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Abstract

We provide in a unified way quantitative forms of strong convergence results for numerous it-
erative procedures which satisfy a general type of Fejér monotonicity where the convergence uses
the compactness of the underlying set. These quantitative versions are in the form of explicit
rates of so-called metastability in the sense of T. Tao. Our approach covers examples ranging
from the proximal point algorithm for maximal monotone operators to various fixed point it-
erations (xn) for firmly nonexpansive, asymptotically nonexpansive, strictly pseudo-contractive
and other types of mappings. Many of the results hold in a general metric setting with some
convexity structure added (so-called W -hyperbolic spaces). Sometimes uniform convexity is
assumed still covering the important class of CAT(0)-spaces due to Gromov.

Keywords: Fejér monotone sequences, quantitative convergence, metastability, proximal point
algorithm, firmly nonexpansive mappings, strictly pseudo-contractive mappings, proof mining.

1 Introduction

This paper provides in a unified way quantitative forms of strong convergence results for numerous
iterative procedures which satisfy a general type of Fejér monotonicity where the convergence uses
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the compactness of the underlying set. Fejér monotonicity is a key notion employed in the study
of many problems in convex optimization and programming, fixed point theory and the study of
(ill-posed) inverse problems (see e.g. [54, 10]). These quantitative forms have been obtained using
the logic-based proof mining approach (as developed e.g. in [26]) but the results are presented here
in a way which avoids any explicit reference to notions or tools from logic.
Our approach covers examples ranging from the proximal point algorithm for maximal monotone
operators to various fixed point iterations (xn) for firmly nonexpansive, asymptotically nonexpansive,
strictly pseudo-contractive and other types of mappings. Many of the results hold in a general metric
setting with some convexity structure added (so-called W -hyperbolic spaces in the sense of [25]).
Sometimes uniform convexity is assumed still covering Gromov’s CAT(0)-spaces.

For reasons from computability theory, effective rates of convergence for (xn) in X are usually ruled
out even when the space X in question and the map T used in the iteration are effective: usually
(xn) will converge to a fixed point of T but in general T will not possess a computable fixed point
and even when it does (e.g. when X is Rn and the fixed point set is convex) the usual iterations will
not converge to a computable point and hence will not converge with an effective rate of convergence
(see [46] for details on all this).

The Cauchy property of (xn) can, however, be reformulated in the equivalent form

(∗) ∀k ∈ N∀g : N→ N ∃N ∈ N ∀i, j ∈ [N,N + g(N)]

(
d(xi, xj) ≤

1

k + 1

)
and for this form, highly uniform computable bounds ∃N ≤ Φ(k, g) on ∃N can be obtained. (∗) is
known in mathematical logic since 1930 as Herbrand normal form and bounds Φ have been studied
in the so-called Kreisel no-counterexample interpretation (which in turn is a special case of the
Gödel functional interpretation) since the 50’s (see [26]). More recently, (∗) has been made popular
under the name of ‘metastability’ by Terence Tao, who used the existence of uniform bounds on
N in the context of ergodic theory ([52, 53]). Moreover, Walsh [55] used again metastability to
show the L2-convergence of multiple polynomial ergodic averages arising from nilpotent groups of
measure-preserving transformations.

In nonlinear analysis, rates of metastability Φ for strong convergence results of nonlinear iterations
have been first considered and extracted in [30, 24] (and in many other cases since then). The
point of departure of our investigation is [24] which uses Fejér monotonicity and where some of the
arguments of the present paper have first been used in a special context.

Let F ⊆ X be a subset of X and recall that (xn) is Fejér monotone w.r.t. F if

(+) d(xn+1, p) ≤ d(xn, p), for all n ∈ N and p ∈ F .

We think of F as being the intersection F =
⋂
k∈NAFk of approximations AFk+1 ⊆ AFk ⊆ X to F,

one prime example being F := Fix(T ) and AFk := {p ∈ X | d(p, Tp) ≤ 1/(k + 1)}, where Fix(T )
denotes the fixed point set of some selfmap T : X → X.

We say that (xn) possesses ‘approximate F -points’ if

(∗∗) ∀k ∈ N ∃n ∈ N (xn ∈ AFk).

Finally, we define a notion of F being ‘explicitly closed’ w.r.t. the representation AFk which is
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implied by all sets AFk being closed and implies that F is closed (see Definition 3.3).

The main general result of our paper is a quantitative version of the following

Proposition (see Proposition 4.3) Let X be compact, F explicitly closed and (xn) a sequence in
X which is Fejér monotone w.r.t. F and possesses approximate F -points. Then (xn) converges to a
point in F.

In order to arrive at a quantitative form of this proposition we first need to enhance the assumptions
used to appropriate quantitative versions (‘moduli’). To be appropriate here means that

(i) these moduli are sufficient to compute a rate of metastability for (xn) in terms of them and

(ii) it is guaranteed by general logical metatheorems that these moduli can actually be provided
effectively in each concrete instantiation of the general result by analyzing given proofs of the
respective properties in the case at hand.

Guided by the underlying logical methodology this leads to the following quantitative notions:

compactness → modulus γ of total boundedness (Section 2)

explicit closedness → moduli ω, δ of uniform closedness (Definition 3.4)

approximate F -points → approximate F -point bound Φ (Section 5)

Fejér monotonicity → modulus χ of uniform Fejér monotonicity (Definition 4.6).

The key notion in this paper is that of a modulus of uniform Fejér monotonicity and so will discuss
this notion in more detail: it is a bound ∃k ≤ χ(r, n,m) on the following uniform strengthening of
‘Fejér monotone’

∀r, n,m ∈ N∃k ∈ N∀p ∈ X
(
p ∈ AFk → ∀l ≤ m

(
d(xn+l, p) < d(xn, p) +

1

r + 1

))
.

If X is compact and F is explicitly closed w.r.t. the sets AFk, then ‘Fejér monotone’ and ‘uniform
Fejér monotone’ are equivalent. However, moduli χ for uniform Fejér monotonicity can be extracted
(based on results from logic) also in the absence of compactness, provided that the proof of the
Fejér monotonicity is formalizable in a suitable context, and we provide such moduli χ in all our
applications.

The main general quantitative theorem in our paper (Theorem 5.3) provides an explicit construction
Ψ̃ that transforms any approximate F -point bound Φ, any modulus χ of uniform Fejér monotonicity,
any modulus of total boundedness γ, and any moduli δ, ω of uniform closedness into a rate Ψ̃(k, g) :=
Ψ̃(k, g,Φ, χ, γ, δ, ω) of metastability (xn) such that all the points in the interval of metastability
[N,N + g(N)] belong to AFk :

∀k ∈ N ∀g : N→ N∃N ≤ Ψ̃(k, g)∀i, j ∈ [N,N + g(N)]

(
d(xi, xj) ≤

1

k + 1
and xi ∈ AFk

)
.

This result is derived from a slightly simpler rate Ψ of metastability without the extra clause xi ∈ AFk
which then does not depend on δ, ω (Theorem 5.1). Let us discuss the general structure of Ψ
(disregarding some inessential technical details): essentially Ψ is the γ(k)-times iterate of Φ ◦ χ ◦ g
(starting from 0). In particular, this yields that a rate of convergence for (xn) (while not being
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computable) is effectively learnable with at most γ(k)-many mind changes and a learning strategy
which - essentially - is Φ ◦ χ (see [32] for more on this). That a primitive recursive iteration of g
is unavoidable follows from the fact that even for most simple cases of Fejér monotone fixed point
iterations (xn), namely Mann iterations of nonexpansive mappings in compact intervals of R, the
Cauchy property of (xn) implies the Cauchy property of monotone sequences in [0, C] (see [46])
which is equivalent to Σ0

1-induction ([23, Corollary 5.3]). One can also obtain the Cauchy property
of monotone sequences itself as an instance of our result which then gives back (up to a constant)
the known optimal rate of metastability from [26], showing also that the number of iterations of the
function g needed cannot be better than γ(k) (see the example at the end of Section 5).

In all our general results we actually permit a more general form of Fejér monotonicity, where instead
of (+) one has

(++) H(d(xn+m, p)) ≤ G(d(xn, p)), for all n,m ∈ N and p ∈ F

and G,H : R+ → R+ are subject to very general conditions (this e.g. is used in the application to
asymptotically nonexpansive mappings from Section 7.5).

As is typical for such quantitative ‘finitizations’ of noneffective convergence results, it is easy to
incorporate a summable sequence (εn) of error terms in all the aforementioned results which covers
the important concept of ‘quasi-Fejér monotonicity’ due to [12] (see Section 6). As a consequence
of this, one can also incorporate such error terms in the iterations we are considering in this paper.
However, for the sake of better readability we will not carry this out in the paper (but see [29, 33]
for an applications of this to convex feasibility problems in CAT(κ)-spaces (κ > 0) and minimization
problems in CAT(0)-spaces respectively).

The results mentioned so far hold for arbitrary sets F =
⋂
k AFk provided that we have the var-

ious moduli as indicated. In the case where AFk can be written as a purely universal formula
and we have - sandwiched in between AFk+1 ⊆ ÃF k ⊆ AFk - the sets ÃF k which are given by
a purely existential formula (which is the case for AFk = {p ∈ X | d(p, Tp) ≤ 1/(k + 1)} with
ÃF k = {p ∈ X | d(p, Tp) < 1/(k+ 1)}), then the logical metatheorems from [25, 15, 26] guarantee
the extractability of explicit and highly uniform moduli χ from proofs of (generalized) Fejér mono-
tonicity, as well as approximate fixed point bounds or metastability rates for asymptotic regularity
from proofs of the corresponding properties if these proofs can be carried out in suitable formal
systems as in all our applications.

In this paper we apply this to Picard iterations of firmly nonexpansive mappings and to Ishikawa iter-
ations of nonexpansive mappings in geodesic settings, Mann iterations of strict pseudo-contractions
in Hilbert spaces, Mann iterations of Suzuki-type mappings and of asymptotically nonexpansive
mappings in geodesic spaces and, finally, to the proximal point algorithm in Hilbert spaces.

As an example of how the extracted moduli look like, let us briefly consider the case of the Mann
iteration

x0 := x ∈ C, xn+1 := (1− λn)xn + λnT (xn), where (λn) ⊆ [0, 1]

for selfmappings T : C → C of convex subsets of CAT(0) spaces that satisfy a condition going back
essentially to Suzuki [51]

(E) d(x, Ty) ≤ µd(Tx, x) + d(x, y), where µ ≥ 1.
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In this case the moduli we extract are as follows:

Φ(k) = 384[(b+ 1)(k + 1)L]2,

χ(n,m, r) = µm(1− 1/L)(r + 1),

δ(k) = 2µ(k + 1)− 1,

ω(k) = 4k + 3,

where L ∈ N is such that (λn) ⊆ [1/L, 1− 1/L].
Note that Φ is quadratic in the error ε = 1/(k+1) as is the case in all our applications to fixed point
theory when X is a CAT(0) (or Hilbert) space which is to be expected the optimal error-dependency
even in the Hilbert space case (except for the real line).

Let us briefly discuss the role of ‘proof mining’ in this paper: as already mentioned, the definitions
of the various types of quantitative moduli are instances of a general proof-theoretic transformation
which then also guarantees the extractability of these moduli from given proofs. Also the construction
of the bound Ψ̃ is obtained by logically analyzing the proof of the qualitative Proposition 4.3.
Finally, in all the applications discussed in this paper, the bounds Φ are extracted with the help of
this methodology (this also applies to the cases where we refer to such constructions from previous
papers). The other moduli, such as χ, can be obtained more directly in our cases but e.g. in the
application to convex feasibility problems in [29] it is the modulus χ whose construction requires
heavy use of proof mining.
As common in the proof mining paradigm, the final proofs can be written up again in ordinary
mathematical language without any use of logic which only was instrumental to find these proofs.
As a consequence of this, the reader will not see any explicit use of logic in this paper. Let us,
however, briefly comment on two logically interesting points in our treatment of the aforementioned
mappings satisfying the condition (E) :

(i) The extraction of Φ proceeds via realizing that (E) implies that T satisfies a property which
was first formulated in the proof mining context, namely being weakly quasi-nonexpansive
(see [30] and - for a logical metatheorem designed for this class of mappings - [15]). As that
property does not contribute to the quantitative bounds, it follows that Φ does not depend
on the constant µ although it crucially features in the definition of (E). Note also that the
extraction of Φ proceeds by extracting a more general rate of metastability for the asymptotic
regularity which in turn uses a technical proof mining lemma from [30].

(ii) Although the construction of δ is quite simple in this case, there is a logically interesting point
here explaining why this time we do have a dependence on µ while we do not need any uniform
continuity requirement on T (as is always needed in the model-theoretic approaches to metric
structures in positive bounded or continuous logic): the proof of (xn) being Fejér monotone
uses an extensionality (=)-axiom in the form

x = p ∧ p ∈ Fix(T ) → x ∈ Fix(T ).

It is the use of such extensionality which quantitatively usually translates into uniform conti-
nuity. In this special case, however, we only need moduli θ, θ̃ : R∗+ → R∗+ such that

∀ε > 0
(
d(x, p) ≤ θ(ε) ∧ d(p, Tp) ≤ θ̃(ε)→ d(x, Tx) ≤ ε

)
,
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which can be defined using (E) as θ(ε) := ε/4, θ̃(ε) := ε/(2µ). So, logically speaking, the some-
what ad-hoc condition (E) (in addition to implying that T is weakly quasi-nonexpansive) is
nothing but a condition which guarantees a particular simple quantitative form of the instance
of extensionality used in the proof.

The paper is organized as follows. In Section 2 we discuss the background from mathematical
logic, i.e. so-called logical metatheorems (due to the first author in [25], see also [15, 26]) which
provide tools for the extraction of highly uniform bounds from prima facie noneffective proofs of
∀∃-theorems (which covers the case of metastability statements). Since our present paper uses the
context of totally bounded metric spaces we discuss this case in particular detail. Applying proof
mining to a concrete proof results again in an ordinary proof in analysis and so one can read the
proofs in this paper without any knowledge of logic which, however, was used by the authors to
find these proofs. In Sections 3 and 4 we develop the basic definitions and facts about the sets
F,AFk, the notions of explicit and uniform closedness as well as (uniform) generalized (G,H)-Fejér
monotone sequences. In Section 5 we establish our main general quantitative theorems which then
will be specialized in our various applications. Section 6 generalizes these results to the case of
(uniform) quasi-Fejér monotone sequences. In Section 7 we interpret our results in the case where
F is the fixed point set of a selfmap T (mostly of some convex subset of X) and provide numerous
applications as mentioned above: in each of these cases we provide appropriate moduli of uniform
(generalized) Fejér monotonicity χ and approximate fixed point bounds Φ (usually even rates of
asymptotic regularity or metastable versions thereof) so that our general quantitative theorems can
be applied resulting in explicit rates of metastability for (xn). In Section 8 we do the same for the
case where F is the set of zeros of a maximal monotone operator and provide the corresponding
moduli for the proximal point algorithm.

The results in this paper are based on compactness arguments. Without compactness one in general
has only weak convergence for Fejér monotone sequences, but in important cases weakly convergent
iterations can be modified to yield strong convergence even in the absence of compactness (see
e.g. [3]). This phenomenon is known from fixed point theory, where Halpern-type variants of the
weakly convergent Mann iteration yield strong convergence ([7, 20, 56]). Even when only weak
convergence holds one can apply the logical machinery to extract rates of metastability for the weak
Cauchy property (see e.g. [28] where this is done in the case of Baillon’s nonlinear ergodic theorem).
However, the bounds will be extremely complex. If, however, weak convergence is used only as
an intermediate step towards strong convergence, one can often avoid the passage through weak
convergence altogether and obtain much simpler rates of metastability (see e.g. [27] where this has
been carried out in particular for Browder’s classical strong convergence theorem of the resolvent
of a nonexpansive operator in Hilbert spaces, as well as [35]). We believe that it is an interesting
future research project to adapt these techniques to the context of Fejér monotone sequences.

Notations: N and N∗ denote the set of natural numbers including 0 and without 0, respectively,
while R+ are the nonnegative reals.

2 Quantitative forms of compactness

Let (X, d) be a metric space. We denote with B(x, r) (resp. B(x, r)) the open (resp. closed) ball
with center x ∈ X and radius r > 0.
Let us recall that a nonempty subset A ⊆ X is totally bounded if for every ε > 0 there exists an ε-net
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of A, i.e. there are n ∈ N and a0, a1 . . . , an ∈ X such that A ⊆
⋃n
i=0B(ai, ε). This is equivalent

with the existence of a 1/(k + 1)-net for every k ∈ N.

Definition 2.1. Let ∅ 6= A ⊆ X. We call α : N→ N a I-modulus of total boundedness for A if for
every k ∈ N there exist elements a0, a1, . . . , aα(k) ∈ X such that

∀x ∈ A ∃ 0 ≤ i ≤ α(k)

(
d(x, ai) ≤

1

k + 1

)
. (1)

Thus, A is totally bounded iff A has a I-modulus of total boundedness. In this case, we also
say that A is totally bounded with I-modulus α. One can easily see that any totally bounded
set is bounded: given a I-modulus α and a0, . . . , aα(0) ∈ X such that (1) is satisfied for k = 0,
b := 2 + max{d(ai, aj) | 0 ≤ i, j ≤ α(0)} is an upper bound on the diameter of A.

We now give an alternative characterization of total boundedness used in the context of proof mining
first in [14]:

Definition 2.2. Let ∅ 6= A ⊆ X. We call γ : N→ N a II-modulus of total boundedness for A if for
any k ∈ N and for any sequence (xn) in A

∃ 0 ≤ i < j ≤ γ(k)

(
d(xi, xj) ≤

1

k + 1

)
. (2)

Remark 2.3. The logarithm of the smallest possible value for a I-modulus of total boundedness is
also called the 1/(k + 1)-entropy of A while the logarithm of the optimal II-modulus is called the
1/(k + 1)-capacity of A (see e.g. [41]).

Proposition 2.4. Let ∅ 6= A ⊆ X.

(i) If α is a I-modulus of total boundedness for A, then γ(k) := α(2k + 1) + 1 is a II-modulus of
total boundedness for A.

(ii) If γ is a II-modulus of total boundedness for A, then α(k) := γ(k) − 1 is a I-modulus of total
boundedness (so, in particular, A is totally bounded).

Proof. (i) Let a0, . . . , aα(2k+1) ∈ X be such that (1) is satisfied, hence for all x ∈ A there ex-

ists 0 ≤ i ≤ α(2k + 1) such that d(x, ai) ≤
1

2k + 2
. Applying the pigeonhole principle to

x0, x1, . . . , xα(2k+1)+1, we get 0 ≤ i < j ≤ α(2k + 1) + 1, such that xi and xj are in a ball of

radius
1

2k + 2
around the same al with 0 ≤ l ≤ α(2k + 1). It follows that d(xi, xj) ≤

1

k + 1
,

hence (2) holds.

(ii) First, let us remark that γ(k) ≥ 1 for all k, hence α is well-defined. Assume by contradiction
that α(k) := γ(k)−1 is not a I-modulus of total boundedness, i.e. there exists k ∈ N such that

(∗) ∀a0, . . . , aγ(k)−1 ∈ X ∃x ∈ A ∀ 0 ≤ i ≤ γ(k)− 1

(
d(x, ai) >

1

k + 1

)
.

By induction on l ≤ γ(k) we show that

(∗∗) ∃β0, . . . , βl ∈ A∀ 0 ≤ i < j ≤ l
(
d(βi, βj) >

1

k + 1

)
,
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which, for l := γ(k), contradicts the assumption that γ is a II-modulus of total boundedness.
l = 0: Choose β0 ∈ A arbitrary.
l 7→ l + 1 ≤ γ(k) : let β0, . . . , βl be as in (∗∗). By (∗) applied to

ai :=

{
βi if i ≤ l
βl if l < i ≤ γ(k)− 1

we get x ∈ A such that d(x, βi) >
1

k + 1
for all i ≤ l. Then β0, . . . , βl, βl+1 := x satisfies (∗∗).

Note that the existence of a 1/(k + 1)-net in the proof of Proposition 2.4.(ii) is noneffective. In
particular, there is no effective way to compute a bound on A from a II-modulus of total boundedness.
This seemingly disadvantage actually will allow us to extract bounds of greater uniformity from
proofs of statements which do not explicitly refer to such a bound (see below).

2.1 General logical metatheorems for totally bounded metric spaces

In [25], the first author introduced so-called logical metatheorems for bounded metric structures
(as well as for normed spaces and other classes of spaces).1 Here systems T ω of arithmetic and
analysis in the language of functionals of all finite types are extended by an abstract metric space
X whose metric is supposed to be bounded by b ∈ N resulting in a system T ω[X, d]. Consider now
a T ω[X, d]-proof of a theorem of the following form, where P is some concrete complete separable
metric space and K a concrete compact metric space:2

(+)

{
∀u ∈ P ∀v ∈ K ∀x ∈ X ∀y ∈ XN ∀T : X → X

(A∀(u, v, x, y, T )→ ∃n ∈ NB∃(u, v, x, y, T )),

where A∀, B∃ are purely universal resp. purely existential sentences (with some restrictions on the
types of the quantified variables). Then from the proof one can extract (using a method from proof
theory called monotone functional interpretation, due to the first author, see [26] for details on
all this) a computable uniform bound ‘∃n ≤ Φ(fu, b)’ on ‘∃n ∈ N’ which only depends on some
representation fu of u in P and a bound b of the metric. In particular, Φ does not depend on
v, x, y, T nor on the space X (except for the bound b). In most of our applications P will be N or
NN (with the discrete and the Baire metric, respectively) in which case u = fu. In the cases R or
C[0, 1], however, fu is some concrete fast Cauchy sequence (say of Cauchy rate 2−n) of rationals
representing u ∈ R resp. a pair (f, ω) with f ∈ C[0, 1] and some modulus of uniform continuity ω
for f in the case of C[0, 1]. fu can always be encoded into an element of NN.

Φ has some restricted subrecursive complexity which reflects the strength of the mathematical axioms
from T ω used in the proof. In most applications, Φ is at most of so-called primitive recursive
complexity.

As discussed in [15] and [26, Application 18.16, p. 464], the formalization of the total boundedness
of X via the existence of a I-modulus of total boundedness α can be incorporated in this setting
as follows: in order to simplify the logical structure of the axiom to be added it is convenient to

1In this discussion we focus on the case of metric spaces.
2For simplicity, we only consider here some special case. For results in full generality see [25, 15, 26].
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combine all the individual ε-nets a0, . . . , aα(ε) into one single sequence (an) of elements in X and to
replace the quantification over ε > 0 by quantification over N via ε := 1/(n+ 1) :

The theory T ω[X, d, TOTI] of totally bounded metric spaces is obtained by adding to T ω[X, d]

(i) two constants αN→N and aN→X denoting a function N→ N and a sequence N→ X, respectively,
as well as

(ii) one universal axiom:3

(TOT I) ∀kN∀xX∃N ≤N α(k)

(
dX(x, aN ) ≤R

1

k + 1

)
.

It is obvious that (TOT I) implies that α is a I-modulus of total boundedness of X as defined before.
Conversely, suppose α is such a modulus. Then α′(n) :=

∑n
i=0(α(i) + 1) satisfies (TOT I) for the

sequence (an) obtained as the concatenation of the 1/(k + 1)-nets ak0 , . . . , a
k
α(k), k = 0, 1, . . ..

Since (TOT I) is purely universal, its addition does not cause any problems and the only change
caused by switching from T ω[X, d] to T ω[X, d, TOTI] is that the extracted bound Φ will additionally
depend on α (see [26] for details).

In [15], the results from [25] are extended to the case of unbounded metric spaces. Then the bound
Φ depends, instead of b, on majorizing data x∗ &pX x, y∗ &pN→X y, T ∗ &pX→X T for x, y, T relative
to some reference point p ∈ X (which usually will be identified with x). More precisely, the p-
majorizability relation &p is defined (for the cases at hand which are special cases of a general
inductive definition for all function types over N, X interpreted here over the full set-theoretic type
structure, see [26]) as follows:

n∗ &pN n := n∗, n ∈ N ∧ n∗ ≥ n,
α∗ &pN→N α := α∗, α ∈ NN ∧ ∀n∗, n(n∗ ≥ n→ α∗(n∗) ≥ α∗(n), α(n)),

x∗ &pX x := x∗ ∈ N, x ∈ X ∧ x∗ ≥ d(p, x),

y∗ &pN→X y := y∗ ∈ NN, y ∈ XN ∧ ∀n∗, n ∈ N (n∗ ≥ n→ y∗(n∗) ≥ d(p, y(n))),

T ∗ &pX→X T := T ∗ ∈ NN, T ∈ XX∧
∀n ∈ N ∀x ∈ X(n ≥ d(p, x)→ T ∗(n) ≥ d(p, T (x)).

Note that &pN and &pN→N actually do not depend on p, hence we shall denote them simply &N and
&N→N, respectively. Whereas a majorant y∗ exists for any sequence y in X, it is a genuine restriction
on T to posses a majorant T ∗. However, for large classes of mappings T one can construct T ∗, e.g.
this is the case when T is Lipschitz continuous (in the case of geodesic spaces also uniform continuity
suffices) but also in general whenever T maps bounded sets to bounded sets.

It is instructive to see what happens if we take the context of unbounded metric spaces, i.e. - using
the terminology from [15, 26] - T ω[X, d]−b and add constants α : N→ N and (an) : N→ X as before.
Then we need to provide majorants α∗, a∗ for these objects, which in the case of α can be simply
done by stipulating α∗(n) := max{α(i) |≤ n}, whereas for (an) this requires - as above - a function
a∗ : N → N such that a∗ &pN→X a. Then the bound Φ extractable from proofs of theorems of the
form considered above will additionally also depend on α∗ (i.e. on α) and a∗. From these data one

3The bounded number quantifier can be easily eliminated by bounded collection.
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can easily compute a bound b on X (e.g. we may take b := 2 + 2a∗(α∗(0))) and, conversely, given
such a bound b one can simply take a∗(n) := b. So, adding (TOT I) gives in both contexts the same
results w.r.t. the extractability of bounds Φ and their uniformity. This situation, however, changes
if we consider the axiomatization based on the II-modulus of total boundedness in the setting of
unbounded metric structures:

The theory T ω[X, d, TOTII]−b of totally bounded metric spaces is obtained by adding to T ω[X, d]−b

(i) one constant γN→N and

(ii) one universal axiom:

(TOT II) ∀kN∀xN→X∃I, J ≤N γ(k)

(
I <N J ∧ dX(xI , xJ) ≤R

1

k + 1

)
.

Due to the absence of the sequence (an) from this axiomatization, the extracted bounds will only
depend on γ instead of α, a∗ (or α, b). This results in a strictly greater uniformity of the bounds as
the following example shows.

Consider the sequence (X, dn) of metric spaces defined as follows:

X := {0, 1}, dn(0, 1) := dn(1, 0) := n, dn(0, 0) = dn(1, 1) = 0.

It is easy to see that γ(n) := 2 is a common II-modulus of total boundedness for all the spaces
(X, dn) (since any sequence of 3 elements of X has to repeat some element), while the diameter of
(X, dn) tends to infinity as n does. Hence our bounds Φ will be uniform for all the spaces (X, dn)
which first might look impossible since, after all, (TOT II) does imply that X is bounded, i.e.

(++) ∃b ∈ N∀x, y ∈ X (d(x, y) < b).

However, (++) is of the form ∃∀, which is not allowed in statements of the form (+) considered
above. Noneffectively, (++) can be equivalently reformulated as

(++)′ ∀(xn), (yn) ∈ XN ∃N ∈ N (d(xN , yN ) < N),

which is of the form (+), so that the aforementioned uniform bound extraction applies (given
majorants x∗, y∗ for (xn), (yn)). Indeed, define recursively

n0 := 0, nk+1 :=

⌈
max
i,j≤k
{nk, d(xni , ynj ), d(xni , xnj ), d(yni , ynj )}+ 3

⌉
,

which can easily be effectively bounded using only d and x∗, y∗.

Proposition 2.5. For any metric space X with II-modulus of total boundedness γ we have:

∃N ≤ nγ(0) (d(xN , yN ) < N).

Proof. Suppose that ∀k ≤ γ(0)(d(xnk , ynk) ≥ nk). Then, for all k ≤ γ(0), one of the two cases

(1) ∀i < k (d(xnk , xni), d(xnk , yni) > 1)
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or
(2) ∀i < k (d(ynk , xni), d(ynk , yni) > 1)

holds since, otherwise, d(xnk , ynk) ≤ nk−1 + 2 < nk. Define a sequence z0, . . . , zγ(0) as follows: for
k ≤ γ(0) put zk := xnk , if (1) holds, and zk := ynk , otherwise (which implies that (2) holds). Then
d(zi, zj) > 1 whenever 0 ≤ i < j ≤ γ(0) which, however, contradicts the definition of γ. Hence
∃k ≤ γ(0) (d(xnk , ynk) < nk). Since nk ≤ nγ(0), the claim follows.

Remark 2.6. As mentioned already, logical metatheorems of the form discussed above have also
been established for more enriched structures such as W-hyperbolic spaces, uniformly convex W-
hyperbolic spaces, R-trees, δ-hyperbolic spaces (in the sense of Gromov) and CAT(0)-spaces as well
normed spaces, uniformly convex normed spaces, complete versions of these spaces and Hilbert spaces.
Most recently, also abstract Lp- and C(K)-spaces have been covered ([19]). In the normed case, the
reference point p ∈ X used in the majorization relation will always be the zero vector 0X (see
[15, 25, 26, 37, 38, 19] for all this). In all these cases one can add the requirement of X (or of
some bounded subset in the normed case) to be totally bounded with moduli of total boundedness in
the form I or II as above. Thus the applications given in this paper can be viewed as instances of
corresponding logical metatheorems.

2.2 Examples

In this subsection we give simple examples of II-moduli of total boundedness that are computed
explicitly. Although some of the proofs are straightforward we include them for completeness.

Example 2.7. Let A = [0, C] be a compact interval in R (C > 0). Then γ : N → N, γ(k) =
dCe(k + 1) is a II-modulus of total boundedness for A.

Proof. Let k ∈ N and (xn) be a sequence in A. Divide the interval [0, C] into dCe(k+1) subintervals
of length ≤ 1/(k + 1). Applying the pigeonhole principle we obtain that there exist 0 ≤ i < j ≤
dCe(k + 1) such that |xi − xj | ≤ 1/(k + 1).

Example 2.8. Let A be a bounded subset of Rn and b > 0 be such that ‖a‖2 ≤ b for every a ∈ A.
Then γ : N→ N, γ(k) =

⌈
2(k + 1)

√
nb
⌉n

is a II-modulus of total boundedness for A.

Proof. Let k ∈ N and (xp) ⊆ A. Denote N = d2(k + 1)
√
nbe. Clearly, A is included in the cube

[−b, b]n. Divide this cube into Nn subcubes of equal side lengths 2b/N . The diameter of each
subcube is 2b

√
n/N ≤ 1/(k + 1). Applying the pigeonhole principle we obtain that there exist

0 ≤ i < j ≤ Nn such that ‖xi − xj‖2 ≤ 1/(k + 1).

Example 2.9. Let (X, d) be a metric space and A ⊆ X totally bounded with II-modulus of total
boundedness γ. Then the closure of A is totally bounded with II-modulus of total boundedness γ.

Proof. Let k ∈ N and (xn) ⊆ A. Take m ∈ N. Then there exists a sequence (an) ⊆ A such that
d(xn, an) ≤ 1/(m+ 1). Since γ is a II-modulus of total boundedness for A, there exist 0 ≤ i < j ≤
γ(k) such that d(ai, aj) ≤ 1/(k + 1). Thus,

d(xi, xj) ≤ d(xi, ai) + d(ai, aj) + d(aj , xj) ≤
1

k + 1
+

2

m+ 1
.

Hence, there exist 0 ≤ i < j ≤ γ(k) and (ms) a strictly increasing sequence of natural numbers such
that for every s ≥ 0, d(xi, xj) ≤ 1/(k + 1) + 2/(ms + 1), from where d(xi, xj) ≤ 1/(k + 1).
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Example 2.10. Let (X, ‖ · ‖) be a normed space and A ⊆ X totally bounded with II-modulus of
total boundedness γ. Then the convex hull co(A) of A is totally bounded with II-modulus of total
boundedness

γ(k) =
⌈

2(m+ 1)
√
n+ 1

⌉n+1
,

where n = γ(4k + 3)− 1, m = d2(k + 1)(n+ 1) (b+ 1/(4k + 4))e − 1 and b > 0 is such that ‖a‖ ≤ b
for all a ∈ A.

Proof. Let k ∈ N and (yp) ⊆ co(A). Denote rk = 1/(4k + 4). By Proposition 2.4.(ii), there exist
a0, . . . , an ∈ A such that

A ⊆
n⋃
l=0

B (al, rk) .

Let p ∈ N. Then there exist s(p) ∈ N and for l = 0, . . . , s(p), tpl ∈ [0, 1] and xpl ∈ A such that
s(p)∑
l=0

tpl = 1 and yp =

s(p)∑
l=0

tpl x
p
l . We can assume that s(p) = n and xpl ∈ B (al, rk) for l = 0, . . . , n.

This can be done because we can group any two points that belong to the same ball in the following
way: suppose xp0, x

p
1 ∈ B (a0, rk). Denote

xp0 =
tp0

tp0 + tp1
xp0 +

tp1
tp0 + tp1

xp1 ∈ B (a0, rk) .

Then, yp = (tp0 + tp1)xp0 + tp2x
p
2 + . . .+ tpnx

p
n. Note that if in this way we obtain less than n+ 1 points

in the convex combination then we add the corresponding al’s multiplied by 0.
For p ∈ N, tp = (tp0, . . . , t

p
n) ∈ Rn+1 and ‖tp‖2 ≤ 1. By Example 2.8, there exist 0 ≤ i < j ≤⌈

2(m+ 1)
√
n+ 1

⌉n+1
such that

‖ti − tj‖2 ≤
1

m+ 1
≤ 2rk

(b+ rk) (n+ 1)
.

Then,

‖yi − yj‖ =

∥∥∥∥∥
n∑
l=0

(tilx
i
l − t

j
lx
j
l )

∥∥∥∥∥ ≤
∥∥∥∥∥
n∑
l=0

(tilx
i
l − tilx

j
l )

∥∥∥∥∥+

∥∥∥∥∥
n∑
l=0

(tilx
j
l − t

j
lx
j
l )

∥∥∥∥∥
≤

n∑
l=0

til‖xil − x
j
l ‖+ ‖xjl ‖

n∑
l=0

|til − t
j
l |

≤ 2rk

n∑
l=0

til + (b+ rk) (n+ 1)‖ti − tj‖2 ≤ 2rk + 2rk =
1

k + 1
.

3 Approximate points and explicit closedness

In the following, (X, d) is a metric space and F ⊆ X a nonempty subset. We assume that

F =
⋂
k∈N

F̃k,
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where F̃k ⊆ X for every k ∈ N and we say that the family (F̃k) is a representation of F . Of course,
F has a trivial representation, by letting F̃k := F for all k. Naturally, we think of more interesting
choices for F̃k, as we look at

AFk :=
⋂
l≤k

F̃l

as some weakened approximate form of F . A point p ∈ AFk is said to be a k-approximate F -point.

In the following we always view F not just as a set but we suppose it is equipped with a representation
(F̃k) to which we refer implicitly in many of the notations introduced below.
Let (xn) be a sequence in X.

Definition 3.1. We say that

(i) (xn) has approximate F -points if ∀k ∈ N ∃N ∈ N (xN ∈ AFk).

(ii) (xn) has the liminf property w.r.t. F if ∀k, n ∈ N ∃N ∈ N (N ≥ n and xN ∈ AFk).

(iii) (xn) is asymptotically regular w.r.t. F if ∀k ∈ N∃N ∈ N ∀m ≥ N (xm ∈ AFk).

Lemma 3.2. Assume that xk ∈ AFk for all k ∈ N. Then any subsequence of (xn) has the liminf
property w.r.t. F .

Proof. Let (xml) be a subsequence of (xn). Then ml ≥ l and xml ∈ AFml for all l ∈ N. Let k, n ∈ N
and take N ≥ max{n, k}. Then xmN ∈ AFmN ⊆ AFN ⊆ AFk.

Definition 3.3. We say that F is explicitly closed (w.r.t. the representation (F̃k)) if

∀p ∈ X
(
∀N,M ∈ N(AFM ∩B (p, 1/(N + 1)) 6= ∅)→ p ∈ F

)
.

One can easily see that if F is explicitly closed, then F is closed. F in particular is explicitly closed
if all the sets AFk are (and so if all the sets F̃k are closed). Hence closedness of F is equivalent to
explicit closedness of F w.r.t. the trivial representation. The property of being explicitly closed can
be re-written (pulling also the quantifier hidden in ‘p ∈ F ’ in front) in the following equivalent form

∀k ∈ N ∀p ∈ X ∃N,M ∈ N
(
AFM ∩B (p, 1/(N + 1)) 6= ∅ → p ∈ AFk

)
.

This suggests the following uniform strengthening of explicit closedness:

Definition 3.4. F is called uniformly closed with moduli δF , ωF : N→ N if

∀k ∈ N ∀p, q ∈ X
(
q ∈ AFδF (k) and d(p, q) ≤ 1

ωF (k) + 1
→ p ∈ AFk

)
.

Lemma 3.5. Assume that F is explicitly closed, (xn) has the liminf property w.r.t. F and that (xn)
converges strongly to x̂. Then x̂ ∈ F .

Proof. Let k ∈ N be arbitrary. Since F is explicitly closed, there exist M,N ∈ N such that

∃q ∈ X
(
d(x̂, q) ≤ 1

N + 1
and q ∈ AFM

)
→ x̂ ∈ AFk. (3)

As lim
n→∞

xn = x̂, there exists Ñ ∈ N such that d(xn, x̂) ≤ 1
N+1 for all n ≥ Ñ . As (xn) has the liminf

property w.r.t. F , we get that xK ∈ AFM for some K ≥ Ñ . Applying (3) gives x̂ ∈ AFk.
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Lemma 3.6. Suppose that X is compact, F is explicitly closed and that (xn) has approximate
F -points. Then the set {xn | n ∈ N} has an adherent point x ∈ F .

Proof. We have for each k ∈ N an mk ∈ N such that xmk is a k-approximate F -point. Let yk :=
xmk ∈ AFk. Since X is compact, the sequence (yk) has a convergent subsequence (ykn). Let x :=
lim
n→∞

ykn . By Lemma 3.2, (ykn) has the liminf property w.r.t. F . Apply now Lemma 3.5 to conclude

that x ∈ F .

4 Generalized Fejér monotone sequences

In this section we give a generalization of Fejér monotonicity, one of the most used methods for
strong convergence proofs in convex optimization.
We consider functions G : R+ → R+ with the property

(G) If an
n→∞→ 0, then G(an)

n→∞→ 0

for all sequences (an) in R+.
Obviously, (G) is equivalent to the fact that there exists a mapping αG : N→ N satisfying

∀k ∈ N ∀a ∈ R+

(
a ≤ 1

αG(k) + 1
→ G(a) ≤ 1

k + 1

)
. (4)

We say that such a mapping αG is a G-modulus.
Any continuous G : R+ → R+ with G(0) = 0 satisfies (G) and any modulus of continuity of G at 0
is a G-modulus.
We also consider functions H : R+ → R+ with the property

(H) If H(an)
n→∞→ 0, then an

n→∞→ 0

for all sequences (an) in R+, which is kind of the converse of (G).
Similarly, (H) is equivalent to the existence of an H-modulus βH : N→ N such that

∀k ∈ N∀a ∈ R+

(
H(a) ≤ 1

βH(k) + 1
→ a ≤ 1

k + 1

)
. (5)

Let (xn) be a sequence in the metric space (X, d) and ∅ 6= F ⊆ X.

Definition 4.1. (xn) is (G,H)-Fejér monotone w.r.t. F if for all n,m ∈ N and all p ∈ F ,

H(d(xn+m, p)) ≤ G(d(xn, p)).

Note that the usual notion of being ‘Fejér monotone’ is just (idR+
, idR+

)-Fejér monotone.
The following lemma collects some useful properties of generalized Fejér monotone sequences.

Lemma 4.2. Let (xn) be (G,H)-Fejér monotone w.r.t. F .

(i) If {xn | n ∈ N} has an adherent point x̂ ∈ F , then (xn) converges to x̂.
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(ii) Assume that H has the property

(H1) If H(an) is bounded, then (an) is bounded

for all sequences (an) in R+. Then (xn) is bounded.

Proof. (i) Let p ∈ N be arbitrary and K := Kp be so that

d(xK , x̂) ≤ 1

αG(βH(p) + 1) + 1

(such a K has to exist by the assumption). Applying the fact that (xn) is (G,H)-Fejér
monotone w.r.t. F and (4), we get that for all l ∈ N,

H(d(xK+l, x̂)) ≤ G(d(xK , x̂)) ≤ 1

βH(p) + 1
.

Using now (5), it follows that d(xK+l, x̂) ≤ 1

p+ 1
for all l ∈ N. Hence (xn) converges to x̂.

(ii) Since (xn) is (G,H)-Fejér monotone w.r.t. F we have for p ∈ F that H(d(xn, p)) ≤ G(d(x0, p))
for all n ∈ N. Hence, (H(d(xn, p))) is bounded and so, by (H1), (d(xn, p)) is bounded.

As an immediate consequence of Lemma 3.6 and Lemma 4.2.(i), we get

Proposition 4.3. Let X be a compact metric space and F be explicitly closed. Assume that (xn)
is (G,H)-Fejér monotone with respect to F and that (xn) has approximate F -points. Then (xn)
converges to a point x ∈ F .

Remark 4.4. If in Proposition 4.3 we either weaken ‘compact’ to ‘totally bounded’ or drop the
assumption on F being explicitly closed, then the conclusion in general becomes false, in fact (xn)
might not even be Cauchy (see Example 7.4).

Let us recall that a metric space is said to be boundedly compact if every bounded sequence has a
convergent subsequence. One can easily see that X is boundedly compact if and only if for every
a ∈ X and r > 0 the closed ball B(a, r) is compact.

Remark 4.5. The proof of Proposition 4.3 uses the compactness property only for the sequence (xn)
and so it is enough to require that X is boundedly compact and that the sequence at hand is bounded.
As we prove above, this is the case if H has the property (H1) for all sequences (an) in R+.

4.1 Uniform (G,H)-Fejér monotone sequences

Being (G,H)-Fejér monotone w.r.t. F can be logically re-written as

∀n,m ∈ N ∀p ∈ X
(
∀k ∈ N(p ∈ AFk)→

∀r ∈ N∀l ≤ m
(
H(d(xn+l, p)) < G(d(xn, p)) +

1

r + 1

))
,
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hence as

∀r, n,m ∀p ∃k
(
p ∈ AFk → ∀l ≤ m

(
H(d(xn+l, p)) < G(d(xn, p)) +

1

r + 1

))
.

If p ∈ AFk can be written as a purely universal formula (when formalized in the language of the
systems used in the logical metatheorems from [25, 15, 26]), then

p ∈ AFk → ∀l ≤ m
(
H(d(xn+l, p)) < G(d(xn, p)) +

1

r + 1

)
is (equivalent to) a purely existential formula. Hence one can use these metatheorems to extract a
uniform bound on ‘∃k ∈ N’ (and so in fact a uniform realizer as the formula is monotone in k) which
- e.g. for bounded (X, d) - only depends on a bound on the metric and majorizing data of the other
parameters involved but not on ‘p’. This motivates the next definition:

Definition 4.6. We say that (xn) is uniformly (G,H)-Fejér monotone w.r.t. F if for all r, n,m ∈ N,

∃k ∈ N∀p ∈ X
(
p ∈ AFk → ∀l ≤ m

(
H(d(xn+l, p)) < G(d(xn, p)) +

1

r + 1

))
.

Any upper bound (and hence realizer) χ(n,m, r) of ‘∃k ∈ N’ is called a modulus of (xn) being
(uniformly) (G,H)-Fejér monotone w.r.t. F .

If G=H = idR+
, we say simply that (xn) is uniformly Fejér monotone w.r.t. F .

Remark 4.7. (i) A standard compactness argument shows that for X compact, F explicitly closed
and G,H continuous the notions ‘(G,H)-Fejér monotone w.r.t. F ’ and ‘uniformly (G,H)-
Fejér monotone w.r.t. F ’ are equivalent.

(ii) In Corollary 5.2 we will see, as a consequence of our quantitative metastable analysis of the
proof of Proposition 4.3, that the Cauchyness of (xn) holds even if we replace ‘compact’ by
‘totally bounded’ and drop the explicit closedness of F provided that we replace ‘(G,H)-Fejér
monotone’ by ‘uniform (G,H)-Fejér monotone’.

(iii) The equivalence between these notions can be proven (relative to the framework of T ω[X, d])
for general bounded metric spaces X and F,G,H from the ‘nonstandard’ uniform boundedness
principle ∃-UBX studied in [26]. Though being false for specific spaces X, the use of ∃-UBX in
proofs of statements of the form considered in our general bound-extraction theorems is allowed
and the bounds extracted from proofs in T ω[X, d]+∃-UBX will be correct in any bounded metric
space X (see [26, Theorem 17.101]).

5 Main quantitative results

In this section, (X, d) is a totally bounded metric space with a II-modulus of total boundedness γ
and ∅ 6= F ⊆ X. Furthermore, G,H : R+ → R+ satisfy (G), (H) for all sequences (an) in R+, αG is
a G-modulus and βH is an H-modulus.
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Assume that (xn) has approximate F -points. We can then define the mapping

ϕF : N→ N, ϕF (k) = min{m ∈ N | xm ∈ AFk}. (6)

Thus, xϕF (k) ∈ AFk for all k and ϕF is monotone nondecreasing. An approximate F -point bound
for (xn) is any function Φ : N→ N satisfying

∀k ∈ N ∃N ≤ Φ(k) (xN ∈ AFk). (7)

If Φ is an approximate F -point bound for (xn), then

ΦM : N→ N, ΦM (k) = max{Φ(m) | m ≤ k}

is monotone nondecreasing and again an approximate F -point bound for (xn).
Thus, we shall assume w.l.o.g. that any approximate F -point bound for (xn) is monotone nonde-
creasing.
Then Φ : N→ N is an approximate F -point bound for (xn) if and only if Φ majorizes ϕF .

The next theorem is the main step towards a quantitative version of Proposition 4.3 (see also
the discussion in [26, pp. 464-465] on the logical background behind the elimination of sequential
compactness in the original proof in favor of a computational argument):

Theorem 5.1. Assume that

(i) (xn) is uniformly (G,H)-Fejér monotone w.r.t. F , with modulus χ;

(ii) (xn) has approximate F -points, with Φ being an approximate F -point bound.

Then (xn) is Cauchy and, moreover, for all k ∈ N and all g : N→ N,

∃N ≤ Ψ(k, g,Φ, χ, αG, βH , γ)∀i, j ∈ [N,N + g(N)]

(
d(xi, xj) ≤

1

k + 1

)
,

where Ψ(k, g,Φ, χ, αG, βH , γ) := Ψ0(P, k, g,Φ, χ, βH), with

χg(n, k) := χ(n, g(n), k), χMg (n, k) := max{χg(i, k) | i ≤ n},

P := γ (αG (2βH(2k + 1) + 1)) and{
Ψ0(0, k, g,Φ, χ, βH) := 0
Ψ0(n+ 1, k, g,Φ, χ, βH) := Φ

(
χMg (Ψ0(n, k, g,Φ, χ, βH), 2βH(2k + 1) + 1)

)
.

Proof. Let k ∈ N and g : N → N. For simplicity, let us denote with ϕ the mapping ϕF defined by
(6). Since both ϕ and Φ are nondecreasing and Φ majorizes ϕ, an immediate induction gives us that
Ψ0(n, k, g, ϕ, χ, βH) ≤ Ψ0(n + 1, k, g, ϕ, χ, βH), Ψ0(n, k, g,Φ, χ, βH) ≤ Ψ0(n + 1, k, g,Φ, χ, βH) and
Ψ0(n, k, g, ϕ, χ, βH) ≤ Ψ0(n, k, g,Φ, χ, βH) for all n ∈ N.
Define for every i ∈ N

ni := Ψ0(i, k, g, ϕ, χ, βH). (8)

Claim 1: For all j ≥ 1 and all 0 ≤ i < j, xnj is a χg(ni, 2βH(2k + 1) + 1)-approximate F -point.

17



Proof of claim: As j ≥ 1 and

nj = Ψ0(j, k, g, ϕ, χ, βH) = ϕ
(
χMg (Ψ0(j − 1, k, g, ϕ, χ, βH), 2βH(2k + 1) + 1)

)
= ϕ

(
χMg (nj−1, 2βH(2k + 1) + 1)

)
,

xnj is a χMg (nj−1, 2βH(2k+1)+1)-approximate F -point. Since 0 ≤ i ≤ j−1, we have that ni ≤ nj−1.

Apply now the fact that χMg is nondecreasing in the first argument to get that

χg(ni, 2βH(2k + 1) + 1) ≤ χMg (ni, 2βH(2k + 1) + 1)

≤ χMg (nj−1, 2βH(2k + 1) + 1). �

Claim 2: There exist 0 ≤ I < J ≤ P satisfying

∀l ∈ [nI , nI + g(nI)]

(
d(xl, xnJ ) ≤ 1

2k + 2

)
.

Proof of claim: By the property of γ being a II-modulus of total boundedness for X we get that
there exist 0 ≤ I < J ≤ P such that

d(xnI , xnJ ) ≤ 1

αG(2βH(2k + 1) + 1) + 1

and so, using that αG is a G-modulus,

G(d(xnI , xnJ )) ≤ 1

2βH(2k + 1) + 2
. (9)

By the first claim, we have that xnJ is a χg(nI , 2βH(2k+1)+1)-approximate F -point. Applying now
the uniform (G,H)-Féjer monotonicity of (xn) w.r.t. F with r := 2βH(2k+1)+1, n := nI ,m := g(nI)
and p := xnJ , we get that for all l ≤ g(nI),

H(d(xnI+l, xnJ )) ≤ G(d(xnI , xnJ )) +
1

2βH(2k + 1) + 2
≤ 1

βH(2k + 1) + 1
.

Since βH is an H-modulus,

∀l ≤ g(nI)

(
d(xnI+l, xnJ ) ≤ 1

2k + 2

)
.

and so the claim is proved. �

It follows that

∀k, l ∈ [nI , nI + g(nI)]

(
d(xk, xl) ≤

1

k + 1

)
.

Since nI = Ψ0(I, k, g, ϕ, χ, βH) ≤ Ψ0(I, k, g,Φ, χ, βH) and I ≤ P , we get that

nI ≤ Ψ0(P, k, g,Φ, χ, βH) = Ψ(k, g,Φ, χ, αG, βH , γ).

The theorem holds with N := nI .
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Corollary to the proof: One of the numbers n0, . . . , nP−1 is a point of metastability.

Theorem 5.1 remarkably implies the Cauchy property of (xn) in the absence of X being complete
(and hence compact) and of F being explicitly closed which, as we remarked after Proposition
4.3, both were necessary if (xn) only was assumed to be (G,H)-Fejér monotone rather than being
uniformly (G,H)-Fejér monotone. This is a qualitative improvement of Proposition 4.3 whose
proof is based on our quantitative analysis of metastability although the result as such does not
involve metastability at all:

Corollary 5.2. Let X be totally bounded and (xn) be uniformly (G,H)-Fejér monotone having
approximate F -points. Then (xn) is Cauchy.

The next theorem is a direct quantitative ‘finitization’ of Proposition 4.3 in the sense of Tao:

Theorem 5.3. In addition to the assumptions of Theorem 5.1 we suppose that F is uniformly closed
with moduli δF , ωF . Then for all k ∈ N and all g : N→ N,

∃N ≤ Ψ̃∀i, j ∈ [N,N + g(N)]

(
d(xi, xj) ≤

1

k + 1
and xi ∈ AFk

)
,

where
Ψ̃ (k, g,Φ, χ, αG, βH , γ, δF , ωF ) := Ψ(k0, g,Φ, χk,δF , αG, βH , γ),

with Ψ defined as in Theorem 5.1,

k0 = max

{
k,

⌈
ωF (k)− 1

2

⌉}
and χk,δF (n,m, r) := max{δF (k), χ(n,m, r)}.

Proof. With χ also χk,δF is a modulus of (xn) being uniformly (G,H)-Fejér monotone w.r.t. F .
Applying Theorem 5.1 to (k0, χk,δF ) we get that

∃N ≤ Ψ̃ ∀i, j ∈ [N,N + g(N)]

(
d(xi, xj) ≤

1

k0 + 1
≤ 1

k + 1

)
.

From the proof of Theorem 5.1, it follows that there exists 0 ≤ I < J ≤ P such that N = nI and
xnJ is a (χk,δF )g(N, 2βH(2k0 + 1) + 1)-approximate F -point and

∀i ∈ [N,N + g(N)]

(
d(xi, xnJ ) ≤ 1

2k0 + 2
≤ 1

ωF (k) + 1

)
.

Since (χk,δF )g(N, 2βH(2k0 + 1) + 1) = χk,δF (N, g(N), 2βH(2k0 + 1) + 1) ≥ δF (k), it follows that
xnI is a δF (k)-approximate F -point. Hence by the definition of ωF , we get that xi ∈ AFk for all
i ∈ [N,N + g(N)].

Notation: In our applications δF will be mostly δF (k) = 2k + 1. In this case we simply write χk
instead of χk,δF when applying Theorem 5.3.

Remark 5.4. Theorems 5.1 and 5.3 hold for X boundedly compact and (xn) bounded. In this case,
the bounds will depend on a II-modulus of total boundedness for the closed ball B(a, b), where a ∈ X
and b ≥ d(xn, a) for all n.
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Remark 5.5. Theorem 5.3 is a finitization of Proposition 4.3 in the sense of Tao since it only
talks about a finite initial segment of (xn) but trivially implies back the infinitary Proposition 4.3 for
uniformly closed F and uniformly (G,H)-Fejér monotone sequences.

Proof. Noneffectively

∀k ∈ N∀g : N→N ∃N ∈ N ∀i, j ∈ [N,N + g(N)]

(
d(xi, xj) ≤

1

k + 1
and xi ∈ AFk

)
implies the Cauchy property of (xn). Since X is complete, (xn) converges to a point x̂ ∈ X. It
remains to prove that x̂ ∈ F . One can easily see, by taking g to be a constant function, that (xn)
has the liminf property w.r.t. F . Apply now Lemma 3.5 to conclude that x̂ ∈ F .

Assume that (xn) is asymptotically regular w.r.t. F . A mapping Φ+ : N× NN → N satisfying

∀k ∈ N ∀g : N→ N∃N ≤ Φ+(k, g)∀m ∈ [N,N + g(N)] (xm ∈ AFk)

is said to be a rate of metastability for the asymptotic regularity of (xn) w.r.t. F . If Φ+ is such a
rate, then Φ(k) := Φ+(k, 0) is an approximate F -point bound.
A rate of asymptotic regularity of (xn) w.r.t. F is a function Φ++ : N→ N with

∀k ∈ N ∃N ≤ Φ++(k)∀m ≥ N (xm ∈ AFk)

which is equivalent with the fact that Φ++ satisfies

∀k ∈ N∀n ≥ Φ++(k) (xn ∈ AFk).

Obviously, if Φ++ is a rate of asymptotic regularity, then Φ+(k, g) := Φ++(k) is a rate of metasta-
bility for the asymptotic regularity.

Having a rate of metastability for the asymptotic regularity one can obtain a theorem with the
conclusion as in Theorem 5.3 even without the assumption of uniform closedness (not even explicit
closedness is needed). This follows from a construction Ω known in logic that allows one to com-
bine two quantitative metastability statements with resp. rates Φ+ and Ψ into one new rate of
metastability Ω(Φ+,Ψ) which gives a bound for an interval of metastability where both statements
hold simultaneously. However, as the details of Ω are somewhat complicated to state without using
notation from logic we will skip this here.

We conclude this section with a trivial but instructive example for Theorem 5.1, namely that the
well-known rate of metastability for the Cauchy property of monotone bounded sequences from [26,
Proposition 2.27] can be recovered (modulo a constant) from this theorem: let X = [0, 1] and (xn)
be a nondecreasing sequence in X. Let us take

F =
⋂
k∈N

F̃k, where F̃k := {p ∈ X | xk ≤ p}.

Then, clearly, (i) AFk = F̃k, (ii) Φ++ := id is a rate of asymptotic regularity and χ(n,m, r) := n+m
is a modulus of the uniform Fejér monotonicity of (xn) and we may take γ(k) = dCe(k + 1) (see
Example 2.7). For monotone g, Theorem 5.1 now gives Ψ(k, g) := g̃4dCe(k+1)(0) with g̃(n) := n+g(n),
while the direct proof in this case yields the optimal rate Ψ(k, g) := g̃dCe(k+1)(0).
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6 Quasi-Fejér monotone sequences

As a common consequence of arriving at a finitary quantitative version of an originally non-quan-
titative theorem, one can easily incorporate error terms as has been considered under the name
of quasi-Fejér monotonicity (due to [12]). As pointed out in [11], quasi-Fejér monotone sequences
provide a framework for the analysis of numerous optimization algorithms in Hilbert spaces.

Definition 6.1. A sequence (xn) in a metric space (X, d) is called quasi-Fejér monotone (of order
0 < P <∞) w.r.t. some set ∅ 6= F ⊆ X if

∀n ∈ N ∀p ∈ F
(
d(xn+1, p)

P ≤ d(xn, p)
P + εn

)
,

where (εn) is some summable sequence in R+.

The appropriate generalization to general functions (G,H) then is:

Definition 6.2. For G,H as in the definition of (G,H)-Fejér monotonicity we say that (xn) is
quasi-(G,H)-Fejér monotone w.r.t. F if

∀n,m ∈ N ∀p ∈ F
(
H(d(xn+m, p)) ≤ G(d(xn, p)) +

n+m−1∑
i=n

εi
)
.

Note that for G(x) := H(x) := xP this covers the notion of quasi-Fejér monotonicity.
The uniform version of this notion then is:

Definition 6.3. (xn) is uniformly quasi-(G,H)-Fejér monotone w.r.t. F and a given representation
of F via AFk as before if

∀r, n,m ∈ N ∃k ∈ N ∀p ∈ X
(
p ∈ AFk →

∀l ≤ m(H(d(xn+l, p)) < G(d(xn, p)) +
∑n+l−1
i=n εi + 1

r+1 )
)
.

Any function χ : N3 → N such that χ(r, n,m) provides such a k is called a modulus of (xn) being
uniformly quasi-(G,H)-Fejér monotone w.r.t. F.

Let ξ : N→ N be a Cauchy modulus of
∑
εi, i.e.

∞∑
i=ξ(n)

εi <
1

n+1 for all n ∈ N.

If (xn) has the lim inf-property w.r.t. F we can define

ϕ̂F (k, n) := min{m ∈ N | m ≥ n ∧ xm ∈ AFk}.

Any monotone (in k, n) upper bound Φ̂ of ϕ̂F is called a lim inf-bound w.r.t. F.

Theorem 6.4. Assume that X is totally bounded with a II-modulus of total boundedness γ and that

(i) (xn) is uniformly quasi-(G,H)-Fejér monotone w.r.t. F , with modulus χ, and (εn) with Cauchy
rate ξ for

∑
εi;

(ii) (xn) has the lim inf-property w.r.t. F , with Φ̂ being a lim inf-bound w.r.t. F .
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Then (xn) is Cauchy and, moreover, for all k ∈ N and all g : N→ N,

∃N ≤ Ψ̂(k, g, Φ̂, χ, αG, βH , γ, ξ)∀i, j ∈ [N,N + g(N)]

(
d(xi, xj) ≤

1

k + 1

)
,

where Ψ̂(k, g, Φ̂, χ, αG, βH , γ, ξ) := Ψ̂0(P, k, g, Φ̂, χ, βH , ξ), with

χg(n, k) := χ(n, g(n), k), χMg (n, k) := max{χg(i, k) | i ≤ n},

P := γ (αG (4βH(2k + 1) + 3)) + 1 and
Ψ̂0(0, k, g, Φ̂, χ, βH , ξ) := 0

Ψ̂0(n+ 1, k, g, Φ̂, χ, βH , ξ) :=

Φ̂
(
χMg

(
Ψ̂0(n, k, g, Φ̂, χ, βH , ξ), 4βH(2k + 1) + 3

)
, ξ(4βH(2k + 1) + 3)

)
.

Proof. The proof is the same as the one of Theorem 5.1 up to (9) which now holds with 1/(4βH(2k+
1) + 4) instead of 1/(2βH(2k + 1) + 2). We then use uniform quasi-(G,H)-Fejér monotonicity as we
did before without ‘quasi’ to now get that for all l ≤ g(nI)

H(d(xnI+l, xnJ )) ≤ G(d(xnI , xnJ )) +

nI+l−1∑
i=nI

εi +
1

4βH(2k + 1) + 4
.

By construction of nI we know that nI ≥ ξ(4βH(2k + 1) + 3) (note that by the addition of ‘+1’ to
the original definition of P that was used in the proof of Theorem 5.1 I, J can now be choosen so
that 0 < I < J ≤ P rather than only 0 ≤ I < J ≤ P ) and so

nI+l−1∑
i=nI

εi ≤
1

4βH(2k + 1) + 4

and so we get in total

H(d(xnI+l, xnJ )) ≤ G(d(xnI , xnJ )) +
1

2βH(2k + 1) + 2

from where we can finish the proof as before.

As it is clear from the proof above, one actually does not need a Cauchy modulus ξ of the error-sum
but only a rate of metastability.

With the new bound Ψ̂ from Theorem 6.4 instead of Ψ all the other results of the previous section
extend in the obvious way to the ‘quasi’-case. As a consequence of this, we could incorporate also in
the iterations considered in the rest of this paper error terms which we, however, will not carry out.

7 Application - F is Fix(T )

Let X be a metric space, C ⊆ X a nonempty subset and T : C → C be a mapping. We assume that
T has fixed points and define F as the nonempty fixed point set Fix(T ) of T .
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One has

F =
⋂
k∈N

F̃k, where F̃k =

{
x ∈ C | d(x, Tx) ≤ 1

k + 1

}
.

In this case, for all k ∈ N we have that that AFk = F̃k and the k-approximate F -points are precisely
the 1/(k + 1)-approximate fixed points of T .
Let us recall that the mapping T is uniformly continuous with modulus ωT : N→ N if for all k ∈ N
and all p, q ∈ C,

d(p, q) ≤ 1

ωT (k) + 1
→ d(Tp, Tq) ≤ 1

k + 1
.

One can see easily that the following properties hold.

Lemma 7.1. Let (xn) be a sequence in C.

(i) (xn) has approximate F -points if and only if for all k ∈ N there exists N ∈ N such that

d(xN , TxN ) ≤ 1

k + 1
. If this is the case, we say also that (xn) has approximate fixed points.

(ii) (xn) has the liminf property w.r.t. F if and only if lim inf
n→∞

d(xn, Txn) = 0.

(iii) (xn) is asymptotically regular w.r.t. F if and only if lim
n→∞

d(xn, Txn) = 0.

(iv) If T is continuous, then F is explicitly closed.

(v) If T is uniformly continuous with modulus ωT , then F is uniformly closed with moduli ωF (k) =
max{4k + 3, ωT (4k + 3)} and δF (k) = 2k + 1.

Remark 7.2. Uniform closedness can be viewed as a quantitative version of the special extensionality
statement (∗) q ∈ F ∧p =X q → p ∈ F. Extensionality w.r.t. p =X q := ‖p− q‖X = 0 is not included
as an axiom in our formal framework (for reasons explained in [25]) and has to be derived (if needed)
from appropriate uniform continuity assumptions (see item (v) in the lemma above). In the case
of (∗), however, it suffices to have the moduli ωF , δT which (as we will see in Section 7.4) are also
available for interesting classes of in general discontinuous mappings T (where, in particular, the
model theoretic approach to metastability from [2] is not applicable as it stands).

As a consequence of Proposition 4.3 and Remark 4.5, we get

Proposition 7.3. Let C be a boundedly compact subset of a metric space X and T : C → C be
continuous with F = Fix(T ) 6= ∅. Assume that (xn) is bounded and (G,H)-Fejér monotone with
respect to F and that (xn) has approximate fixed points. Then (xn) converges to a fixed point of T .
The continuity of T can be replaced by the weaker assumption that F is explicitly closed (see Section
7.4 for a class of in general discontinuous functions for which Fix(T ) is uniformly closed).

If we weaken ‘boundedly compact’ to ‘totally bounded’ or drop the assumption that T is continuous,
one cannot even prove that (xn) is Cauchy, as the following examples show.

Example 7.4. Let C := (0, 1] ∪ {2} with the metric d(x, y) := min{|x − y|, 1}. Then C is totally
bounded and the mapping

T : C → C, T (x) := x/2, if x ∈ (0, 1], T (2) := 2
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is continuous with F := Fix(T ) = {2}. Now let xn := Tn(1), for even n, and xn := 1 for odd n.
Then (xn) has approximate fixed points and is Fejér monotone w.r.t. F but clearly not Cauchy.
If we drop the explicit closedness of F , we can slightly modify the above example to get a coun-
terexample to the Cauchyness of (xn) even for compact C: just take C := [0, 1] ∪ {2} and define
T (0) := 2.

7.1 Picard iteration for (firmly) nonexpansive mappings

Assume that T is nonexpansive. Then, obviously, T is uniformly continuous with modulus ωT = idN.
We consider in the sequel the Picard iteration starting from x ∈ C:

xn := Tnx.

One can see by induction that for all n,m ∈ N and p ∈ C,

d(xn+m, p) ≤ d(xn, p) +md(p, Tp).

As an immediate consequence, we get that (xn) is Fejér monotone, hence, in particular, bounded.
In fact, one can easily prove more:

Lemma 7.5. (xn) is uniformly Fejér monotone w.r.t. F with modulus

χ(n,m, r) = m(r + 1).

Applying Proposition 7.3, we get

Corollary 7.6. Let C be a boundedly compact subset of a metric space X and T : C → C be
nonexpansive with Fix(T ) 6= ∅. Assume that (xn) has approximate fixed points. Then (xn) converges
to a fixed point of T .

As (xn) is uniformly Fejér monotone w.r.t. F and F is uniformly closed, we can apply our quanti-
tative Theorems 5.1 and 5.3 to get the following:

Theorem 7.7. Assume that C is totally bounded with II-modulus of total boundedness γ, T : C → C
is nonexpansive with Fix(T ) 6= ∅ and that (xn) has approximate fixed points, with Φ being an
approximate fixed point bound. Then for all k ∈ N and all g : N→ N,

(i) There exists N ≤ Σ(k, g,Φ, γ) such that

∀i, j ∈ [N,N + g(N)]

(
d(xi, xj) ≤

1

k + 1

)
,

where Σ(k, g,Φ, γ) = Σ0(γ(4k + 3), k, g,Φ), with Σ0(0, k, g,Φ) = 0 and

Σ0(n+ 1, k, g,Φ) = Φ
(
(4k + 4)gM (Σ0(n, k, g,Φ))

)
.

(ii) There exists N ≤ Σ̃(k, g,Φ, γ) such that

∀i, j ∈ [N,N + g(N)]

(
d(xi, xj) ≤

1

k + 1
and d(xi, Txi) ≤

1

k + 1

)
,

where Σ̃(k, g,Φ, γ) = Σ̃0(γ(8k + 7), k, g,Φ), with Σ̃0(0, k, g,Φ) = 0 and

Σ̃0(n+ 1, k, g,Φ) = Φ
(

max
{

2k + 1, (8k + 8)gM (Σ̃0(n, k, g,Φ))
})

.
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Proof. (i) With Ψ,Ψ0 as in Theorem 5.1, αG = βH = idN and χ as in Lemma 7.5, define
Σ(k, g,Φ, γ) = Ψ(k, gM ,Φ, χ, αG, βH , γ) and Σ0(l, k, g,Φ) = Ψ0(l, k0, g

M ,Φ, χ, βH).

(ii) Apply Theorem 5.3 for gM , using that ωF (k) = 4k+ 3 and δF (k) = 2k+ 1, by Lemma 7.1.(v).
It follows that k0 = 2k + 1 and (χk)MgM (n, r) = max{2k + 1, gM (n)(r + 1)}.

We recall that a W -hyperbolic space [25] is a metric space X endowed with a convexity mapping
W : X ×X × [0, 1]→ X satisfying

(W1) d(z,W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y),

(W2) d(W (x, y, λ),W (x, y, λ̃)) = |λ− λ̃| · d(x, y),

(W3) W (x, y, λ) = W (y, x, 1− λ),

(W4) d(W (x, z, λ),W (y, w, λ)) ≤ (1− λ)d(x, y) + λd(z, w)

for all x, y, z, w ∈ X and all λ, λ̃ ∈ [0, 1]. We use in the sequel the notation (1 − λ)x + λy for
W (x, y, λ).
Following [17], one can define in the setting of W -hyperbolic spaces a notion of uniform convexity.
A W -hyperbolic space X is uniformly convex with modulus η : (0,∞) × (0, 2] → (0, 1] if for any
r < 0, ε ∈ (0, 2] and all a, x, y ∈ X,

d(x, a) ≤ r, d(y, a) ≤ r, and d(x, y) ≥ εr imply d

(
1

2
x+

1

2
y, a

)
≤ (1− η(r, ε))r.

A modulus η is said to be monotone if it is nonincreasing in the first argument. Uniformly convex
W -hyperbolic spaces with a monotone modulus η are called UCW -hyperbolic spaces in [39]. One
can easily see that CAT(0) spaces [5] are UCW -hyperbolic spaces with modulus ε2/8. We refer to
[39, 38, 31] for properties of UCW -hyperbolic spaces.

A very important class of nonexpansive mappings are the firmly nonexpansive ones. They are central
in convex optimization because of the correspondence with maximal monotone operators due to
Minty [45]. We refer to [4] for a systematic analysis of this correspondence. Firmly nonexpansive
mappings were introduced by Browder [6] in Hilbert spaces and by Bruck [9] in Banach spaces, but
they are also studied in the Hilbert ball [17, 34] or in different classes of geodesic spaces [48, 49, 1, 47].
Let C ⊆ X be a nonempty subset of a W -hyperbolic space X. A mapping T : C → C is λ-firmly
nonexpansive (where λ ∈ (0, 1)) if for all x, y ∈ C,

d(Tx, Ty) ≤ d((1− λ)x+ λTx, (1− λ)y + λTy) ≤ d(x, y).

Using proof mining methods, effective uniform rates of asymptotic regularity for the Picard iteration
were obtained for UCW -hyperbolic spaces in [1] and for W -hyperbolic spaces in [47]. For a CAT(0)
space X, C ⊆ X a bounded subset, one gets, as an immediate consequence of [1, Theorem 7.1]4 the
following rate of asymptotic regularity for the Picard iteration of a λ-firmly nonexpansive mapping
T : C → C:

Φ++(k, b, λ) :=

⌈
8(b+ 1)2

λ (1− λ)

⌉
(k + 1)2, (10)

where b > 0 is an upper bound on the diameter of C.
We can, thus, apply Theorem 7.7 with Φ := Φ++.

4Correction to [1]: In Corollary 7.4 should be ‘(b+ 1)2’ instead of ‘(b+ 1)’ in the definition of Φ(ε, λ, b).
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7.2 Ishikawa iteration for nonexpansive mappings

Assume that X is a W -hyperbolic space, C ⊆ X is convex and T : C → C is nonexpansive. The
Ishikawa iteration starting with x ∈ C is defined as follows:

x0 := x, xn+1 := (1− λn)xn + λnT ((1− sn)xn + snTxn), (11)

where (λn), (sn) are sequences in [0, 1]. This iteration was introduced in [21] in the setting of Hilbert
spaces and it is a generalization of the well-known Mann iteration [42, 18], which can be obtained
as a special case of (11) by taking sn = 0 for all n ∈ N.

Lemma 7.8. (i) For all n,m ∈ N and all p ∈ C,

d(xn+1, p) ≤ d(xn, p) + 2λnd(p, Tp) (12)

d(xn+m, p) ≤ d(xn, p) + 2md(p, Tp). (13)

(ii) (xn) is uniformly Fejér monotone w.r.t. F with modulus

χ(n,m, r) = 2m(r + 1).

Proof. (i) (12) is proved in [40, Lemma 4.3, (11)]. We get (13) by an easy induction.

(ii) follows easily from (13).

As in the case of the Picard iteration of a nonexpansive mapping, we can apply Proposition 7.3 to
get that for boundedly compact C and T : C → C nonexpansive with Fix(T ) 6= ∅, the fact that
the Ishikawa iteration (xn) has approximate fixed points implies the convergence of (xn) to a fixed
point of T . Explicit approximate fixed point bounds and rates of asymptotic regularity w.r.t. F are
computed in [39] for closed convex subsets C of UCW -hyperbolic spaces X.
We shall consider in the following only the setting of CAT(0) spaces. We assume that

(i)

∞∑
n=0

λn(1 − λn) is divergent with θ : N → N being a nondecreasing rate of divergence, i.e.

satisfying

θ(n)∑
k=0

λk(1− λk) ≥ n for all n.

(ii) lim supn sn < 1 and L,N0 ∈ N are such that sn ≤ 1− 1

L
for all n ≥ N0.

Then, as a consequence of [39, Corollary 4.6] and the proof of [39, Remark 4.8], we get the following
approximate fixed point bound for (xn).

Proposition 7.9. Let X be a CAT (0) space, C ⊆ X a bounded convex closed subset with diameter
dC and T : C → C nonexpansive. Then

∀k ∈ N ∃N ≤ Φ(k, b, θ, L,N0)

(
d(xN , TxN ) ≤ 1

k + 1

)
, (14)

where Φ(k, b, θ, L,N0) = θ
(
4(k + 1)2L2db(b+ 1)e+N0

)
, with b > 0 being an upper bound on the

diameter of C.

26



For the particular case λn = λ, one can take θ(n) = n

⌈
1

λ(1− λ)

⌉
, hence the approximate fixed

point bound Φ becomes

Φ(k, b, L,N0) =

⌈
1

λ(1− λ)

⌉ (
4(k + 1)2L2db(b+ 1)e+N0

)
.

Finally, we can apply Theorem 5.3 to get for C totally bounded with II-modulus of total boundedness
γ a result similar with Theorem 7.7.(ii), providing us a functional Σ̃ := Σ̃(k, g,Φ, γ) with the property
that for all k ∈ N and all g : N→ N there exists N ≤ Σ̃ such that

∀i, j ∈ [N,N + g(N)]

(
d(xi, xj) ≤

1

k + 1
and d(xi, Txi) ≤

1

k + 1

)
.

7.3 Mann iteration for strictly pseudo-contractive mappings

Assume that X is a real Hilbert space, C ⊆ X is a nonempty bounded closed convex subset with
finite diameter dC and 0 ≤ κ < 1.
A mapping T : C → C is a κ-strict pseudo-contraction if for all x, y ∈ C,

‖Tx− Ty‖2 ≤ ‖x− y‖2 + κ‖x− Tx− (y − Ty) ‖2. (15)

This definition was given by Browder and Petryshyn in [8], where they also proved that under the
above hypothesis F = Fix(T ) 6= ∅. Obviously, a mapping T is nonexpansive if and only if T is a
0-strict pseudo-contraction.
In the following, T is a κ-strict pseudo-contraction. Then T is Lipschitz continuous with Lipschitz

constant L =
1 + κ

1− κ
(see [43]), hence T is uniformly continuous with modulus ωT (k) = L(k+ 1). By

Lemma 7.1.(v), it follows that F is uniformly closed with moduli

ωF (k) = L(4k + 4) and δF (k) = 2k + 1.

We consider the Mann iteration associated to T which, as we remarked above, is defined by

x0 := x, xn+1 := (1− λn)xn + λnTxn, (16)

where (λn) is a sequence in (0, 1).

Lemma 7.10. Assume that (λn) is a sequence in (κ, 1) and let b ≥ dC . Then

(i) For all n,m ∈ N and all p ∈ C,

‖xn+1 − p‖2 ≤ ‖xn − p‖2 + 2b(n+ 3)‖p− Tp‖ (17)

‖xn+m − p‖2 ≤ ‖xn − p‖2 +mb(2n+m+ 5)‖p− Tp‖. (18)

(ii) (xn) is uniformly (G,H)-Fejér monotone w.r.t. F with modulus

χ(n,m, r) = m(2n+m+ 5)(r + 1)dbe,

where G(a) = H(a) = a2 with G-modulus αG(k) =
⌈√

k
⌉

and H-modulus βH(k) = k2.
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Proof. (i) (17) follows from [22, Lemma 3.4.(ii)]. We prove that

‖xn+m − p‖2 ≤ ‖xn − p‖2 + 2b

m−1∑
k=0

(n+ k + 3)‖p− Tp‖

by induction on m.

(ii) Apply (18). Assume that a ≤ 1
αG(k)+1 ≤

1√
k+1

. Then G(a) = a2 ≤ 1
k+1+2

√
k
≤ 1

k+1 . Assume

that H(a) = a2 ≤ 1
βH(k)+1 ≤

1
(k+1)2 . Then a ≤ 1

k+1 .

Effective rates of asymptotic regularity for the Mann iteration (xn) are computed in [22]: if (λn) is

a sequence in (κ, 1) satisfying

∞∑
n=0

(λn − κ)(1− λn) =∞ with rate of divergence θ : N→ N, then

Φ++(k, b, θ) = θ
(
db2e(k + 1)2

)
(19)

is a rate of asymptotic regularity for (xn). Thus,

(Φ++)M (k, b, θ) = θM
(
db2e(k + 1)2

)
.

If λn = λ, one gets the following rate of asymptotic regularity for the Krasnoselskii iteration:

Φ++(k, b, κ, λ) =

⌈
b2

(λ− κ)(1− λ)

⌉
(k + 1)2. (20)

Thus, Theorem 5.3 can be applied now to obtain rates of metastability for the Mann iteration, in
the case when C is totally bounded.

7.4 Mann iteration for mappings satisfying condition (E)

Assume that X is a W -hyperbolic space and C ⊆ X is nonempty and convex. Let T : C → C and
µ ≥ 1. The mapping T satisfies condition (Eµ) if for all x, y ∈ C,

d(x, Ty) ≤ µd(Tx, x) + d(x, y).

T is said to satisfy condition (E) if it satisfies (Eµ) for some µ ≥ 1. This condition was introduced in
[13] as a generalization of condition (C) studied in [51]. Note that condition (C) is a generalization
of nonexpansivity and implies (E3).
We suppose next that T is a mapping satisfying condition (Eµ) with µ ≥ 1. Then F is uniformly
closed with moduli

δF (k) = 2µ(k + 1)− 1 and ωF (k) = 4k + 3.

Indeed, for k ∈ N, p, q ∈ X with d(q, T q) ≤ 1/(2µ(k + 1)) and d(p, q) ≤ 1/(4(k + 1)) we have that

d(p, Tp) ≤ d(p, q) + d(q, Tp) ≤ 2d(p, q) + µd(q, T q) ≤ 1

k + 1
.

Let (xn) be the Mann iteration starting with x ∈ C defined as follows:

x0 = x, xn+1 = (1− λn)xn + λnT (xn),

where (λn) ⊆ [1/L, 1− 1/L] for some L ≥ 2.
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Lemma 7.11. (i) For all n,m ∈ N and all p ∈ C,

d(xn+m, p) ≤ d(xn, p) + µm(1− 1/L)d(p, Tp). (21)

(ii) (xn) is uniformly Fejér monotone w.r.t. F with modulus

χ(n,m, r) = µm(1− 1/L)(r + 1).

Proof. (i) is proved by induction. When m = 0 this is clear. Suppose

d(xn+m, p) ≤ d(xn, p) + µm(1− 1/L)d(p, Tp).

Then

d(xn+m+1, p) = d((1− λn+m)xn+m + λn+mTxn+m, p)

≤ (1− λn+m)d(xn+m, p) + λn+md(Txn+m, p)

≤ (1− λn+m)d(xn+m, p) + λn+m(µd(p, Tp) + d(p, xn+m))

≤ d(xn+m, p) + µ(1− 1/L)d(p, Tp)

≤ d(xn, p) + µ(m+ 1)(1− 1/L)d(p, Tp).

(ii) follows easily from (21).

We compute next a rate of metastability for the asymptotic regularity of (xn) w.r.t. F in the setting
of UCW -hyperbolic spaces.

Lemma 7.12. Let (X, d,W ) be a UCW -hyperbolic space with a monotone modulus of uniform
convexity η. Let x, p ∈ C, n ∈ N and α, β, δ, ν > 0 such that

d(p, Tp) < ν ≤ δ, α ≤ d(xn, p) ≤ β, α ≤ d(xn, Txn).

Then

d(xn+1, p) < d(xn, p) + µν − 2αL−2η

(
µδ + β,

α

µδ + β

)
. (22)

If η(r, ε) ≥ ε · η̃(r, ε) with η̃ increasing w.r.t. ε, then one can replace η by η̃ in (22).

Proof. Let rn = µd(p, Tp)+d(p, xn) < µδ+β. Since d(xn, p) ≤ rn, d(Txn, p) ≤ µd(p, Tp)+d(p, xn) =
rn and d(xn, Txn) ≥ α > α

µδ+β rn, by uniform convexity, it follows that

d(xn+1, p) ≤
(

1− 2λn(1− λn)η

(
rn,

α

µδ + β

))
rn by [38, Lemma 7]

≤
(

1− 2λn(1− λn)η

(
µδ + β,

α

µδ + β

))
rn

≤ rn − 2rnL
−2η

(
µδ + β,

α

µδ + β

)
≤ d(p, xn) + µd(p, Tp)− 2αL−2η

(
µδ + β,

α

µδ + β

)
< d(p, xn) + µν − 2αL−2η

(
µδ + β,

α

µδ + β

)
.
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The additional claim follows using α/rn instead of α/(µδ + β) :

d(xn+1, p) ≤ rn − 2rnL
−2η

(
µδ + β,

α

rn

)
≤ rn − 2αL−2η̃

(
µδ + β,

α

rn

)
≤ rn − 2αL−2η̃

(
µδ + β,

α

µδ + β

)
< d(p, xn) + µν − 2αL−2η̃

(
µδ + β,

α

µδ + β

)
.

Theorem 7.13. Let (X, d,W ) be a UCW -hyperbolic space with a monotone modulus of uniform
convexity η. Let x ∈ C and b > 0 such that for any γ > 0 there exists p ∈ C with

d(x, p) ≤ b and d(p, Tp) ≤ γ.

Then for every k ∈ N, g : N→ N,

∃N ≤ Φ+(k, g, L, b, η),∀m ∈ [N,N + g(N)]

(
d(xm, Txm) ≤ 1

k + 1

)
,

where

Φ+ = hM (0), h(n) = g(n) + n+ 1, M = d3(b+ 1)/θe,

θ =
1

4(k + 1)L2
η

(
b+ 1,

1

4(k + 1)(b+ 1)

)
.

If η satisfies the extra property from Lemma 7.12, then one can replace it by η̃ in θ.

Proof. Let k ∈ N, g : N → N. Then there exists p ∈ C such that d(x, p) ≤ b and d(p, Tp) ≤
2−Φ+−2/(3µ). Take n ≤ Φ+. Then d(p, Tp) ≤ 2−n−2/(3µ). By (21),

d(xn+1, p) ≤ d(xn, p) + µ(1− 1/L)d(p, Tp) ≤ d(xn, p) + 2−n−2/3.

Denote an = d(xn, p), α0 = 1/6 and αn =
(

1−
∑n−1
i=0 2−i−1

)
/6 for n ≥ 1. Apply [31, Proposition

6.4] with bn = βn = γn = 0, cn = 2−n−2/3, B1 = B2 = C2 = 0, A1 = b, A2 = 1/6, C1 = 1/6,
g̃(n) = g(n) + 1 to get that for all n ≤ Φ+ + 1, d(xn, p) ≤ b + 1/6 and that there exists N = hs(0)
for some s < M such that

∀i, j ∈ [N,N + g(N) + 1], |ai − aj | ≤ θ, |αi − αj | ≤ θ.

We show that

∀m ∈ [N,N + g(N)], d(xm, Txm) ≤ 1

k + 1
.

Let m ∈ [N,N + g(N)]. Suppose d(xm, Txm) > 1/(k + 1). Since m,m+ 1 ∈ [N,N + g(N) + 1] we
have that

|d(xm+1, p)− d(xm, p)| ≤ θ, |αm+1 − αm| = 2−m−2/3 ≤ θ.
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Assume that d(xm, p) ≥ 1/(4(k + 1)). Note that m ≤ N + g(N) < h(N) = hs+1(0) ≤ hM (0) = Φ+.

Hence, d(p, Tp) ≤ 2−Φ+−2/(3µ) < 2−m−2/(3µ) ≤ 1/(3µ). Apply (22) with α = 1/(4(k + 1)),
β = b+ 2/3, ν = 2−m−2/(3µ) and δ = 1/(3µ) to obtain that

d(xm+1, p) < d(xm, p) + 2−m−2/3− 2θ.

This yields that 2θ < d(xm, p) − d(xm+1, p) + 2−m−2/3 ≤ 2θ, a contradiction. So, d(xm, p) <
1/(4(k + 1)). Then

d(xm, Txm) ≤ d(xm, p) + d(p, Txm) ≤ 2d(xm, p) + µd(p, Tp)

≤ 1

2(k + 1)
+ 2−m−2/3 ≤ 1

2(k + 1)
+ θ ≤ 1

k + 1
.

In the particular case where in the above result the mapping g = 0, we obtain an approximate fixed
point bound for (xn) in the context of UCW -hyperbolic spaces.

In case of CAT(0) spaces this bound is quadratic in the error since we can take η(r, ε) := ε2/8 and
so η̃(r, ε) := ε/8. We then get

Φ(k, L, b) = 384 ((b+ 1)(k + 1)L)
2

as approximate fixed point bound.

Having such an approximate fixed point bound Φ, because (xn) is additionally uniformly Fejér
monotone w.r.t. F and F is uniformly closed, we can apply Theorem 5.3 to obtain, for C convex
and totally bounded with II-modulus of total boundedness γ, a result analogous to Theorem 7.7.(ii).

7.5 Mann iteration for asymptotically nonexpansive mappings

Let X be a W -hyerbolic space, C ⊆ X a convex subset and (kn) be a sequence in [0,∞) satisfying
lim
n→∞

kn = 0.

A mapping T : C → C is said to be asymptotically nonexpansive [16] with sequence (kn) if for all
x, y ∈ C and for all n ∈ N,

d(Tnx, Tny) ≤ (1 + kn)d(x, y).

Let T be asymptotically nonexpansive with sequence (kn) in [0,∞). We assume furthermore that

(kn) is bounded in sum by some K ∈ N, i.e.

∞∑
n=0

kn ≤ K. As an immediate consequence, we

get that T is Lipschitz continuous with Lipschitz constant 1 + K, hence, as in the case of strict
pseudo-contractions, it follows that F is uniformly closed with moduli ωF (k) = (1 +K)(4k+ 4) and
δF (k) = 2k + 1.
The Mann iteration starting with x ∈ C is defined by

x0 := x, xn+1 := (1− λn)xn + λnT
n(xn), (23)

where (λn) is a sequence in
[

1
L , 1−

1
L

]
for some L ∈ N, L ≥ 2.
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Lemma 7.14. (i) For all n,m ∈ N and all p ∈ C,

d(xn+m, p) ≤ eKd(xn, p) + eKm(n+m+K)d(p, Tp).

(ii) (xn) is uniformly (G,H)-Fejér monotone w.r.t. F with modulus

χ(n,m, r) = m(n+m+K)deKe(r + 1),

where G(a) = idR+ and H = eKidR+ . An H-modulus is given by βH(k) = deKe(k + 1).

Proof. (i) By [24, Lemma 4.4]. (ii) Apply (i).

Effective rates of metastability for asymptotic regularity (and, as a particular case, approximate
fixed point bounds) for the Mann iteraton were obtained in [30] in the setting of uniformly convex
Banach spaces and in [31] for the more general setting of UCW -hyperbolic spaces. Thus we can apply
Theorems 5.1 and 5.3. The result of applying Theorem 5.1 gives essentially the rate of metastability
that was first extracted in [24] in a more ad-hoc fashion and which now appears as an instance of a
general schema for computing rates of metastability. In fact, [24] has been the point of departure of
the present paper.

8 An application to the Proximal Point Algorithm

The proximal point algorithm is a well-known and popular method employed in approximating a
zero of a maximal monotone operator. There exists an extensive literature on this topic which stems
from the works of Martinet [44] and Rockafellar [50]. The method consists in constructing a sequence
using successive compositions of resolvents which, under appropriate conditions, converges weakly to
a zero of the considered maximal monotone operator. If imposing additional assumptions, one can
even prove strong convergence. Here we show that we can apply our results to obtain a quantitative
version of this algorithm in finite dimensional Hilbert spaces.

In the sequel H is a real Hilbert space and A : H → 2H is a maximal monotone operator. We assume
that the set zerA of zeros of A is nonempty. For every γ > 0 let JγA = (Id+ γA)−1 be the resolvent
of γA. Then JγA is a single-valued firmly nonexpansive mapping defined on H and zerA = Fix(JγA)
for every γ > 0. We refer to [3] for a comprehensive reference on maximal monotone operators.
Let x0 ∈ H and (γn) be a sequence in (0,∞). The proximal point algorithm starting with x0 ∈ H
is defined as follows:

xn+1 = JγnAxn.

Let us take F := zerA. One can easily see that

F =
⋂
k∈N

F̃k, where F̃k =
⋂
i≤k

{
x ∈ H | ‖x− JγiAx‖ ≤

1

k + 1

}
.

and that AFk = F̃k for every k ∈ N.
Furthermore, F is uniformly closed with moduli ωF (k) = 4k + 3, δF (k) = 2k + 1.
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Lemma 8.1. (i) For all n ∈ N,m ∈ N∗ and all p ∈ H,

‖xn+m − p‖ ≤ ‖xn − p‖+

n+m−1∑
i=n

‖p− JγiAp‖. (24)

(ii) (xn) is uniformly Fejér monotone w.r.t. F with modulus χ(n,m, r) = max{n+m−1,m(r+1)}.

Proof. (i) Remark that

‖xn+1 − p‖ = ‖JγnAxn − p‖ ≤ ‖JγnAxn − JγnAp‖+ ‖JγnAp− p‖
≤ ‖xn − p‖+ ‖JγnAp− p‖

and use induction.

(ii) Apply (24) and the fact that p ∈ AFχ(n,m,r) implies that for all m ≥ 1 and all l ≤ m,

n+l−1∑
i=n

‖p− JγiAp‖ ≤
n+m−1∑
i=n

‖p− JγiAp‖ ≤
m

χ(n,m, r) + 1
<

1

r + 1
.

In the following we consider for n ∈ N,

un =
xn − xn+1

γn
.

The next lemma is well-known. We refer, e.g., to the proof of [3, Theorem 23.41] and [3, Exercise
23.2, p. 349].

Lemma 8.2. (i) For every p ∈ zerA and every n, i ∈ N,

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − ‖xn − xn+1‖2 (25)

‖JγnAxn − JγiAxn‖ ≤ |γn − γi|
‖xn − xn+1‖

γn
(26)

‖xn − JγiAxn‖ ≤ ‖xn − xn+1‖+ |γn − γi|
‖xn − xn+1‖

γn
. (27)

(ii) The sequence (‖un‖) is nonincreasing.

Lemma 8.3. Assume that

∞∑
i=0

γ2
n =∞ with a rate of divergence θ and that b > 0 is an upper bound

on ‖x0 − p‖ for some p ∈ zerA. Then

(i) lim inf
n→∞

‖xn − xn+1‖ = 0 with modulus of liminf

∆(k, L, b) :=
⌈
b2(k + 1)2

⌉
+ L− 1, i.e.

for every k ∈ N and L ∈ N there exists L ≤ N ≤ ∆(k, L, b) such that ‖xn−xn+1‖ ≤ 1/(k+ 1).
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(ii) lim
n→∞

un = 0 with rate of convergence β(k, θ, b) := θ
(⌈
b2(k + 1)2

⌉)
.

Proof. (i) Applying (25) repeatedly we get that

∞∑
n=0

‖xn − xn+1‖2 ≤ ‖x0 − p‖2 ≤ b2.

Let k, L ∈ N and ∆ := ∆(k, L, b). Suppose that for every L ≤ n ≤ ∆, ‖xn−xn+1‖ > 1/(k+1).
Then

(∆− L+ 1)
1

(k + 1)2
<

∆∑
n=L

‖xn − xn+1‖2 ≤ b2,

which yields ∆ < b2(k + 1)2 + L− 1, a contradiction.

(ii) Let k ∈ N and β := β(k, θ, b). Since (‖un‖) is nonincreasing, it is enough to show that
there exists 0 ≤ N ≤ β such that ‖uN‖ ≤ 1/(k + 1). Suppose that for every 0 ≤ n ≤ β,
‖un‖ > 1/(k + 1). Then

1

(k + 1)2

⌈
b2(k + 1)2

⌉
≤ 1

(k + 1)2

β∑
n=0

γ2
n <

β∑
n=0

γ2
n‖un‖2

=

β∑
n=0

‖xn − xn+1‖2 ≤ b2.

We have obtained a contradiction.

Theorem 8.4. Assume that

∞∑
i=0

γ2
n = ∞ with a rate of divergence θ. Then (xn) has approximate

F -points with an approximate F -point bound

Φ(k,mk, θ, b) := θ
(⌈
b2(Mk + 1)2

⌉) ⌈
b2(Mk + 1)2

⌉
− 1,

where mk = max
0≤i≤k

γi, Mk = d(k + 1)(2 +mk)e − 1 and b > 0 is such that b ≥ ‖x0 − p‖ for some

p ∈ zerA.

Proof. Let k ∈ N. By Lemma 8.3.(i), there exists N1 ≤ ∆(Mk, 0, b) such that

‖xN1
− xN1+1‖ ≤

1

Mk + 1
≤ 1

(k + 1)(2 +mk)
.

If γN1 ≥ 1, it follows by (27) that for all i ≤ k,

‖xN1
− JγiAxN1

‖ ≤ ‖xN1
− xN1+1‖+ |γN1

− γi|
‖xN1 − xN1+1‖

γN1

≤
(

2 +
γi
γN1

)
‖xN1

− xN1+1‖

≤ (2 +mk)
1

(k + 1)(2 +mk)
=

1

k + 1
.
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Assume that γN1
< 1. Apply again Lemma 8.3.(i) to get the existence of N2 ≤ ∆(Mk, N1 + 1, b)

such that N2 > N1 and ‖xN2 − xN2+1‖ ≤ 1
Mk+1 . If γN2 ≥ 1 we use again the above argument. If

γN2 < 1, we apply once more the fact that ∆ is a modulus of liminf for ‖xn − xn+1‖. Let us denote
for simplicity β := θ

(⌈
b2(Mk + 1)2

⌉)
. Applying this argument β times we get a finite sequence

N1 < N2 < . . . < Nβ such that either γNj ≥ 1 for some j or γNj < 1 for all j = 1, . . . , β. In the first
case, we have as above that ‖xNj − JγiAxNj‖ ≤ 1

k+1 for all i ≤ k. In the second case, since Nβ ≥ β
and (‖un‖) is nonincreasing, an application of Lemma 8.3.(ii) for Mk gives us

‖uNβ‖ ≤ ‖uβ‖ ≤
1

Mk + 1
≤ 1

(k + 1)(2 +mk)
.

It follows then that for all i ≤ k,

‖xNβ − JγiAxNβ‖ ≤ ‖xNβ − xNβ+1‖+ |γNβ − γi|
‖xNβ − xNβ+1‖

γNβ

= γNβ‖uNβ‖+ |γNβ − γi|‖uNβ‖ ≤
(
2γNβ + γi

)
‖uβ‖

≤ (2 +mk)
1

(k + 1)(2 +mk)
=

1

k + 1
.

Since N1 ≤ ∆(Mk, 0, b) =
⌈
b2(Mk + 1)2

⌉
− 1 and for all j = 2, . . . , β,

Nj ≤ ∆(Mk, Nj−1 + 1, b) =
⌈
b2(Mk + 1)2

⌉
+Nj−1

we get that Nβ ≤ β
⌈
b2(Mk + 1)2

⌉
− 1, which finishes the proof.

As an immediate consequence of Proposition 4.3 and Remark 4.5 we obtain the well-known fact that

in Rn, under the hypothesis that

∞∑
i=0

γ2
n =∞, the proximal point algorithm converges strongly to a

zero of the maximal monotone operator A. Furthermore, since ‖xn‖ ≤M := b+‖p‖ (where b, p are as
above) and, by Example 2.8, B(0,M) is totally bounded with II-modulus γ(k) = d2(k + 1)

√
nMen,

we can apply the quantitative Theorem 5.3 to get rates of metastability for (xn).
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