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Abstract

We give quantitative versions of strong convergence results due to Baillon, Bruck

and Reich for iterations of nonexpansive odd (and more general) operators in uniformly

convex Banach spaces.
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1 Introduction

Let X be a uniformly convex Banach space and C ⊆ X a closed convex subset satisfying
C = −C. In [2], Baillon, Bruck and Reich showed (among many other things) that the

iteration (Tnx) of an odd nonexpansive mapping T : C → C that is asymptotically regular

at x ∈ C strongly converges to a fixed point of T. By a famous result due to Ishikawa [4]

the averaged mapping Tλx := (1− λ)x+ λT (x) with λ ∈ (0, 1) of a nonexpansive mapping

T : C → C always is asympotically regular provided that (Tnλ x) is bounded (in fact – by

another result from [2] – it suffices that (‖Tnλ x‖/n) converges to 0).

With T also Tλ is nonexpansive and odd and so the sequence (xn) defined by xn := Tnλ x

(which trivially is bounded) converges strongly towards a fixed point p ∈ C of T.

We first observe that the condition of T being nonexpansive and odd can be weakened to
the condition

(W ) : ∀x, y ∈ C
(
‖Tx+ Ty‖ ≤ ‖x+ y‖

)
studied in [14] which also makes the assumption C = −C superfluous.

It is easy to show that there is no computable (in the data at hand) rate of convergence even

for X := R, C := [0, 1], λ := 1/2, x := 1 in the sense that there is a computable sequence
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(fl) of odd nonexpansive functions fl : [−1, 1] → [−1, 1] such that there is no computable

function δ : N→ N such that for xln := (fl)
n
1
2

(1)

(+) ∀m ≥ δ(l) (|xlm − xlδ(l)| ≤
1

2
).

Define fl(x) := al · x, where al :=
∞∑
i=0

g(l, i) · 2−i−1 ∈ [0, 1] with

g(l, n) :=

{
1, if ¬T (l, l, n)
0, otherwise,

Here T denotes the Kleene T -predicate.

Now observe that

(++) al = 1→ xlδ(l) = 1 and al < 1→ xlδ(l) ∈ [0, 1/2].

While the first implication is immediate from the definition of xln, the second follows using

(+) and the fact that (by – an essentially trivial use of – Ishikawa’s theorem [4]) (xln)
converges towards the unique fixed point 0 of fl.

By (++) the computability of δ would allow us to decide whether al = 1 or al < 1 and

so whether or not ∃n ∈ NT (l, l, n) contradicting the undecidability of the (special) Halting
problem.

While we do not know whether for single computable operators T : C → C in effective
uniformly convex spaces, the iteration xn := Tnλ x (for computable x ∈ C, λ ∈ (0, 1)) might

have no computable rate of convergence, we show that the rate is computable iff the norm
‖p‖ of the strong limit p of (xn) is computable.

Things are much better for a reformulation of the convergence property known in logic
as the no-counterexample interpretation of the former ([7, 8], see also [5]) which recently

has been popularized under the name of ‘metastability’ by T. Tao (see [11, 12]). Here one
considers the statement

∀ε > 0 ∀g : N→ N ∃k ∈ N ∀i, j ∈ [k; k + g(k)]
(
‖T ix− T jx‖ < ε

)
which, ineffectively, is equivalent to the strong convergence of (Tnx). Here [k; k + m] :=

{k, k + 1, k + 2, . . . , k +m}.
We then give an explicit effective (in fact even primitive recursive) and highly uniform rate

Φ(b, α, ε, g) of metastability of (Tnx)

∀ε ∈ (0, 2]∀g : N→ N ∀b ∈ N∗ ∀x ∈ Cb ∃n ≤ Φ(b, α, ε, g)
∀i, j ∈ [n;n+ g(n)]

(
‖T ix− T jx‖ < ε

)
that (in addition to ε and g) only depends on a norm upper bound b ≥ ‖x‖ of x and a

uniform rate α of asymptotic regularity of T on Cb := {x ∈ C : ‖x‖ ≤ b}, i.e.

∀ε > 0 ∀b ∈ N∗ ∀x ∈ Cb ∀n ≥ α(b, ε)
(
‖Tn+1x− Tnx‖ < ε

)
.
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In fact, instead of α a (uniform) rate on the metastable version of asymptotic regularity,
i.e. a ϕ such that

∀ε > 0 ∀f : N→ N∀b ∈ N∗ ∀x ∈ Cb ∃k ≤ ϕ(b, f, ε) ∀i ∈ [k; k + f(k)]
(
‖T i+1x− T ix‖ < ε

)
,

is sufficient.
The bound Φ is independent of X (and C) except for a modulus of uniform convexity η of

X (and an upper bound b on ‖x‖). The extraction of this bound is an instance of a general
logical metatheorem which not only guarantees the extractability of such bounds for large
classes of proofs but also provides an algorithm for the actual construction of the bound
from a given proof. This then results again in an ordinary proof that no longer relies on
any facts from logic (see [5], in particular Chapters 17 and 18, for all this).

Using the optimal rate of asymptotic regularity α for Tλ from [1] this gives an effective (and

even primitive recursive) rate of metastability for the strong convergence of (xn) (as defined

above) that only depends on ε, g and b.

A primitive recursive rate on the metastability of the Cesàro means (i.e. ergodic aver-

ages) of operators in Hilbert space satisfying Wittmann’s condition was recently extracted

from Wittmann’s [14] proof of strong convergence of these means by Safarik [10]. For an-

other quantitative strong nonlinear ergodic theorem see [6]. Again, these results have been
obtained using the aforementioned proof-theoretic approach.

2 Results

In the following, let X be a uniformly convex Banach space with a modulus of convexity
η : (0, 2]→ (0, 1], i.e.

∀x, y ∈ B1(0) ∀ε ∈ (0, 2]

(∥∥∥∥x+ y

2

∥∥∥∥ > 1− η(ε)→ ‖x− y‖ < ε

)
,

where Bd(0) denotes the closed ball with center 0 and radius d in X.

Lemma 2.1. Let x, y ∈ Bd(0) ⊂ X with 0 < d ≤ b ∈ N. Then

∀ε ∈ (0, 2]

(∥∥∥∥x+ y

2

∥∥∥∥ > d(1− η(ε/b))→ ‖x− y‖ < ε

)
.

Proof: Define x̃ := x/d, ỹ := y/d so that x̃, ỹ ∈ B1(0).

Assume that
∥∥x+y

2

∥∥ > d(1− η(ε/b)). Then∥∥∥∥ x̃+ ỹ

2

∥∥∥∥ =
1

d

∥∥∥∥x+ y

2

∥∥∥∥ > 1− η(ε/b)

and so 1
d‖x− y‖ = ‖x̃− ỹ‖ < ε

b . Hence ‖x− y‖ < d·ε
b ≤ ε. �

Notation: For b ∈ N∗ define Cb := {x ∈ C : ‖x‖ ≤ b}.
For n,m ∈ N we define n −· m := n−m if n ≥ m and := 0, otherwise.
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Theorem 2.2. Let C ⊆ X be any nonempty subset of X and T : C → C a selfmapping of
C that satisfies Wittmann’s [14] condition

(W ) : ∀x, y ∈ C
(
‖Tx+ Ty‖ ≤ ‖x+ y‖

)
.

Moreover, assume that for each 0 < b ∈ N the mapping T is (uniformly on Cb) asymptoti-
cally regular with a rate α : N× R∗+ → N, i.e.

∀ε > 0∀b ∈ N∗ ∀x ∈ Cb ∀n ≥ α(b, ε)
(
‖Tn+1x− Tnx‖ < ε

)
.

Then (Tnx)n∈N converges strongly with the following rate of metastability

∀ε ∈ (0, 2]∀g : N→ N ∀b ∈ N∗ ∀x ∈ Cb ∃n ≤ Φ(b, α, ε, g)
∀i, j ∈ [n;n+ g(n)]

(
‖T ix− T jx‖ < ε

)
,

where

Φ(b, α, ε, g) := Ψ(b, hb,α,ε,g,
δb(ε)
2 ) with

hb,α,ε,g(n) := h(n) := max
{
α
(
b, δb(ε)

max{g(n),1}

)
−· n, g(n)

}
and

Ψ(b, f, δ) := f̃ (db/δe)(0) with f̃(n) := n+ f(n) for f : N→ N,
δb(ε) := ε

2 · η(ε/b).

If T is continuous and C closed, then the strong limit of (Tnx)n∈N is a fixed point of T.
For the metastability statement the completeness of X is not needed.

Proof: It suffices to prove the metastability statement which (ineffectively) implies the

strong Cauchy property of the sequence (and so using the completeness of X its conver-

gence). That for continuous T (and closed C) the limit is a fixed point of T then trivially
follows from the asymptotic regularity of T.
Let ε ∈ (0, 2], b ∈ N∗, g : N → N and C, T, x be as in the theorem. By the condition (W )

the sequence (‖Tnx‖)n∈N is nonincreasing and hence convergent. By [5] (Proposition 2.27,

Remark 2.29) it follows that Ψ is a rate of metastability for this sequence, i.e.

∀δ > 0 ∀f : N→ N ∃n ≤ Ψ(b, f, δ) ∀i, j ∈ [n;n+ f(n)]
( ∣∣‖T ix‖ − ‖T jx‖∣∣ < δ

)
.

For δ := δb(ε)
2 and f := h := hb,α,ε,g let n ∈ N be such a number.

Define d := ‖Tnx‖ = max{‖T kx‖ : k ∈ [n;n+ h(n)]} ≤ b. Then

(1) ∀k ∈ [n;n+ h(n)]
(
d− δb(ε)

2
< ‖T kx‖ ≤ d

)
.

From the assumption on α we get

(2) ∀i ∈ N∗ ∀ε > 0∀k ≥ α(b, ε/i)∀j ≤ i
(
‖T kx− T k+jx‖ < ε

)
,

since

‖T kx− T k+jx‖ ≤
j−1∑
l=0

‖T k+lx− T k+l+1x‖ <
j−1∑
l=0

ε

i
≤ ε
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for all 0 < j ≤ i and k ≥ α(b, ε/i).

For k := n+ h(n) ≥ α
(
b, δb(ε)

max{g(n),1}

)
we get from (1) and (2) that for all

i ∈ [n;n+ g(n)] ⊆ [n; k] :

∀j ≤ g(n)
(
2(d− δb(ε)

2 ) ≤ 2‖T kx‖ ≤ ‖T k+jx+ T kx‖+ ‖T kx− T k+jx‖
< ‖T k+jx+ T kx‖+ δb(ε)
(W )

≤ ‖T i+jx+ T ix‖+ δb(ε)
)
.

Hence

(3) ∀i, j ∈ [n;n+ g(n)]

(
d− δb(ε) <

∥∥∥∥T ix+ T jx

2

∥∥∥∥) .
Case 1: d := ‖Tnx‖ < ε

2 . Then

∀i, j ∈ [n;n+ g(n)]
(
‖T ix− T jx‖ ≤ ‖T ix‖+ ‖T jx‖ ≤ 2‖Tnx‖ < ε

)
and so we are done.

Case 2: d ≥ ε
2 . Then by the definition of δb(ε) and (3) we have

(4) ∀i, j ∈ [n;n+ g(n)]

(
d(1− η(ε/b)) <

∥∥∥∥T ix+ T jx

2

∥∥∥∥) .
Using (1), (4) and lemma 2.1 yields that

∀i, j ∈ [n;n+ g(n)]
(
‖T ix− T jx‖ < ε

)
.

�

Remark 2.3. If η(ε) can be written as ε · η̃(ε) with 0 < ε1 ≤ ε2 → η̃(ε1) ≤ η̃(ε2), then we

can replace δb(ε) in the bound in theorem 2.2 by δb(ε) := ε · η̃(ε/b). In particular, in the case

of a Hilbert space X (where one can take η(ε) := ε2/8, see e.g. [6]), this yields δb(ε) := ε2

8b .

Proof: With δb(ε) := ε · η̃(ε/b) one gets instead of (4) in the proof of theorem 2.2

(4)′

{
∀i, j ∈ [n;n+ g(n)](
d(1− η(ε/d)) = d(1− ε

d · η̃(ε/d)) ≤ d(1− ε
d · η̃(ε/b)) <

∥∥∥T ix+T jx
2

∥∥∥) .
The claim now follows using lemma 2.1 since T ix, T jx ∈ Bd(0) for i, j ∈ [n;n+ g(n)]. �

The above extraction of the rate of metastability Φ from the proof given in [2] (and also

the fact that Φ only depends on the arguments b, α, ε, g) is an instance of a general logical

metatheorem (see [3] Theorem 6.3.2 or [5] Theorem 17.69.2 and note that the condition

(W ) is purely universal and implies that T is majorized by the identity function). In fact,
that metatheorem even guarantees such a bound when the rate of asymptotic regularity α
is replaced by a weaker rate of metastability ϕ instead, i.e.
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(∗) ∀ε > 0∀f : N→ N ∀b ∈ N∗ ∀x ∈ Cb ∃k ≤ ϕ(b, f, ε) ∀i ∈ [k; k+f(k)]
(
‖T i+1x−T ix‖ < ε

)
.

We will briefly demonstrate this now. In fact, one only needs ϕ for constant-c functions
(c ∈ N) that we also denote by c. Modifying ϕ to ϕ′(b, c, l, ε) := ϕ(b, c+ l, ε) + l one gets for
each l ∈ N

(∗∗) ∃k ≤ ϕ′(b, c, l, ε)∀i ∈ [k; k + c]
(
k ≥ l ∧ ‖T i+1x− T ix‖ < ε

)
.

Now define (using (∗∗)) αn,g(b, ε) as the least k ≤ ϕ′(b, g(n), n+ g(n), ε) such that

∀i ∈ [k; k + g(n)]
(
k ≥ n+ g(n) ∧ ‖T i+1x− T ix‖ < ε

)
.

Then theorem 2.2 holds with α and hb,α,ε,g being replaced by αn,g and hb,ϕ,ε,g(n) :=

αn,g

(
b, δb(ε)

max{g(n),1}

)
− n respectively. Replacing hb,ϕ,ε,g by the monotone upper bound

h∗b,ϕ,ε,g(n) := max{ϕ′(b, g(m),m+ g(m), δb(ε)/max{g(m), 1})−m : m ≤ n}

yields an upper bound

Φ(b, ϕ, ε, g) := Ψ(b, h∗b,ϕ,ε,g,
δb(ε)

2
) ≥ Ψ(b, hb,ϕ,ε,g,

δb(ε)

2
)

satisfying theorem 2.2. This yields the following qualitative improvement of theorem 2.2

Corollary 2.4. For the strong convergence of (Tnx) in theorem 2.2 one can weaken the
asymptotic regularity assumption to

∀ε > 0 ∀c ∈ N ∀x ∈ C ∃k ∈ N ∀i ∈ [k; k + c]
(
‖T i+1x− T ix‖ < ε

)
.

If T is continuous and C is closed, then the limit of (Tnx) is a fixed point of T.

Proof: By the reasoning above, the sequence (Tnx) is metastable (note that for metasta-

bility in the point x we also only need the above weak form of asymptotic regularity in x)
and hence is strongly Cauchy. For closed C the limit is in C and – for continuous T – a
fixed point of T as the condition in the corollary implies that

∀ε > 0∀n ∈ N ∃k ≥ n (‖T k+1x− T kx‖ < ε).

�
In the following, we apply theorem 2.2 to averages mappings for which effective (full) rates

of asymptotical regularity are known (here ‘π’ denotes the constant π):

Theorem 2.5. Let X be a uniformly convex Banach space and C ⊆ X a closed and convex
subset. Assume that T : C → C satisfies (W ) and is nonexpansive. Let λ ∈ (0, 1) and

define Tλx := (1− λ)x + λTx, xn := Tnλ x for x ∈ C. Then (xn)n∈N strongly converges to a

fixed point p ∈ C of T and the following rate of metastability holds:

∀ε ∈ (0, 2]∀g : N→ N ∀b ∈ N∗ ∀x ∈ Cb ∃n ≤ Φ(b, α, ε, g)
∀i, j ∈ [n;n+ g(n)]

(
‖xi − xj‖ < ε

)
,
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where Φ is as in theorem 2.2 and α(b, ε) :=
⌈

b2·λ
π(1−λ)ε2

⌉
.

For the last statement no completeness of X or closedness of C is needed.

Proof: For x ∈ Cb it follows from a deep result due to Baillon and Bruck [1] (and using

that λ‖xn−T (xn)‖ = ‖Tn+1
λ x−Tnλ x‖) that α is a rate of asymptotic regularity for Tλ (this

result even holds in arbitrary normed spaces).1 With T also Tλ satisfies (W ) since

‖Tλx+ Tλy‖ = ‖(1− λ)x+ λTx+ (1− λ)y + λTy‖
≤ (1− λ)‖x+ y‖+ λ‖Tx+ Ty‖
≤ (1− λ)‖x+ y‖+ λ‖x+ y‖ = ‖x+ y‖.

Hence the corollary follows from theorem 2.2 applied to Tλ (note that the proof for the

metastability statement did not use the completeness of X nor the closedness of C). �

Remark 2.6. For nonexpansive T the condition (W ), in particular, holds when C = −C
and T is odd, i.e. T (−x) = −T (x).

The proof of theorem 2.2 (and theorem 2.5) immediately yields an effective rate of conver-

gence of (Tnx)n∈N (instead of a rate of metastability only) provided one has a rate Ψx,T of

convergence for (‖Tnx‖)n∈N given, i.e. for d := lim
n→∞

‖Tnx‖

∀ε > 0 ∀n ≥ Ψx,T (ε) (‖Tnx‖ − d < ε) .

Then Ψx,T

(
δb(ε)
2

)
is a rate of convergence of (Tnx)n∈N. This leads to the following (using

the notion of computability for Banach spaces and mappings between Banach spaces from
[9] and [13]).

Corollary 2.7. Let X be a computable uniformly convex Banach space with a computable
modulus of uniform convexity η and C be a closed and convex subset. Let T : C → C be
a computable nonexpansive mapping satisfying condition (W ) and x ∈ C be a computable

point. Finally, let λ ∈ (0, 1) be computable. Then (Tnλ x)n∈N converges effectively (i.e. with

a computable rate of convergence) to its limit p := lim
n→∞

Tnλ x if and only if ‖p‖ is computable.

Proof: The assumptions yields that (xn) with xn := Tnλ x is a computable sequence in X.

If (xn) converges effectively, then also p and hence ‖p‖ is computable. Conversely, suppose

that ‖p‖ is computable. Then there is a computable function ρ : Q∗+ → N such that

∀q ∈ Q∗+
(
‖T ρ(q)λ x‖ − ‖p‖ < q

)
since ‘‖Tnλ x‖−‖p‖ < q’ is computably enumerable in n, q. Since (‖Tnx‖)n∈N is nonincreasing,

ρ in fact is a rate of convergence. The comments preceding this corollary now yield a
computable rate of convergence for (Tnλ x)n∈N. �

1The bound in [1] is stated for sequences in B1(0) but can easily be adapted to Bb(0) by switching to the
norm ‖x‖b := 1

b
· ‖x‖. The α in our theorem results from this adaptation.
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