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Abstract

In this paper we present another case study in the general project of proof min-
ing which means the logical analysis of prima facie non-effective proofs with the
aim of extracting new computationally relevant data. We use techniques based on
monotone functional interpretation (developed in [17]) to analyze Cheney’s simpli-
fication [6] of Jackson’s original proof [10] from 1921 of the uniqueness of the best
L1-approximation of continuous functions f ∈ C[0, 1] by polynomials p ∈ Pn of
degree ≤ n. Cheney’s proof is non-effective in the sense that it is based on classi-
cal logic and on the non-computational principle WKL (binary König’s lemma).
The result of our analysis provides the first effective (in all parameters) uniform
modulus of uniqueness (a concept which generalizes ‘strong uniqueness’ studied
extensively in approximation theory). Moreover, the extracted modulus has the op-
timal ε-dependency as follows from Kroó [22]. The paper also describes how the
uniform modulus of uniqueness can be used to compute the best L1-approximations
of a fixed f ∈ C[0, 1] with arbitrary precision. The second author uses this result to
give a complexity upper bound on the computation of the best L1-approximation
in [25].
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1 Introduction

This paper is another case study in the general project of proof mining which
means the logical analysis of prima facie non-effective proofs with the aim of
extracting new computationally relevant data 2 . At the same time we obtain
new results in approximation theory. More specifically, we analyze a non-
effective proof of the uniqueness of best approximations of continuous func-
tions f ∈ C[0, 1] by polynomials p ∈ Pn of degree ≤ n with respect to the
L1-norm 3

‖f‖1 :≡
∫ 1

0
|f(x)|dx.

In [15], the first author showed how a quite general class of (non-effective)
proofs of uniqueness theorems in analysis can be analyzed such that an effec-
tive so-called modulus of uniqueness can be extracted which generalises the
concept of strong unicity 4 . In [15] and [16] this technique has been applied
to the case of best Chebycheff approximation yielding new uniform bounds
on constants of strong unicity and a new quantitative version of the alter-
nation theorem. In this paper we apply this logical approach to investigate
the quantitative rate of strong unicity for the quite different case of best L1-
approximation. Like Chebycheff approximation, L1-approximation, also called
‘approximation in the mean’, is a classical topic in numerical mathematics and
was considered already by Chebycheff in 1859 and has been investigated ever
since (see [26] for a comprehensive survey). The uniqueness of the best L1-
approximation of f ∈ C[0, 1] by polynomials of degree ≤ n was first proved
in [10]. This proof uses measure theoretic arguments. A new uniqueness proof
which avoids this and only uses the Riemann integral instead was given in 1965
by Cheney (see [6],[7]). Because of this feature, Cheney called his proof ‘ele-
mentary’. From a logical point of view, however, it is highly non-constructive
relying both on classical logic and non-computational analytical principles
which correspond – in logical terminology – to the so-called binary (‘weak’)
König’s lemma, a principle which has received considerable attention in var-
ious parts of logic in recent years (see [27]). In this paper we carry out a
complete logical analysis of Cheney’s proof and show how the explicit modu-
lus mentioned above can be extracted from this (seemingly) hopelessly non-

2 See [15], [16], [19], [20] and [21] for other case studies as well as more information
on proof mining in general.
3 For f ∈ L1 uniqueness in general fails.
4 The term strong unicity was introduced by Newman and Shapiro [24] in 1963
and has been studied extensively in approximation theory. See e.g. the introduction
in [2] and the references given there for a discussion of the crucial importance of
estimates of strong unicity for the convergence analysis of iterative algorithms and
for stability analysis.
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constructive proof. Consequently, our result, like Cheney’s proof, does not
require any measure theory.

The main result of the present paper is the following effective strong unique-
ness theorem:

Main result (Theorem 4.1) Let Φ(ω, n, ε) :≡ min{ cnε
8(n+1)2

, cnε
2

ωf,n(
cnε
2

)},
where

cn :≡
⌊n/2⌋!⌈n/2⌉!

24n+3(n + 1)3n+1
and ωn(ε) :≡ min{ω(

ε

4
),

ε

40(n + 1)4⌈ 1
ω(1)

⌉
}.

The functional Φ is a uniform modulus of uniqueness for the best L1-approximation
of any function f in C[0, 1] having modulus of uniform continuity ω from Pn,
i.e.











∀n ∈ N; p1, p2 ∈ Pn; ε ∈ Q∗
+

(

∧2
i=1(‖f − pi‖1 − dist1(f, Pn) < Φ(ω, n, ε)) → ‖p1 − p2‖1 ≤ ε

)

,

where dist1(f, Pn) :≡ infp∈Pn ‖f − p‖1 and ω : Q∗
+ → Q∗

+ is a modulus of
uniform continuity for f ∈ C[0, 1] if 5

∀x, y ∈ [0, 1]; ε ∈ Q∗
+(|x − y| < ω(ε) → |f(x) − f(y)| < ε).

Moreover, this theorem can be proved in Heyting Arithmetic HAω in all fi-
nite types, and consequently holds in constructive mathematics in the sense
of Bishop. Such a “constructivization”, however, is not necessary for the ex-
traction of Φ which is done from the ineffective proof. In fact, our verification
of Φ is also done in E-PAω + WKL. The fact that Φ can be verified in HAω

then follows from a conservation result due to the first author.

The technical details of this analysis are mainly due to the second author
who is using the results in a subsequent paper [25] to determine a complexity
upper bound for the sequence (pb,n)n∈N of best approximating polynomials for
poly-time computable functions f ∈ C[0, 1] (in the sense of [11], [12]).

5 Note that this notion – used also in constructive mathematics and computable
and feasible analysis – differs from the concept of modulus of continuity used in
numerical analysis which we will discuss further below.
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1.1 Logical background

Before going into the details of the analysis we need to recall some general
logical background from [15] 6 . First we introduce a little amount of logical
terminology:

Let Aω be a (sub-)system of classical arithmetic in all finite types (like E-PAω

from [28] or Feferman’s fragment E-PRAω with quantifier-free induction and
primitive recursion on the type 0 only [8]). Let Aω

∗ denote the extension of Aω

by the schema

QF-AC : ∀f 1∃x0Aqf (f, x) → ∃F 2∀f 1Aqf(f, F (f))

of quantifier-free choice from functions to numbers (where Aqf is quantifier-
free) plus certain analytical principles Γ which – described in analytical terms
– correspond to applications of Heine-Borel compactness of e.g. [0, 1]d. In logi-
cal terms, these principles correspond to the so-called binary (‘weak’) König’s
lemma WKL which suffices to derive a substantial amount of mathematics
relative to weak fragments of arithmetic (see [27]) 7 . In this paper the only
genuine analytical tool Γ (which goes beyond E-PAω + QF-AC) is the at-
tainment of the infimum of continuous functions on compact intervals

∀f ∈ C[0, 1]∃x ∈ [0, 1]
(

f(x) = inf
y∈[0,1]

f(y)
)

. (1)

(1) is known to fail in computable analysis and even for poly-time computable
f there will be in general no computable x ∈ [0, 1] satisfying (1) (see [12]) 8 .

Now, let X be a Polish space, K a compact Polish space and F : X ×K → R

a continuous function (moreover all these objects have to be explicitly repre-
sentable in Aω) and assume that we can prove in Aω

∗ that for every f ∈ X,
F (f, ·) has at most one root in K, i.e. 9

∀f ∈ X∀x1, x2 ∈ K
(

2
∧

i=1

F (f, xi) = 0 → x1 = x2

)

.

6 Readers only interested in the numerical results but not in the general process of
proof mining might skip this passage.
7 E-PRAω + QF-AC + WKL is a finite type extension of the system WKL0

used in reverse mathematics and is (like the latter) Π0
2-conservative over primitive

recursive arithmetic PRA (see [1], [14]).
8 The principle (1) is known to be equivalent to WKL over systems like E-PRAω+
QF-AC even when f is given together with a modulus of uniform continuity, see
[27].
9 We may even have functions F : X×Y → R, where X,Y are general Polish spaces
and can allow constructively definable families (Kf )f∈X of compact subspaces of Y

which are parametrised by f ∈ X instead of a fixed K. See [15] for details.
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Then by a general logical meta-theorem proved in [15] (Theorem 4.3) one can
extract from such a proof an explicit bound Φ(f, k) (given by a closed term
of the underlying arithmetical system Aω) such that















∀f ∈ X∀k ∈ N∀x1, x2 ∈ K
( 2

∧

i=1
(|F (f, xi)| < 2−Φ(f,k)) → dK(x1, x2) < 2−k

)

,
(2)

where dK denotes the metric on K. Moreover, (2) can be proved without
using WKL and even in the intuitionistic variant Aω

i of Aω (and hence in
constructive analysis in the sense of Bishop).

The proof of this meta-theorem provides an algorithm for actually extracting
Φ. This algorithm is based on the proof-theoretic technique of monotone func-
tional interpretation [17]. It is important to note that Φ(f, k) does not depend
on x1, x2 ∈ K. Because of this fact, Φ(f, k) – which we call a modulus of
uniqueness – can be used to compute the unique root (if existent) from any
algorithm Ψ(f, k) computing approximate so-called ε(= 2−k)-roots of F (f, ·):

∀f ∈ X∀k ∈ N
(

Ψ(f, k) ∈ K ∧ |F (f, Ψ(f, k))| < 2−k
)

. (3)

One easily verifies that (2) and (3) imply that Ψ(f, Φ(f, k)) is a Cauchy se-
quence in K which converges with rate of convergence 2−k to the unique root
x ∈ K of F (f, ·). So x = limk→∞ Ψ(f, Φ(f, k)) can be computed with arbitrar-
ily prescribed precision (which can also be proved in Aω

i , see [15], Theorem
4.4) and the computational complexity of x can be estimated in terms of the
complexities of Φ and Ψ (cf. [25]).

Remark 1.1 (Important!) As usual in computable analysis (see [29]), the
functionals Φ(f, k) and Ψ(f, k) will depend not only on f ∈ X in the set
theoretic sense but on a (computationally meaningful) representation of f .
In the case of f ∈ C[0, 1], the representation of C[0, 1] as a Polish space
(C[0, 1], ‖ · ‖∞) in Aω requires that f is endowed with a modulus of uniform
continuity ωf . So when we write Φ(f, k) we tacitly understand that f is given
as a pair (f, ωf). Actually, it now suffices to use the restriction fr of f to
the rational numbers in [0, 1] (which can be enumerated so that fr can be
represented as a number theoretic function), since f can be reconstructed from
fr with the help of ωf . In this way, the representation (fr, ωf) of f can be
viewed as an object of type 1 so that computability on f reduces to the well-
known type-2 notion of computability (see again [29] for more information on
this).
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1.2 L1-approximation

Let us now move to the case of best L1-approximation treated in the present
paper. The uniqueness of the best approximation can be written as follows















∀n ∈ N∀f ∈ C[0, 1]∀p1, p2 ∈ Pn
( 2

∧

i=1
(‖f − pi‖1 = dist1(f, Pn)) → p1 = p2

)

.
(4)

Note that in (4) we can without loss of generality replace the non-compact
subspace Pn of C[0, 1] with the compact one K̃f,n :≡ {p ∈ Pn : ‖p‖1 ≤ 2‖f‖1}
since any best approximation pb has to satisfy ‖f−pb‖1 ≤ ‖f‖1 because other-
wise the zero polynomial would be a better approximation. As a consequence
of this, dist1(f, Pn) = dist1(f, K̃f,n) can easily be seen to be computable (uni-
formly in f as represented above and n). We use the slightly larger space

Kf,n :≡
{

p ∈ Pn : ‖p‖1 ≤
5
2
‖f‖1

}

in (4) since a modulus of uniqueness for
Kf,n can be extended to Pn in a particular convenient way.

In this paper we analyze the above mentioned proof of Cheney for (4) as given
in [6],[7] 10 which uses the non-computational principle (1) (together with
classical logic) but which can be formalized in Aω

∗ (as was shown in [13]). So
the above mentioned result on the extractability of a modulus of uniqueness
is applicable, i.e. the extractability of a (primitive recursive in the sense of
Gödel’s T ) functional Φ satisfying















∀n, k ∈ N∀f ∈ C[0, 1]∀p1, p2 ∈ Kf,n
( 2

∧

i=1
(‖f − pi‖1 − dist1(f, Pn) < 2−Φ(f,n,k)) → ‖p1 − p2‖1 < 2−k

) (5)

is guaranteed. Moreover, a simple trick (used also in [15] in the Chebycheff
case) allows to replace Kf,n with Pn so that















∀n, k ∈ N∀f ∈ C[0, 1]∀p1, p2 ∈ Pn
( 2

∧

i=1
(‖f − pi‖1 − dist1(f, Pn) < 2−Φ(f,n,k)) → ‖p1 − p2‖1 < 2−k

)

Remark 1.2 Markov inequality states that for any polynomial p of degree
≤ n, ‖p′‖∞ ≤ 2n2‖p‖∞, where p′ denotes the first derivative of p. Using this
inequality one can show that for any polynomial p ∈ Pn, ‖p‖∞ ≤ 2(n+1)2‖p‖1.
Hence, any upper bound on ‖p1−p2‖1 gives also an upper bound on ‖p1−p2‖∞
and we can use this to get a bound on the coefficients of p1 − p2. Namely, if

10 This result was first proved in [10] and is also called Jackson’s Theorem. Cheney’s
proof (which applies to arbitrary Chebycheff systems) is a simplification of Jackson’s
proof.
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p1(x) − p2(x) = anx
n + . . . + a1x + a0 and ‖p1 − p2‖1 < M then |ai| ≤

(2(n+1)2)i+1

i!
M . We present the complete proof in Section 3.5.

The importance of the modulus of uniqueness Φ(f, k) can also be illustrated
by the fact that Φ + 1 is automatically a modulus of pointwise continuity for
the operator which maps f ∈ X to its unique best approximation fb ∈ E ⊂ X
(see [15]). For the special cases of Chebycheff resp. L1-approximation this was
shown first in [7] resp. [3]. Therefore,











∀n, k ∈ N∀f, f̃ ∈ C[0, 1]
(

‖f − f̃‖1 < 2−Φ(f,n,k)−1 → ‖P(f, n) −P(f̃ , n)‖1 < 2−k
)

,

where P(f, n) is the unique best L1-approximation of f ∈ C[0, 1] from Pn.

Since (C[0, 1], ‖ · ‖1) is not a Polish space we have to represent C[0, 1] as the
space (C[0, 1], ‖ · ‖∞) to apply the logical meta-theorem mentioned above. As
we discussed already, this amounts to enriching the input f by a modulus of
uniform continuity ωf so that Φ will also depend on ωf .

Note that if C[0, 1] is replaced by the (pre-)compact (w.r.t. ‖ · ‖∞) set Kω,M of
all functions f ∈ C[0, 1] which have the common modulus of uniform continu-
ity ω and the common bound ‖f‖∞ ≤ M , then the same logical meta-theorem
guarantees the extractability of a modulus of uniqueness Φ which only depends
on Kω,M i.e. on ω, M (in addition to n, k). Moreover, even the M-dependency
can be eliminated as the approximation problem for f can be reduced to that
for f̃(x) :≡ f(x) − f(0) so that only a bound N ≥ supx∈[0,1] |f(x) − f(0)| is

required, which can easily be computed from ω (e.g take N :≡ ⌈ 1
ω(1)

⌉). There-
fore, from the logical meta-theorem and the fact that Cheney’s proof can be
formalized in E-PAω +QF-AC+WKL we obtain already the extractability
of a primitive recursive (in the sense of Gödel’s T ) modulus of uniqueness Φ
which only depends on ωf , n and k: a-priori information. Of course, only
the actual extraction of Φ by applying the algorithm provided by the logical
meta-theorem gives the detailed mathematical form of Φ as presented above:
a-posteriori information.

2 Analysing proofs in analysis

The algorithm to be used for proof mining applied in cases like Cheney’s proof
of Jackson’s Theorem (as treated in this paper) is based on the proof theo-
retic technique of monotone functional interpretation combined with negative
translation as developed in [17]. Whereas the meta-mathematical details of
this process are of importance to establish general meta-theorems on proof
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mining, this is not necessary for applications to specific proofs since here all
numerical data will explicitly be exhibited and verified. This is because mono-
tone functional interpretation explicitly transforms a given proof into another
numerically enriched proof (in the normal mathematical sense). It is the strat-
egy to find that proof (and to guarantee its existence) which is provided by
the logical technique.

To approach the problem of proof mining applied to a logically involved proof
as Cheney’s, one starts off by splitting the proof into small pieces which are
analyzed separately. As a consequence of the modularity of monotone func-
tional interpretation one can easily combine the results obtained from the
analysis of the pieces into a global result (this only requires functional appli-
cation and λ-abstraction). Applications of monotone functional interpretation
to the lemmas in the given proof at hand consist mostly of two steps,

1) transforming a given lemma L into a variant L∗ which has the form

∀n ∈ N∀x ∈ X∀y ∈ K∃kA1(n, x, y, k), (6)

where X is a Polish space, K a compact Polish space and A1 ∈ Σ0
1, and

2) extracting a bound Φ(n, x) for k which is independent of y.

It turns out that all the main lemmas to be analyzed have the form of (6).
Because of this it is worthwhile to formulate the application of monotone
functional interpretation to lemmas of this form as a special meta-theorem
(2.1 below) which allows us to avoid having to go into the details of the
underlying mechanism of functional interpretation each time. Although in the
following we perform the transformation L 7→ L∗ “by hand” one should note
that this transformation is also usually automatically provided by functional
interpretation.

Theorem 2.1 ([15], Theorem 4.1) Let X, K be Aω-definable Polish spaces,
K compact and consider a sentence which can be written (when formalized in
the language of Aω) in the form

A :≡ ∀n ∈ N∀x ∈ X∀y ∈ K∃k ∈ N A1(n, x, y, k),

where A1 is a purely existential. Then the following rule holds: 11



























Aω
∗ ⊢ ∀n ∈ N∀x ∈ X∀y ∈ K∃k ∈ N A1(n, x, y, k)

then one can extract an Aω-definable functional Φ s.t.

Aω
i ⊢ ∀n ∈ N∀x ∈ X∀y ∈ K∃k ≤ Φ(n, x) A1(n, x, y, k).

11 As the theorem shows the conclusion can be proved already in Aω
i instead of Aω

∗ .
This, however, is not important for the applied aspect of the present paper where
only the construction of Φ matters.
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In particular, if

Aω
i ⊢ (k ≤ k̃ ∧ A1(n, x, y, k)) → A1(n, x, y, k̃)

then

Aω
i ⊢ ∀n ∈ N∀x ∈ X∀y ∈ K A1(n, x, y, Φ(n, x)).

Again it is important to note that Φ does not depend on y ∈ K 12 .

It is important to observe that real numbers are represented as Cauchy se-
quences (an)n∈N of rational number with fixed rate of convergence (say 2−n)
i.e. ∀k, k̃ ≥ n(|ak − ak̃| ≤ 2−n). In this way, equality =R (similarly ≤R and
≥R) between real numbers is a ∀-statement (for any point k+1 in the Cauchy
sequence the approximants are close by 2−k) and strict inequality <R is a
∃-statement (there exists a point k + 1 in the sequence such that the approx-
imants are distant by 2−k). We call those: ‘hidden quantifiers’. For example,
let a, b ∈ R, then a <R b is an abbreviation for ∃k ∈ N(ak+1 + 2−k <Q bk+1).
When observing whether a lemma has the logical form of A above also the
hidden quantifiers have to be taken into consideration. We can, however, avoid
going into the representation of the real numbers by observing that a <R b
can be written either as ∃r ∈ Q∗

+(a <R b + r) or ∃r ∈ Q∗
+(a ≤R b + r). The

idea is that, if a <R b occurs positively we write it as ∃r ∈ Q∗
+(a <R b + r)

and if it occurs negatively we write it as ∃r ∈ Q∗
+(a ≤R b + r), in this way

after prenexing these quantifiers the matrix is purely existential and (given
that the prenexed quantifiers have a ∀∃ form as described in Theorem 2.1) we
can apply our meta-theorem 2.1.

Moreover, the extractability of a Φ such that (5) holds can be also justifying
by an application of the meta-theorem above. We just have to write (4) (after
presenting the hidden quantifiers) as,











∀n ∈ N; f ∈ C[0, 1]; p1, p2 ∈ Kf,n; k ∈ N∃l ∈ N
(

∧2
i=1 ‖f − pi‖1 ≤ dist1(f, Pn) + 2−l → ‖p1 − p2‖1 < 2−k

)

,

which has the form A above. In [13] it is shown that Cheney’s proof can be
formalized in the system E-PAω+QF-AC+WKL, and since (as we will show)
Kf,n can be replaced by Pn the functional Φ realizing ∃l in the formula above
is in fact a uniform modulus of uniqueness for L1-approximation of functions
in C[0, 1] by polynomials in Pn. Therefore, from the meta-theorem 2.1 and
previous discussions we obtain the following corollary (see [15], Theorems 4.1
and 5.1).

12 Recall that Φ(n, x) will depend on the representation of x ∈ X.
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Corollary 2.1 A functional Φ(f, n, k) given by a closed term of E-PAω (i.e.
a primitive recursive functional Φ in the sense of Gödel [9]) can be extracted
from Cheney’s proof of Jackson’s Theorem so that,















(E-)HAω ⊢ ∀n ∈ N; f ∈ C[0, 1]; p1, p2 ∈ Pn; k ∈ N
( 2

∧

i=1
(‖f − pi‖1 − dist1(f, Pn)) ≤ 2−Φ(f,n,k) → ‖p1 − p2‖1 < 2−k

)

.

Moreover, using the Φ above, a primitive recursive functional Ψ can be con-
structed such that,











(E-)HAω ⊢ ∀n ∈ N; f ∈ C[0, 1]
(

Ψ(f, n) ∈ Pn ∧ ‖f − Ψ(f, n)‖1 = dist1(f, Pn)
)

.

In this paper we carry out the extraction of a modulus of uniqueness Φ from
Cheney’s proof of Jackson’s theorem. We shall try to keep as separate as possi-
ble the mathematical and the logical parts of the analysis. Readers interested
in the mathematical results can focus upon the claims together with their
proofs. Meanwhile, for readers interested in the process of proof mining we
try to explain how the various steps in our concrete ‘mining’ correspond to
steps in the monotone functional interpretation (as used in the general meta-
theorems). Those explanations usually precede the treatment of each lemma.
This is important to serve the twofold goal of this paper, namely not only
to prove new quantitative results in L1-approximation theory but also to get
further insights into the process of proof mining in general.

3 Analysis of Cheney’s proof of Jackson’s theorem

3.1 Logical preliminaries on Cheney’s proof

In this section we sketch how a slight modification of Cheney’s proof can be
seen to be formalizable in basic arithmetic like Aω :≡ E-PAω plus the already
mentioned analytical principle (1), i.e. WKL. The only part of the proof which
cannot be directly formalized in Aω is the so-called ‘Lemma 1’ (see [7], p. 219)
which reads as follows

Lemma 3.1 ([7], Lemma 1) Let f, h ∈ C[0, 1]. If f has at most finitely
many roots and if

∫ 1
0 h sgn(f) 6= 0, then for some λ ∈ R,

∫ 1
0 |f − λh| <

∫ 1
0 |f |,

10



where

sgn(f)(x)
N
=



























1, if f(x) >R 0

0, if f(x) =R 0

−1, if f(x) <R 0.

In the context of the Cheney’s proof of Jackson’s theorem, h will be a polyno-
mial in Pn. Moreover, it will be shown that if f (for the particular f at hand)
has only less than n+1 roots one can construct an h such that

∫ 1
0 h sgn(f) 6= 0.

So we only need the lemma with the stronger assumption that f has fewer
than n + 1 roots. The existence of sgn(f) relies on the existence of the char-
acteristic function χ=R

for equality between reals which in turn is equivalent
to the existence of Feferman’s ([8]) non-constructive µ-operator (see [18]) and
hence to a strong form of arithmetical comprehension which is not available in
Aω

∗ :≡ Aω +WKL. However, the use of sgn can be eliminated as follows: if f
has less than n+1 roots then there exist points x0 < . . . < xn+1 in [0, 1] (where
x0 = 0 and xn+1 = 1) which contain all the roots of f . By classical logic and in-
duction one shows in Aω the existence of a vector (σ1, . . . , σn+1) ∈ {−1, 1}n+1

such that

σi =0











1, if f is positive on (xi−1, xi),

−1, if f is negative on (xi−1, xi)

for i = 1, . . . , n+1. Therefore,
∫ 1
0 h sgn(f) can be written as

∑n+1
i=1 σi

∫ xi
xi−1

h. In
Section 3.10 we shall see that this reformulation of Lemma 1 plays a crucial role
in the analysis of Cheney’s proof. Monotone functional interpretation of (the
negative translation of) our version of Lemma 1 will automatically introduce
the main notion needed for the quantitative analysis of the proof, namely the
concept of so-called ‘r-clusters of δ-roots’. This concept, furthermore, is the
key for the elimination of the use of (1) (i.e. WKL) on which Cheney’s proof
of Lemma 1 relies 13 .

3.2 Analysing the structure of the proof

The main goal of the paper is to extract from Cheney’s proof [7] of Jackson’s
theorem [10] an effective modulus of uniqueness which can be used, as it will
be shown in Section 5, to compute the best L1-approximation, pb, from Pn

of a given function f ∈ C[0, 1] with arbitrary precision 14 . In order to carry

13 It is the argument that ‘δ’, in the middle of page 219 in [7], is strictly positive
which uses (1). See Section 3.10 and Remark 3.10.3 for more information.
14 Pn is a Haar subspace of C[0, 1] of dimension n + 1.
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out the analysis we need to formalize Cheney’s proof. The first step we take
in this direction is to list the main formulas used in the proof and to show
how they are combined into lemmas. As mentioned before, each lemma will be
analyzed separately. The functional interpretation of the lemma shows which
functionals can be extracted from the proof of the lemma. But not all the
functionals need to be presented, since some of them will disappear in the
analysis of the proof (see the treatment of modus pones in the soundness of
functional interpretation, e.g. in [17]). By analyzing the structure of the whole
proof we can see which functionals are relevant and need to be extracted in
order to obtain the final result. Then we construct such functionals and prove
that they realize the lemma. In Section 4 we show how the final modulus Φ is
obtained by combining these functionals.

In the propositions A – K below we omitted the parameters f, n, p1 and p2,
therefore, instead of A one should read A(f, n, p1, p2), where n ranges over N,
f ∈ C[0, 1] and p1, p2 ∈ Pn, and the same holds for all the others propositions.
We also use here and for the rest of this paper the defined functions p(x) :≡
p1(x)+p2(x)

2
and f0(x) :≡ f(x) − p(x) as shorthand notation. In the formulas

and in the sketch of the proof presented below we use x :≡ x1, . . . , xn and
σ :≡ σ1, . . . , σn+1. The following formulas are used in Cheney’s proof:

A :≡
∧2

i=1(‖f − pi‖1 − dist1(f, Pn) = 0), i.e.
p1 and p2 are best L1-approximations of f from Pn.

B :≡ ‖f − p‖1 − dist1(f, Pn) = 0, i.e. p is a best L1-approximation of f .
C :≡ ‖f0‖1 = 1

2
‖f − p1‖1 + 1

2
‖f − p2‖1.

C1 :≡ ∀ε ∈ Q∗
+∃δ ∈ Q∗

+∀x, y ∈ [0, 1](|x − y| < δ → |g(x) − g(y)| < ε),
where g(x) :≡ |f0(x)| − 1

2
|f(x) − p1(x)| − 1

2
|f(x) − p2(x)|.

The formula C1 states that g is uniformly continuous.
D :≡ ∀x ∈ [0, 1](|f0(x)| = 1

2
(|f(x) − p1(x)| + |f(x) − p2(x)|)).

E :≡ ∃x0, . . . , xn ∈ [0, 1]
(

∧n
i=0 f0(xi) = 0 ∧

∧n
i=1 xi−1 < xi

)

, i.e.
f0 has at least n + 1 distinct roots.

F :≡ ∃x0, . . . , xn ∈ [0, 1]
(

∧n
i=0 p1(xi) = p2(xi) ∧

∧n
i=1 xi−1 < xi

)

, i.e.
p1 − p2 has at least n + 1 distinct roots.

G :≡ ∀x ∈ [0, 1](p1(x) = p2(x)), alternatively, ‖p1 − p2‖1 = 0 or p1 = p2.
H(h) :≡ ‖f0 − h‖1 ≥ ‖f0‖1.
I(x, σ, h) :≡

∑n+1
i=1 σi

∫ xi
xi−1

h(x)dx > 0, where x0 :≡ 0 and xn+1 :≡ 1.

J(x) :≡ ∃y ∈ [0, 1](f0(y) = 0 ∧
∧n+1

i=0 xi 6= y), where x0 :≡ 0 and xn+1 :≡ 1.
K :≡ ∀x ∈ [0, 1](f0(x) = 0 → p1(x) = p2(x)).

The first part of the proof (which we call derivation D1) is very simple and
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derives K from the assumption A,

[A]

[A] A → B

B

A ∧ B A ∧ B → C

C C1

C ∧ C1 C ∧ C1 → D

D D → K

K

The most involved part of the proof (which includes the application of Lemma
1) is when we want to prove that f0 has n+1 distinct roots. In the derivations
below we use σ′ :≡ σ′

1, . . . , σ
′
n+1, where σ′

i :≡ sgn (f0)(
xi−1+xi

2
). Moreover,

∀x :≡ ∀x1 ≤ . . . ≤ xn, where ∀x1 ≤ . . . ≤ xn Q(x) is an abreviation for
∀x1, . . . , xn (x1 ≤ . . . ≤ xn → Q(x)). Let the following derivation

∀x, σ∃h̃x,σI(x, σ, h̃x,σ)

∀x, h (∀λH(λh) ∧ I(x, σ′, h) → J(x))

∀x (∀λH(λh̃x,σ′) ∧ I(x, σ′, h̃x,σ′) → J(x))

∀λH(λh̃x,σ′) → ∀xJ(x)

be named D2. Using D2 from the assumption A we can derive that f0 has n+1
distinct roots.

[A] A → B

B B → ∀h H(h)

∀h H(h)

D2

∀λH(λh̃x,σ′) → ∀xJ(x)

∀x J(x)

We call this derivation D3. An outline of the whole proof in the form of an
informal natural deduction derivation is presented below,

D1

K

D3

∀x J(x) ∀x J(x) → E

E

K ∧ E K ∧ E → F

F F → G

G
[A]

A → G
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Remark 3.1 In general, we can only apply our meta-theorem 2.1 if Pn is
replaced by Kf,n. As it happened, only in Section 3.5 this limitation really
matters. Nonetheless, as we discussed already, at the end of the article we
show that the final result actually holds for Pn.

3.3 Lemma A → B [Triangle inequality]

The first lemma states,











∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n
(

∧2
i=1 ‖f − pi‖1 = dist1(f, Pn) → ‖f − p‖1 = dist1(f, Pn)

)

.

As described in the previous section, the first step is to present the hidden
quantifiers,



























∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n
(

∀δ ∈ Q∗
+(

∧2
i=1 ‖f − pi‖1 − dist1(f, Pn) ≤ δ) →

∀ε ∈ Q∗
+(‖f − p‖1 − dist1(f, Pn) < ε)

)

.

Then we look at the functional interpretation of the lemma,



























∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; ε ∈ Q∗
+∃δ ∈ Q∗

+
(

∧2
i=1 ‖f − pi‖1 − dist1(f, Pn) ≤ δ →

‖f − p‖1 − dist1(f, Pn) < ε
)

.

(7)

We see now that (7) has the same structure as the formula A in Theorem 2.1.
Therefore, we are sure to find a functional Φ1, depending at most on n, f and
ε, such that, 15



























∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; ε ∈ Q∗
+∃δ ≥ Φ1(f, n, ε)

(

∧2
i=1(‖f − pi‖1 − dist1(f, Pn) < δ) →

‖f − p‖1 − dist1(f, Pn) < ε
)

.

(8)

Since we have monotonicity in δ the functional Φ1 actually realizes δ. The same
phenomenon will happen in all the following lemmas, i.e. the lower bounds will
always be realizing functionals for the variables they bound. Here, it is obvious
how to construct Φ1,

15 Since in Theorem 2.1 we used 2−k (with k ∈ N) instead of δ ∈ Q∗
+, the upper

bound on k guaranteed by the meta-theorem gives a lower bound on δ.
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Claim 3.1 The functional Φ1(f, n, ε) :≡ Φ1(ε) :≡ ε does the job 16 .

Proof. Suppose (i) ‖f−p1‖1−dist1(f, Pn) < ε and (ii) ‖f−p2‖1−dist1(f, Pn) <
ε. Multiplying (i) and (ii) by 1/2 and adding them together we get 1/2(‖f −
p1‖1+‖f−p2‖1)−dist1(f, Pn) < ε. By the triangle inequality for the L1-norm,
1/2(‖2f − p1 − p2‖1) − dist1(f, Pn) < ε, i.e. ‖f − p‖1 − dist1(f, Pn) < ε. 2

Remark 3.2 The reader may have noticed that from (7) to (8) we changed
from ≤ to < in the premise of the implication. The reason we wrote ≤ first was
just to show that the lemma could be written in the form of A (from Theorem
2.1) and that a functional realizing δ was guaranteed by our meta-theorem.
Since a ≤ b/2 implies a < b (and the reverse implication holds without the
factor 1/2) we normally write the relation that yields the optimal bound. When
analysing the following lemmas we often claim that some sentence is an in-
stance of our meta-theorem 2.1 without bothering to write it explicitly in the
form of A. We hope the reader can see that through the implications mentioned
above these lemmas could in fact be written in the form of A.

3.4 Lemma A ∧ B → C [Basic norm property]

The lemma states,


























∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n
(

∧2
i=1(‖f − pi‖1 = dist1(f, Pn)) →

‖f − p‖1 − 1/2‖f − p1‖1 − 1/2‖f − p2‖1 = 0
)

.

After presenting the hidden quantifiers and performing the functional interpre-
tation we come again to the same logical structure of the formula in Theorem
2.1, and again we know that there must exist a functional Φ2 depending at
most on n, f and ε such that,



























∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; ε ∈ Q∗
+

(

∧2
i=1(‖f − pi‖1 − dist1(f, Pn) < Φ2(f, n, ε)) →

| ‖f − p‖1 − 1/2‖f − p1‖1 − 1/2‖f − p2‖1 | < ε
)

.

Again, the choice of Φ2 is simple,

Claim 3.2 The functional Φ2(f, n, ε) :≡ Φ2(ε) :≡ ε does the job.

16 Note that in fact Φ1 is independent of n and f . We adopt the convention that
parameters not used in the definition of the functionals will be dropped.
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Proof. Suppose (i) ‖f−p1‖1−dist1(f, Pn) < ε and (ii) ‖f−p2‖1−dist1(f, Pn) <

ε. By previous lemma we have (iii) ‖f − p‖1 − dist1(f, Pn) < ε. And (i)+(ii)
2

gives (iv) 1/2(‖f − p1‖1 + ‖f − p2‖1) − dist1(f, Pn) < ε. From (iii) and (iv),
we have, | ‖f − p‖1 − 1/2‖f − p1‖1 − 1/2‖f − p2‖1 | < ε, since if a ∈ [0, m)
and b ∈ [0, m) then |a − b| ∈ [0, m). 2

3.5 Lemma C1 [Continuity of g(x)]

Let g(x) :≡ |f0(x)|− 1
2
|f(x)−p1(x)|− 1

2
|f(x)−p2(x)|. Based on the continuity

of f, p1 and p2 we derive that g is continuous,











∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; ε ∈ Q∗
+; x, y ∈ [0, 1]∃δ ∈ Q∗

+
(

|x − y| ≤ δ → |g(x) − g(y)| < ε
)

.

Note that here we can again apply the meta-theorem 2.1 and we are sure to
find a function ∆ depending only f, n and ε such that, 17











∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; ε ∈ Q∗
+; x, y ∈ [0, 1]

(

|x − y| < ∆(f, n, ε) → |g(x) − g(y)| < ε
)

.

We write ∆(f, n, ε) as ωf,n(ε). In this section we show how the modulus of
continuity ωf,n(ε) can be computed using only n, the modulus of continuity
of f , ωf , and an upper bound Mf ≥ ‖f‖∞ (in Section 4 we show that we just
need a bound Mf on supx∈[0,1] |f(x) − f(0)|, for instance ⌈ 1

ωf (1)
⌉, so that the

final result only depends on ωf and n). It should be noted that the modulus
of continuity of a function is not unique, therefore when in the following we
write ωf(ε) :≡ . . . we mean that . . . can be taken as the modulus of continuity
of the function f .

3.5.1 Modulus of the sum

Given the moduli of continuity ωf and ωg for the functions f and g respectively,
we find the modulus of continuity for f + g, ωf+g, in the following way. We
have,

|x − y| < ωf (ε/2) → |f(x) − f(y)| < ε/2.
|x − y| < ωg(ε/2) → |g(x) − g(y)| < ε/2.

17 Here it is fundamental that p1 and p2 live in the compact space Kf,n otherwise
the modulus of continuity for g would depend also on these elements and we would
be unable to get a uniform modulus of uniqueness at the end.
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Therefore,

|x − y| < min{ωf(ε/2), ωg(ε/2)} →
(|f(x) − f(y)| < ε/2 ∧ |g(x) − g(y)| < ε/2).

|x − y| < min{ωf(ε/2), ωg(ε/2)} → |f(x) + g(x) − f(y) − g(y)| < ε.

Hence, ωf+g(ε) :≡ min{ωf(ε/2), ωg(ε/2)}.

3.5.2 Modulus of a constant times a function

We show that ωaf (ε) :≡ ωf(
ε
a
). For all a ∈ Q∗

+, if |x − y| < ωf(
ε
a
) then

|f(x) − f(y)| < ε
a
, and therefore, |af(x) − af(y)| < ε.

3.5.3 Modulus of p1 and p2

Let pi ∈ Kf,n. Then ‖pi‖1 ≤
5
2
‖f‖1 ≤

5
2
‖f‖∞. If pi(x) = anxn + . . . + a1x + a0

and p∗i (x) = anxn+1

n+1
+ . . . + a1x2

2
+ a0x then for all x ∈ [0, 1] we have,

|p∗i (x)| = |
∫ x

0
pi(x)dx| ≤

∫ x

0
|pi(x)|dx ≤ ‖pi‖1 ≤

5

2
‖f‖∞,

i.e. ‖p∗i ‖∞ ≤ ‖pi‖1 ≤
5
2
‖f‖∞. By Markov inequality (see e.g. [7]),

‖pi‖∞ = ‖(p∗i )
′‖∞ ≤ 2(n+1)2‖p∗i ‖∞ ≤ 2(n+1)2(

5

2
‖f‖∞) = 5(n+1)2‖f‖∞.

If we apply Markov inequality once more we get,

‖p′i‖∞ ≤ 2n25(n + 1)2‖f‖∞ < 10(n + 1)4‖f‖∞.

By the mean value theorem this implies that pi has Lipschitz constant 10(n+
1)4‖f‖∞ on [0, 1], i.e. ε

10(n+1)4‖f‖∞
is a modulus of uniform continuity for pi on

[0, 1]. Given an upper bound Mf on ‖f‖∞ we have, 18

ωpi
(ε) :≡

ε

10(n + 1)4Mf
.

Remark 3.3 Here we present how one gets a bound on the coefficients of
p given ‖p‖1 (or some bound on ‖p‖1). Let pi denote the i-th derivative of
p. Above we have shown that ‖p‖∞ ≤ 2(n + 1)2‖p‖1 which by Markov in-
equality yields (+) ‖pi‖∞ ≤ (2(n + 1)2)i+1‖p‖1. Since pi(x) = n!

(n−i)!
anx

n−i +

18 It should be clear that given f together with its modulus of continuity, ωf , there is
a simple algorithm to compute Mf , just take for instance Mf :≡ max{|f(i.ωf (1))| :
0 ≤ i ≤ ⌊ 1

ωf (1)⌋} + 1.
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. . . + i!ai, from (+) we get |i! ai| ≤ (2(n + 1)2)i+1‖p‖1 which implies |ai| ≤
(2(n+1)2)i+1

i!
‖p‖1.

3.5.4 The modulus of continuity ωf,n

Now we can present ωf,n as a function of ωf and n (note that we can take
ω|f | :≡ ωf),

ωf,n(ε)=min{ω|f−p|(ε/2), ω1/2|f−p1|(ε/4), ω1/2|f−p2|(ε/4)}

=min{ωf−p(ε/2), ωf−p1(ε/2), ωf−p2(ε/2)}

=min{ωf(ε/4), ωp1(ε/4), ωp2(ε/4)}

=min{ωf(
ε

4
),

ε

40(n + 1)4Mf
}.

3.6 Lemma C ∧ C1 → D [Integrand is ≤ 0 and continuous]

Let g(x) :≡ |f(x)− p(x)| − 1/2|f(x)− p1(x)| − 1/2|f(x)− p2(x)|. The lemma
says,

∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n

(

∫ 1

0
g(x)dx = 0 → ∀x ∈ [0, 1](g(x) = 0)

)

.

After presenting the hidden quantifiers and applying functional interpretation
we observe that again we can apply Theorem 2.1, and we are guaranteed to
find a functional Φ3(f, n, ε) such that,











∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; ε ∈ Q∗
+

(

|
∫ 1
0 g(x)dx| ≤ Φ3(f, n, ε) → ‖g‖∞ ≤ ε

)

.

Let ωf,n : Q∗
+ → Q∗

+ denote the modulus of uniform continuity of the function
g ∈ C[0, 1], proved to exist in the analysis of lemma C1 (Section 3.5).

Claim 3.3 The functional Φ3(f, n, ε) :≡ Φ3(ωf,n, ε) :≡ ε
2
· min{1

2
, ωf,n(

ε
2
)}

does the job.

Proof. Assume ‖g‖∞ > ε, since ∀x ∈ [0, 1](g(x) ≤ 0) we conclude ∃x0 ∈
[0, 1](g(x0) ≤ −ε). By the continuity of g we also have,

∀x ∈ [0, 1]
(

|x − x0| < ωf,n(ε/2) → g(x) < −ε/2
)

.
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If x0 < 1/2 then,

|
∫ 1

0
g(x)dx| > |

∫ min{1,x0+ωf,n(ε/2)}

x0

−ε/2 dx| ≥
ε

2
min{

1

2
, ωf,n(

ε

2
)},

otherwise (x0 ≥ 1/2),

|
∫ 1

0
g(x)dx| > |

∫ x0

max{0,x0−ωf,n(ε/2)}
−ε/2 dx| ≥

ε

2
min{

1

2
, ωf,n(

ε

2
)}.

From this we conclude,

|
∫ 1

0
g(x)dx| >

ε

2
min{

1

2
, ωf,n(

ε

2
)}. 2

3.7 Lemma D → K [If f0(x) = 0 then p1(x) = p2(x)]

Let f1(x) :≡ 1/2(|f(x) − p1(x)| + |f(x) − p2(x)|), the lemma says,











∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; x ∈ [0, 1]
(

‖ |f0| − f1‖∞ = 0 → (|f0(x)| = 0 → p1(x) = p2(x))
)

.

Again we are sure to find functionals Φ4(f, n, ε) and Φ5(f, n, ε) such that,


























∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; x ∈ [0, 1]; ε ∈ Q∗
+

(

‖ |f0| − f1‖∞ ≤ Φ4(f, n, ε) →

(|f0(x)| ≤ Φ5(f, n, ε) → |p1(x) − p2(x)| ≤ ε)
)

.

Claim 3.4 The functionals Φ4(f, n, ε) :≡ Φ4(ε) :≡ ε/8 and

Φ5(f, n, ε) :≡ Φ5(ε) :≡ ε/8 do the job.

Proof. Trivial. 2

3.8 Lemma F → G [If p has n + 1 roots then p = 0]

The lemma states that if the polynomial p1(x)−p2(x) has n+1 distinct roots
in the interval [0, 1] then p1(x) and p2(x) are actually identical,











∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n∀x0, . . . , xn ∈ [0, 1]
(

∧n
i=1(xi < xi+1) ∧

∧n
i=0(p1(xi) = p2(xi)) → ‖p1 − p2‖∞ = 0

)

.
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Then we present the hidden quantifiers and apply functional interpretation,










∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; r, ε ∈ Q∗
+; x0, . . . , xn ∈ [0, 1]∃δ ∈ Q∗

+
(

∧n
i=1(xi−1 + r ≤ xi) ∧

∧n
i=0(|p1(xi) − p2(xi)| ≤ δ) → ‖p1 − p2‖∞ ≤ ε

)

.

By Theorem 2.1 we are sure to find a functional Φ6 realizing δ.

Claim 3.5 The functional Φ6(f, n, r, ε) :≡ Φ6(n, r, ε) :≡ ⌊n/2⌋!⌈n/2⌉!rn

(n+1)
ε does

the job.

Proof. See [15], pages 82–83. 2

Remark 3.4 In fact, the functional Φ6 does the job for p1, p2 ∈ Pn (not only
for p1, p2 ∈ Kf,n).

3.9 Lemma B → ∀h H(h) [Definition of best L1-approximation]

This lemma is a trivial consequence of the definition of dist1,










∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n
(

‖f0‖1 = dist1(f, Pn) → ∀h ∈ Pn(‖f0 − h‖1 ≥ ‖f0‖1)
)

.

We can easily find a functional Φ7(f, n, ε) s.t.,


























∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; ε ∈ Q∗
+

(

‖f0‖1 − dist1(f, Pn) ≤ Φ7(f, n, ε) →

∀h ∈ Pn(‖f0 − h‖1 + ε ≥ ‖f0‖1)
)

.

Claim 3.6 The functional Φ7(f, n, ε) :≡ Φ7(ε) :≡ ε does the job.

Proof. Assume (i) ‖f0‖1−dist1(f, Pn) ≤ ε. By the definition of dist1 we have
for any h ∈ Pn (ii) ‖f0 − h‖1 = ‖f − (p + h)‖1 ≥ dist1(f, Pn). From (i) and
(ii) we have ‖f0 − h‖1 + ε ≥ ‖f0‖1. 2

3.10 Lemma ∀x, h (∀λH(λh) ∧ I(x, σ′, h) → J(x)) [Lemma 1]

This is the most intricate lemma used in the proof, hence we analyze it in
greater detail. We first rewrite the lemma as it is stated in [7]. The contrapo-
sition of Lemma 1 is used in the proof.
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Lemma 3.2 (Lemma 1) Let f ∈ C[0, 1], n ∈ N and h, p1, p2 ∈ Pn. If f0 has
at most n roots then either

∫ 1
0 (h(x) sgn(f0)(x))dx = 0 or there exists a λ ∈ R

such that
∫ 1
0 |f0(x) − λh(x)|dx <

∫ 1
0 |f0(x)|dx.

Proof. Assume that all the roots of f0 are among 0 = x0 ≤ x1 ≤ . . . ≤ xn+1 =
1 and w.l.g. assume that

∫ 1
0 (h(x) sgn(f0)(x))dx > 0. Let B′ :≡

⋃n+1
i=0 (xi −

r, xi + r) and B :≡ B′ ⋂[0, 1]. Let A :≡ [0, 1]\B. Make r small enough so that
∫

A(h(x) sgn(f0)(x))dx >
∫

B |h(x)|dx. Note that A is a finite union of closed
intervals which contain no roots of f0, therefore δ :≡ min{|f0(x)| : x ∈ A}
is positive. Hence we can find a λ such that 0 < λ‖h‖∞ < δ, and for points
x ∈ A, sgn(f0 − λh)(x) = sgn(f0)(x), which implies (see [7] or the proof of
Claim 3.7 for details) that

∫ 1
0 |f0(x) − λh(x)|dx <

∫ 1
0 |f0(x)|dx. 2

3.10.1 Logical analysis of Lemma 1

The Lemma 1 as it is presented above does not have the logical form to which
we can apply the meta-theorem 2.1. We can, however, show that a variation of
the Lemma 1, which can be used in Cheney’s proof does have that logical form.
Let B′ :≡

⋃n+1
i=0 (xi−r, xi +r), B :≡ B′ ⋂[0, 1] and A :≡ [0, 1]\B, where x0 :≡ 0

and xn+1 :≡ 1. Note that A can be written as the union of smaller intervals 19

Ai :≡ [xi−1 + min{r, xi−xi−1

2
}, xi − min{r, xi−xi−1

2
}], for 1 ≤ i ≤ n + 1. For the

rest of Section 3 we use x0, xn+1, A, B and Ai as defined above and we mention
explicitly which r we are using when this is not clear from the context. The
version of Lemma 1 we consider is: For all f ∈ C[0, 1] and n ∈ N



























∀p1, p2 ∈ Pn; x1 ≤ . . . ≤ xn ∈ [0, 1]; h ∈ Pn; r ∈ Q∗
+

(

∀y ∈ A(fy 6= 0) ∧
∫

A h sgn(f) >
∫

B |h| →

∃λ ∈ R(‖f − λh‖1 < ‖f‖1)
)

(9)

where A, B depend on x1 ≤ . . . ≤ xn and r.

First we show how (9) can be used in Cheney’s proof. Since f will be taken
to be f0 we can prove ∀λ ∈ R; h ∈ C[0, 1](‖f0 − λh‖1 ≥ ‖f0‖1) which leaves,
for all f ∈ C[0, 1] and n ∈ N











∀p1, p2 ∈ Pn; x1 ≤ . . . ≤ xn ∈ [0, 1]; h ∈ Pn; r ∈ Q∗
+

(

∃y ∈ A(f0(y) = 0) ∨
∫

A h sgn(f0) ≤
∫

B |h|
)

19 Note that the intervals
⋃

Ai and A only differ on at most a finite number of
points. Clearly, however, the integrations

∑
∫

Ai
and

∫

A coincide.
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but we can easily prove











∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Pn; x1 ≤ . . . ≤ xn ∈ [0, 1]

∃h ∈ C[0, 1]; r ∈ Q∗
+

(

∀y ∈ A(f0(y) 6= 0) →
∫

A h sgn(f0) >
∫

B |h|
)

from which we can obtain the existence of n + 1 roots by induction.

Now we can replace Pn with Kf,n in (9) and rewrite the integral of h sgn(f0)
over the intervals A as a sum of integrals over smaller intervals Ai (which are
guaranteed by the premise to contain no root of f0) as described in Section
3.1. Hence Lemma 1 can be formally written as, for all f ∈ C[0, 1] and n ∈ N



























∀p1, p2 ∈ Kf,n; x1 ≤ . . . ≤ xn ∈ [0, 1]; h ∈ Pn; r ∈ Q∗
+

(

∀y ∈ A(f0(y) 6= 0) ∧
∑n+1

i=1 σi

∫

Ai
h >

∫

B |h| →

∃λ ∈ R(‖f0 − λh‖1 < ‖f0‖1)
)

where σi :≡ sgn(f0)(
xi−1+xi

2
), x0 :≡ 0 and xn+1 :≡ 1. Presenting the hidden

quantifiers we obtain 20 , for all f ∈ C[0, 1] and n ∈ N



























∀p1, p2 ∈ Kf,n; x1 ≤ . . . ≤ xn ∈ [0, 1]; h ∈ Pn; δ, r, η ∈ Q∗
+ ∃l ∈ Q∗

+
(

∀y ∈ A(|f0(y)| ≥ δ) ∧
∑n+1

i=1 σi

∫

Ai
h ≥

∫

B |h| + η →

∃λ ∈ R(‖f0 − λh‖1 + l < ‖f0‖1)
)

.

This last step can be viewed as a weakening of the Lemma 1 since we replace
∀y ∈ A(f0(y) 6= 0) by the stronger statement ∃δ ∈ Q∗

+∀y ∈ A(|f0(y)| ≥ δ)
in the premise. In view of WKL, however, we have that the above formula
actually implies the original Lemma 1. Note that we can take η = 1 w.l.g.
since h/η ∈ Pn. Hence, get for all f ∈ C[0, 1] and n ∈ N



























∀p1, p2 ∈ Kf,n; x1 ≤ . . . ≤ xn ∈ [0, 1]; h ∈ Pn; δ, r ∈ Q∗
+ ∃l ∈ Q∗

+
(

∀y ∈ A(|f0(y)| ≥ δ) ∧
∑n+1

i=1 σi

∫

Ai
h ≥

∫

B |h| + 1 →

∃λ ∈ R(‖f0 − λh‖1 + l < ‖f0‖1)
)

(10)

3.10.2 Functional realizing Lemma 1

By observing that (10) has (relative to E-PAω) the same logical form as
the formula A in the meta-theorem 2.1 21 we are sure to find a functional

20 Using that by WKL, ∀y ∈ A(f0(y) 6= 0) ↔ ∃δ ∈ Q∗
+∀y ∈ A(|f0(y)| ≥ δ).

21 Note that we can treat σi as ∀σ1, . . . , σn+1 ∈ {−1, 1} with the purely universal
assumption
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Φ8(f, n, δ, r, h) such that, for all f ∈ C[0, 1] and n ∈ N



























∀p1, p2 ∈ Kf,n; x1 ≤ . . . ≤ xn ∈ [0, 1]; h ∈ Pn; δ, r ∈ Q∗
+

(

∀y ∈ A(|f0(y)| > δ) ∧
∑n+1

i=1 σi

∫

Ai
h >

∫

B |h| + 1 →

∃λ ∈ R(‖f0 − λh‖1 + Φ8(f, n, δ, r, h) < ‖f0‖1)
)

.

Claim 3.7 The functional Φ8(f, n, δ, r, h) :≡ Φ8(n, δ, h) :≡ δ
‖h‖∞

does the

job.

Proof. We have to prove that, for all f ∈ C[0, 1] and n ∈ N



























∀p1, p2 ∈ Kf,n; x1 ≤ . . . ≤ xn ∈ [0, 1]; h ∈ Pn; δ, r ∈ Q∗
+

(

∀y ∈ A(|f0(y)| > δ) ∧
∑n+1

i=1 σi

∫

Ai
h >

∫

B |h| + 1 →

∃λ ∈ R(‖f0 − λh‖1 + δ
‖h‖∞

< ‖f0‖1)
)

.

Let f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; h ∈ Pn; δ, r ∈ Q∗
+ be fixed. Note that

now we not only require f0 not to have roots in A but not even δ-roots (i.e.
|f0(y)| > δ). As a consequence y has to be ‘r-apart’ from all xi. We say that
y does not belong to the (xi, r)-clusters 22 . Now we follow the original proof.
Take n points, x1, . . . , xn, such that (i) 0 = x0 ≤ x1 ≤ . . . ≤ xn+1 = 1
and suppose that (ii) all δ-roots of f0 belong to at least one of the (xi, r)-
clusters. Moreover, suppose that (iii)

∑n+1
i=1 σi

∫

Ai
h >

∫

B |h| + 1, where σi =

sgn(f0)(
xi−1+xi

2
). By assumption (ii) we have σi = sgn(f0)(x), for x ∈ Ai and

then
∑n+1

i=1 σi

∫

Ai
h(x) dx =

∫

A(h(x) sgn(f0)(x)) dx. By (ii) we have f0(x) > δ

for all x ∈ A. Therefore, taking λ :≡ δ
‖h‖∞

we have (iv) sgn(f0 − λh)(x) =

sgn(f0)(x), for x ∈ A. Hence,

∧n+1
i=1 (σi = 1 → sgn(f0)(

xi−xi−1

2 ) ≥ 0 ∧ σi = −1 → sgn(f0)(
xi−xi−1

2 ) ≤ 0),

since the case where sgn(f0)(
xi−xi−1

2 ) = 0 does not matter.
22 This is fundamental to the elimination of the WKL, as mentioned in Section 3.1.
We discuss this point in more details in Section 3.10.3.
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‖f0 − λh‖1 =
∫

A
|f0 − λh| +

∫

B
|f0 − λh|

(iv)
=

∫

A
(f0 − λh) sgn(f0) +

∫

B
|f0 − λh|

=
∫

A
f0 sgn(f0) − λ

∫

A
h sgn(f0) +

∫

B
|f0 − λh|

≤
∫

A
f0 sgn(f0) − λ

∫

A
h sgn(f0) +

∫

B
|f0| + λ

∫

B
|h|

=
∫

A
|f0| +

∫

B
|f0| + λ

∫

B
|h| − λ

∫

A
h sgn(f0)

=
∫ 1

0
|f0| + λ

∫

B
|h| − λ

∫

A
h sgn(f0).

Now we can add δ
‖h‖∞

on both sides of the inequality and put λ = δ
‖h‖∞

in
evidence to get,

‖f0 − λh‖1 +
δ

‖h‖∞
≤ ‖f0‖1 +

δ

‖h‖∞
(1 +

∫

B
|h| −

∫

A
h sgn(f0))

(iii)
< ‖f0‖1. 2

Remark 3.5 In order to be precise we should have written max{1, ‖h‖∞}
instead of ‖h‖∞ in the definition of Φ8, so that it is always defined. This can
be seen to be not necessary because we only apply these functionals to an h with
uniform norm different from zero (see Section 3.12). Moreover, the functional
Φ8 should range over Q∗

+, but ‖h‖∞ ∈ R+. Therefore, we should have also
written ‖h‖∞,Q instead of ‖h‖∞ in the definition of Φ8, where ‖h‖∞,Q is a
rational upper bound on ‖h‖∞.

Remark 3.6 As it turned out the functional Φ8 can be given independently of
r. This independency can be explained by fact that (as we will see in Section
3.11) r is taken to be a function of ‖h‖∞, and such dependency already appears
in Φ8.

3.10.3 Elimination of WKL

As we discussed already in the introduction, the logical method of monotone
functional interpretation upon which the proof of the general logical meta-
theorem is based not only provides an algorithm for the extraction of the
modulus of uniqueness Φ but also a constructive verification of Φ which can
be formalized in intuitionistic arithmetic in all finite types HAω. In particular,
we get from this that Jackson’s theorem is provable in HAω despite the fact
that Cheney’s proof heavily relies on classical logic and the non-computational
binary König’s lemma WKL. We will not carry out the details of this intu-
itionistic verification since we focus in this paper on the applied aspect of
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constructing Φ, which is, as a special feature of monotone functional inter-
pretation, largely independent from the “constructivization” part. However, in
3.10.2 above we can see already how the constructivisation of Cheney’s proof
comes out of our analysis: as said before, WKL is used in the equivalent (see
[27]) 23 form of

∀f ∈ C[0, 1]∀a, b ∈ [0, 1](a < b → ∃x0 ∈ [a, b](f(x0) = inf
x0∈[a,b]

f(x))) (11)

to conclude

∀x ∈ [xi−1 + r, xi − r](f(x) > 0) → inf
x∈[xi−1+r,xi−r]

f(x) > 0.

After our replacement of ‘roots xi’ by ‘r-clusters of δ-roots’ this transforms
into

∀x ∈ [xi−1 + r, xi − r](f(x) > δ) → inf
x∈[xi−1+r,xi−r]

f(x) ≥ δ

which follows from the constructively valid ‘ε-weakening’















∀f ∈ C[0, 1]∀a, b ∈ [0, 1]

(a < b → ∀ε > 0∃x0 ∈ [a, b](f(x0) − inf
x0∈[a,b]

f(x) < ε))

version of (11) which eliminates the use of WKL. Also the use of classical
logic to find σi such that

σi =0 0 ↔ f(
xi−1 + xi

2
) ≥R 0

is no longer necessary since we now have that

f(
xi−1 + xi

2
) ≥R δ ∨ f(

xi−1 + xi

2
) ≤R −δ

which can easily be decided since δ ∈ Q∗
+.

3.11 Lemma ∀x, σ∃h I(x, σ, h)

In the second part of Cheney’s proof he considers the case where f0 has
less than n + 1 roots, from this assumption he arrives at a contradiction
(using Lemma 1) when assuming that for any h ∈ Pn,

∫

h sgn(f0) = 0.
We have indicated above that a contradiction is also obtained by assuming
∃r ∈ Q∗

+(
∫

A h sgn(f) >
∫

B |h|). Here we show that for any given n points

23 Note that f ∈ C[0, 1] is given together with a modulus of uniform continuity ωf .
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x1 ≤ . . . ≤ xn in the interval [0, 1] and for any σ1, . . . , σn+1 ∈ {−1, 1} (where
σi will denote the sign of the function f0 in the interval Ai) it is possible to
find a function h ∈ Pn and r ∈ Q∗

+ such that
∑n+1

i=1 σi

∫

Ai
h >

∫

B |h|, where
x0 = 0 and xn+1 = 1. Formally,











∀n ∈ N; x1 ≤ . . . ≤ xn ∈ [0, 1]; σ1, . . . , σn+1 ∈ {−1, 1}∃h ∈ Pn; r ∈ Q∗
+

(

∑n+1
i=1 σi

∫

Ai
h >

∫

B |h|
)

.

In the same way as we did in Section 3.10.1 we present the hidden quantifier
η in the inequality and since h/η ∈ Pn we have,











∀n ∈ N; x1 ≤ . . . ≤ xn ∈ [0, 1]; σ1, . . . , σn+1 ∈ {−1, 1}∃h ∈ Pn; r ∈ Q∗
+

(

∑n+1
i=1 σi

∫

Ai
h >

∫

B |h| + 1
)

.

The sentence above states the existence of an r ∈ Q∗
+ and a function h ∈ Pn.

Therefore, there exists also a k ∈ Q∗
+ such that k ≥ ‖h‖∞. Here we can again

apply our meta-theorem 2.1 and we are sure to find functions Φ9 and Φ10

depending only on n such that, 24











∀n ∈ N; x1 ≤ . . . ≤ xn ∈ [0, 1]; σ1, . . . , σn+1 ∈ {−1, 1}∃h ∈ Pn; r ≥ Φ9(n)
(

∑n+1
i=1 σi

∫

Ai
h >

∫

B |h| + 1 ∧ Φ10(n) ≥ ‖h‖∞
)

,

where A and B are defined as before.

Claim 3.8 The functions Φ9(n) :≡ 1
16(n+1)3

and Φ10(n) :≡ 8(n + 1)2 do

the job.

Proof. Let 0 = x0 ≤ x1 ≤ . . . ≤ xn+1 = 1 and σ1, . . . , σn+1 ∈ {−1, 1}
be given. Ignore all the points xj such that xi = xj and i < j. We are left
with ñ + 2 points 0 = xa0 < xa1 < . . . < xañ+1

= 1 where ai−1 < ai, ai ∈
{0, . . . , n+1} and ñ ≤ n. Let x̃i :≡ xai

and σ̃i :≡ σai
. Since we have eliminated

just empty intervals we have for any function h ∈ Pn,
∑n+1

i=1 σi

∫ xi
xi−1

h(x) dx =
∑ñ+1

i=1 σ̃i

∫ x̃i
x̃i−1

h(x) dx. Among the points x̃1, . . . , x̃ñ pick only the points x̃i for
which σ̃i 6= σ̃i+1. Finally, we are left with m + 2 points 0 = x̃b0 < x̃b1 < . . . <
x̃bm+1 = 1 where bi−1 < bi, bi ∈ {0, . . . , ñ + 1} and m ≤ ñ. Let yi :≡ x̃bi

and
σ∗

i :≡ σ̃bi
. Again we have

∑ñ+1
i=1 σ̃i

∫ x̃i
x̃i−1

h(x)dx =
∑m+1

i=1 σ∗
i

∫ yi
yi−1

h(x)dx, for any

h ∈ Pn. Then we define h̃(x) :≡ (x − y1) . . . (x − ym) and

h(x) :≡ +/−8(n+1)2

‖h̃‖∞
h̃(x).

24 Note that Φ9 and Φ10 do not depend on the points x1, . . . , xn nor on σ1, . . . , σn+1

since they are elements from the compact spaces [0, 1] and {−1, 1}, respectively, and
∧n−1

i=1 xi ≤ xi+1 is purely universal.
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Choose +/− so that
∑m+1

i=1 σ∗
i

∫ yi
yi−1

h(x)dx =
∑m+1

i=1

∫ yi
yi−1

|h(x)|dx. Hence,

n+1
∑

i=1

σi

∫ xi

xi−1

h(x) dx =
∫ 1

0
|h(x)| dx.

Moreover, it is clear from the definition of h that ‖h‖∞ = 8(n+1)2. Therefore,
from Remark 1.2 (cf. also Section 3.5.3) we get

∫ 1

0
|h(x)| dx = ‖h‖1 ≥

‖h‖∞
2(n + 1)2

= 4.

Let r :≡ Φ9(n). It is clear that the intervals B as a whole (as defined above)
have length at most 1

8(n+1)2
. Therefore,

∫

B |h(x)| dx ≤ 1. Hence,

n+1
∑

i=1

σi

∫

Ai

h(x) dx =
∫

A
|h(x)| dx >

∫

B
|h(x)| dx + 1.

2

Remark 3.7 Note that (as follows from the result above) we can even allow
σi to range over {−1, 0, 1} as long as σi = 0 only when xi − xi−1 ≤ 2Φ9(n).
In such cases the value of σi has no influence on the result.

3.12 Eliminating the polynomial h in Lemma 1

We have just shown that,











∀x1 ≤ . . . ≤ xn ∈ [0, 1]; σ1, . . . , σn+1 ∈ {−1, 1}∃h ∈ Pn
(

∑n+1
i=1 σi

∫

Ai
h >

∫

B |h| + 1 ∧ Φ10(n) ≥ ‖h‖∞
)

,
(12)

where Ai and B are defined with r replaced by Φ9(n). We can take r = Φ9(n)
because h is taken (cf. proof of Claim 3.8) in such way that

∑

i σi

∫

Ai
h =

∫

A |h|
which makes the matrix of the lemma monotone on ∃r.

Let f ∈ C[0, 1], n ∈ N, p1, p2 ∈ Kf,n and x1 ≤ . . . ≤ xn ∈ [0, 1] be fixed, and
let h̃ be the function from (12) when σi :≡ f0(

xi−1+xi

2
), where x0 :≡ 0 and

xn+1 :≡ 1. Note that here σi can be 0 (cf. Remark 3.7). Applying Lemma 1 to
h̃ and Φ9(n) (i.e. taking h = h̃ and r = Φ9(n)) we get,











∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; x1 ≤ . . . ≤ xn ∈ [0, 1]; δ ∈ Q∗
+

(

∀λ ∈ R(‖f0 − λh̃‖1 + Φ8(n, δ, h̃) ≥ ‖f0‖1) → ∃y ∈ A(|f0(y)| ≤ δ)
)

.
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Having in mind that we have ‖h̃‖∞ ≤ 8(n+1)2 we take Φ̃8(n, δ) :≡ δ
8(n+1)2

.

By the monotonicity of the functional Φ8 in ‖h‖∞ we have Φ̃8(n, δ) ≤ Φ8(n, δ, h̃).
Then,











∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; x1 ≤ . . . ≤ xn ∈ [0, 1]; δ ∈ Q∗
+

(

∀λ ∈ R(‖f0 − λh̃‖1 + Φ̃8(n, δ) ≥ ‖f0‖1) → ∃y ∈ A(|f0(y)| ≤ δ)
)

.

We can then conclude,



























∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; δ ∈ Q∗
+

(

∀h ∈ Pn(‖f0 − h‖1 + Φ̃8(n, δ) ≥ ‖f0‖1) →

∀x1 ≤ . . . ≤ xn ∈ [0, 1]∃y ∈ A(|f0(y)| < δ)
)

.

We can actually replace the conclusion of the implication above with the actual
existence of n + 1 roots in the following way (lemma ∀xJ(x) → E). Assume

∀x1 ≤ . . . ≤ xn ∈ [0, 1]∃y ∈ [0, 1](|f0(y)| < δ ∧
n+1
∧

i=0

|xi − y| ≥ Φ9(n))
)

. (13)

If m < n + 1 is the biggest number of δ-roots of f0 which are pairwise apart
from each other by at least Φ9(n) then by (13) we have a contradiction. Hence,

∃x0, . . . , xn ∈ [0, 1](
n
∧

i=0

|f0(xi)| < δ ∧
n
∧

i=1

(xi−1 + Φ9(n) ≤ xi)).

Therefore, we have,



























∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; δ ∈ Q∗
+

(

∀h ∈ Pn(‖f0 − h‖1 + Φ̃8(n, δ) ≥ ‖f0‖1) →

∃x0, . . . , xn ∈ [0, 1](
∧n

i=0 |f0(xi)| < δ ∧
∧n

i=1 xi−1 + Φ9(n) ≤ xi)
)

.

4 The uniform modulus of uniqueness for L1-approximation

In this section we show how the computed functionals are combined in order to
obtain the uniform modulus of uniqueness. Let f ∈ C[0, 1], n ∈ N, p1, p2 ∈ Kf,n
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and ε ∈ Q∗
+ be fixed. Assume (for i ∈ {1, 2}),



























‖f − pi‖1 − dist1(f, Pn) <

min{Φ1(Φ7(Φ̃8(n, Φ5(Φ6(n, Φ9(n), ε))))),

Φ1(Φ2(Φ3(ωf,n, Φ4(Φ6(n, Φ9(n), ε)))))}.

(14)

By Section 3.3 we have, (where f0(x) = f(x) − p1(x)+p2(x)
2

)

‖f0‖1 − dist1(f, Pn) < Φ2(Φ3(ωf,n, Φ4(Φ6(n, Φ9(n), ε)))).

By Section 3.4 (and since Φ1 is the identity),

| ‖f0‖1 − 1/2‖f − p1‖1 − 1/2‖f − p2‖1 | < Φ3(ωf,n, Φ4(Φ6(n, Φ9(n), ε))).

By Section 3.6 25 ,

‖ |f0| − 1/2|f − p1| − 1/2|f − p2| ‖∞ ≤ Φ4(Φ6(n, Φ9(n), ε)).

Hence, by Section 3.7,



























∀x ∈ [0, 1]

(|f0(x)| ≤ Φ5(Φ6(n, Φ9(n), ε)) →

|p1(x) − p2(x)| ≤ Φ6(n, Φ9(n), ε)).

(15)

By the same assumption (14) and Section 3.3 we also have,

‖f0‖1 − dist1(f, Pn) < Φ7(Φ̃8(n, Φ5(Φ6(n, Φ9(n), ε)))).

And by Section 3.9,

∀h ∈ Pn

(

‖f0 − h‖1 + Φ̃8(n, Φ5(Φ6(n, Φ9(n), ε))) ≥ ‖f0‖1

)

.

Hence, by Section 3.12 (taking δ = Φ5(Φ6(n, Φ9(n), ε))),











∃x0, . . . , xn ∈ [0, 1]

(
∧n

i=0 |f0(xi)| < Φ5(Φ6(n, Φ9(n), ε)) ∧
∧n

i=1 xi−1 + Φ9(n) ≤ xi).

And by (15),











∃x0, . . . , xn ∈ [0, 1]

(
∧n

i=0 |p1(xi) − p2(xi)| ≤ Φ6(n, Φ9(n), ε) ∧
∧n

i=1 xi−1 + Φ9(n) ≤ xi).

25 Since
∫

|f0| −
1
2 |f − p1| −

1
2 |f − p2| = ‖f0‖1 −

1
2‖f − p1‖1 −

1
2‖f − p2‖1.
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Therefore, by Section 3.8 (taking r = Φ9(n)) we conclude,

‖p1 − p2‖∞ ≤ ε. (16)

If we substitute the linear functionals, Φ1, Φ2, Φ4, Φ5 and Φ7, to make the
conclusion more legible, we have (14) → (16),











‖f − pi‖1 − dist1(f, Pn) <

min{Φ̃8(n, Φ6(n,Φ9(n),ε)
8

), Φ3(ωf,n, Φ6(n,Φ9(n),ε)
8

)} → ‖p1 − p2‖∞ ≤ ε.

After applying Φ̃8 and Φ9 we get,











‖f − pi‖1 − dist1(f, Pn) <

min{
Φ6(n, 1

16(n+1)3
,ε)

64(n+1)2
, Φ3(ωf,n,

Φ6(n, 1
16(n+1)3

,ε)

8
)} → ‖p1 − p2‖∞ ≤ ε.

Then we apply Φ6,











‖f − pi‖1 − dist1(f, Pn) <

min{
⌊n/2⌋!⌈n/2⌉!

24n+3(n+1)3n+1 ε

8(n+1)2
, Φ3(ωf,n,

⌊n/2⌋!⌈n/2⌉!
24n+3(n+1)3n+1 ε)} → ‖p1 − p2‖∞ ≤ ε.

Let cn :≡ ⌊n/2⌋!⌈n/2⌉!
24n+3(n+1)3n+1 then we can rewrite the above formula as,











‖f − pi‖1 − dist1(f, Pn) <

min{ cnε
8(n+1)2

, Φ3(ωf,n, cnε)} → ‖p1 − p2‖∞ ≤ ε.

And finally we apply the definition of Φ3,











‖f − pi‖1 − dist1(f, Pn) <

min{ cnε
8(n+1)2

, cnε
2

ωf,n(
cnε
2

)} → ‖p1 − p2‖∞ ≤ ε.

Let Φ̃(f, n, ε) :≡ min{ cnε
8(n+1)2

, cnε
2

ωf,n( cnε
2

)}, where

ωf,n :≡ min{ωf(
ε

4
),

ε

40(n + 1)4Mf

}

and Mf is a bound on ‖f‖∞. We have shown that,











∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n
(

∧2
i=1(‖f − pi‖1 − dist1(f, Pn) < Φ̃(f, n, ε)) → ‖p1 − p2‖∞ ≤ ε

)

.
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Proposition 1 The functional Φ̃(f, n, ε) is a uniform modulus of uniqueness
for the best L1-approximation of C[0, 1] from Kf,n, i.e.











∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Kf,n; ε ∈ Q∗
+

(

∧2
i=1(‖f − pi‖1 − dist1(f, Pn) < Φ̃(f, n, ε)) → ‖p1 − p2‖1 ≤ ε

)

.

Proof. Above, plus the fact that ‖p1 − p2‖1 ≤ ‖p1 − p2‖∞. 2

Claim 4.1 Φ̃(f, n, ε) ≤ ε
8

Proof. Trivial. 2

Now we show that Proposition 1 can be generalised to the whole space Pn

(i.e. we can replace Kf,n with Pn). Moreover, we notice that the dependency
on particular values of the function f can be eliminated so that the modulus
of uniqueness depends on f only through its modulus of continuity.

Theorem 4.1 Let Φ(ω, n, ε) :≡ min{ cnε
8(n+1)2

, cnε
2

ωf,n( cnε
2

)}, where the con-

stant cn :≡ ⌊n/2⌋!⌈n/2⌉!
24n+3(n+1)3n+1 and ωn(ε) :≡ min{ω( ε

4
), ε

40(n+1)4⌈ 1
ω(1)

⌉
}. For all f ∈

C[0, 1] with modulus of continuity ω











∀n ∈ N; p1, p2 ∈ Pn; ε ∈ Q∗
+

(

∧2
i=1(‖f − pi‖1 − dist1(f, Pn) < Φ(ω, n, ε)) → ‖p1 − p2‖1 ≤ ε

)

.

Proof. Actually, we prove the stronger version of the theorem where instead
of ⌈ 1

ω(1)
⌉ in the definition of ωn we have any upper bound on supx∈[0,1] |f(x)−

f(0)|. First we show that in Proposition 1 we can replace Kf,n with Pn. Suppose
without loss of generality that p1 ∈ Pn\Kf,n. Then ‖p1‖1 > 5

2
‖f‖1 and hence

‖f − p1‖1 > 3
2
‖f‖1 ≥ 3

2
dist1(f, Pn). Assume that ‖f − pi‖1 < dist1(f, Pn) +

Φ̃(f, n, ε). By Claim 4.1, ‖f −pi‖1 < dist1(f, Pn)+ ε
8
. Then, ε

8
> 1

2
dist1(f, Pn),

i.e. dist1(f, Pn) < ε
4
. Therefore ‖f − pi‖1 < dist1(f, Pn) + ε

8
< ε

2
and we

have ‖p1 − p2‖1 ≤ ε. The second point is that some upper bound Mf ≥
‖f‖∞ is used to define ωf,n in Proposition 1. We claim that an upper bound
Nf ≥ supx∈[0,1] |f(x) − f(0)| is sufficient. For any function f ∈ C[0, 1] and

polynomials p1, p2 ∈ Pn let f̃ , p̃1 and p̃2 be the functions obtained by the
transposition of f , p1 and p2 respectively by f(0) (i.e. f̃(x) :≡ f(x)−f(0) and
p̃i(x) :≡ pi(x) − f(0)). It is clear that

(i) ‖f − pi‖1 = ‖f̃ − p̃i‖1,
(ii) dist1(f, Pn) = dist1(f̃ , Pn) and
(iii) ‖p1 − p2‖1 = ‖p̃1 − p̃2‖1.
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Let ω be the modulus of continuity for f and assume ‖f −pi‖1 < dist(f, Pn)+
Φ(ω, n, ε). By (i) and (ii) we have, ‖f̃− p̃i‖1 < dist(f̃ , Pn)+Φ(ω, n, ε). Since ω
is also a modulus of continuity for f̃ and ‖f̃‖∞ = supx∈[0,1] |f(x)− f(0)| ≤ Nf

we have Φ̃(f̃ , n, ε) = Φ(ω, n, ε), therefore,

‖f̃ − p̃i‖1 < dist(f̃ , Pn) + Φ̃(f̃ , n, ε),

which implies, by Proposition 1, the first part of this proof and (iii), ‖p1 −
p2‖1 ≤ ε. Since ⌈ 1

ω(1)
⌉ ≥ supx∈[0,1] |f(x) − f(0)| if ω is a modulus of uniform

continuity for f the theorem follows. 2

As mentioned in Remark 3.3, the function Ψ(n) :≡ n!
2n+1(n+1)2n+2 relates the

L1-norm of a polynomial p ∈ Pn to its actual coefficients, i.e.

∀n ∈ N∀p ∈ Pn

(

‖p‖1 ≤ Ψ(n) · ε → ‖p‖max ≤ ε
)

,

where ‖p‖max denotes the maximum absolute value of the coefficients of p.
Therefore, we obtain the following corollary.

Corollary 4.1 Let Φ(ω, n, ε) be as defined above. For all f ∈ C[0, 1] with
modulus of continuity ω











∀n ∈ N; p1, p2 ∈ Pn; ε ∈ Q∗
+

(

∧2
i=1(‖f − pi‖1 − dist1(f, Pn) < Φ(ω, n, Ψ(n) · ε)) → ‖p1 − p2‖max ≤ ε

)

.

A function f ∈ C[0, 1] is said to be Lipschitz continuous with Lipschitz constant
λ ∈ R∗

+ if |f(x)−f(y)| ≤ λ|x−y| (i.e. ε
λ

is a modulus of continuity for f) and is
Lipschitz-α continuous with constant λ, 0 < α ≤ 1, if |f(x)−f(y)| ≤ λ|x−y|α

(equivalently, ( ε
λ
)1/α is a modulus of continuity in our sense for f) 26 . In this

way, if a function f is Lipschitz continuous (or Lipschitz-α continuous) with
constant λ then supx∈[0,1] |f(x) − f(0)| ≤ λ (and we can take λ instead of

⌈ 1
ω(1)

⌉ in Theorem 4.1).

Corollary 4.2 For any f ∈ C[0, 1],

i) let ΦL(λ, n, ε) :≡ min{ cnε
8(n+1)2

, c2nε2

160(n+1)4λ
}. If f is Lipschitz continuous with

constant λ then the functional ΦL is a modulus of uniqueness for f .

ii) let ΦLα(λ, α, n, ε) :≡ min{ cnε
8(n+1)2‘

, cnε
2

( cnε
8λ

)1/α, c2nε2

160(n+1)4λ
}. If f is Lipschitz-α

continuous with constant λ then the functional ΦLα is a modulus of unique-
ness for f .

And as a corollary of Proposition 5.4 from [15] and Theorem 4.1 above we get,

26 In analysis the condition ‘|f(x) − f(y)| ≤ λ|x − y|α for some λ’ is called Hölder
condition with exponent α.
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Theorem 4.2 Let P(f, n) denote the operator which assigns to any given
function f ∈ C[0, 1] and any n ∈ N the best L1-approximation of f ∈ C[0, 1]

from Pn. Then ΦP (ωf , n, ε) :≡
Φ(ωf ,n,ε)

2
, Φ as defined in Theorem 4.1, is a

modulus of pointwise continuity for the operator P(f, n), i.e.,











∀f, f̃ ∈ C[0, 1]; n ∈ N; ε ∈ Q∗
+

(‖f − f̃‖1 < ΦP (ωf , n, ε) → ‖P(f, n) −P(f̃ , n)‖1 ≤ ε).

Proof. For completeness we reproduce here the proof as given in [15]. One
easily verifies that dist1(f, Pn) is Lipschitz continuous in f (with respect to
the L1-norm) with λ = 1, i.e.

‖f − f̃‖1 < ε → |dist1(f, Pn) − dist1(f̃ , Pn)| < ε. (17)

Assume now that ‖f − f̃‖1 < ΦP (ωf , n, ε) = 1
2
Φ(ωf , n, ε). Then,

‖f −P(f̃ , n)‖1 ≤ ‖f̃ − P(f̃ , n)‖1 + ‖f − f̃‖1 = dist1(f̃ , Pn) + ‖f − f̃‖1

(17)
< dist1(f, Pn) +

1

2
Φ(ωf , n, ε) + ‖f − f̃‖1

< dist1(f, Pn) + Φ(ωf , n, ε).

Since, furthermore, ‖f − P(f, n)‖1 = dist1(f, Pn), we obtain from Theorem
4.1 that ‖P(f, n) − P(f̃ , n)‖1 ≤ ε. 2

5 Computing the sequence (pb,n)n∈N

An operator Bf,n : Q∗
+ → Pn computes the unique best L1-approximation,

pb ∈ Pn, of a function f ∈ C[0, 1] (given with a modulus of uniform continuity
ωf) from Pn if for any given ε ∈ Q∗

+ it generates a polynomial of degree ≤ n
with rational coefficients (i.e. a n + 1-vector of rational coefficients) Bf,n(ε)
such that, ‖Bf,n(ε) − pb‖1 ≤ ε. We indicate how this can be achieved using
the uniform modulus of uniqueness, Φ(ωf , n, ε),











∀f ∈ C[0, 1]; n ∈ N; p1, p2 ∈ Pn; ε ∈ Q∗
+

(

∧2
i=1(‖f − pi‖1 − dist1(f, Pn) < Φ(ωf , n, ε)) → ‖p1 − p2‖1 ≤ ε

)

.

First we substitute p for p1 and pb for p2,











∀f ∈ C[0, 1]; n ∈ N; p ∈ Pn; ε ∈ Q∗
+

(

‖f − p‖1 − dist1(f, Pn) < Φ(ωf , n, ε) → ‖p − pb‖1 ≤ ε
)

.
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Now we just need to find a Bf,n(ε) such that, ‖f −Bf,n(ε)‖1 − dist1(f, Pn) <
Φ(ωf , n, ε). Note that now there is no explicit reference to pb, only implicit in
dist1(f, Pn).

A set Nε :≡ {p1, p2, . . . , pnε} ⊂ Pn is said to be an ε-net of Kf,n if ∀p ∈
Kf,n∃pi ∈ Nε(‖p − pi‖1 ≤ ε). The algorithm for computing pb consists in
evaluating ‖f − pi‖1 for each pi in some Φ(ωf , n, ε)-net of Kf,n and taking
the pi which gives the minimum value. Although the elements of the net Nε

are taken to be polynomials with rational coefficients, the value of ‖f − pi‖1

will in general be a real number. Therefore, we only compute ‖f − pi‖1 up to
some precision. By an appropriate choice of the precision the minimum value
returned by the search will in fact be close the the actual minimum.

The complexity analysis of the whole algorithm has been carried out in [25]
and the following result was obtained.

Theorem 5.1 ([25]) For polynomial time computable f ∈ C[0, 1] the se-
quence (pb,n)n∈N is strongly NP computable in NP[Bf ], where Bf is an oracle
deciding left cuts for integration.

6 Related results

The first proof of the uniqueness of the best L1-approximation of f ∈ C[0, 1]
by polynomials in Pn was given in 1921 by Jackson [10]. The proof we anal-
ysed was published by Cheney [6] in 1965 and reprinted in his book [7] from
1966. Only in 1975 Björnest̊al [3], by analyzing the qualitative (relative to
the dependencies) aspect of the continuity of the projection operator for ar-
bitrary normed linear spaces X into a closed linear subspace of X, obtained
the following result.

Theorem 6.1 (Björnest̊al, 75) Let f ∈ C[0, 1] and the modulus Ωf be de-
fined as

Ωf (ε) :≡ sup
|x−y|<ε

|f(x) − pb(x) − f(y) + pb(y)|,

where pb is the best L1-approximation of f from Pn. Then, for p ∈ Pn, ε
sufficiently small and for some constant c depending on f and n,

‖p − pb‖1 ≥ ε → ‖f − p‖1 − ‖f − pb‖1 ≥ 2
∫ Ω−1

f
(c ε)

0
c ε − Ωf (x) dx,
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where Ω−1
f (ε) is defined as 27

Ω−1
f (ε) :≡ inf{δ : Ωf (δ) = ε}.

We show that our Theorem 4.1 implies an effective version of Björnest̊al’s
theorem. First we can rewrite his theorem in the form we have been working
with,











‖f − p‖1 < dist1(f, Pn) + 2
∫ Ω−1

f
(c ε)

0 c ε − Ωf (x) dx →

‖p − pb‖1 < ε.
(18)

First we show that
∫ Ω−1

f
(c ε)

0 c ε − Ωf (x) dx can be written as c′ εΩ−1
f (c′ ε), for

some constant c
2
≤ c′ ≤ c. For that purpose note that,

∫ Ω−1
f

(c ε)

0
c ε − Ωf (x) dx ≤

∫ Ω−1
f

(c ε)

0
c ε dx = c εΩ−1

f (c ε).

On the other hand we have,

∫ Ω−1
f

(c ε)

0
c ε − Ωf (x) dx≥

∫ Ω−1
f

( c
2

ε)

0
c ε − Ωf(x) dx

≥
∫ Ω−1

f
( c
2

ε)

0

c

2
ε dx =

c

2
εΩ−1

f (
c

2
ε).

Therefore, for some c
2
≤ c′ ≤ c, (18) is equivalent to,

‖f − p‖1 < dist1(f, Pn) + 2c′ εΩ−1
f (c′ ε) → ‖p − pb‖1 < ε.

The constant c, however, is not presented by Björnest̊al and moreover the
function Ω−1

f is usually non-computable. We can give an effective modulus
of continuity for f − pb following Section 3.5 (and taking Mf = ⌈ 1

ωf (1)
⌉ as

suggested in the proof of Theorem 4.1),

ωf−pb
(ε)≥min{ωf(

ε

2
), ωpb

(
ε

2
)}

≥min{ωf(
ε

2
),

ε

20(n + 1)4⌈ 1
ωf (1)

⌉
}

Therefore, let ω∗
f−pb

(ε) :≡ min{ωf(
ε
2
), ε

20(n+1)4⌈ 1
ωf (1)

⌉
}, we can restate our The-

orem 4.1 and see how it relates to Björnest̊al’s result:

27 Note that Ω−1
f (ε) (for ε small enough so that Ω−1

f (ε) is defined) is a special
modulus of continuity for f − pb in our sense.
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Corollary 6.1 Let f ∈ C[0, 1], ωf be some modulus of uniform continuity of
f , and p ∈ Pn. Then for ε ≤ 1,

‖f − p‖1 < dist1(f, Pn) + c̃n ε ω∗
f−pb

(c̃n ε) → ‖p − pb‖1 ≤ ε,

where c̃n :≡ cn

8(n+1)2
and cn :≡ ⌊n/2⌋!⌈n/2⌉!

24n+3(n+1)3n+1 .

Proof. From Theorem 4.1 we have,











‖f − p‖1 < dist1(f, Pn) + min{ cnε
8(n+1)2

, cnε
2

ω∗
f−pb

( cnε
4

)} →

‖p − pb‖1 ≤ ε,

which implies,











‖f − p‖1 < dist1(f, Pn) + min{ cnε
8(n+1)2

, cnε
8(n+1)2

ω∗
f−pb

( cnε
4

)} →

‖p − pb‖1 ≤ ε.

For ε ≤ 1 we have ω∗
f−pb

( cnε
4

) ≤ 1. Hence,

‖f − p‖1 < dist1(f, Pn) +
cnε

8(n + 1)2
ω∗

f−pb
(
cnε

4
) → ‖p − pb‖1 ≤ ε.

Since 8(n + 1)2 > 4 we get our result. 2

Some years later, in 1978, Kroó [22] showed that the constant c in Björnest̊al’s
result needed not to depend on any particular point of the function f but only
on its modulus of continuity 28 . We got an effective version of Björnest̊al’s
result where our constant c is completely independent of the function f and
only depends on the dimension of the space Pn.

Remark 6.1 In Kroó [22] the problem of L1-approximation of continuous
functions is considered for arbitrary Haar subspaces of C[0, 1] containing the
constant functions. Kroó [23] treats uniqueness subspaces of C[0, 1] but in
that case the constant c also depends on values of the function f and not
only on its modulus of continuity. Since Cheney’s proof which we analyzed
works for arbitrary Haar subspaces we are also guaranteed to extract uniform
moduli of uniqueness in the general setting. As done by Jackson [10] in his
original proof, in the present work we focused on the specific Haar subspace
Pn in order to get fully explicit results. One can observe that only Section 3.8
(Lagrange interpolation formula used to show that Pn is a Haar space), Section
3.5 (Markov inequality used to show that Kf,n is compact by constructing a
common modulus of uniform continuity) and Section 3.11 (Markov inequality
plus the construction of a polynomial which changes sign in each xi) made

28 As in Björnest̊al [3], Kroó does not present the actual constant.
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reference to the particular Haar space Pn. From results in [4](Lemma 4.3),
[5](lemma) and [13](after Lemma 9.32) it follows that there exist effective and
quantitative substitutes for each of these constructions for arbitrary (effectively
given) Haar spaces. So it is clear that the analysis carried out in this paper can
be extended to general Haar spaces H containing the constant functions 29 .

7 Concluding remarks on the extraction of Φ

We emphasize again the two important roles played by logic in the extraction
of the modulus of uniqueness for best L1-approximation presented here. First,
by showing that Cheney’s proof could be formalized in the system Aω

∗ (and
by the logical meta-theorem 2.1) we were guaranteed that such a modulus Φ
would exist and that it could be extracted from the mentioned proof. Moreover,
the fact that Φ depends only on ωf , n and ε (which was proved by Kroó years
after Cheney’s proof) is obtained immediately from the meta-theorem 2.1.
The second important role is that logic not only guaranteed the existence
of the modulus but it went even further and supplied a procedure (monotone
functional interpretation) to extract the modulus, which enabled us to provide
for the first time an explicit dependency on n and ωf . And, as it happened, the
extracted modulus of uniqueness has the optimal ε-dependency established by
Kroó.

We hope it is transparent that all the mathematical tools used in our analysis
were already present in Cheney’s proof, 30 which can be noticed for instance
in the analysis of Lemma 1 (Section 3.10) where in order to prove that the
functionals presented realized the lemma (see Claim 3.7) we followed line by
line the original proof from [7], the only difference being that we considered
the ε-version of the propositions. This visibly shows that the uniform mod-
ulus of uniqueness here extracted was really implicitly present in Cheney’s
proof but could only be made explicit with the help of logic. The difficulty to
extract ad hoc such information can be understood because Cheney’s proof
(although very simple from the mathematical point of view and even called
‘elementary’ by the author) is logically very intricate due to the use of proof
by contradiction and principles that fail in computable analysis.

29 We only need the constant functions to belong to H if we want to get rid of the
f dependency in c, i.e. obtain a constant c in the uniform modulus of uniqueness
depending only on n and ωf .
30 Except Markov inequality which was used to show that the set Kf,n is compact
(and also in Section 3.11) and Lagrange interpolation formula used to prove that
Pn is a Haar space. These tools, however, are standard in approximation theory.
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1991.

[13] U. Kohlenbach. Theory of majorizable and continuous functionals and their
use for the extraction of bounds from non-constructive proofs: effective moduli
of uniqueness for best approximations from ineffective proofs of uniqueness
(german). PhD thesis, Frankfurt, pp. xxii+278, 1990.

[14] U. Kohlenbach. Effective bounds from ineffective proofs in analysis: an
application of functional interpretation and majorization. Journal of Symbolic
Logic, 57:1239–1273, 1992.

38



[15] U. Kohlenbach. Effective moduli from ineffective uniqueness proofs. An
unwinding of de La Vallée Poussin’s proof for Chebycheff approximation. Annals
of Pure and Applied Logic, 64:27–94, 1993.

[16] U. Kohlenbach. New effective moduli of uniqueness and uniform a–priori
estimates for constants of strong unicity by logical analysis of known proofs in
best approximation theory. Numerical Functional Analysis and Optimization,
14:581–606, 1993.

[17] U. Kohlenbach. Analysing proofs in Analysis. In W. Hodges, M. Hyland,
C. Steinhorn, and J. Truss, editors, Logic: from Foundations to Applications,
pages 225–260. European Logic Colloquium (Keele, 1993), Oxford University
Press, 1996.

[18] U. Kohlenbach. Higher order reverse mathematics. Preprint, 14 pages, 2000.

[19] U. Kohlenbach. On the computational content of the Krasnoselski and Ishikawa
fixed point theorems. In J. Blanck, V. Brattka, and P. Hertling, editors,
Computability and Complexity in Analysis, (CCA’2000), volume 2064 of Lecture
Notes in Computer Science, pages 119–145. Springer, 2001.

[20] U. Kohlenbach. A quantitative version of a theorem due to Borwein-Reich-
Shafrir. Numerical Functional Analysis and Optimization, 22:641–656, 2001.
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