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Abstract

Let U and V be complete separable metric spaces, Vu compact in V and

G : U × V → IR a continuous function. For a large class of (usually non–constructive) proofs of

uniqueness theorems

∧
u ∈ U, v1, v2 ∈ Vu

(
G(u, v1) = inf

v∈Vu

G(u, v) = G(u, v2) → v1 = v2

)

one can extract an effective modulus of uniqueness Φ by logical analysis, i.e.

∧
u ∈ U, v1, v2 ∈ Vu, n ∈ IN

( 2∧

i=1

(
G(u, vi) − inf

v∈Vu

G(u, v) ≤ 2−Φun
)
→ dV (v1, v2) ≤ 2−n

)
.

Since Φ does not depend on v1, v2 it is an a–priori estimate, which generalizes the notion
of strong unicity in Chebycheff approximation theory. This applies to uniqueness proofs in

Chebycheff approximation, ‖ · ‖1–approximation of f ∈ C[0, 1] and best uniform approximation

by polynomials having bounded coefficients. Here we continue our proof–theoretic analysis

started in [21]. A simplification of a proof by Young/Rice and a variant due to Borel are

analysed yielding explicit moduli Φ and uniform a–priori (lower) estimates for strong unicity

which are significantly better than those obtained from de La Vallée Poussin’s uniqueness proof

in [21]. It is explained how the numerical content of the three proofs depends on the logical

form whereby certain analytical lemmas (e.g. the alternation theorem) play a key–role. The

numerical results obtained from Young/Rice’s proof are best and substantially improve known

estimates obtained by D. Bridges by an n (=dimension of the Haar space) in the exponent.

1 Introduction

In this paper we are concerned with the extraction of effective a–priori estimates, called moduli
of uniqueness, from ineffective proofs of uniqueness of best approximations. Roughly speaking, a
modulus of uniqueness is a quantitative version of an uniqueness theorem.
Let us consider the following situation:

Suppose that U and V are complete separable metric spaces (abbreviation: CSM–spaces) and that

Vu is a compact subset of V for each u ∈ U . Furthermore let G : U × V → IR be a continuous

function. Assume now that G(u, ·) has at most one zero in Vu, i.e.

(1)
∧
u ∈ U, v1, v2 ∈ Vu

(
G(u, v1) = 0 = G(u, v2) → v1 = v2

)
.

By a modulus of uniqueness for this situation we mean an operation Φ such that

Φu : Q∗
+ → Q∗

+ and

(2)
∧
u ∈ U, v1, v2 ∈ Vu, q ∈ Q∗

+

( 2∧

i=1

(
|G(u, vi)| ≤ Φuq

)
→ dV (v1, v2) ≤ q

)
.
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Such a modulus can be used for a computation with prescribed precision of the uniquely determined

zero of G(u, ·) in Vu (if such a zero exists). Take an algorithm Ψ which computes a 2−k–zero of

G(u, ·), i.e.

(3)
∧
u ∈ U, k ∈ IN

(
|G(u,Ψuk)| ≤ 2−k ∧ Ψuk ∈ Vu

)
.

Then this algorithm when started with u and k := Φu(2−n) will compute the uniquely determined

zero with an error ≤ 2−n.
In the case of best approximation theory the concept of a modulus of uniqueness generalizes the

notion of (a constant of) strong unicity (which is important for Chebycheff approximation) and

immediately gives a modulus of pointwise continuity for the corresponding projection operator (see

Prop. 2.4 below).

In [21] we used a proof–theoretic method from [23] (more precisely, a new combination of Gödel’s

so–called functional interpretation with a recursion–theoretic majorization technique) to establish a

general meta–theorem which guarantees the extractability of effective moduli of uniqueness for a

large class of (ineffective) uniqueness proofs. Applied to the uniqueness proof for best Chebycheff

approximation of f ∈ C[0, 1] by algebraic polynomials of degree ≤ n by [28] we obtained a concrete

modulus of uniqueness and an effective (a–priori lower estimate of a) constant of strong unicity as

well as a new quantitative version of the well–known alternation theorem.

In this paper we first present the main results of [21] in usual mathematical terms avoiding as

much as possible technical notions from mathematical logic. Then we analyse a further proof of

uniqueness for best Chebycheff approximation (also for general Haar spaces), which is a simplifi-

cation of the proof from [32] and [29], and discuss a variant of this proof for the polynomial case

only due to Borel [4]. The extraction of moduli of uniqueness and constants of strong unicity from

these proofs is much easier compared to de La Vallée Poussin’s proof. The best results (also for

the polynomial case) follow from our simplified version of the proof by [32] and [29]. We use these

estimates to improve results by D.S. Bridges in [6],[7] and [8], who first obtained effective a–priori

estimates for these data in Chebycheff approximation theory (working entirely within the framework

of Bishop’s constructive analysis, see [1]), by an n(=dimension of the Haar space) in the exponent.

By our meta–theorem mentioned above it follows that our results are provable within intuitionistic

arithmetic and hence also in constructive mathematics in the sense of Bishop. However such a (in

general quite complicated) constructive verification of the estimates is only of foundational interest

and does not contribute to the numerical results which are obtained by following the logical struc-

ture and the data of the classical (ineffective) proof. It is the logical form in which certain lemmas

(e.g. the alternation theorem) are used in these uniqueness proofs which is crucial for the numerical
content.

2 General results

In order to formulate our general theorem on the existence of effective moduli of uniqueness we have
to introduce some notions from mathematical logic and constructive analysis which we present here

as informal as possible (for details see [21]).

First we sketch how elements of a CSM–space (X, d) can be represented by sequences f : IN → IN

of natural numbers such that

1) each x ∈ X is represented by some (not uniquely determined) f ∈ ININ,
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2) each f ∈ ININ represents a unique element xf ∈ X ,

3) the equivalence relation f1 =X f2 :≡
(
f1 and f2 represent the same element in X

)
, i.e.

d(xf1
, xf2

) = 0, has the logical form
∧
k ∈ INA0(f1, f2, k) where A0 is quantifier–free.

We indicate this representation for the special space X = IR:
Rational numbers can easily be coded as pairs of natural numbers so that one can define primitive

recursive operations +Q , ·Q , | · |Q and predicates <Q ,≤Q . Real numbers are represented as sequences

of rational numbers and thus, under the coding of rational numbers by natural numbers, as functions
f : IN → IN such that

(4)
∧
n ∈ IN

(
|f(n) −Q f(n+ 1)|Q <Q 〈2−n−1〉

)
,

where 〈q〉 denotes a natural number which codes the rational number q.

(4) implies
∧
n ∈ IN

∧
k,m; k > m ≥ n

(
|f(m) −Q f(k)|Q ≤Q

k−1∑
i=m

|f(i) −Q f(i+ 1)|Q

≤Q

∞∑
i=n

|f(i) −Q f(i+ 1)|Q <Q 〈2−n〉
)
.

Therefore each f ∈ IN → IN which satisfies (4) represents a Cauchy sequence of rational numbers

with Cauchy modulus 2−n. In the other direction for each Cauchy sequence f with modulus 2−n,

f ′(n) := f(n+ 1) satisfies (4). In order to achieve that every function f ∈ IN → IN represents a real

number, we introduce the following primitive recursive construction:

(5) f̂(n) :=





f(n), if
∧
k < n

(
|f(k) −Q f(k + 1)|Q <Q 〈2−k−1〉

)
,

f(k) for the least k < n with |f(k) −Q f(k + 1)|Q ≥Q 〈2−k−1〉, else.

For all f ∈ IN → IN, f̂ satisfies (4). If (4) is already fulfiled by f then does not change f :
∧
n ∈

IN
(
f(n) = f̂(n)

)
. Thus each function f codes a uniquely determined real number, namely the real

number which is given by the Cauchy sequence coded by f̂ .

Using this construction one can reduce quantification over IR to quantification over ININ. On the

codes of real numbers (i.e. on ININ) f1, f2 we define an equivalence relation =IR by

(6) f1 =IR f2 :≡
∧
n
(
|f̂1(n+ 1) −Q f̂2(n+ 1)|Q <Q 〈2−n〉

)
.

One easily verifies (using that f̂1 and f̂2 satisfy (4)) that f1 =IR f2 holds if and only if f1 and f2
represent the same real number.

(7) f1 <IR f2 :≡
∨
n
(
f̂2(n+ 1) −Q f̂1(n+ 1) ≥Q 〈2−n〉

)
, f1 ≤IR f2 :≡ ¬(f2 <IR f1).

f1 =IR f2 and f1 ≤IR f2 are purely universal formulas, i.e. formulas having the form∧
n ∈ INA0(f1, f2, n) where A0 is quantifier–free, whereas f1 <IR f2 is an existential formula

∨
n ∈

INA0(f1, f2, n). Using this representation of IR one can represent arbitrary CSM–spaces (X, d) as

spaces (ININ, dX), where dX represents a pseudo–metric on ININ such that the set of equivalence

classes of ININ w.r.t. f1 =X f2 :≡
(
dX(f1, f2) =IR 0

)
is isometric isomorphic (w.r.t. the metric

induced by dX) to (X, d) (for details see [21]). For e.g. (C[0, 1], ‖ · ‖∞) (where ‖ · ‖∞ denotes the the
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sup norm) this means in practise that the elements f ∈ C[0, 1] are always endowed with a modulus

ωf : Q∗
+ → Q∗

+ of uniform continuity on [0, 1], i.e.

(8)
∧
x, y ∈ [0, 1], q ∈ Q∗

+

(
|x− y| < ωf (q) → |f(x) − f(y)| < q

)
.

This notion of a modulus of continuity is common in logic and constructive analysis but it differs
from the usual notion in numerical analysis.

Functions F : X → Y for CSM–spaces X,Y are now given as functions ΦF : ININ → ININ which are

extensional w.r.t. =X ,=Y , i.e. f1 =X f2 → ΦF (f1) =Y ΦF (f2). Thus we have to deal not only with

functions f : IN → IN but also with functions which map functions to functions and so on. Hence
in order to formalize proofs in analysis we use a system A which is formulated in the language of

function(al)s of finite type:

Finite types are inductively defined as follows:

(i) 0 is a type, (ii) if ρ and τ are types then ρ(τ) is also a type.

0 denotes the type of natural numbers, i.e. terms denoting natural numbers have type 0. ρ(τ) is

the type of functions which map type–τ–objects to type–ρ–objects, so e.g. f : ININ → ININ has type

0(0)
(
0(0)

)
. Functions having types which are more complex then 0(0) are usually called functionals.

A denotes the extension of the usual arithmetic to the language with variables for all types plus the
following schema of recursive search

AC0,0–qf :
∧
x0
∨
y0A0(x, y) →

∨
f0(0)

∧
x0A0(x, f(x)),

where A0 is a quantifier–free formula.
Furthermore one can define in A terms by primitive recursion. The functionals which are definable

in this way are the so–called primitive recursive functionals of [15] and [13]. For an exact definition

of A we refer to [21], where A is denoted by E − PAω +AC0,0–qf and the calculus of primitive re-

cursive functionals by T . If we omit AC0,0–qf and allow only constructive logic we obtain a system

of intuitionistic arithmetic which we call Ai (this is WE −HAω from [21]). Every proof in Ai is in

particular a constructive proof in the sense of Bishop’s constructive analysis [1] (see [2] where Ai is

used for formalizing constructive mathematics).

There are primitive recursive functionals of type 0(0) (i.e. functions) which are not primitive re-

cursive in the usual sense of ordinary recursion theory (as developed e.g. in [16]). For example the

Ackermann function is a primitive recursive functional of A. This is due to the fact that in A prim-
itive recursion in higher types is allowed. If the schema of induction in A is restricted to formulas

of the form
∨
x0A0(x) where A0 is quantifier–free and only primitive recursion in type 0 is allowed

(but with higher type objects as parameters possibly) then the definable functions of this restricted

system Â|\ (called ̂E − PA
ω|\ + AC0,0–qf in [21]) are just the usual primitive recursive ones. All

of our results in the following hold for both A and Â|\ with the corresponding notion of primitive

recursive functionals (Similar for the notions “constructively definable” CSM–space, function etc.

below). For notational simplicity we formulate them only for the case A.

In applications to concrete mathematical proofs usually only very special instances of induction oc-
cur and thus the functionals extracted from these proofs are simple mathematical operations in the

data of the proof (instead of being merely primitive recursive).

A CSM–space (X, d) represented as (ININ, dX) is constructively definable if dX is a primi-

tive recursive functional which represents provable in A a pseudo-metric on ININ. Examples are
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(C[0, 1], ‖ · ‖∞), (IRn, ‖ · ‖E) and (Lp, ‖ · ‖p) (1 ≤ p <∞).

A constructive function F : X → Y is given by a primitive recursive functional Φ
0(0)
(
0(0)
)

F on the

representatives which is (provable in A) extensional w.r.t. =X ,=Y .

Many proofs in analysis use besides arithmetical tools available in A only analytical lemmas having
the form

(+)
∧
x ∈ X

∨
y ∈ Yx(

∧
w ∈W )

(
F (x, y, w) =IR 0

)
,

where X,Y,W are constructively definable CSM–spaces, Yx is compact in Y and F is a constructive
function.
Examples of sentences (+) are

1) The intermediate value theorem for f ∈ C[0, 1];

2) The attainment of the maximum
∧
f ∈ C[0, 1]

∨
x0 ∈ [0, 1]

(
f(x0) = sup

x∈[0,1]

f(x)
)
;

3) The existence theorem of Cauchy–Peano on the solvability of ordinary differential equations.

Such lemmas (+) simply can be used as implicative assumptions in the course of the logical extrac-

tion of the data. It then turns out that proofs of such lemmas are not relevant for the numerical

data as far as conclusions of the form
∧
x ∈ X

∨
n ∈ INA0(x, n) are considered (Examples 2) and 3)

are unprovable in A while 1) is provable in A but not in Ai).

In the following let X,Y, U, V,W be constructively definable CSM–spaces, F : U × X × Y → IR

and G : U × V × W → IR constructive (and therefore continuous) functions. Furthermore let

(Yx)x∈X , (Vu)u∈U be constructive X,U–families of compact sets in Y, V .

Theorem 2.1 ([21]) Suppose that A1(u
0(0), v0(0), k0,m0) in the language of A is a formula having

the logical form
∨
lA0 where l is a tuple of type–0/0(0)–variables, A0 is quantifier–free and A1 has

only the free variables u, v, k,m. Furthermore, assume that A1 is extensional w.r.t. =U ,=V in u, v

(provable in A) so that A1 is really a statement about U, V –objects.

Then the following rule holds





If A ⊢
∧
u ∈ U

(∧
x ∈ X

∨
y ∈ Yx

(
F (u, x, y) = 0

)
→

∧
v ∈ Vu, k ∈ IN

∨
m ∈ INA1(u, v, k,m)

)
,

then one can extract from the proof prim. rec. functionals Φ,Ψ such that

Ai ⊢
∧
u ∈ U, k ∈ IN

(∧
x ∈ X

∨
y ∈ Yx

(
|F (u, x, y)| ≤ 2−Ψuk

)
→

∧
v ∈ Vu

∨
m ≤ Φuk A1(u, v, k,m)

)
.

(An analogous result holds for Â|\).

Remark: The assumption A ⊢
∧
u ∈ U(. . .) in 2.1 and in the following means that this proposition

is provable in A for the representation of U,X etc. as sketched above. The functionals Φ,Ψ oper-
ate on the representatives of the elements of U and are in general not extensional with respect to

u1 =U u2 (≡ dU (u1, u2) = 0). For C[0, 1], ‖ · ‖∞ this means that Φ uses f endowed with a modulus

of uniform continuity on [0,1]. On these enriched data, Φ is extensional in our applications.
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We now apply 2.1 to uniqueness theorems:

Theorem 2.2 ([21])





If A ⊢
∧
u ∈ U

(∧
x ∈ X

∨
y ∈ Yx

(
F (u, x, y) = 0

)
→

∧
v1, v2 ∈ Vu

(∧
w ∈ W

(
G(u, v1, w) = 0 = G(u, v2, w)

)
→ v1 = v2

))
,

then one can extract primitive recursive functionals Φ, Φ̃,Ψ such that

Ai ⊢
∧
u ∈ U, k ∈ IN

(∧
x ∈ X

∨
y ∈ Yx

(
|F (u, x, y)| ≤ 2−Ψuk

)
→
∧
v1, v2 ∈ Vu

(∧
j ≤ Φ̃uk

(
|G(u, v1, wj)|, |G(u, v2, wj)| ≤ 2−Φuk

)
→ dV (v1, v2) ≤ 2−k

))
,

where (wn)n∈IN is dense in W .

2.2 can be applied to uniqueness theorems in best approximation theory. Here one often is concerned

with the computation of a uniquely determined minimal point of a function G(u, ·) : V → IR on a

compact set Vu ⊂ V for u ∈ U . If G is constructive then G̃(u, v) := G(u, v) − inf
ṽ∈Vu

G(u, ṽ) is also

constructively definable. For all u ∈ U, v ∈ Vu one has

G̃(u, v) = 0 ↔ G(u, v) = inf
ṽ∈Vu

G(u, ṽ). Thus under the assumptions of theorem 2.2

(and
∧
x ∈ X,m ∈ IN

∨
y ∈ Yx(|F (u, x, y)| ≤ 2−m)) one can extract a modulus Φ such that

∧
u ∈ U, k ∈ IN, v1, v2 ∈ Vu

(
G(u, v1/2) − inf

v∈Vu

G(u, v) ≤ 2−Φuk → dV (v1, v2) ≤ 2−k
)
.

In the introduction we already indicated how such a modulus of uniqueness Φ can be used to compute
with prescribed precision the unique minimal point vu under the assumption of its existence. Of

course ineffectively such a point always exists since the continuous function G(u, ·) assumes its

infimum on the compact set Vu. However the fact that a continuous function assumes its infimum
on compact sets is not provable in A. Nevertheless, by an ε–refinement of the argument given in the

introduction one can derive the computability of vu even in Ai:

Theorem 2.3 ([21])





If A ⊢
∧
u ∈ U

(∧
x ∈ X

∨
y ∈ Yx

(
F (u, x, y) = 0

)
→

∧
v1, v2 ∈ Vu

(
G(u, v1) = inf

v∈Vu

G(u, v) = G(u, v2) → v1 = v2
))
,

then there exists (effectively) a prim. rec. functional Φ such that

Ai ⊢
∧
u ∈ U

(∧
x ∈ X,m ∈ IN

∨
y ∈ Yx

(
|F (u, x, y)| ≤ 2−m

)
→

G(u,Φu) = inf
v∈Vu

G(u, v) ∧ Φu ∈ Vu

)
.

By the uniqueness of the minimal point, Φ is extensional w.r.t. =U and therefore computes a function
U → V .

In our examples, the analytical tools
∧
x ∈ X

∨
y ∈ Yx(F = 0) used in proving the uniqueness

theorems are in general not provable in A (and therefore a–fortiori not in Ai) however their ε–

weakenings
∧
x ∈ X,m ∈ IN

∨
y ∈ Yx

(
|F (u, x, y)| ≤ 2−m

)
are even Ai–provable. Hence 2.3 yields

Ai ⊢
∧
u ∈ U

(
G(u,Φu) = inf

v∈Vu

G(u, v) ∧ Φu ∈ Vu

)
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and so the existence of a vu ∈ Vu such that G(u, vu) = inf
v∈Vu

G(u, v) is provable in every framework

of constructive analysis (as intuitionistic analysis or Bishop’s constructive analysis or recursive anal-

ysis).

Let (X, ‖ · ‖) be a real normed space and E ⊂ X a finite dimensional subspace of X . It is well–

known that
∧
x ∈ X

∨
yb ∈ E

(
dist(x,E) = ‖x− yb‖

)
, where dist(x,E) := inf

y∈E
‖x− y‖: Since 0 ∈ E

it follows that dist(x,E) ≤ ‖x‖ and therefore ‖yb‖ ≤ 2‖x‖. Hence dist(x,E) =dist(x,Kx), where

Kx := {y ∈ E : ‖y‖ ≤ 2‖x‖} is compact. The existence of a best approximation yb now follows from

the fact that the continuous function Φx(y) := ‖x− y‖ assumes its minimum on compact sets.

In many important cases the spaces X,E and Kx are constructively definable and the unique-
ness of the best approximation of x ∈ X in E is proved in A plus lemmas having the form∧
u ∈ U

∨
v ∈ Vu

(
F (u, v) =IR 0

)
; see the examples 2.5 below. Thus theorem 2.2 allows the con-

struction of moduli of uniqueness Φ in these cases. Φ can be easily extended to q ∈ Q∗
+ (instead of

2−n) and to a modulus of uniqueness Φ̂ on E instead of Kx (although E is not compact in X) (see

[21]), i.e. Φ̂ : Q∗
+ → Q∗

+ such that

∧
x ∈ X, y1, y2 ∈ E, q ∈ Q∗

+

( 2∧

i=1

(‖yi − x‖ − dist(x,E) ≤ Φ̂xq) → ‖y1 − y2‖ ≤ q
)
.

The next result shows that a modulus of uniqueness is a generalization of a constant of strong unicity

(in the sense of [27],[10]) and immediately yields a modulus of pointwise continuity for the projection

X → E:

Proposition 2.4 ([21]) Let Φ be a modulus of uniqueness for the best approximation of x ∈ X in

E (The special case where y2 is taken to be the best approximation suffices). Then the following

holds:

1) 1
2Φ is a modulus of pointwise continuity for the projection P : X → E which maps x ∈ X to

its best approximation yb in E, i.e.

∧
x, x0 ∈ X, q ∈ Q∗

+

(
‖x− x0‖ ≤ 1

2
Φx0q → ‖P(x) − P(x0)‖ ≤ q

)
.

If Φ is linear in q, i.e. Φxq = q · γ(x), then

2) γ(x) is a (lower estimate of the) constant of strong unicity, i.e.

∧
x ∈ X, y ∈ E

(
‖x− y‖ ≥ ‖x− yb‖ + γ(x) · ‖y − yb‖

)
,

where yb is the best approximation of x,

3) λ(x) := 2
γ(x) is a (pointwise) Lipschitz constant of P, i.e.

∧
x, x0 ∈ X

(
‖P(x) − P(x0)‖ ≤ λ(x0) · ‖x− x0‖

)

(3) follows immediately from 2) by the proof of a lemma from [10], p.82, formulated there for

Chebycheff approximation).
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Example 2.5 In the following examples there are well–known proofs for the uniqueness of best

approximations which can be carried out in A + (A), where (A) is the sentence
∧
f ∈ C[0, 1]

∨
x0 ∈

[0, 1]
(
f(x0) = sup

x∈[0,1]

f(x)
)
. Because of its logical form, (A) is an admissible analytical tool for our

proof analysis and thus 2.2 and 2.3 are applicable:

1) Let (Φ1, . . . ,Φn) be an Chebycheff system in [0,1]. Then (due to [9],[18])

∧
f ∈ C[0, 1]

∨
!φ ∈ LinIR(Φ1, . . . ,Φn)

(
‖f − φ‖∞ = dist(f,LinIR(Φ1, . . . ,Φn)

)
.

2) Best ‖·‖1–approximation of continuous functions: ‖f‖1 :=
1∫
0

|f(x)|dx defines a norm on C[0, 1].

Then
∧
f ∈ C[0, 1]

∨
!pb ∈ Pn

(
‖f − pb‖1 = dist1(f, Pn)

)
, where Pn :=LinIR(1, X, . . . , Xn) and

dist1(f, Pn) := inf
p∈Pn

‖f − p‖1. This also generalizes to arbitrary Chebycheff systems instead

of Pn. The first uniqueness proof was given by Jackson [17]. Since this proof uses concepts

from measure theory it is not clear whether it can be formalized in A + (A) or not. However

there is a different uniqueness proof by [10] which can easily be carried out in A + (A). Since

(C[0, 1], ‖ · ‖1) is not complete, we have to represent this space as (C[0, 1], ‖ · ‖∞) i.e. the

modulus of uniqueness and the algorithm are only effective in f together with a modulus of

uniform continuity of f (instead of a –weaker– modulus of integration).

3) Let (X, ‖·‖) be a strictly convex space. Then the following result (due to Krein) holds: Suppose

that E ⊂ X is finite dimensional, then∧
x ∈ X

∨
!yb ∈ E

(
‖x− yb‖ =dist(x,E)

)
. Examples of constructively definable strictly convex

spaces are (Lp, ‖·‖p) for 1 < p <∞. Although the uniqueness proof in this case is quite simple

(see e.g. [10] ) it nevertheless yields a modulus of uniqueness which is not obvious, e.g. for the

special case L2 one obtains (for q ≤ 1)

Φxq := min


1,

q

4
,max(lx,

q

4
) ·

γ
(

q
kx

)

1 − γ
(

q
kx

)


 ,

where 0 < lx ≤dist(x,E), kx ≥dist(x,E)+1 (e.g. kx := 2‖x‖+1) and γ(q) := q2/8 (for details

see [22]). This modulus holds for arbitrary convex subsets E of L2.

4) Chebycheff approximation by polynomials having bounded coefficients: For 0 ≤ i ≤ p let

ki ∈ IN be such that 0 < k0 < k1 < . . . < kp ≤ n− 1 (p ≤ n) and a1, . . . , ap, b1, . . . , bp ∈ IR :=

IR ∪ {−∞,∞} such that

i) ai 6= +∞, ii) bi 6= −∞, iii) ai ≤ bi for i = 0, 1, . . . , p.

Kn :=

{
n∑

i=0

cix
i : ai ≤ cki

≤ bi; 0, 1, . . . , p

}
. Kn is a convex subset of Pn. In [30] it is proved

that
∧
f ∈ C[0, 1]

∨
!pb ∈ Kn

(
‖f − pb‖∞ = dist(f,Kn)

)
. Kn can be replaced by a compact

subset: Let p0 ∈ Kn and ‖f − pb‖∞ =dist(f,Kn). Then ‖pb‖∞ ≤ 2‖f‖∞ + ‖p0‖∞. Hence

dist(f,Kn) =dist(f, K̂n), where K̂n := {p ∈ Kn : ‖p‖∞ ≤ 2‖f‖∞ + ‖p0‖∞} is compact.
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Since the uniqueness proofs refered to in 1)-4) are formalizable in A+ (A) we obtain by 2.2, 2.3 (In

1) and 2) for constructively definable Chebycheff systems in the sense of 3.2 below):

Corollary 2.6 One can construct primitive recursive (in the sense of [13]) moduli of uniqueness

and primitive recursive algorithms for the best approximation in 2.5.1–2.5.4 which can be verified

within Ai. In particular the existence of best approximations is provable in Ai and hence in Bishop’s

constructive analysis (For 1) and 3) (for uniformly convex spaces) the later is due to [5],[6]; for 2)

and 4) this is new).

In the following we continue our unwinding of uniqueness proofs for 2.5.1 from [21]:

In [21] we gave a proof–theoretic analysis of the most common proof for the uniqueness of best

Chebycheff approximation by polynomials from [28] (as presented with all details in [26]). This

proof proceeds roughly as follows:

If p1, p2 ∈ Pn are best approximations of f , then also p1+p2

2 is a best approximation of f and

therefore possesses an extremal alternant x1 < . . . < xn+2 of n+2–points in [0,1] by the well–known

alternation theorem. One shows that p1(xi) = p2(xi) for i = 1, . . . , n+ 2 and thus p1 ≡ p2. Besides

purely arithmetical reasoning the sentence (A) is used essentially to establish the alternation theorem

(which implies (A) relative to Ai already for n = 1; see [8]).

Theorem 2.7 ([21]) Proof–theoretic analysis of the uniqueness proof from de La Vallée Poussin

yields the following numerical a–priori estimates:

Let ωf be modulus of continuity of f , ‖f‖∞ ≤Mf ∈ Q∗
+ and define

ωn,Mf
(q) :=

q

5n2 · ‖Mf‖∞
, ω̃f,n(q) :=





min
(
ωn,Mf

( q
2 ), ωf ( q

2 )
)

for n > 1

1 for n = 0

and for l ∈ Q∗
+ :

Φfnl :=
1

10(n+ 1)

⌊n −· 1
2

⌋∏

i=1

(2i− 1

2
) ·

⌈n −· 1
2

⌉∏

i=1

(2i− 3

2
) ·
⌊n

2

⌋
!
⌈n

2

⌉
! · ω̃f,n

(
l

2

)n−· 1
· ω̃f,n

(
3l

2

)n

.

Then

1) (Φfnl) · q is a linear modulus of uniqueness for f, n such that l ≤ En,f :=dist(f, Pn), i.e. for

all f ∈ C[0, 1], n ∈ IN, l ∈ Q∗
+ such that l ≤ En,f , and p1, p2 ∈ Pn:

∧
q ∈ Q∗

+

(
‖f − p1‖∞, ‖f − p1‖∞ ≤ En,f + (Φfnl) · q → ‖p1 − p2‖∞ ≤ q

)
.

Thus –by 2.4.– Φfnl (resp. 2
Φfnl) is a constant of strong unicity (Lipschitz constant of the

Chebcheff projection) of f, n if En,f ≥ l > 0.

2) Φ̃fnq := min
(

q
4 ,Φfn( q

4 ) · q
)

is a modulus of uniqueness which does not depend on l and the

assumption l ≤ En,f .

(n−· 1 := n− 1, if n ≥ 1 and := 0, if n = 0).

The main part of the proof–theoretic analysis yielding 2.7 is the unwinding of the ineffective proof
of the alternation theorem which results in a new quantitative version of this theorem:
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Definition 2.8 Suppose p ∈ Pn, f ∈ C[0, 1], ε ∈ IR+.

1) (x1, . . . , xk) ∈ [0, 1]k (1 ≤ k ≤ n+2) is an ε–alternant of p−f having length k if x1 < . . . < xk

and
k∧

i=1

|(−1)i+j
(
p(xi) − f(xi)

)
− En,f | ≤ ε for j = 0 or j = 1

(Note that for ε = 0 and k = n+ 2 this is the usual notion of extremal alternant).

2) pε ∈ Pn is an ε–best approximation of f if ‖pε − f‖∞ ≤ En,f + ε.

Theorem 2.9 ([21]) Assume that 0 ≤ ε <
En,f

4 , 0 < q ≤ En,f (ε, q ∈ Q) and 2 ≤ k ≤ n + 2. If

pε ∈ Pn is a

⌊ k−2

2
⌋∏

i=1

(2i− 1
2 ) ·

⌈ k−2

2
⌉∏

i=1

(2i− 3
2 )·min

(
1
n , ωf,pε

( q
2 )
)k−2 ·ε–best approximation of f , where ωf,pε

is a modulus

of uniform continuity of pε − f , then there exists an ε–alternant having length k for pε − f .

Using the modulus ω̃f,n from theorem 2.7 we obtain an estimate for ε–alternation which no longer

depends on pε:

Corollary 2.10 ([21]) Assume that 0 < q ≤ En,f , 0 ≤ ε < En,f and 2 ≤ k ≤ n + 2. Let χ be

defined by

χfnqk :=





1, if k = 2

1
4

⌊ k−2

2
⌋∏

i=1

(2i− 1
2 ) ·

⌈ k−2

2
⌉∏

i=1

(2i− 3
2 ) · ω̃f,n( q

2 )k−2, if k > 2.

If pε ∈ Pn is a (χfnqk) · ε–best approximation of f then pε − f possesses an ε–alternant of length k.

Let us consider now the following question: Is it possible to bypass the complicated analysis of the

proof of the alternation theorem (by conceiving this theorem as an analytical assumption of the form∧
x ∈ X

∨
y ∈ Yx

(
F (x, y) = 0

)
in 2.1–2.3) if one is only interested in a modulus of uniqueness? The

alternation theorem has the following logical form:

(∗)





∧
pb ∈ Pn

(
‖f − pb‖∞ = En,f →

∨
j ∈ {0, 1} , (x1, . . . , xn+2) ∈ [0, 1]n+2

( n+1∧
i=1

(xi+1 > xi) ∧
n+2∧
i=1

(
(−1)i+j(p(xi) − f(xi)) = En,f

))
.

For En,f > 0,
n+1∧
i=1

(xi+1 > xi) is already implied by
n+1∧
i=1

(xi+1 ≥ xi) and the alternation property.

Since the alternation theorem is trivial for En,f = 0, nothing is lost if we weak (∗) to (∗∗) which

results if
n+1∧
i=1

(xi+1 > xi) is replaced by
n+1∧
i=1

(xi+1 ≥ xi) in (∗). (∗∗) has the form

(∗ ∗ ∗)
∧
x ∈ X

(∧
k ∈ INA0(k) →

∨
y ∈ K

(
F (x, y) =IR 0

))
,

where A0 is quantifier–free, X (= C[0, 1]×Pn) is a CSM–space, K (= {0, 1}× [0, 1]n+2) is a compact

metric space and F : X ×K → IR is a constructively definable function. The formula
∧
k ∈ INA0(k)
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expresses that ‖f − pb‖∞ = En,f . Because of this premise, (∗ ∗ ∗) does not have the logical form

required in 2.2,2.3 for analytical assumptions
∧
x ∈ X

∨
y ∈ Yx

(
F (x, y) = 0

)
whose proofs don’t

contribute to the modulus of uniqueness. In [23] it is shown that in general lemmas of the form

(∗ ∗ ∗) are crucial for the numerical results. There contribution is essentially a modulus χ such that

∧
x ∈ X, q ∈ Q∗

+

( χxq∧

k=0

A0(k) →
∨
y ∈ K

(
|F (x, y)| ≤ q

))
.

It is just such a χ which is exhibited in 2.10 for the alternation theorem.

However there are other proofs of the uniqueness of the best Chebycheff approximation due to [4]

and [32],[29] which use (after some easy modifications) only a consequence of the alternation theorem

which has the form
∧
x ∈ X

∨
y ∈ Yx

(
F (x, y) = 0

)
and thus can be conceived simply as an axiom in

the course of the proof–theoretic analysis. The unwinding of these proofs, which we carry out now,

is much easier (compared to de La Vallée Poussin’s proof) and yields significantly better estimates.

These estimates are then used to improve results already obtained in [6],[7],[8] substantially.

3 Proof–theoretic analysis of (a simplification of) the unique-
ness proof by Young/Rice

The proof proceeds as follows: Let f ∈ C[0, 1], (φ1, . . . , φn) be a Chebycheff system on [0,1],

H :=LinIR(φ1, . . . , φn), EH,f :=dist(f,H). Assume that ψ1, ψ2 ∈ H are best approximations of

f in H , i.e. ‖f − ψ1‖∞ = EH,f = ‖f − ψ2‖∞. By the alternation theorem there exists an alternant

x1 < . . . < xn+1 in [0,1] for ψ1 − f , i.e. for j = 0 or j = 1:
n+1∧
i=1

(
(−1)i+j

(
ψ1(xi) − f(xi)

)
= EH,f

)
.

Since ‖f − ψ2‖∞ ≤ EH,f it follows that
n+1∧
i=1

(
(−1)i+j

(
f(xi) − ψ2(xi)

)
≥ −EH,f

)
. Hence

n+1∧

i=1

(
(−1)i+j

(
ψ1(xi) − ψ2(xi)

)
= (−1)i+j

(
ψ1(xi) − f(xi)

)
+ (−1)i+j

(
f(xi) − ψ2(xi)

)
≥ 0
)
.

Using the fact that (φ1, . . . , φn) is a Chebycheff system and x1 < . . . < xn+1 one concludes that

ψ1 ≡ ψ2 (This will be shown below). In order to make our results 2.1,2.2,2.3 applicable we restrict

H to the compact set Kf,H := {ψ ∈ H : ‖ψ‖∞ ≤ 2‖f‖∞} and modify the proof above in such a way

that the alternation theorem is used only in the form

(+)





∧
f ∈ C[0, 1]

∨
ψb ∈ Kf,H , (x1, . . . , xn+1) ∈ [0, 1]n+1, j ∈ {0, 1}
( n∧

i=1

(xi+1 ≥ xi) ∧
n+1∧
i=1

(
(−1)i+j(ψb(xi) − f(xi)) = EH,f

))
.

((+) follows immediately from the alternation theorem, the existence of a best approximation of f

in H and the fact that each best approximation of f must be in Kf,H . In the other direction, (+)

implies the alternation theorem only when we use already the uniqueness of the best approximation).
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The proof above can be separated into the following parts:

1.
∧
ψ1, ψ2 ∈ Kf,H , (x1, . . . , xn+1) ∈ [0, 1]n+1, j ∈ {0, 1}
( n+1∧

i=1

(
(−1)i+j(ψ1(xi) − f(xi)) = EH,f

)
∧

n+1∧
i=1

(|ψ2(xi) − f(xi)| ≤ EH,f )

→
n+1∧
i=1

(
(−1)i+j(ψ1(xi) − ψ2(xi)) ≥ 0

))
.

2.
∧
ψ1, ψ2 ∈ Kf,H , (x1, . . . , xn+1) ∈ [0, 1]n+1, j ∈ {0, 1}
( n∧

i=1

(xi+1 > xi) ∧
n+1∧
i=1

(
(−1)i+j(ψ1(xi) − ψ2(xi)) ≥ 0

)
→ ‖ψ1 − ψ2‖∞ = 0

)
.

3.
∧
ψ ∈ Kf,H , (x1, . . . , xn+1) ∈ [0, 1]n+1, j ∈ {0, 1}
( n∧

i=1

(xi+1 ≥ xi) ∧
n+1∧
i=1

(
(−1)i+j(ψ(xi) − f(xi)) = EH,f > 0

)
→

n∧
i=1

(xi+1 > xi)
)
.

4.
∧
ψ, ψ1, ψ2 ∈ H

(
‖ψ − ψ1‖∞ = ‖ψ − ψ2‖∞ = 0 → ‖ψ1 − ψ2‖∞ = 0

)
.

Together with (+), 1.–4. imply that for all f ∈ C[0, 1] :

EH,f > 0 →
∧
ψ1, ψ2 ∈ Kf,H

(
‖f − ψ1‖∞ = EH,f = ‖f − ψ2‖∞ → ψ1 ≡ ψ2

)
.

Assume EH,f > 0: By (+) and 3. there exists ψb, (x1, . . . , xn+1) such that (for j = 0)

n∧

i=1

(xi+1 > xi) ∧
n+1∧

i=1

(
(−1)i

(
ψb(xi) − f(xi)

)
= EH,f > 0

)
.

By applying 1. to ψ′
1 := ψb, ψ

′
2 := ψ1 as well as to ψ′

1 := ψb, ψ
′
2 := ψ2 and (x1, . . . , xn+1), it follows

that
n+1∧
i=1

(−1)i
(
ψb(xi)− ψ1/2(xi)

)
≥ 0 and thus, by 2., ‖ψb − ψ1‖∞ = 0 and ‖ψb − ψ2‖∞ = 0. Hence

ψ1 ≡ ψ2.

As said before, the proof of (+) is not relevant (because of its logical form!) for the extraction of

the modulus of uniqueness.

1.–4. can be logically transformed into:

1∗.
∧
ψ1, ψ2 ∈ Kf,H , (x1, . . . , xn+1) ∈ [0, 1]n+1, j ∈ {0, 1} , q ∈ Q∗

+

∨
r ∈ Q∗

+( n+1∧
i=1

(
(−1)i+j(ψ1(xi) − f(xi)) = EH,f

)
∧

n+1∧
i=1

(|ψ2(xi) − f(xi)| ≤ EH,f + r)

→
n+1∧
i=1

(
(−1)i+j(ψ1(xi) − ψ2(xi)) > −q

))
.
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2∗.
∧
ψ1, ψ2 ∈ Kf,H , (x1, . . . , xn+1) ∈ [0, 1]n+1, j ∈ {0, 1} , q, l ∈ Q∗

+

∨
r ∈ Q∗

+( n∧
i=1

(xi+1 − xi ≥ l) ∧
n+1∧
i=1

(
(−1)i+j(ψ1(xi) − ψ2(xi)) ≥ −r

)
→ ‖ψ1 − ψ2‖∞ < q

)
.

3∗.
∧
ψ ∈ Kf,H , (x1, . . . , xn+1) ∈ [0, 1]n+1, j ∈ {0, 1} , q ∈ Q∗

+

∨
r ∈ Q∗

+( n∧
i=1

(xi+1 − xi ≥ 0) ∧
n+1∧
i=1

(
(−1)i+j(ψ(xi) − f(xi)) = EH,f ≥ q

)

→
n∧

i=1

(xi+1 − xi > r)
)
.

The quantitative version of 4. is trivial:

4∗.
∧
ψ, ψ1, ψ2 ∈ H, q ∈ Q∗

+

(
‖ψ − ψ1‖∞, ‖ψ − ψ2‖∞ ≤ q

2
→ ‖ψ1 − ψ2‖∞ ≤ q

)
.

1∗. and 3∗. can easily be proved in A. As we will see below 2∗. is provable in A+intermediate value

theorem. The intermediate value theorem has the form
∧
x ∈ X

∨
y ∈ K

(
F (x, y) =IR 0

)
with K

compact:

∧
f ∈ C[0, 1]

∨
x0 ∈ [0, 1]

(
f(0) < 0 ∧ f(1) > 0 → f(x0) = 0

)
;

define F (f, x) :=min(f(0), 0)·max(f(1), 0) · f(x). Then

F (f, x) = 0 ↔
(
f(0) < 0 ∧ f(1) > 0 → f(x) = 0

)
.

Hence we can apply 2.1 to extract bounds from below for “
∨
r ∈ Q∗

+” (i.e. “
∨
r ≥Q Φfq”) which

depend only on f, q (resp. f, q, l). These bounds realize in fact “
∨
r ∈ Q∗

+” since 1∗.–3∗. are

monotonic in r. Thus one can obtain effective operations Φ1,Φ2,Φ3 such that Φ1fq,Φ2flq,Φ3fq ∈
Q∗

+ for all q, l ∈ Q∗
+ and

1∗∗.
∧
ψ1, ψ2 ∈ Kf,H , (x1, . . . , xn+1) ∈ [0, 1]n+1, j ∈ {0, 1} , q ∈ Q∗

+( n+1∧
i=1

(
(−1)i+j(ψ1(xi) − f(xi)) = EH,f

)
∧

n+1∧
i=1

(|ψ2(xi) − f(xi)| ≤ EH,f + Φ1fq)

→
n+1∧
i=1

(
(−1)i+j(ψ1(xi) − ψ2(xi)) > −q

))
.

2∗∗.
∧
ψ1, ψ2 ∈ Kf,H , (x1, . . . , xn+1) ∈ [0, 1]n+1, j ∈ {0, 1} , q, l ∈ Q∗

+( n∧
i=1

(xi+1 − xi ≥ l) ∧
n+1∧
i=1

(
(−1)i+j(ψ1(xi) − ψ2(xi)) ≥ −Φ2flq

)

→ ‖ψ1 − ψ2‖∞ < q
)
.

3∗∗
∧
ψ ∈ Kf,H , (x1, . . . , xn+1) ∈ [0, 1]n+1, j ∈ {0, 1} , q ∈ Q∗

+( n∧
i=1

(xi+1 − xi ≥ 0) ∧
n+1∧
i=1

(
(−1)i+j(ψ(xi) − f(xi)) = EH,f ≥ q

)

→
n∧

i=1

(xi+1 − xi > Φ3fq)
)
.
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Define Φflq := Φ1f
(
Φ2f(Φ3fl)

q
2

)
. One easily verifies that for all f ∈ C[0, 1] and l ∈ Q∗

+ such that

EH,f ≥ l:

(++)
∧
ψ1, ψ2 ∈ Kf,H , q ∈ Q∗

+

(
‖ψ1 − f‖∞, ‖ψ2 − f‖∞ ≤ EH,f + Φflq → ‖ψ1 − ψ2‖∞ ≤ q

)
.

Only for the verification of Φ, i.e. the proof of (++), the assumption (+) is used. The construc-

tion of Φ does not use (a proof of) (+).

We are now going to construct Φ1,Φ2,Φ3 explicitly (in particular for the case H := Pn):

Ad Φ1: The construction of Φ1 is trivial. One easily verifies that Φ1fq := q fulfils 1∗∗. with

ψ1(xi) − ψ2(xi) ≥ −q instead of ψ1(xi) − ψ2(xi) > −q for all ψ1, ψ2 ∈ H . Its clear that this is

sufficient for (++).

Ad Φ2: Firstly we show that for all ψ ∈ H, (x1, . . . , xn+1) ∈ [0, 1]n+1

(∗)
n∧

i=1

(xi+1 > xi) ∧
n+1∧

i=1

(
(−1)iψ(xi) ≥ 0

)
→ ψ ≡ 0,

which immediately gives 2.

A zero x∗ ∈ (0, 1) of ψ is called “simple” if ψ changes its sign in x∗ and “double” else. Assume

now that every ψ ∈ H, ψ 6≡ 0 has at most n − 1 zeroes if double zeroes count twice. From
n+1∧
i=1

(−1)iψ(xi) ≥ 0 it follows that ψ has at least n zeroes in this sense and therefore ψ ≡ 0. This

argument is due to [32] and presented in detail in [29] (pp. 61–62). In order to prove (∗) from this,

one has to show that double zeroes in fact count twice. This is done e.g. in [29] (p. 57): To every

ψ ∈ H with ψ 6≡ 0 Rice constructs a ψε ∈ H , with ψε 6≡ 0, which has the same simple zeroes as ψ

but two simple zeroes for each double zero yi of ψ (ψ(yi) is disturbed by a sufficiently small ε).

We simplify this proof in that we apply such an ε–disturbance directly to the points x1, . . . , xn+1 in

(∗) and reduce (∗) to

(∗∗)
∧
ψ ∈ H, (x1, . . . , xn+1) ∈ [0, 1]n+1¬

( n∧

i=1

(xi+1 > xi) ∧
n+1∧

i=1

(
(−1)iψ(xi) > 0

))
,

which follows from the intermediate value theorem and the definition of a Chebycheff system.

Lemma 3.1 For all ψ ∈ H, (x1, . . . , xn+1) ∈ [0, 1]n+1 the following holds

n∧

i=1

(xi+1 > xi) ∧
n+1∧

i=1

(
(−1)iψ(xi) ≥ 0

)
→ ψ ≡ 0.
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Proof: Suppose that
n∧

i=1

(xi+1 > xi) ∧
n+1∧
i=1

(
(−1)iψ(xi) ≥ 0

)
and (−1)i0ψ(xi0 ) =: α > 0 for an

i0 ∈ {1, . . . , n+ 1}. By the definition of Chebycheff system there exists a (uniquely determined)

χ ∈ H such that χ(xi) = (−1)i for i = 1, . . . , i0 − 1, i0 + 1, . . . , n + 1. Let ε > 0 be so small that

ε · ‖χ‖∞ < α. Then
n+1∧
i=1

(
(−1)i(ψ+ εχ)(xi) > 0

)
. But this is impossible by (∗∗) (since ψ+ εχ ∈ H).

Hence
n+1∧
i=1

(
(−1)iψ(xi) = 0

)
which implies ψ ≡ 0.

(∗∗) is logically equivalent to a purely universal formula (and hence a–fortiori to a formula having

the form
∧
x ∈ X

∨
y ∈ K

(
F (x, y) = 0

)
). Thus by 2.1 we only have to analyse the proof of the

implication (∗∗) → (3.1) which can be carried out in A (if (φ1, . . . , φn) is provable in A a Chebycheff

system). An unwinding of the proof of (∗∗) or a constructivation of the proof of 3.1 which uses only

ε–instances of the non–constructive intermediate value theorem is neither necessary nor useful.

In the proof of 3.1 we used the norm ‖χ‖∞ of the interpolation “polynomial” χ. Hence for a

quantitative version of 3.1 (i.e. for the construction of a Φ2 satisfying 2∗∗.) we have to give an upper

estimate for ‖χ‖∞ which depends on q ∈ Q∗
+ only, where

n∧
i=1

(xi+1 − xi ≥ q), but not on the points

xi themselves:

Lemma 3.2 Let φ = {φ1, . . . , φn} be a Chebycheff system over [0, 1] where φ1, . . . , φn ∈ C[0, 1] are

constructively definable and φ is provable in A plus (possibly)
∧
x ∈ X

∨
y ∈ Yx

(
F (x, y) =IR 0

)
–lemmas a Chebycheff system. Then one can extract from such a

proof a primitive recursive function δ : Q∗
+ → Q∗

+ satisfying

Ai +
∧
x ∈ X,n ∈ IN

∨
y ∈ Yx

(
|F (x, y)| ≤ 2−n

)
⊢

∧
ψ ∈ H,x1, . . . , xn ∈ [0, 1], q, r ∈ Q∗

+

( n−1∧
i=1

(xi+1 − xi ≥ q)

∧
n∧

i=1

(
|ψ(xi)| ≤ δ(q) · r

)
→ ‖ψ‖∞ ≤ r

)
.

(Here H :=LinIR(φ1, . . . , φn)).

Proof: By the assumption that φ is a Chebycheff system we have (provable in

A +
∧
x ∈ X

∨
y ∈ Yx

(
F (x, y) = 0

)
)

∧
m ∈ IN, (x1, . . . , xn) ∈ Nm

∨
k ∈ IN

(
| det

(
A(x)

)
| > 2−k

)
,

where Nm :=

{
(x1, . . . , xn) ∈ [0, 1]n :

n−1∧
i=1

(xi+1 − xi ≥ min( 1
n , 2

−m))

}
and A(x) is the matrix

(
φi(xj)

)
1≤i,j≤n

. Since Nm is compact we can apply 2.1 to obtain a primitive recursive function

β : IN → IN such that
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Ai +
∧
x ∈ X,n ∈ IN

∨
y ∈ Yx

(
|F (x, y)| ≤ 2−n

)
⊢∧

m ∈ IN, (x1, . . . , xn) ∈ Nm

(
| det

(
A(x)

)
| > 2−β(m)

)
.

Using β one can compute ‖A−1(x)‖ primitive recursively in x and therefore also an η : IN → IN

such that η(m) ≥ sup
x∈Nm

‖A−1(x)‖, where the norm is given by ‖(aij)‖ := max
i=1,...,n

n∑
k=1

|aik|. Let

ψ = c1φ1 + · · · + cnφn, m ∈ IN be given and suppose that
n∧

i=1

|ψ(xi)| ≤ r
η(m) for an x ∈ Nm. Then

‖(c1, . . . , cn)‖max ≤ r. Let K ∈ IN be such that K ≥ max
i=1,...,n

‖φi‖∞. ‖(c1, . . . , cn)‖max ≤ r implies

that ‖c1φ1 + · · · + cnφn‖∞ ≤ r · n ·K. Hence

δ(m) := (η(m) · n ·K + 1)−1,

satisfies 3.2 for q = 2−m. δ can be easily extended to Q∗
+.

In applications of 3.2 to concrete Chebycheff systems one uses of course known results as e.g. inter-
polation formulas etc.:

Example 3.3 Let Hφ := Pn(=LinIR(1, X, . . . , Xn)). The fact that Pn is a Chebycheff system is

easily proved in A using the interpolation formula of Laplace:

(1) p(x) =

n+1∑

i=1

li(x) · p(xi), where li(x) :=

n+1∏
j=1,j 6=i

(x− xj)

n+1∏
j=1,j 6=i

(xi − xj)

.

Assume xi+1 − xi ≥ q for i = 1, . . . , n. Then

(2) |li(x)| ≤
1

n+1∏
j=1,j 6=i

q · |i− j|
≤ 1

qn · (i− 1)!(n− i+ 1)!
for all x ∈ [0, 1].

For p ∈ Pn such that
n+1∧
i=1

(|p(xi)| ≤ r), (1) and (2) imply

|p(x)| ≤
n+1∑

i=1

|li(x)| · |p(xi)| ≤ r ·
n+1∑

i=1

|li(x)| ≤ r ·
n+1∑

i=1

1

qn(i− 1)!(n− i+ 1)!

(This inequality can be found also in [5]). One easily verifies that (i− 1)!(n− i+ 1)! ≥ ⌊n
2 ⌋!⌈n

2 ⌉! for

1 ≤ i ≤ n+ 1. Hence |p(x)| ≤ r · n+1
⌊n

2
⌋!⌈n

2
⌉!qn .

Therefore δ(q) :=
⌊n

2
⌋!⌈n

2
⌉!

n+1 · qn fulfils 3.2.
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Using δ from 3.2 we are now able to define Φ2:

Claim 1: Φ2flq := δ(l)2 · q fulfils 2∗∗.

Suppose that (+)
n∧

i=1

(xi+1−xi ≥ l)∧
n+1∧
i=1

(
(−1)iψ(xi) > −δ(l)2 ·q

)
. We have to show that ‖ψ‖∞ ≤ q:

Assume that |ψ(xi0 )| > δ(l) · q for an i0 ∈ {1, . . . , n+ 1}. Then (−1)i0ψ(xi0 ) > δ(l) · q since (by (+))

(−1)i0ψ(xi0 ) > −δ(l)2 · q ≥ −δ(l) · q because δ(l) ≤ 1 (δ(l) > 1 would yield a contradiction when

applied to χ below).

Define ψq := ψ + δ(l)2 · q · χ where χ is the interpolation “polynomial” from the proof of 3.1. Then

for i ∈ {1, . . . , n+ 1} \ {i0}:

(−1)iψq(xi) = (−1)iψ(xi) + (−1)iδ(l)2 · q · (−1)i = (−1)iψ(xi) + δ(l)2 · q
(+)
> 0

and for i = i0

(−1)i0ψq(xi0 ) = (−1)i0ψ(xi0 ) + (−1)i0δ(l)2 · q · χ(xi0) ≥ (−1)i0ψ(xi0 ) − δ(l)2 · q · ‖χ‖∞.

By 3.2 and the definition of χ it follows that ‖χ‖∞ ≤ 1
δ(l) .

Hence (−1)i0ψq(xi0) ≥ (−1)i0ψ(xi0 ) − δ(l) · q > 0. In summary we have
n+1∧
i=1

(−1)iψq(xi) > 0 which

is impossible in view of (∗∗). Hence
n+1∧
i=1

|ψ(xi)| ≤ δ(l) · q which in turn yields ‖ψ‖∞ ≤ q by 3.2.

By a refinement of the reasoning above we can improve Φ2:

Claim 2: Φ2flq := δ(l) · q fulfils 2∗∗.

Assume
n∧

i=1

(xi+1 − xi ≥ l) ∧
n+1∧
i=1

(
(−1)iψ(xi) > −δ(l) · q

)
and the existence of an x∗ ∈ [0, 1] such

that |ψ(x∗)| > q.

Case 1:
∨
i0 ∈ {1, . . . , n} : x∗ ∈ [xi0 , xi0+1].

1.1 (−1)i0ψ(x∗) > q. Consider x̃i :=





xi if i 6= i0

x∗ if i = i0.
Let χ ∈ H be such that χ(x̃i) = (−1)i for

i = 1, . . . , i0 − 1, i0 + 1, . . . , n+ 1 and ψq := ψ + δ(l) · q · χ. Then for i ∈ {1, . . . , n+ 1} \ {i0}

(−1)iψq(x̃i) = (−1)iψq(xi) = (−1)iψ(xi) + (−1)iδ(l) · q · (−1)i > 0

and for i = i0

(−1)i0ψq(x̃i0 ) = (−1)i0ψq(x
∗) = (−1)i0ψ(x∗) + δ(l) · q · χ(x∗)

≥ (−1)i0ψ(x∗) − δ(l) · q · ‖χ‖∞ > 0 (since ‖χ‖∞ ≤ δ(l)−1).

In summary we have
n+1∧
i=1

(−1)iψq(x̃i) > 0 which is impossible.

1.2: (−1)i0+1ψ(x∗) > q: Analogous to 1.1 with i0 + 1 instead of i0.

The cases x∗ ∈ [0, x1] and x∗ ∈ [xn+1, 1] are treated similarly. Hence ‖ψ‖∞ ≤ q. Altogether we have

proved that for Φ2flq := δ(l) · q:
∧
ψ1, ψ2 ∈ H, (x1, . . . , xn+1) ∈ [0, 1]n+1, j ∈ {0, 1} , q, l ∈ Q∗

( n∧
i=1

(xi+1 − xi ≥ l) ∧
n+1∧
i=1

(
(−1)i+j(ψ1(xi) − ψ2(xi)) > −Φ2flq

)
→ ‖ψ1 − ψ2‖∞ ≤ q

)
.
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Clearly this also holds if “>” in the premise is weakened to “≥” (Our conclusion ‖ψ1 − ψ2‖∞ ≤ q

instead of ‖ψ1 − ψ2‖∞ < q in 2∗∗ is sufficient for the verification of Φ).

Ad: Φ3: For the construction of Φ3 we need the following explicit version of the fact that Kf,H is

compact:

Lemma 3.4 Let φ := {φ1, . . . , φn} be as in 3.2 and M ∈ Q∗
+. Then one can construct a pimitive

recursive common modulus ωH,M of uniform continuity on [0, 1] for all ψ ∈ H such that ‖ψ‖∞ ≤M

(provable in Ai +
∧
x ∈ X,n ∈ IN

∨
y ∈ Yx

(
|F (x, y)| ≤ 2−n

)
).

Proof: Let x = (x1, . . . , xn) be defined by xi := i
n for i = 1, . . . , n and K ∈ IN such that

K ≥ ‖A−1(x)‖ (where ‖ · ‖ and A are defined as in the proof of 3.2). Then for ψ = c1φ1 + . . .+ cnφn

with ‖ψ‖∞ ≤M it follows that ‖(c1, . . . , cn)‖max ≤ K ·M , i.e.
n∧

i=1

(|ci| ≤ K ·M). Let ωφ be a primitive

recursive common modulus of uniform continuity for φ1, . . . , φn and define ωH,M (q) := ωφ

(
q

n·K·M

)

for q ∈ Q∗
+. For ψ = c1φ1 + . . .+ cnφn such that ‖ψ‖∞ ≤M , we have

|x− y| < ωH,M (q) → |ψ(x) − ψ(y)| ≤
n∑

i=1

|ci| · |φi(x) − φi(y)|

< q
n·K·M

n∑
i=1

|ci| ≤ q.

Corollary 3.5 Let φ be as in 3.4, f ∈ C[0, 1], ωf a modulus of uniform continuity for f and M ∈ Q∗
+

such that M ≥ ‖f‖∞. Then ωf,H(q) := min
(
ωf( q

2 ), ωH,2M ( q
2 )
)

is a common modulus of uniform

continuity for all ψ− f where ψ ∈ Kf,H (in particular for ψb − f where ψb is the best approximation

of f in H).

Example 3.6 Let H := Pn,Kf,n := {p ∈ Pn : ‖p‖∞ ≤ 2‖f‖∞}. A very explicit proof of the com-

pactness of Kf,n results from the Markov inequality (due to [24]). We apply this inequality directly

for the construction of ωf,n: Markov’s inequality says that
∧
p ∈ Pn

(
‖p′‖∞ ≤ 2n2 · ‖p‖∞

)
(see e.g.

[25], p.65). Hence
∧
p ∈ Kf,n

(
‖p′‖∞ ≤ 4n2 · ‖f‖∞

)
. The mean value theorem yields that every

p ∈ Kf,n is Lipschitz continuous on [0, 1] with Lipschitz constant 4n2‖f‖∞. Hence for all M ∈ Q∗
+

with M ≥ ‖f‖∞ a common modulus of uniform continuity for all p ∈ Kf,n is given by

ωM
n (q) :=





q
4n2M if n ≥ 1

1 if n = 0.

Thus ωM
f,n(q) := min

(
ωM

n ( q
2 ), ωf ( q

2 )
)

is a modulus of uniform continuity for all p− f with p ∈ Kf,n

if M ≥ ‖f‖∞.

Using ωf,H from 3.5 we are now able to construct Φ3:
n+1∧
i=1

(
(−1)i+j

(
ψ(xi) − f(xi)

)
= En,f ≥ q

)
implies
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n∧
i=1

(
|
(
ψ(xi) − f(xi)

)
−
(
ψ(xi+1) − f(xi+1)

)
| = 2EH,f ≥ 2q

)
. Using 3.5, ψ ∈ Kf,H and

n∧
i=1

(xi+1 − xi ≥ 0) this yields
n∧

i=1

(xi+1 − xi ≥ ωf,H(2q)). Hence we can define Φ3fq := ωf,H(2q). Φ3

satisfies 3∗∗. (with “≥ Φ3fq” instead of ”> Φ3fq” which is sufficient for (++)).

We are now ready to combine Φ1,Φ2 and Φ3 to the modulus of uniqueness Φ:

Φflq := Φ1f
(
Φ2f(Φ3fl)

q

2

)
=

1

2
δ
(
ωf,H(2l)

)
· q,

where δ, ωf,H are from 3.2 resp. 3.5.

The restriction to ψ1, ψ2 ∈ Kf,H instead of ψ1, ψ2 ∈ H has been used only for the construction of

Φ3. However as the proof of (++) shows, 3∗∗. is applied only to the best approximation ψb ∈ Kf,H

which by (+) exists. Hence Φ is not only a modulus of uniqueness on Kf,H but on H .

Theorem 3.7 Let φ := {φ1, . . . , φn} be a Chebycheff system over [0, 1] and δ : Q∗
+ → Q∗

+ a function

such that for all ψ ∈ H,x1, . . . , xn ∈ [0, 1]
∧
l, q ∈ Q∗

+

( n−1∧
i=1

(xi+1 − xi ≥ l) ∧
n∧

i=1

|ψ(xi)| ≤ δ(l) · q → ‖ψ‖∞ ≤ q
)
.

Furthermore let ωf,H be a common modulus of uniform continuity for all ψ−f with ψ ∈ H, ‖ψ‖∞ ≤
2‖f‖∞, and EH,f :=dist(f,H) where f ∈ C[0, 1]. Then the following holds:

1)

∧
f ∈ C[0, 1], l ∈ Q∗

+

(
l ≤ EH,f →

∧
ψ1, ψ2 ∈ H, q ∈ Q∗

+
(
‖ψ1 − f‖∞, ‖ψ2 − f‖∞ ≤ EH,f + 1

2δ
(
ωf,H(2l)

)
· q → ‖ψ1 − ψ2‖∞ ≤ q

))
,

in particular δ
(
ωf,H(2l)

)
is a constant of strong unicity ( and 2

δ
(
ωf,H (2l)

) is a Lipschitz constant

for the Chebycheff projection in f) for f such that l ≤ EH,f .

2) Φ̃fq := min
(

q
4 ,

1
2δ
(
ωf,H( q

2 )
)
· q
)

is a modulus of uniqueness (and also a modulus of pointwise

continuity for the Chebycheff projection) for arbitrary f ∈ C[0, 1] which does not depend on a

lower estinate l ≤ EH,f .

For every constructively definable Chebycheff system φ which is provable in

A +
∧
x ∈ X

∨
y ∈ Yx(F (x, y) =IR 0)–lemmas, δ and ωf,H are primitive recursively definable and

1),2) above are provable in Ai +
∧
x ∈ X,n ∈ IN

∨
y ∈ Yx

(
|F (x, y)| ≤ 2−n

)
.

Proof: 1) From the reasoning above it follows that 1
2δ
(
ωf,H(2l)

)
· q is a modulus of uniqueness for

f such that l ≤ EH,f . Furthermore if we replace ψ2 by the best aproximation ψb then the factor 1
2

can be omitted (since it is used only in 4∗.). Hence by 2.4.2 (2.4.3) δ
(
ωf,H(2l)

)
(resp. 2

δ
(
ωf,H (2l)

) )

is a constant of strong unicity (Lipschitz constant).

2) Case 1: q
2 < 2EH,f : The claim follows from 1.

Case 2: q
2 ≥ 2EH,f , i.e. EH,f ≤ q

4 :

‖ψ1 − f‖∞, ‖ψ2 − f‖∞ ≤ EH,f + Φ̃fq ≤ q
4 + q

4 → ‖ψ1 − ψ2‖∞ ≤ q.
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The second part of the claim follows with the proof of 1) and 2.4.1.

δ and ωf,H are primitive recursively definable by 3.2 and 3.5. It remains to show that 1) and 2) are

provable in

Ai +
∧
x ∈ X,n ∈ IN

∨
y ∈ Yx

(
|F (x, y)| ≤ 2−n

)
: Our analysis of the uniqueness proof uses (be-

sides arguments which are easily provable in A) the alternation theorem, the existence of a best

approximation and the intermediate value theorem. In [21] it is shown that the alternation theorem

is provable in A+A where (A):
∧
f ∈ C[0, 1]

∨
x0 ∈ [0, 1]

(
f(x0) = sup

x∈[0,1]

f(x)
)
. (A), the existence

of a best approximation and the intermediate value theorem are analytical tools having the logical

form
∧
x ∈ X̃

∨
Ỹx

(
F̃ (x, y) = 0

)
. Hence (by theorem 2.1) 1) and 2) are provable in Ai plus the

ε–weakenings
∧
x ∈ X̃, n ∈ IN

∨
y ∈ Ỹx

(
|F̃ (x, y)| ≤ 2−n

)
of these tools which are easily proved in Ai

(By [31] the intermediate value theorem itself is provable in A, but not in Ai. (A) is unprovable in

A, but the existence of a best approximation is provable even in Ai by 2.3,2.6).

Using 3.3 and 3.6 we obtain the following example for 3.7:

Corollary 3.8 Let Φ be defined by

ΦfnlM :=
⌊n

2 ⌋!⌈n
2 ⌉!

2(n+ 1)

(
ωM

f,n(2l)
)n
, where ωM

f,n(q) :=





min
(
ωf( q

2 ), q
8n2M

)
if n ≥ 1

1 if n = 0.

Then

1)
∧
f ∈ C[0, 1], l,M ∈ Q∗

+

(
‖f‖∞ ≤M ∧ l ≤ En,f →

∧
p1, p2 ∈ Pn, q ∈ Q∗

+

(
‖f − p1‖∞, ‖f − p2‖∞ ≤ En,f + (ΦfnlM) · q → ‖p1 − p2‖∞ ≤ q

))
.

In particular 2ΦfnlM (resp. 1
ΦfnlM ) is a constant of strong unicity (a Lipschitz constant for

the projection) for f if ‖f‖∞ ≤M and l ≤ En,f .

2) Φ̃fnMq := min
(

q
4 ,
(
Φfn( q

4 )M
)
q
)

is a modulus of uniqueness (and a modulus of pointwise

continuity for the projection) for arbitrary f ∈ C[0, 1] with ‖f‖∞ ≤M .

If f is Lipschitz continuous on [0, 1] with Lipschitz constant η > 0 then ωM
f,n can be defined as

ωM
f,n(q) := q

η+4n2M .

1) and 2) are provable in Ai and thus a–fortiori in constructive analysis in the sense of Bishop.

Remark 3.9 1. Let A ⊂ C[0, 1] be totally bounded with a common modulus of uniform continuity

ωA and M ≥ ‖f‖∞ for all f ∈ A. Then ωA,H(q) := min
(
ωA( q

2 ), ωH,2M ( q
2 )
)

(where ωH,2M is from

3.4) is a common modulus of uniform continuity for all ψ − f with f ∈ A,ψ ∈ H, ‖ψ‖∞ ≤ 2‖f‖∞.

Hence for 0 < l ≤ inf
f∈A

EH,f , 3.7 yields that δ
(
ωA,H(2l)

)
(resp. min

(
q
4 ,

1
2δ
(
ωA,H( q

2 )
)
· q
)

) is a

common constant of strong unicity (modulus of uniqueness) for all f ∈ A. This is an effective

version of a result by [14]: For each compact A ⊂ C[0, 1] such that A ∩H = ∅, i.e. inf
f∈A

EH,f > 0,

there exists a common constant of strong unicity for all f ∈ A.

2. From the proof–analysis above one easily obtains the following result: Let (x1, . . . , xn+1) ∈
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[0, 1]n+1 be an alternant of ψb − f and, for i = 1, . . . , n + 1, χi the uniquely determined function

in H such that χi(xj) = (−1)j for j ∈ {1, . . . , i− 1, i+ 1, . . . , n+ 1}. Then 1
max

i=1,...,n+1

‖χi‖∞
(resp.

2 · max
i=1,...,n+1

‖χi‖∞) is a constant of strong unicity (Lipschitz constant). This result follows also from

Thm. 5 of [11] (using e.g. Thm. 3.5 in [29]), which is proved in a quite different way. Note that

these estimates use the knowledge of alternation points which are in general not even recursively
computable at all.
3. Our analysis above has similarities with the proof of the Lipschitz continuity of the Chebycheff

projection by Freud in [12]. Freud’s proof may be conceived as a (partial) proof–analysis in our

sense. Although Freud himself does not exhibit the numerical content of his proof one can obtain

the estimate of [11] (mentioned in 2.) for the Lipschitz constant quite easily from his proof. This

was observed by Blatt in [3] who furthermore noticed that a slight modification of Freud’s proof

also yields the corresponding estimate for the constant of strong unicity. However neither Freud nor
Blatt give a description of constants of strong unicity or Lipschitz constants in which alternation

points don’t occur (this is in contrast to our results 3.7,3.8 which were obtained before we noticed

the papers by Freud and Blatt).

4. The estimates in 3.8 are much better than those obtained from de La Vallée Poussin’s proof (2.7):

If γY/R (resp. γP ) denotes the constant of strong unicity obtained from Young/Rice’s (resp. de La

Vallée Poussin’s) proof then γY/R is roughly 2
√
γP .

Analysis of a proof from E. Borel:

We now discuss very briefly a different argument for 3.1 (for the special case H := Pn) which

is used in [4]: Borel gives a proof for the uniqueness of the best polynomial approximation which

proceeds as the proof by Young/Rice except that 3.1 for Pn can now simply be followed from the

fundamental theorem of algebra (This uniqueness proof appeared first in the unpublished part of

Kirchberger’s dissertation [18]). However in his proof for the continuity of the projection (which

easily gives also the Lipschitz continuity) Borel uses a more explicit argument: Using the fact that

the derivative p′ of p ∈ Pn lies in the Haar space Pn−1 he proves:
∧
p ∈ Pn, (x1, . . . , xn+2) ∈ [0, 1]n+2, q ∈ Q∗

+

( n+1∧
i=1

(xi+1 > xi) ∧
n+2∧
i=1

(
(−1)ip(xi) > −q

)

→
∨
k ∈ {1, . . . , n+ 1}

∧
x ∈ [xk, xk+1]

(
|p(x)| ≤ q

))
.

For q → 0 this gives 3.1, since p|[xk,xk+1] ≡ 0 implies p ≡ 0. The formula above has the logical form∧
x ∈ X

∨
y ∈ K

∧
w ∈ W

(
F (x, y, w) = 0

)
and thus it must be possible to extract Φ2 (satisfying

2∗∗.) without using the proof of it. In fact this can be done:

xk+1 − xk ≥ l →
∨
y1, . . . , yn+1 ∈ [xk, xk+1]

(
yi+1 − yi ≥

l

n

)
for i = 1, . . . , n+ 1.

If this is combined with 3.3 one obtains that

Φ2fnlq :=
⌊n

2 ⌋!⌈n
2 ⌉!

n+ 1

( l
n

)n · q =
⌊n

2 ⌋!⌈n
2 ⌉!

nn · (n+ 1)
ln · q

fulfils 2∗∗. Because of the factor 1
nn this gives less good estimates compared to the estimates obtained

from our simplification of Young/Rice’s proof (specialized to Pn), but better ones than those from
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de La Vallée Poussin’s proof (2.7).

Finally we show how 3.7 and 3.9.1 can be used to improve numerical results by D. Bridges in

[6],[7],[8] substantially:

Let φ := {φ1, . . . , φn} be a Chebycheff system over [0, 1], φ(x) :=
(
φ1(x), . . . , φn(x)

)
∈ IRn, ‖φ‖ :=

sup
x∈[0,1]

‖φ(x)‖2, where ‖ · ‖2 denotes the Euclidean norm on IRn.

β, γ, κ : (0, 1
n ] → IR∗

+ are defined by

β(α) :=





inf
x∈[0,1]

|φ1(x)|, if n = 1

inf

{
| det(φj(xi))| : 0 ≤ x1, . . . , xn ≤ 1,

n−1∧
i=1

(xi+1 − xi ≥ α)

}
, if n > 1

and

γ(α) := min


‖φ‖, β(α)

n
1
2 (n− 1)!

n∏
i=1

(1 + ‖φi‖∞)


 , κ(α) := γ(α)−1 · ‖φ‖

for α ∈ (0, 1
n ]. Since φ is a Chebycheff system it follows that β(α) > 0. H :=LinIR(φ1, . . . , φn); ωφ

denotes a modulus of uniform continuity of φ. (Bridges uses a slight variant of our notion of modulus

of uniform continuity where “<” is replaced by “≤”. This has the consequence that in 3.11 we have

to assume lH,A < EH,A instead of lH,A ≤ EH,A.)

Lemma 3.10 (Bridges ([6],[7])) 1) Suppose that A ⊂ C[0, 1] is totally bounded, ωA is a com-

mon modulus of uniform continuity for all f ∈ A and M > 0 is a common bound M ≥ ‖f‖∞
for all f ∈ A. Then

ωA,H(ε) := min


ωA(

ε

2
), ωφ




ε · β( 1
n )

4Mn
3
2 (n− 1)!

n∏
i=1

(1 + ‖φi‖∞)







is a common modulus of uniform continuity for all ψb − f where f ∈ A and ψb is the best
approximation of f in H.

2) Assume 0 < α ≤ 1
n and

n−1∧
i=1

(xi+1 − xi ≥ α) (x1, . . . , xn ∈ [0, 1]) for n ≥ 2. Then

∧
ψ ∈ H, ε > 0

( n∧

i=1

|ψ(xi)| ≤
γ(α)

n · ‖φ‖ · ε→ ‖ψ‖∞ ≤ ε
)
.

Proof: 1) See [7] (Lemma). 2) See [6] (4.3).

From 3.7, 3.9.1 and 3.10 we obtain the following

Corollary 3.11 Let A, γ, κ be as defined before 3.10 and EH,A := inf
f∈A

EH,f . Then 3.7 hold uni-

formly for all f ∈ A if EH,f is replaced by EH,A, ωf,H by ωA,H and δ(α) by γ(α)
n·‖φ‖ . In particular

ΦAε := min

(
ε

4
,
1

2

γ
(
min

(
1
n , ωA,H( ε

2 )
))

n · ‖φ‖ · ε
)

= min

(
ε

4
,

ε

2nκ
(
min

(
1
n , ωA,H( ε

2 )
))
)
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is a common modulus of uniqueness (and a common modulus of continuity for the Chebycheff pro-

jection in f) for all f ∈ A.

For lH,A ∈ Q∗
+ such that lH,A < EH,A and 0 < α ≤ min

(
1
n , ωA,H(2 · lH,A)

)
we have γ(α)

n·‖φ‖ (resp.

2nκ(α)) as a uniform constant of strong unicity (resp. Lipschitz constant) for all f ∈ A.

Bridges [6],[7] obtains the following much weaker results:

n−2
(

γ(α)
‖φ‖

)2n+1

resp. 2nκ(α) ·
( n+1∑

i=1

κ(α)n+i−1 − 1
)

where 0 < α ≤ min
(

1
n , ωA,H(lH,A)

)
and lH,A ≤

EH,A for strong unicity and for the Lipschitz constant. His modulus of continuity for Chebycheff

projection is

Ω(ε) := min



ε

8
,

ε

2nσ(ε) ·
( n+1∑

i=1

σ(ε)n+i−1 − 1
)


 ,

where σ(ε) := κ
(
min

(
1
n , ωA,H( ε

4 )
))

. A modulus of uniqueness in our sense is constructed by Bridges

in [8] but is even worse than Ω. Note that γ(α)
‖φ‖ (≤ 1) is very close to 0 in practise (e.g. in the case

Pn−1 Bridges takes β(α) to be αn(n−1)/2). Hence our results in 3.11 provide an significant improve-

ment of Bridges’ estimates. The bounds in 3.11 give effective moduli if β can be estimated by a

computable function β̃ : Q∗
+ → Q∗

+ such that 0 < β̃(α) ≤ β(α) for all α ∈ Q∗
+. If φ is a Chebycheff

system as in 3.2 then such a function β̃ can be primitive recursively constructed (see the proof of

3.2). In practise it will be better to extract the operation δ in 3.2 directly from a proof of the

Chebycheff system property instead of extracting first β̃ and then constructing γ above via β̃ (e.g.

for H := Pn our δ is roughly αn while β̃ in this case is already α(n+1)n/2).

From [19] (proofs of thm.4.1 and lemma 4.2) or [20] (proofs of thm.8.30 and lemma 8.29) one

can also exhibit a modulus of uniqueness Φ for the special case Pn namely:

Φfnq := 1
8(n+1)2 · ωf,n( q

2 )2n · q, where ωf,n denotes a modulus of continuity for all p − f where

‖p‖∞ ≤ 2‖f‖∞ (f ∈ C[0, 1], p ∈ Pn). Ko uses an argument which is similar to our first, rough

analysis of the proof of 3.1 (Claim 1!) (see the proof of lemma 4.2 in [19]). However, instead of ωf,n,

Ko erroneously uses simply a modulus ωn for all p ∈ Pn such that ‖p‖∞ ≤ 2‖f‖∞. Furthermore his

modulus ωn(q) := q/(4‖f‖∞ · n2n · n2) is quite bad compared to our ωn(q) := q/(4‖f‖∞ · n2) which

we used in defining ωf,n. Continuity of the projection and strong unicity are not considered in [19],

[20].

D. Bridges works entirely within the framework of constructive analysis in the sense of Bishop,
which makes his proofs very complicated. In contrast to this we obtained our results by logi-
cal analysis of given classical proofs and determined those parts of the proofs which are relevant

for the numerical content (where the possibility of a constructive proof for our resulting esti-

mates is guaranteed by a logical meta–theorem). In our simplification of the uniqueness proof

by Young/Rice only small parts had to be analysed since the other parts are lemmas having the

form
∧
x ∈ X

∨
y ∈ Yx(

∧
w ∈W )

(
F (x, y, w) =IR 0

)
which can be conceived as new axioms which do

not contribute to the logical extraction process. To transform the given proof into a constructive
one is neither necessary nor useful.
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