to the fact that there are proofs of 3x°Ag(x)-sentences such that the term complexity
of a realizing term for 3a° is not elementary recursive in the size of the proof (see [36] ). However
such a tremendous term complexity is very unlikely to occur in concrete proofs from mathematical
practice: Firstly the parameter which is crucial for this complezity (the quantifier—complexity resp.
the type degree of the modus ponens formulas) is very small in practice, lets say < 3. Secondly even

complex modus ponens formulas are able to cause an explosion of the term complexity only under
very special circumstances which describe logically the iteration of a substitution process as in the

example from [36] (we intend to discuss this matter in detail in another paper). Hence if a given

proof does mot involve such an iterated substitution process the degree of the polynomial bound in
cor.3.2.8 will essentially be of the order of the degrees of the polynomials occuring in the proof and
if the proof uses the exponential function 2* (without applying it to itself) it will be a polynomial in
2%, Hence the results of this paper which establish that substantial parts of analysis can be developed
in a system whose provable growth is polynomial bounded also apply in a relativised form to proofs
using e.g. the exponential function.

JFrom the proof of thm.3.2.2 it follows that b—AC is needed only to derive

F =3V <5, tVu?, w"Fy(u, Vu,w) from F :=Yu) v <s tu¥w" Fy(u, v, w).” Hence if in the conclu-
sion A is replaced by A := {F :F e A} then b—AC can be omitted. In particular this is the case
if cach F' € A has the form Jv < tVw Fy(v,w) since F' = F for such sentences.

Combining the proof of thm.3.2.2 with the proof of thm.2.9 from [15] one can strengthen the theorem

by weakening b—AC(-V) to b-AC—qf, i.e. b—AC restricted to quantifier—free formulas:
As in the proof of thm.2.9 in [15] one shows that

GrpAY + AC—qf +Vu), W3 <; tu Fo(u,v, Wo) — Vu"Iv <;5 tuVw" Fy.
Thus A can be replaced by A= {Vu, W3v < tu Fy : F € A} without weakening of the theory. Since
the implication

Vu, W3 < tuFy(u, v, Wo) — IV < Au, WituVu, W Fy(u, VuW, W (VuW))

can be proved by b-AC—qf (u, W can be coded into a single variable in G,,A“ for n > 2)'° the proof
of the conclusion of thm.3.2.2 can be carried out in

G,AY + A4+ b-ACqf
and thus a fortiori in

GnAY + A +b-AC—qf.

However replacing A by A may make the extraction of a bound more complicated since it causes a
raising of the types involved. Since we are interested in an extraction method which is as practical

as possible and yields bounds which are numerically as good as possible but not (primarily) in
the proof-theoretic strength of the theory used to verify these bounds we prefer the more simple
extraction from thm.3.2.2 . Similarly to thm. 2.12 in [15] we have the following generalization of
thm.3.2.2 to a larger class of formulas:

9Thus in particular only b~AC restricted to universal formulas (b-AC-V) is used.
10For n = 1 one has to formulate b-AC—qf for tuples of variables.
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Theorem 3.2.7 Let A be as in thm.3.2.2 , n > 1, p1,p2 € T arbitrary types, 7,70 <
2, Ao(z,y,z,a,b) a quantifier—free formula containing at most x,y,z,a,b free and s,r € G,R“.
Then the following rule holds:

GnAY + A+ AC-qf FVa!'Vy <, sz32™Va <,, rez3b™ Ao(z,9, 2, a,b)

= by monotone functional interpretation 3V, Uy € G, R [P] :

E-GoAY + A+ b-AC +V2'Vy <, sz3z <, ¥1aVa <,, raz3b <., Yoz Ao(z,y, 2,a,b).

Uy, Uy are built up as ¥ in thm.3.2.2 . (An analogous result holds for PRA“ and PA% ).

Proof: Since the implication

velvy <p, sx32™Va <, rezI™ Ao(z,y, 2,a,b) —

ValVy <,, saVA <,,., ra3z™,b™Ay(x,y, 2, Az,b)
holds logically the assumption of the theorem implies
CGnAY + A+ AC—qf FVa'Vy <,, saVA <., ra3z™, b7 Ag(z,y, 2, Az, D).

By thm.3.2.2 and remark 3.2.4 2) one can extract (by monotone functional interpretation) terms
Uy, ¥y € G,RY[P4] such that

Valvy <p $2VA <7 radz <; Uz3b <., Vs Ag(z,y, 2z, Az,b).

As in the proof of 2.12 in [15] (using the fact that lemma 2.11 from [15] also holds for
E-G,A¥Y+ b-AC) one concludes the assertion of the theorem.

Theorem 3.2.8 All of our results on G, A“ (G,AY, E-G, A%, E-G,A¥) and G,R“ remain valid
if these theories are replaced by G, A“[x] (GnAY [x], E-GnA*[X], E-G,AY[x]) and G, R*[x], where
for a theory T, T[x] is defined as the extension obtained by adding a tuple x of function symbols X5
with deg(p;) < 1 together with

(1) arbitrary purely universal azioms ¥Yx" Ag(z) on x, where 7 <2 and only x is free in Ag(x)

plus azioms having the form
(2) X* s~maj x for x* € G, R”,

where (1),(2) are valid in the full type structure S* under a suitable interpretation of x (GnR*[x]

denotes the set of all closed terms of the extended theories).
In particular the bounds extracted in thm.5.2.2, 3.2.7 and cor.3.2.3 are still € G, R¥[®1].

Proof: The theorem follows immediately from the proofs above (observing that also (2) is purely
universal) if one extends the construction of t* in the proof of prop.2.2.21 by the clause

"Replace all occurrences of x; in ¢ by x;’. Since the majorizing terms x; are € G,R* this also holds
for t*.

Remark 3.2.9 The reason for the restriction to deg(p;) < 1 in the theorem above is that the ad-
dition of symbols for higher type functionals x in general destroys the possibility of elimination of
extensionality since Ex(x) may not be provable (and cannot be added simply as an axiom since it is

not purely universal). Also (2) is no longer purely universal if deg(p;) > 2.
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By theorem 3.2.8 the extension by symbols for majorizable functions has no impact on the bounds
extracted from a proof. This is the reason why we may make free use of such extensions (e.g. in a
subsequent paper we will add new function symbols for sin and cos etc., see also [22]).

By cor.3.1.3 and thm.3.2.2 we can extract realizing functionals respectively uniform bounds for V3A,—
sentences (in the later case even for the more general sentences from thm.3.2.7 ). Since the theories

GpA“ are based on classical logic it is in general not possible to extract computable realizations or
bounds for V3VAp—sentences: Let us consider e.g.

(4+) V23OV  (Pay v = Pz2),

which holds by classical logic. If Pxy := Tzxy, where T is the Kleene T—predicate, then any upper
bound f on y, i.e.

Va'3y <o fav2°(Pxy Vv ~Pxz)

can be used to decide the halting—problem (and therefore must be ineffective): For h which is defined
primitive recursively in f such that

0, if Jy < fa(Tzxy)
hx :=
1 otherwise

one has hx = 0 < JyTxxy for all x. T is elementary recursive and therefore can be defined already
in GgAw.

If one generalizes (4) to tuples of number variables then — by Matijacevic’s result on Hilbert’s loth
problem— there is a polynomial Pz y whith coefficients in IN such that there is no tuple ¢, ..., of

recursive functions (for y = y1...yx) with
Vedyr < tiz...Jyp < tpaVz(Pry =0V -Prz=0).

Since P € GoR¥ and GoR® allows the coding of finite tuples of natural numbers one can define
already in GoR¥ a predicate P such that there is no recursive bound on y in (+).

The use of non—constructive Y3-dependencies as in (+) is a characteristic feature of classical logic.
If intuitionistic logic is used the situation changes completely: In chapter 8 of [22] it is shown that
even in the presence of a large class of non—constructive analytical axioms (including as a special
case arbitrary YulJe < p suVwT Ag—sentences) one can extract uniform bounds ¥ € G,R“ on z in
sentences Va!vy <. tz3z B(x,y, z), which are proved in G, A% from such non-constructive axioms,
where B is an arbitrary formula ( containing only z,y, z free). This extraction, which is achieved
by a new monotone version of modified realizability, will be dveloped in a subsequent paper (see also
23)).

Although in the case of theories based on classical logic it is not always possible to extract effec-
tive bounds for Vz3yA(z, y)-sentences when A is not purely existential, one may obtain relative

bounds: By AC%%—qf and classical logic
(1) V"3V (Pry v - Pzz)
is equivalent to

(2) Va, f13y(Pzy vV ~Pz(fy))
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and a bound on y in (2) is given by Wz f := maxo(0, f0) = f0 since'!

(P20 V —Px(f0)) V (Px(f0)V —Px(ff0)).
For a more complex situation let us consider

F .= (onzlyOVzOAo(z, Y, 2) — VUOHUOBO(U,U)) ,
which is —by AC%9-V and prenexing— equivalent to

F = Vfl,uﬂx,z,v(Ao(ac, fx,z) = Bo(u,v)).

The implication F — E holds logically. F is a V3F,-sentence. Thus v (and also x,z) can be bounded
by a functional Yuf in u, f with ¥ € G,R* if F is proved in G,A¥ + A+AC—qf. ¥ is an effective
bound relatively to the oracle f.

By raising the types one can replace F by a different (and more complex) VIFy—sentence F which

is more closely related to F' in that the equivalence of F' and F can be proved using only ACH0—qf:

F (HQQVxO,flAO(x,Q)xf, f(@xf)) — VuElvBo(u,v))
VO, udz, f,v(Ao(z, Pxf, f(Pxf)) — Bo(u,v)) =: F.

If F and therefore F' is proved in G, A“4+AC—qf, then one can extract from this proof a term ¢ €

G,R¥ such that t®u realizes Jv’. If F is proved in G, A“ + A+AC—qf one obtains (using monotone
functional interpretation) a term t* € G,R® such that for every ®* which majorizes ®, t*®*u is a
bound for v:

®* s—maj & — (Vz, fAo(x, Pz f, f(Pxf)) — VuTv < t*P*u Bo(u,v)).

4 The axiom F' and the principle of uniform boundedness

In [21] we introduced the following axiom:!?

Fy := VP2, y'Jyo <1 yVz <y y(Pz <o Dyo).

F, states that every functional ®2 assumes its maximum value on the fan {z1 : z <1 y} for each yl.

This is an indirect way of expressing that ® is bounded on {z! : z <; y}:
By := V92, 4132z <q y(P2z < 7).

Fy immediately implies By: Put o := ®yo. The proof of the implication By — Fy’ uses the least
number principle and classical logic:
If x is a bound for ®z on {z! : 2 <; y} then there exists a minimal bound zo and therefore a 2z such

that zg <1 y A @z =¢ xo (since otherwise sup Pz <z, contradicting the minimality of zg).
{z1:2<1y}

Our motivation for expressing By via Fp is that Fy —in contrast to By— has (almost) the logical form
Vady < sxVzAp of an axiom € A in theorems 3.2.2,3.2.7, 3.2.8 and cor.3.2.3 . This is the case because
Fy contains instead of the unbounded quantifier '32°" only the bounded quantifier "Jyo <1 v’ (of

' More generally fz is an upper bound where z is a variable.
12Tn [21] this axiom is denoted by F instead of Fy. In this paper we reserve the name F for a generalization of this
axiom which will be introduced below.

28



higher type). The reservation ’almost’ refers to the fact that there is still an unbounded existential
quantifier in F; hidden in the negative occurrence of z <; y’. However this quantifier can be
eliminated by the use of the extensionality axiom (E). By (E), Fj is equivalent to

Fo = Vo2 y 3y <4 yVz' (®(min (z,y)) <o Pyo) (see lemma 4.8 below).

This use of extensionality does not cause problems for our monotone functional interpretation since
the elimination of extensionality procedure applies: Because of the type—structure of Fj the impli-

cation "Fy — (Fp)e’ is trivial.
Fp is not true in the full type structure S of all set—theoretic functionals:

Definition 4.1

80 = w,
S (p) := {all set-theoretic functions x : S, — S:},
SY = U S,

peT

where set-theoretic’ is meant in the sense of ZFC.'3
Proposition: 4.2 S¥ £Fy.
Proof: Define

9 1 the least n such that yn =¢ 0, if it exists
Py =
0%, otherwise.

® is not bounded on {z!: 2z <y Az%.1°} since ®(1,x) =¢ z, where

10, ifk<pgz

(1, z)(k) :=

0%, otherwise.

On the other hand Fy is true in the type structure M of all strongly majorizable set—theoretic
functionals, which was introduced in [2] :

Definition 4.3
My =w, z* s—majy =z, z cwAz* > x;
T S-Maj () T =T, T € MM A Yy, y € My(y* s—maj, y — x*y* s-maj, 2y, vy),
M(p) = {:L' e MM 3 € ./\/lﬁ/l”(z* $=MAj- () z)} ;
MY = J M,

peT
(Here MM denotes the set of all set—theoretic functions: M, — M;).

Proposition: 4.4 M*“ E Fy.

Proof: Tt suffices to show that M*“ | By: ® € M> implies the existence of a functional ®* € My
such that ®* s-maj, ®. Hence ®*yM >q &z for all y!, 2! such that y >; 2z (yMa® = m<ax(yi)).
i<z

13The following proposition also holds if we omit the axiom of choice since only comprehension is used for the
refutation of Fjy.
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For our applications in this and subsequent papers we also need a strengthening F' of Fy, which
generalizes F to sequences of functionals and still holds in M%:

Definition 4.5
F = V920 4103y, <, o) yVkOVz <y yk(Pkz <o Pk(yok)).

Using AC on the meta-level and Mo = M} (see [2]) prop.4.4 yields
Proposition: 4.6 M“ = F.

F implies the existence of a sequence of bounds for a sequence ®2() of type—2—functionals on a
sequence of fan’s:

Proposition: 4.7 Gy AY - F — V&2 ¢ 033 IvE0V2 < yk(Pkz <o xk).

Proof: Put xk := ®(yok)k for yo from F.
Similarly to Fy also F' can be transformed into a sentence F having the logical form
Vaedy < saVz Ag:

Lemma: 4.8
E-GiAY+F « F = VP2(0) 4 1(0)3y, <10 yvk°, 2! (@k(minl(z,yk)) <o @k(yok)).

Proof: '—’ is trivial. <’ follows from z <; yk — min; (2, yk) =1 z by the use of (E).

Because of this lemma we can treat F' as an axiom € A in the presence of (E). In order to apply
our monotone functional interpretation we firstly have to eliminate (E) from the proof. This can be
done as in cor.3.1.4 and remark 3.2.4 since F — (F)..

Theorem 4.9 Assume that n > 1. Let A be a set of sentences having the form

Vu¥3u <5 tuVw" By, where t € G, RY and v, < 2, 6 <1 such that S¥ = A. Furthermore let s €
GnR¥ and Ay € L(G,A%) be a quantifier—free formula containing only x,y,z free and let o, 8 € T
such that (« =0ANB<1) or (a =1AB=0), and 7 <2. Then the following rule holds:

E-GoAY + F+ A+ ACYP—qf FVa'Vy <y s2327 Ag(z, vy, 2)
= by elimination of (E), neg. transl. and monotone functional interpretation 3V € G, R¥[®4] :
GnAY + F+A+b-AC F ValVy <y s23z <, U Ag(x,y, z) and therfore
M@ 8Y = ValtVy < s23z <, U Ag(w,y, 2).M

U s built up from 0°,1°, max,, P and majorizing terms'® for the terms t occurring in the quantifier
axioms YxGx — Gt and Gt — JxGx which are used in the given proof by use of A—abstraction and
substitution. If T < 1 then ¥ has the form ¥ = Azl oM | where ™ = ®1x and ¥o does not

contain ®1 (An analogous result holds for E-PRA% ,E-PA% with ¥ € PR’ resp. U €T).
Proof: By lemma 4.8 and elimination of extensionality the assumption yields

GnAY + F+ A+ AC™Pqf FValvy <y sz32" Ag(z,y, 2).

14Note that the conclusion holds in §“ although S¢ B£F.
15Here ¢* [a] is called a majorizing term if Aa.t* s—maj Aa.t, where a are all free variables of ¢.
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By thm.3.2.2 there exists a ¥ € G, R” [®,] satifying the properties of the theorem such that
GrAY + F+A+b-AC + Valvy < sz3z <, Uz Ao(z,y, 2).

;From [16] and prop.4.6 we know that M* = PA® + F+b-AC and therefore M = G,A“ + F+b-
AC. Note that every S“—true universal sentence Va* Ag(x) with deg(p) < 2 as well as every sentence
from A is also true in M%“. This follows from Sy = My,S1 = M7 and So D Ms. Hence MY
GnAY + F + A+b-AC
and therefore

M® = VaelVy < sxz <, WaAg(x,y, 2).
Since 7 < 2 this implies

SY E Valvy < sz3z <, Uz Ao(x,y,2).

Remark 4.10 Ii is the need of the (E)-elimination that prevents us from dealing with stronger
forms of F, where yg may be given as a functional in ® and y, since for such a strengthened version
the interpretation (F)e would not follow from F (without using (E) already). The same obstacle
arises when F s generalized to higher types p > 1:

E, = V0" 4 3yy <0 yVkOVz <, yk(Pkz <o ®k(yok)).
F,, which still is true in MY, will be used in the intuitionistic context studied in chapter 8 below.

In our applications of F we actually make use of the following consequence of F+ACH9—qf:

Definition 4.11 The schema of uniform YY—boundedness is defined as

Yyt (VKO <y yk3z0 A(z,y,k, 2)

»9-UB:
— VROV <q yk3z <o Xk A(z,y, K, z)),
where A = 3lAo(l) and l is a tuple of variables of type 0 and Ag is a quantifier—free formula (which
may contain parameters of arbitrary types).

Proposition: 4.12 Assume that n > 2.
GpA“+ACY —¢f - F — XV-UB.

Proof: VkOYx! <y yk32° A(x,y,k, z) implies

VkOVxlﬂzO,UO(xv <o ykv — A(m,y,k,z)). Thus using the fact that k,x as well as z,v,l can be
coded together in GoA¥, one obtains by ACH0—gf the existence of a functional ®2(®) such that
VEOVz <y yk A(x,y, k, Pkx). Proposition 4.7 yields

INVEOVE <4 yk(xk >0 k).

Remark 4.13 In the proof above we have made use of classical logic for the shift of the quantifier
on v as an existential quantifier in front of the implication. Nevertheless one can make use of the

principle of uniform boundedness (and even generalizations of this principle) in intuitionistic theories
(as will be shown in a subsequent paper). This is possible since instead of classical logic we could
have used also (E) to derive Vk,x3z A(min;(x,yk),y,k,2) and (E) does not cause any problems
intuitionistically.
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¥9-UB together with classical logic implies the existence of a modulus of uniform continuity for each
extensional ®!™) on {z!: 2 <; y} (where ’continuity’ refers to the usual metric on the Baire space
]N]N):

Proposition: 4.14 For n > 2 the following holds

GoA” +39-UB +
V@l(l)(ext(@) — Yyl Iy VEOY 2y, 20 <4 y( N (z18 =0 221) = A (P21 =0 <I)22j))),
i<oxk i<ok

where ext(®) = Vzi, 22(21 =1 20 — P21 =1 Pza).

Proof: Yz, 20 <4 y(z1 =1 22 — ®21 =1 P2z3) implies

Vz1, 22 <1 yVE In® ( /\ (217 =0 221) — /\ (Pz1) =0 P22j)).

i<on i<ok

By ¥Y-UB (using the coding of z1, 22 into a single variable) we conclude

INVEOz1, 20 <1 y( N\ (=0 220) = J\ (@215 =0 B22j)).

i<oxk i<ok

Remark 4.15 The weaker aziom Fy instead of F proves ¥©{-UB only in a weaker version which
asserts instead of the bounding function x' only the existence of a bound n° for every k°. This is

sufficient to prove that every 'V is uniformly continuous but not to show the existence of a modulus
of uniform continuity.

For many applications a weaker version F'~ of F' is sufficient which we will study now for the following
reasons:

1) F~ has already the logical form Vz3y < szVzAp of an axiom € A and needs (in contrast
to F) no further transformation. This simplifies the extraction of bounds and allows the
generalization to higher types (see thm.4.21 below).

2) F~ can be eliminated from the proof for the verification of the bound extracted in a simple
purely syntactical way (see thm.4.21 ) yielding a verification in Gax(3,n)A¢. In particular no
relativation to M* is needed. For F' such an elimination uses much more complicated tools
and gives a verification only in HA“ and only for 7 < 1 and A = (} in thm.4.9 (see [21] ).

Definition 4.16 F~ = VX0 103y, <, yvk%, 21, n0( A (2 <o yki) — ®k(zn) <o

i<gn
@k(yok)), where, for 20, (z;m)(kY) =, zk, if k <o n and := 0°, otherwise (It is clear that
Az,n.(z;m) € GaRY).

Remark 4.17 Since F~ is a weakening of F' (to finite initial sequences) it is also true in M“. By
the proof of prop.4.2 F~ does not hold in S%.

Lemma: 4.18 G AY - F~ — V2O yl O3 OgE0 21 n0( A (zi < yki) — ®k(z;R) <o xk).

i<on
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Definition 4.19 The schema X9-UB~ is defined as the following weakening of ¥9-UB:

vy O (VO <y yk3z0 A(z,y,k, 2) — 3xVE, 2!, n®
(A (i <oyki) — 3z <o xk A((T,0),y,k,2))),

i<on

>0 UB ™ :

where A € ¥9.
Proposition: 4.20 For each n > 2 we have G, A*+ACY—¢f - F~ — X9-UB~.

Proof: Analogously to the proof of prop.4.12 using lemma 4.18 instead of prop.4.7.

Theorem 4.21 Assumen > 1, 7 <2, s €G,R¥. Let Ag(z,y,2) € L(G,A¥) be a quantifier—free
formula containing only x,y, z as free variables. Then the following rule holds:

GnAY ® AC—qf & F~ +Va'Vy <, sz327 Ay(z,y,2)
= by neg. transl. and monotone functional interpretation IV € G, R” [P1] such that
Gmax(&n)A‘;’ FVzlvy <, sz3z <, Uz Ag(z,vy, 2).

U s built up from 0°, 1O,maxp, ®1 and majorizing terms for the terms t occurring in the quantifier

axioms YxGx — Gt and Gt — JxGx which are used in the given proof by use of A—abstraction and

substitution.1®

If 7 <1 then U has the form ¥ = \z' . Woz™, where 2™ := &1z and Uy does not contain ;.
For p < 1, G,A“®AC—qfdF~ can be replaced by E-G,AY+AC™P —qf+F~, where o, 3 are as in
thm.4.9 . A remark analogous to 3.2.4 applies. Furthermore on may add axioms A (having the form

as in thm. 3.2.2) to G, AYSAC—qfoF~. Then the conclusion holds in Gy ax(sn)AF + A+0-AC.

An analogous result holds for PRA¥ and PA¥ with ¥ € PR’ resp. € T and verification in PRAY
resp. PAY.

Proof: The assumption implies

GpAY + AC—qf F (Y < AQ2O) y1O) yyd 1O [0 21 nl
(A (Zi < gki) — ®k(Z,n) <o k(Y Pgk)) — Va'Vy <, sz3z"Ao(z,y,2)),

i<n
and therefore
GnAY + AC—qf F VY <\, yyVa'Vy <, s230, 5, k, Z,n, 2(...).
By theorem 3.2.2 and a remark on it we can extract Uy, Uy € G,,R¥[®4] such that
GpAY FVY <\ y.yVo'Vy <, s23®, 7, k, 230 <o U123z <, Uax(...).
Hence

GrAY EVz (Y < A2 10 yyd g1 O) k0 3lyn <o Uy
(A (Zi < gki) — ®k(Z,n) < PR(Y ®gk)) — Vy <, saFz <, WazAg(z,y,2)).

i<n

16Here @ means that F~ and AC—qf must not be used in the proof of the premise of an application of the quantifier—
free rule of extensionality QF-ER. G, A% satisfies the deduction theorem w.r.t @ but not w.r.t +. In fact the theorem
also holds for (G, AY+AC—qf)®F~ since the deduction property is used in the proof only for F~.
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It remains to show that

G3AY F VngdY < AD2O) ¢10) yyd 51O k0 21vn <4 ny
( A (Zi < gki) — ®k(Z,n) < Pk(Y Dk)) :

i<n
Define!”
Y :=A®,§,k,no. max ®k(ming (Ni-(5);, §k),n0).
i<o(gk)no

One easily shows (using the fact that @, € GzR*) that Y is definable in G3A%. In the same way

we can define (using py)

¥ = A®,§,k,no. min [(I)k(minl(/\i.(j)i,gk),no) — Y@gkno} .

3<o0(Fk)no

For every ng we now put

Y = \®, §, k.(miny (Ni.(Y ®gkno)i, Gk), no).
Analogously to prop.4.14 one shows
Proposition: 4.22 For n > 2 the following holds

G, AY @X9-UB~ V&' (ext(®) A ® pointwise continuous —

Vylax VY21, 20 <1y (A (210 =0 220) — A (Pz1) =0 P22j))).
i<oxk i<ok

We now show that F'~ implies (relatively to GoA“+ACH%—¢f) a generalization of the binary ("weak’)
Ko6nig’s lemma WKL:

Definition 4.23 (Troelstra(74)) WKL:= Vf'(T(f) AV2°3In®(lth n =¢ x A fn =¢ 0) — 3b <4
M. 1Vz0(f (bx) =0 0)),

where Tf :=Yn®, mP(f(n*m) =9 0 — fn =g 0) AV, 2%(f(nx (x)) =0 0 — = <o 1) (i.e. T(f)
asserts that f represents a 0,1-tree).

In the following we generalize WKL to a sequential version WKL,., which states that for every
sequence of infinite 0,1-trees there exists a sequence of infinite branches:

Definition 4.24
VHO(VEO(T(fk) AV203nl(ith n =g z A fkn = 0))
— 3b <q(0) Ak, 10 1VEY 20 (fE((bk)x) =0 0)).

This formulation of WKL (which is used e.g. in [35] and [30],[31],[32] and in a similar way in
the system RCAg considered in the context of 'reverse mathematics’ with set variables instead of
function variables) and WKL, uses the functional <I)<‘>bx = bz which is definable in G,AY only
for n > 3 and causes exponential growth. Since we are mostly interested in polynomial growth and
therefore in systems based on GoA“ we introduce a different formulation WKLZ,, of WKL, which
avoids the coding of finite sequences (of variable length) as numbers and can be used in GaA“ and
is equivalent to WKL, in the presence of the functional ®.y. This is achieved by expressing trees

as higher type (> 2) functionals which are available in our finite type theories:

17Note that our definition of fx implies that /\ (2i <o Jki) — zZn <g (§k)no for n <g no.
i<n
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Definition 4.25

YOOOLO (kO 203 <y An®.10 A (@k(B,7)i =o 0)
WKL?eq = i=0
— b <0y AK®,n0.1VEC, 20(Pk(bk, )z =0 0)).

Proposition: 4.26 G3AY - WKL?, «— WKLg,.

seq

Proof: '—’: Define ®k°'2" := fk(bz) and assume Vk°T(fk) and
(+) Vk,z3n(lth n = z A fkn = 0). Tt follows that

Yk, 23b < An.1 N\ (®k(D,i)i =0 0)
1=0

(Put b := Mi.(n); for n as in (4)).
Hence WKLZ,, yields

b < Ak, n.1VEk, x(Pk(bk,x)x = 0),
ie.

I < Ak, 0.1k, 2 (fR((BF)z) = 0).

’«": Define

Fhn = Pk(Xi.(n);)(Ith n), if Vj < Ith n((Pk(Ni.(n)i, 5)j =0 0) A (n); < 1)

1%, otherwise.

The assumption Vk, z3b <1 An®.1% A (®k(b,i)i = 0) implies
=0

Vk,z3n(lth n = « A fkn = 0). Since furthermore T'(fk) for all k (by f-definition), WKL, yields
b <10y Ak, n. 1K, 2° (fE((bk)z) =0 0),
ie.

I < Ak, n.1VE, 2(Pk(bk, x)x = 0).

Theorem 4.27 Gy AY+AC* —¢f - X0-UB~ — WKL?

seq”
Proof: Assume that
Vb <10y AK®, %13k, 2% (®k(bk, z)z #¢ 0).

By XY-UB~ it follows that (since the type 1(0) can be coded in type 1):

(*) FoVb <q(0) Ak, 113k, 2 <o 20 (@k( (bk, x0), z)z Z0 0).
N—_———

:1bk,m
Assume VEO, 2030 ( A\ (bi <o 1 A ®k(b,1)i = 0)). AC™!—f yields
=0

Va3 OVE (N (bki <o 1 A ®k(DE,7)i =0 0))
i=0
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Since bk, i =1 (bk,x),i for i < x and bk, x <y \i.1 if A (bki < 1) this implies
=0
Va3 <i() Mk, 1.1k N\ (®k(Dk,i)i = 0),
1=0

which contradicts (x).

Together with propositions 2.2.29,4.20 this theorem implies the following
Corollary 4.28 Letn > 2. Then'®

(GpAY + ACH —qf + AC™' —¢f) ® F~ + WKL?

seq*

2

seq- In particular (combined with

Hence theorem 4.9 and theorem 4.21 capture proofs using WKL
cor.3.2.8 ) we have the following rule
E-GyA®” + AC™P—qf +WKL2  + Va2OVy <y sz320Ag(z,y, 2)

seq

= 3(eff)k,c1,c2 € IN such that
Gz AY - V¥2Ovy < sx3z < c12¥ + ez Ao(2, v, 2),

where s € GoRY and Ay is a quantifier—free formula of GoA“ which contains only x,y,z as free
variables and (¢ = 0N B < 1) or (¢ = 1A B =0). For G,A* and @ instead of E-G,A¥,+ this
result holds for full AC—qf and y <, sx where p is an arbitrary type.

Remark 4.29 WKL?eq does not imply (relative to say PAY+AC) F~ since S¥ = WKL?eq, but
SYHEFT.

Remark 4.30 II9—conservation of WKL over a second—order fragment RCAq of I/DZMM—Aquf was
proved at first model-theoretically by H. Friedman in an unpublished paper. In [30] a proof-theoretic
treatment (using cut—elimination) is given. For the finite type systems PA“+AC—qf+ WKL (where

PAY := WE-HA¥ with WE-HAY as in [34]) and I/DZWM-Aquf—i—WKL conservation results for I19—
sentences and even for Vz'Vy <, sz3z7 Ay(x,y, z)-sentences were obtained in [14],[18], [15] using
functional interpretation. A new and more simple proof using (a weaker version of) our axiom F~
and monotone functional interpretation is given in [21]. It is this proof which we have adapted in
this paper for the weak systems based on G, A¥. In an unpublished paper L. Harrington gave a
model-theoretic proof for IT{—conservation of RCAg+WKL over RACy (see also [3]; In [6] also a
model-theoretic proof for II}—conservation of WKL relatively to a second—order system of ‘feasible’
arithmetic is given).

In [31],[32] a proof-theoretic treatment of this result is formulated (also for a second-order system
based on elementary recursive functions only) which however makes incorrect use of Herbrand normal
forms and establishes only conservation for Vf13z%Ap—sentences (see [17] for a discussion of this
point).

In [26],[30] proofs for II3—conservation over PRA for certain second-order systems based on WKL,
[19—comprehension without function parameters and II9-induction rule without function param-
eters are presented. However the resulting theories (even without WKL) prove the totality of the
Ackermann function as was observed in [22] (see also [24]).

18The proofs of 4.20 and 4.27 also yield G,A% & AC'0—qf § ACO!—qf & F~ - WKLZ,,.
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