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Abstract
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1 Introduction

Let X be a normed linear space and S C X be a subset of X. In 1967, Browder introduced
an important generalization of the class of nonexpansive mappings, namely the pseudocontractive
mappings T : S — S defined by

Vu,v € SYA>1 (A= Dflu—v| < [[(AT =T)(u) — (AL = T))]),

where I denotes the identity mapping.

Apart from being a generalization of nonexpansive mappings, the pseudocontractive mappings
are also closely related to accretive operators, where an operator A is called accretive if for every
u,v € S and for all s > 0,

lu —v] <|lu—v+s(Au— Av)|.

Observe that T is pseudocontractive if and only if I — T is accretive. Therefore, any fixed point
of T is a root of the accretive operator I — T'.
In a Hilbert space, T is pseudocontractive iff

Vu,v € S ((Tu — Tv,u—v) < ||lu—v|?)

(see e.g. [5]).
In [4], Bruck introduced the following iteration schema for pseudocontractive mappings:

Definition 1.1 ( [4]). Let C' be a nonempty convex subset of a real normed space and let T :
C — C be a pseudocontraction. Let (A,), (6,,) be sequences in [0, 1] with A\, (1 + 6,,) < 1 for all
n € N. The Bruck iteration scheme with starting point x; € C' is defined as

Tnt1 = (1= M) @ + AN T2y, — N0y, (2 — 1) -
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Among many other things, Bruck showed that in Hilbert spaces and for bounded closed and con-
vex subsets C this iteration strongly converges for so-called acceptably paired sequences (\,,), (6,).
Moreover the limit is a fixed point of T' provided that 7" is demicontinuous (in addition to being
pseudocontractive).

In [6], it is shown that Bruck’s iteration (with more natural conditions on (), (6,,)) is asymptot-
ically regular, i.e.
n— o0

[2n = T(xn)| "= 0,

in arbitrary Banach spaces provided that T is a Lipschitzian pseudocontractive mapping which
still includes the important class of strictly pseudocontrative mappings in the sense of Browder
and Petryshyn [3] (see [5]).

Definition 1.2 ( [6]). The real sequences (\,,) and (6,,) in (0, 1] are said to satisfy the Chidume-
Zegeye conditions if

1. Tim, o, 6, = O;
2. 300 Anbn = 00;
3. Ve > 03dm € NVn > m (A, < O,¢);

On—1

~1
4. V€>OEImGNVn>m<|§”9|<5>;

nUn

5. A (146,) <1forallneN.
Notation: For T': C — C'let F(T) be the set of fixed points of T.

Theorem 1.3 ( [6]). Let C' be a nonempty closed convex subset of a real Banach space X. Let
T : C — C be a Lipschitz pseudocontractive map with Lipschitz constant L and F (T) # 0. Let
(xn,) be the Bruck iteration with starting point 1 € C, where the parameters (A,) and (0,) satisfy
the Chidume-Zegeye conditions. Then ||z, — Tz,| — 0 as n — oo.

Remark 1.4. Instead of F (T') # () one can also assume that C is bounded.
In fact, Theorem 1.3 is shown as a consequence of the fact that ||a, — z,—1|| = 0, where z, is the
unique point (whose existence is guaranteed by [12]) satisfying

2n =ty T(2n) + (1 — tn)x1, where t, := HLG

In particular, (z,,) strongly converges towards a fixed point of T provided that (z,) does. The latter
is known to be the case e.g. for reflexive Banach spaces X with uniformly Gateaux differentiable
norm provided that T has a fixed point (or C' being bounded) and every nonempty bounded closed
convex subset of X has the fixed point property for nonexpansive self-mappings (see [12,13]). So,
in particular, (z,) (and consequently (z,)) strongly converges to a fixed point of T if X is a
uniformly smooth Banach space, T has a fixed point and C' is closed and convex (see Corollary
11.8 in [5]).

In [10], we extracted from the proof in [6] explicit and highly uniform rates of convergence for
|z, — Tzy|| — 0 (asymptotic regularity) and ||z, — zp—1] — 0.

Effective uniform rates on the strong convergence of (z,), however, in general do not exist even
in the special case of Hilbert spaces. Nevertheless, one can obtain effective uniform rates & of
so-called metastability in the sense of Tao, i.e. (here [n;n+g(n)] :={n,n+1,n+2,...,n+g(n)})

Ve >0Vg:N = Nn < ®(e,g)Vi,j € [msn+ g(n)] (|lzi — 2| <e),

which we extract for the Hilbert space case. We then combine this with our asymptotic regularity
rate to obtain (again for Hilbert spaces) a rate of metastability Q for (z,), in fact we get

(1) Ve > 0Vg : N = N3n < Q(e,9) Vi, j € [nin+ g(n) IVl > n (|z; — z;]| <e A ||[Ta — x| <e).



Here  only depends (in addition to €,g) on a Lipschitz constant L for T, an upper bound
d > ||z1 — p|| for some T-fixed point p and some moduli related to the scalars (A,), (6,).

(1) trivially implies the finitary (in the sense that only a finite initial segment of () is mentioned)
statement

(2) Ve > 0Vg: N = N3In < Q(e,g) Vi, j € [nyn+ g(n)] (|z; — z;]| <e A ||[Ta; — 2] < e)

which - in turn - trivially implies that (z,,) strongly converges to a fixed point of T' as metastability
ineffectively is equivalent to the usual Cauchy property. In this sense, our quantitative form also
constitutes a finitary version (in the sense of Tao [14,15]) of that strong convergence theorem.

2 Quantitative Analysis

2.1 Resolvent Convergence

The following result is closely related to results of Browder [1] and Bruck [4]. It has been shown
by Lan and Wu in [11] using techniques similar to those of Browder [2]. Although Browder’s
proof (for the nonexpansive case) has been analyzed by Kohlenbach in [9], it is considerably more
difficult to treat than our proof below which follows the ideas of [4] (which in turn is based on [7]).

Theorem 2.1. Let H be a Hilbert space, C C H be a nonempty bounded closed convex subset and
T:C — C be a demicontinuous pseudocontraction. Then, for each x € C and t € [0,1), there
exists a unique path (z¢) in C such that zx = tTz + (1 — t) x. Moreover, the strong

lim z; = z,
t—1—

exists and is the fized point of T closest to x.

Proof. For each € C and nonnegative ¢t < 1, the mapping 7} : C —» C,z = tTz+ (1 —-t)x
satisfies
(Thyxy — Tixo, 1 — x2) = (tTay + (1 —t) o —tTag — (1 —t) z, 21 — x2)
=t <Tl‘1 — Txg, Tr1 — l‘2>
<tz —2)?. (1)
Therefore, T; is pseudocontractive. It is also demicontinuous: for any sequence (x,) in C' with

T, — x, we have
(y, Tyxy — Tyx) = t{y, Txy, —Tx) -0 forallye H

since T was demicontinuous. We conclude by Corollary 4 of [4] that T; has a fixed point z; € C,
i.e., a point satisfying the equation

Zt = tTZt + (1 —t)x

Moreover, by (1), T} is even strongly pseudocontractive, so z; is unique. To see this, suppose that
z; and z; are two fixed points of T;. Then, by (1),

2 2
lze = 2ill” = (2t — 2z 20 — 21) = (Tyze — Tyzg, 20 — 1) < tlze — 2|

Since ¢t < 1, this implies z; = z;. That (z) is continuous in ¢ follows as in [12].
Strong convergence of (z;) will be established in the course of the proof of Theorem 2.3. That the
strong limit is a fixed point of T follows from (here we use that C' is bounded)

t—1"

[Tzt — 2e, Tz — 2)| < [Tz —z|| - [Tz — 2| = 0



and that (using that T is demicontinuous)

t—1"

(Tze — 20, Tz —2z) = (Tz—2,Tz—2z).

We now proceed to show that the strong limit is the fixed point of 7' with minimal distance from
x. Suppose that y is a fixed point of T. Then y = tTy + (1 —t)x for t = 1. Repeating the
calculations leading to (3) further below with z; = y and ¢ = 1, we obtain

ly —2)* > ll2s — 2| + [ly — 2], forall0<s< L.
Taking the strong limit s — 1 implies
2 2 2
ly —2l” = Iz — 2" + ly — 2|
showing that z is the (unique) fixed point of T' that is closest to z. O

In the following we present an effective rate of metastability for the strong convergence of (z).
Provided that we assume the existence of (z;) we not even need that 7' is demicontinuous (nor
that X is complete or C' closed).

Notation: Let f : N — N and n,m € N, then f(”)(m) denotes the result of n-times applying f
starting from m, i.e. £ (m) :=m, P+t (m) := f(f)(m)).
M denotes the function fM(n) := max{f(i):i < n}.

We use the following

Lemma 2.2 ( [8]). Let D € R, be a nonnegative real number and (a,) be a nondecreasing
sequence in the interval [0, D], i.e. 0 < a,, < apy1 < D. Then the following holds

Ve > 0Vg: N — N3n < gIPED) Vi, j € [n;n + g(n)] (la; — aj] < e),
where §(n) :=n + g(n). Moreover, n can be taken as §(”)(1) for some suitable i < [D/e].

Theorem 2.3. Let X be a real inner product space and C C X be a conver subset. Let T : C — C
be a pseudocontraction which possesses a fized point v € C. Let x € C' and assume that there exists
(2¢) for x such that

ze =tTz + (1 —t)x, te€]0,1).

Let (t,) be a sequence in (0,1) that converges towards 1 and h : N — N be such that t, < 1— -+

for alln € N. Set z, := z,. Then, for alle >0, all g: N — N and allN>d > |jv — z| o
In <P (e,9,Xg: My d) Vi, j € [nsn+ g ()] (2 — 2| < e),
where
O (,9, X9, by d) == X} (gﬂiidz/azn (1))
with
Gh.xy (n) = max{h (i) : 1 < xg (n) + 9 (xg(n))}

and x4 : N = N is any function satisfying

i € NV € [y ()3 )] (1= 4 < g ) )

n+1

If (tn) is a nondecreasing sequence in (0,1) (not necessarily converging towards 1), then the bound
can be simplified to U (e, g,d) := g<f4d2/521>(1), where g(n) :=n+ g(n).



Proof. Assume that z; € C satisfies the equation
z=tTz+(1—t)x

for all t € [0,1). For 1 > ¢t > s > 0, we carry out a calculation similar to [9] and [7]; Since
Tz = %zt — =ty and T is pseudocontractive,

t

1 1—1¢ 1 1-—
|z — zSH2 > Tz —Tzg, 2 — 25) = <zt - — Sz, + S S:v,zt — zs>

t t S
1 1 1 1 t—s
= Ezt - ;ZS + gzs - gzswzt — 25 )+ <:C,Zt - Zs>

1 2 s—t t—s
:gHZt_ZS” + ?stzt_zs +?<x,zt—zs>,

and since 0 < ¢t < 1,

t—s 1 t—s t—s
< o zs,zt—zs>2<t—1) ||zt—zs||2—|— » (x,zt—zs>2—s<m,zt—zs>.

Since s < t, we conclude
(zs —m, 2t — 25) > 0.

Therefore,
|E2 fx||2 =(z—x,ze—x)=(2s —x+ (2t — 25),2s — ¢+ (2t — 25))
= (25 —X,2s — ) + (2t — 25,2t — 25) + 2 (25 — T, 2¢ — 25)

> 1z = al|* + |2 — =) (3)
Therefore, (||z; — #||*); is nondecreasing (as t /17) and
2 2 2
Izt = 2sll” < |llzs = 2l = [lze — 27 |. (4)

(z¢) is also bounded as follows from the existence of a fixed point v € C reasoning as in Proposition
2(iv) of [12]: If v € F (T), then
llze —v||> = (tT2 + (1 —t)z — v, 2, — v)

=t(Tzy —Tv,z —v)+ (1 —t) {x — v,z — V)

<tllze —v]|?+ (1 —t)(x —v, 2 —v),
which implies

2
(=02 —vl" < (X =8) 2 = vl - ]2 = v]l.

Since t < 1, this implies that ||z; — v|| < || — v]||. Hence
20 — 2l <zt = ol + [lv = zl| <2[jv —z[| < 2d, ie.

(lz¢ — =||?)¢ is bounded by 4d>.

Together with Lemma 2.2 applied to (||z;, — z||*)n,4d? and 2 and (4) above the theorem now
follows in the case where 1 > ¢, 11 > t,, > 0 for all n € N. For the case of a general sequence (¢,)
which is assumed to converge to 1 one reasons literally as in the proof of Theorem 4.2 in [9]. O

Remark 2.4. Theorem 4.2 of [9] establishes the same result for nonexpansive mappings.

Remark 2.5. It is not hard to show that Theorem 2.3 also holds with the assumption F(T") # 0
being replaced by Ve > 03v, € C(||lx — vel| < dA ||[Tve — v < g).



2.2 Asymptotic Regularity of the Bruck Iteration

Theorem 2.6 ( [10]). Let C' be a nonempty, closed and convex subset of a real Banach space X
and x € C. Let T : C — C be a Lipschitzian pseudocontractive mapping with Lipschitz constant L
and for some d > 0 assume that T possesses arbitrarily good e-fixed points p. € C with |z — pe| <
d. Let (x,) be the Bruck iteration (Definition 1.1) with starting point x1 := x. Let z, be the
unique element in C satisfying zn = t,T(zn) + (1 — tp)zy with t, := 1/(1 + 0,,). Given rates of
convergence/divergence R; : (0,00) — N for the Chidume-Zegeye conditions 1.2, we get

Ve > 0Vn > U (d,L,Rl,RQ,R3,R4,6) (||a:n — TJ,‘HH < E)

and

Ve > 0Vn Z X(d7L7R1aR27R3aR47E) (H.Tn - zn—l” < E))
where

U (d, L, By, Ry, Ry, Ra,2) = max{ N3 (C) + 1, Ry (1) +1}

s Lvy L7, 12, 113, 104, 2 , 411 Ar
and
X(daL7R15R27R37R4a5):NQ(C)+1

with

2es € 9 3
Ny (e) == max{Rg <3T2) R4 ( =+ 2) }7
T
N2 (Z‘) = R2 (5) + 1,

C:W+2<Nl<¥>1>,
g2 8(1+4 L)

R3(d)
r = max {mjz)_’_le, Qd} ,

1
2(5+L)2+1L)

s =

Proof. The first claim is Theorem 1 in [10] and the second claim follows from formula (24) in the
proof of that theorem (even with ¢ being replaced by €/(2(1 4+ L)) in the definition of ). O

Corollary 2.7 ( [10]). In the situation of Theorem 2.6, one may drop the condition that T has
arbitrarily good approximate fized points and instead require diam(C) < d. In this case,

x(d, L, Ry, R, R3, Ry,€) := No(C)+ 1 and ¥ (d, L, Ry, R, R3, Ry,€) = maX{X(5),R1 (i) + 1}

2d
= () (5 1)

Ny (z) := Ra (g) +1,

C::8<1+2L>2d2+2<N1<622>_1>_
£ 8(1+1L)

and



2.3 Strong Convergence of the Bruck Iteration

Theorem 2.8. If, in the situation of Theorem 2.6, X is a Hilbert space, then (assuming w.l.o.g.
L>1)foralle >0andallg:N— N

3 <X (TP W) + W) + 16 € un+ g IV 2 0 (2 — @] < £ A Tar = al| < <)
where h : N = N is a function such that h(n) > 1/60,, for alln € N and x(n) := Ry1(1/n),

G =g+ 1+U(E)+ U () 1, gry(n) = max{h (i) i < x(n)+ ¢ ()},
and Ry and ¥ as in Corollary 2.7.

Proof. In Theorem 2.6, the resolvent z; is instantiated with the sequence t = ¢, = ﬁ and
the starting point x7. We now show how to apply Theorem 2.3 to this instantiation; if we set
x(n) := Ry (1/n), then 8; < 1/n for all ¢ > x(n). Since 6, € (0,1], this implies

1 1

1
1—t|=1- <1- = ., for all i > .
\ | [ S or all i > x(n)

Since this holds for all 7 > x(n), the function x satisfies (2) independently of the counter-function
g and we may set x4 := x in Theorem 2.3.
Moreover, for all n € N, h(n) > 1/6,, implies 1 + h(n) > %, whence

1 0, 1
< =1-—
h(n)+1 = 1+ 6, 1+ 0,

Therefore,
1 1

=" <l

1+6, — h(n) +1’
Now observe that, by Theorem 2.3 and Remark 2.5 applied to the counter-function ¢’ and error
/2, there exists an n < x™ (g,(l[?fd /7D (1)) such that

tn for all n € N.

llzi — ;|| < =, foralli,j€nyn+g'(n). (5)

N ™

Since [m;n+ g (n)]=[mn+1+V(E)+g(n+1+¥E)] D2+ ¥(E);n+1+T(E)+g(n+1+T(e)),
we conclude that if we set ng :=n+ 1+ U(e), then

2im1 — zj-1]| < for all 4, j € [no;no + g(no)] -

<
27
Since ng > ¥(e), we conclude from (24) of [10] for all n > ng, ||zn — 2n—1|| <
we may w.l.o.g. assume L > 1. Thus,

S S /4, since

i — 2l < llwi — zicall + lzie1 — 21l + l2j-1 — 2]l <&, for all 4,5 € [no;no + g(no)] -
Moreover, we get from Theorem 2.6
|zn — Tay| <e, foralln > P(e).
This completes the proof. O
Corollary 2.9. If (0,) is nondecreasing, then for alle >0 and g : N — N
An < g M6E/ED (1) 4 W(e) +1Vi,j € [nin+ g )]V > n(|Ja; — x| < e A||Ta; — 2] <€)

where §'(n) = g¢'(n) +n and g'(n) = gn+1+ V() + ¥ (e) + 1.



Proof. Since (6,,) is nondecreasing, the second part of Theorem 2.3 implies that there exists an
n < §'(164°/<*D(1) such that

lzi — 2| < g, for all i,j € [n;n+ g¢'(n)],

which is the analog to equation (5). The remainder of the proof is then the same. O

As a corollary to the proof of Theorem 2.8 we get the following transformation of an assumed rate
of metastability for (z,) into one for (z,) in general Banach spaces:

Corollary 2.10. In the situation of Theorem 2.6 (so X is not necessarily a Hilbert space), suppose
that for all g : N — N and € > 0,

In < Q(d,g,¢) Vi, j € [myn+g(n)] (Ilzi — 2l < e),
and let xM (n) := Ry(1/n). Then, for alle >0 and g: N — N,
In < xM(Qd, g,¢/2)) + W(e) + 1Vi,j € [msn+ g )]V > n(|z; — 2| <e ATz — 3] <e).
and 6, =

Remark 2.11. For the canonical choice \,, = ( where 0 < b < a and

1
n+1)e
a + b < 1, the bound is as stated in Corollary 2.9.

1
(n+1)b?
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