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1 Introduction

Let X be a normed linear space and S ⊆ X be a subset of X. In 1967, Browder introduced
an important generalization of the class of nonexpansive mappings, namely the pseudocontractive
mappings T : S → S defined by

∀u, v ∈ S ∀λ > 1 ((λ− 1)‖u− v‖ ≤ ‖(λI − T )(u)− (λI − T )(v)‖),

where I denotes the identity mapping.

Apart from being a generalization of nonexpansive mappings, the pseudocontractive mappings
are also closely related to accretive operators, where an operator A is called accretive if for every
u, v ∈ S and for all s > 0,

‖u− v‖ ≤ ‖u− v + s (Au−Av)‖ .

Observe that T is pseudocontractive if and only if I − T is accretive. Therefore, any fixed point
of T is a root of the accretive operator I − T .
In a Hilbert space, T is pseudocontractive iff

∀u, v ∈ S (〈Tu− Tv, u− v〉 ≤ ‖u− v‖2)

(see e.g. [5]).

In [4], Bruck introduced the following iteration schema for pseudocontractive mappings:

Definition 1.1 ( [4]). Let C be a nonempty convex subset of a real normed space and let T :
C → C be a pseudocontraction. Let (λn), (θn) be sequences in [0, 1] with λn(1 + θn) ≤ 1 for all
n ∈ N. The Bruck iteration scheme with starting point x1 ∈ C is defined as

xn+1 = (1− λn)xn + λnTxn − λnθn (xn − x1) .

∗The authors have been supported by the German Science Foundation (DFG Project KO 1737/5-1, 1737/5-2).

1



Among many other things, Bruck showed that in Hilbert spaces and for bounded closed and con-
vex subsets C this iteration strongly converges for so-called acceptably paired sequences (λn), (θn).
Moreover the limit is a fixed point of T provided that T is demicontinuous (in addition to being
pseudocontractive).

In [6], it is shown that Bruck’s iteration (with more natural conditions on (λn), (θn)) is asymptot-
ically regular, i.e.

‖xn − T (xn)‖ n→∞→ 0,

in arbitrary Banach spaces provided that T is a Lipschitzian pseudocontractive mapping which
still includes the important class of strictly pseudocontrative mappings in the sense of Browder
and Petryshyn [3] (see [5]).

Definition 1.2 ( [6]). The real sequences (λn) and (θn) in (0, 1] are said to satisfy the Chidume-
Zegeye conditions if

1. limn→∞ θn = 0;

2.
∑∞
n=1 λnθn =∞;

3. ∀ε > 0∃m ∈ N∀n ≥ m (λn ≤ θnε);

4. ∀ε > 0∃m ∈ N∀n ≥ m

( ∣∣∣ θn−1
θn
−1

∣∣∣
λnθn

≤ ε

)
;

5. λn (1 + θn) ≤ 1 for all n ∈ N.

Notation: For T : C → C let F (T ) be the set of fixed points of T.

Theorem 1.3 ( [6]). Let C be a nonempty closed convex subset of a real Banach space X. Let
T : C → C be a Lipschitz pseudocontractive map with Lipschitz constant L and F (T ) 6= ∅. Let
(xn) be the Bruck iteration with starting point x1 ∈ C, where the parameters (λn) and (θn) satisfy
the Chidume-Zegeye conditions. Then ‖xn − Txn‖ → 0 as n→∞.

Remark 1.4. Instead of F (T ) 6= ∅ one can also assume that C is bounded.

In fact, Theorem 1.3 is shown as a consequence of the fact that ‖xn − zn−1‖ → 0, where zn is the
unique point (whose existence is guaranteed by [12]) satisfying

zn = tnT (zn) + (1− tn)x1, where tn := 1
1+θn

.

In particular, (xn) strongly converges towards a fixed point of T provided that (zn) does. The latter
is known to be the case e.g. for reflexive Banach spaces X with uniformly Gâteaux differentiable
norm provided that T has a fixed point (or C being bounded) and every nonempty bounded closed
convex subset of X has the fixed point property for nonexpansive self-mappings (see [12,13]). So,
in particular, (zn) (and consequently (xn)) strongly converges to a fixed point of T if X is a
uniformly smooth Banach space, T has a fixed point and C is closed and convex (see Corollary
11.8 in [5]).

In [10], we extracted from the proof in [6] explicit and highly uniform rates of convergence for
‖xn − Txn‖ → 0 (asymptotic regularity) and ‖xn − zn−1‖ → 0.

Effective uniform rates on the strong convergence of (zn), however, in general do not exist even
in the special case of Hilbert spaces. Nevertheless, one can obtain effective uniform rates Φ of
so-called metastability in the sense of Tao, i.e. (here [n;n+g(n)] := {n, n+1, n+2, . . . , n+g(n)})

∀ε > 0 ∀g : N→ N ∃n ≤ Φ(ε, g)∀i, j ∈ [n;n+ g(n)]
(
‖zi − zj‖ < ε

)
,

which we extract for the Hilbert space case. We then combine this with our asymptotic regularity
rate to obtain (again for Hilbert spaces) a rate of metastability Ω for (xn), in fact we get

(1) ∀ε > 0 ∀g : N→ N∃n ≤ Ω(ε, g)∀i, j ∈ [n;n+ g(n)]∀l ≥ n
(
‖xi − xj‖ < ε ∧ ‖Txl − xl‖ < ε

)
.
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Here Ω only depends (in addition to ε, g) on a Lipschitz constant L for T, an upper bound
d ≥ ‖x1 − p‖ for some T -fixed point p and some moduli related to the scalars (λn), (θn).

(1) trivially implies the finitary (in the sense that only a finite initial segment of (xn) is mentioned)
statement

(2) ∀ε > 0 ∀g : N→ N∃n ≤ Ω(ε, g)∀i, j ∈ [n;n+ g(n)]
(
‖xi − xj‖ < ε ∧ ‖Txi − xi‖ < ε

)
which - in turn - trivially implies that (xn) strongly converges to a fixed point of T as metastability
ineffectively is equivalent to the usual Cauchy property. In this sense, our quantitative form also
constitutes a finitary version (in the sense of Tao [14,15]) of that strong convergence theorem.

2 Quantitative Analysis

2.1 Resolvent Convergence

The following result is closely related to results of Browder [1] and Bruck [4]. It has been shown
by Lan and Wu in [11] using techniques similar to those of Browder [2]. Although Browder’s
proof (for the nonexpansive case) has been analyzed by Kohlenbach in [9], it is considerably more
difficult to treat than our proof below which follows the ideas of [4] (which in turn is based on [7]).

Theorem 2.1. Let H be a Hilbert space, C ⊆ H be a nonempty bounded closed convex subset and
T : C → C be a demicontinuous pseudocontraction. Then, for each x ∈ C and t ∈ [0, 1), there
exists a unique path (zt) in C such that zt = tTzt + (1− t)x. Moreover, the strong

lim
t→1−

zt = z,

exists and is the fixed point of T closest to x.

Proof. For each x ∈ C and nonnegative t < 1, the mapping Tt : C → C, z 7→ tTz + (1− t)x
satisfies

〈Ttx1 − Ttx2, x1 − x2〉 = 〈tTx1 + (1− t)x− tTx2 − (1− t)x, x1 − x2〉
= t 〈Tx1 − Tx2, x1 − x2〉

≤ t ‖x1 − x2‖2 . (1)

Therefore, Tt is pseudocontractive. It is also demicontinuous: for any sequence (xn) in C with
xn → x, we have

〈y, Ttxn − Ttx〉 = t 〈y, Txn − Tx〉 → 0 for all y ∈ H

since T was demicontinuous. We conclude by Corollary 4 of [4] that Tt has a fixed point zt ∈ C,
i.e., a point satisfying the equation

zt = tTzt + (1− t)x.

Moreover, by (1), Tt is even strongly pseudocontractive, so zt is unique. To see this, suppose that
zt and z′t are two fixed points of Tt. Then, by (1),

‖zt − z′t‖
2

= 〈zt − z′t, zt − z′t〉 = 〈Ttzt − Ttz′t, zt − z′t〉 ≤ t ‖zt − z′t‖
2
.

Since t < 1, this implies zt = z′t. That (zt) is continuous in t follows as in [12].
Strong convergence of (zt) will be established in the course of the proof of Theorem 2.3. That the
strong limit is a fixed point of T follows from (here we use that C is bounded)

|〈Tzt − zt, T z − z〉| ≤ ‖Tzt − zt‖ · ‖Tz − z‖
t→1−→ 0
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and that (using that T is demicontinuous)

〈Tzt − zt, T z − z〉
t→1−→ 〈Tz − z, Tz − z〉.

We now proceed to show that the strong limit is the fixed point of T with minimal distance from
x. Suppose that y is a fixed point of T . Then y = tTy + (1− t)x for t = 1. Repeating the
calculations leading to (3) further below with zt = y and t = 1, we obtain

‖y − x‖2 ≥ ‖zs − x‖2 + ‖y − zs‖2 , for all 0 < s < 1.

Taking the strong limit s→ 1 implies

‖y − x‖2 ≥ ‖z − x‖2 + ‖y − z‖2

showing that z is the (unique) fixed point of T that is closest to x.

In the following we present an effective rate of metastability for the strong convergence of (zt).
Provided that we assume the existence of (zt) we not even need that T is demicontinuous (nor
that X is complete or C closed).

Notation: Let f : N → N and n,m ∈ N, then f (n)(m) denotes the result of n-times applying f
starting from m, i.e. f (0)(m) := m, f (n+1)(m) := f(f (n)(m)).
fM denotes the function fM (n) := max{f(i) : i ≤ n}.

We use the following

Lemma 2.2 ( [8]). Let D ∈ R+ be a nonnegative real number and (an) be a nondecreasing
sequence in the interval [0, D], i.e. 0 ≤ an ≤ an+1 ≤ D. Then the following holds

∀ε > 0 ∀g : N→ N ∃n ≤ g̃(dD/εe)(1)∀i, j ∈ [n;n+ g(n)] (|ai − aj | ≤ ε),

where g̃(n) := n+ g(n). Moreover, n can be taken as g̃(i)(1) for some suitable i ≤ dD/εe.

Theorem 2.3. Let X be a real inner product space and C ⊆ X be a convex subset. Let T : C → C
be a pseudocontraction which possesses a fixed point v ∈ C. Let x ∈ C and assume that there exists
(zt) for x such that

zt = tTzt + (1− t)x, t ∈ [0, 1).

Let (tn) be a sequence in (0, 1) that converges towards 1 and h : N→ N be such that tn ≤ 1− 1
h(n)+1

for all n ∈ N. Set zn := ztn . Then, for all ε > 0, all g : N→ N and all N 3 d ≥ ‖v − x‖

∃n ≤ Φ (ε, g, χg, h, d)∀i, j ∈ [n;n+ g (n)] (‖zi − zj‖ ≤ ε) ,

where
Φ (ε, g, χg, h, d) := χMg

(
g
(d16d2/ε2e)
h,χg

(1)
)

with

gh,χg (n) := max {h (i) : i ≤ χg (n) + g (χg(n))}

and χg : N→ N is any function satisfying

∀n ∈ N∀i ∈ [χg(n); g̃ (χg(n))]

(
|1− ti| ≤

1

n+ 1

)
. (2)

If (tn) is a nondecreasing sequence in (0, 1) (not necessarily converging towards 1), then the bound

can be simplified to Ψ (ε, g, d) := g̃(d4d
2/ε2e)(1), where g̃(n) := n+ g(n).
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Proof. Assume that zt ∈ C satisfies the equation

zt = tTzt + (1− t)x

for all t ∈ [0, 1). For 1 > t > s > 0, we carry out a calculation similar to [9] and [7]; Since
Tzt = 1

t zt −
1−t
t x and T is pseudocontractive,

‖zt − zs‖2 ≥ 〈Tzt − Tzs, zt − zs〉 =

〈
1

t
zt −

1− t
t

x− 1

s
zs +

1− s
s

x, zt − zs
〉

=

〈
1

t
zt −

1

t
zs +

1

t
zs −

1

s
zs, zt − zs

〉
+
t− s
ts
〈x, zt − zs〉

=
1

t
‖zt − zs‖2 +

〈
s− t
st

zs, zt − zs
〉

+
t− s
ts
〈x, zt − zs〉 ,

and since 0 < t < 1,〈
t− s
st

zs, zt − zs
〉
≥
(

1

t
− 1

)
‖zt − zs‖2 +

t− s
ts
〈x, zt − zs〉 ≥

t− s
ts
〈x, zt − zs〉 .

Since s < t, we conclude
〈zs − x, zt − zs〉 ≥ 0.

Therefore,

‖zt − x‖2 = 〈zt − x, zt − x〉 = 〈zs − x+ (zt − zs) , zs − x+ (zt − zs)〉
= 〈zs − x, zs − x〉+ 〈zt − zs, zt − zs〉+ 2 〈zs − x, zt − zs〉

≥ ‖zs − x‖2 + ‖zt − zs‖2 . (3)

Therefore, (‖zt − x‖2)t is nondecreasing (as t↗ 1−) and

‖zt − zs‖2 ≤ | ‖zs − x‖2 − ‖zt − x‖2 |. (4)

(zt) is also bounded as follows from the existence of a fixed point v ∈ C reasoning as in Proposition
2(iv) of [12]: If v ∈ F (T ), then

‖zt − v‖2 = 〈tTzt + (1− t)x− v, zt − v〉
= t 〈Tzt − Tv, zt − v〉+ (1− t) 〈x− v, zt − v〉
≤ t‖zt − v‖2 + (1− t) 〈x− v, zt − v〉 ,

which implies
(1− t) ‖zt − v‖2 ≤ (1− t) ‖x− v‖ · ‖zt − v‖.

Since t < 1, this implies that ‖zt − v‖ ≤ ‖x− v‖. Hence

‖zt − x‖ ≤ ‖zt − v‖+ ‖v − x‖ ≤ 2 ‖v − x‖ ≤ 2d, i.e.

(‖zt − x‖2)t is bounded by 4d2.

Together with Lemma 2.2 applied to (‖ztn − x‖2)n, 4d
2 and ε2 and (4) above the theorem now

follows in the case where 1 > tn+1 ≥ tn > 0 for all n ∈ N. For the case of a general sequence (tn)
which is assumed to converge to 1 one reasons literally as in the proof of Theorem 4.2 in [9].

Remark 2.4. Theorem 4.2 of [9] establishes the same result for nonexpansive mappings.

Remark 2.5. It is not hard to show that Theorem 2.3 also holds with the assumption F (T ) 6= ∅
being replaced by ∀ε > 0∃vε ∈ C(‖x− vε‖ ≤ d ∧ ‖Tvε − vε‖ ≤ ε).
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2.2 Asymptotic Regularity of the Bruck Iteration

Theorem 2.6 ( [10]). Let C be a nonempty, closed and convex subset of a real Banach space X
and x ∈ C. Let T : C → C be a Lipschitzian pseudocontractive mapping with Lipschitz constant L
and for some d > 0 assume that T possesses arbitrarily good ε-fixed points pε ∈ C with ‖x− pε‖ <
d. Let (xn) be the Bruck iteration (Definition 1.1) with starting point x1 := x. Let zn be the
unique element in C satisfying zn = tnT (zn) + (1 − tn)x1 with tn := 1/(1 + θn). Given rates of
convergence/divergence Ri : (0,∞)→ N for the Chidume-Zegeye conditions 1.2, we get

∀ε > 0∀n ≥ Ψ (d, L,R1, R2, R3, R4, ε) (‖xn − Txn‖ < ε)

and
∀ε > 0∀n ≥ χ (d, L,R1, R2, R3, R4, ε) (‖xn − zn−1‖ < ε) ,

where
Ψ (d, L,R1, R2, R3, R4, ε) = max

{
N2 (C) + 1, R1

( ε
4r

)
+ 1
}

and
χ (d, L,R1, R2, R3, R4, ε) = N2 (C) + 1

with

N1 (ε) := max

{
R3

(
2εs

3r2

)
, R4

(√
ε

r2
+

9

4
− 3

2

)}
,

N2 (x) := R2

(x
2

)
+ 1,

C :=
8 (1 + L)

2
r2

ε2
+ 2

(
N1

(
ε2

8 (1 + L)
2

)
− 1

)
,

r := max

{
(2 + L)

R3(d) − 1

1 + L
d, 2d

}
,

s :=
1

2
(
5
2 + L

)
(2 + L)

.

Proof. The first claim is Theorem 1 in [10] and the second claim follows from formula (24) in the
proof of that theorem (even with ε being replaced by ε/(2(1 + L)) in the definition of χ).

Corollary 2.7 ( [10]). In the situation of Theorem 2.6, one may drop the condition that T has
arbitrarily good approximate fixed points and instead require diam(C) ≤ d. In this case,

χ(d, L,R1, R2, R3, R4, ε) := N2(C) + 1 and Ψ (d, L,R1, R2, R3, R4, ε) = max
{
χ(ε), R1

( ε
2d

)
+ 1
}

and

N1 (ε) := max

{
R3

(
ε

4d2 (2 + L)

)
, R4

(√
ε

d2
+ 1− 1

)}
,

N2 (x) := R2

(x
2

)
+ 1,

C :=
8 (1 + L)

2
d2

ε2
+ 2

(
N1

(
ε2

8 (1 + L)
2

)
− 1

)
.
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2.3 Strong Convergence of the Bruck Iteration

Theorem 2.8. If, in the situation of Theorem 2.6, X is a Hilbert space, then (assuming w.l.o.g.
L ≥ 1) for all ε > 0 and all g : N→ N

∃n ≤ χM
(
g
(d64d2/ε2e)
h,χ (1)

)
+ Ψ(ε) + 1 ∀i, j ∈ [n;n+ g (n)]∀l ≥ n (‖xi − xj‖ ≤ ε ∧ ‖Txl − xl‖ ≤ ε)

where h : N→ N is a function such that h(n) ≥ 1/θn for all n ∈ N and χ(n) := R1(1/n),

g′(n) := g (n+ 1 + Ψ (ε)) + Ψ (ε) + 1, gh,χ(n) := max {h (i) : i ≤ χ(n) + g′ (χ(n))} ,

and R1 and Ψ as in Corollary 2.7.

Proof. In Theorem 2.6, the resolvent zt is instantiated with the sequence t = tn = 1
1+θn

and
the starting point x1. We now show how to apply Theorem 2.3 to this instantiation; if we set
χ(n) := R1 (1/n), then θi ≤ 1/n for all i ≥ χ(n). Since θn ∈ (0, 1], this implies

|1− ti| = 1− 1

1 + θi
≤ 1− 1

1 + 1
n

=
1

n+ 1
, for all i ≥ χ(n).

Since this holds for all i ≥ χ(n), the function χ satisfies (2) independently of the counter-function
g and we may set χg := χ in Theorem 2.3.
Moreover, for all n ∈ N, h(n) ≥ 1/θn implies 1 + h(n) ≥ 1+θn

θn
, whence

1

h(n) + 1
≤ θn

1 + θn
= 1− 1

1 + θn
.

Therefore,

tn =
1

1 + θn
≤ 1− 1

h(n) + 1
, for all n ∈ N.

Now observe that, by Theorem 2.3 and Remark 2.5 applied to the counter-function g′ and error

ε/2, there exists an n ≤ χM
(
g
(d64d2/ε2e)
h,χ (1)

)
such that

‖zi − zj‖ ≤
ε

2
, for all i, j ∈ [n;n+ g′(n)] . (5)

Since [n;n+ g′(n)] = [n;n+ 1 + Ψ(ε) + g (n+ 1 + Ψ(ε))] ⊇ [n+ Ψ(ε);n+ 1 + Ψ(ε) + g (n+ 1 + Ψ(ε))],
we conclude that if we set n0 := n+ 1 + Ψ(ε), then

‖zi−1 − zj−1‖ ≤
ε

2
, for all i, j ∈ [n0;n0 + g(n0)] .

Since n0 ≥ Ψ(ε), we conclude from (24) of [10] for all n ≥ n0, ‖xn − zn−1‖ ≤ ε
2(1+L) ≤ ε/4, since

we may w.l.o.g. assume L ≥ 1. Thus,

‖xi − xj‖ ≤ ‖xi − zi−1‖+ ‖zi−1 − zj−1‖+ ‖zj−1 − xj‖ ≤ ε, for all i, j ∈ [n0;n0 + g(n0)] .

Moreover, we get from Theorem 2.6

‖xn − Txn‖ ≤ ε, for all n ≥ Ψ(ε).

This completes the proof.

Corollary 2.9. If (θn) is nondecreasing, then for all ε > 0 and g : N→ N

∃n ≤ g̃′(d16d
2/ε2e)(1) + Ψ(ε) + 1 ∀i, j ∈ [n;n+ g (n)] ∀l ≥ n (‖xi − xj‖ ≤ ε ∧ ‖Txl − xl‖ ≤ ε)

where g̃′(n) = g′(n) + n and g′(n) = g(n+ 1 + Ψ(ε)) + Ψ (ε) + 1.
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Proof. Since (θn) is nondecreasing, the second part of Theorem 2.3 implies that there exists an

n ≤ g̃′(d16d2/ε2e)(1) such that

‖zi − zj‖ ≤
ε

2
, for all i, j ∈ [n;n+ g′(n)] ,

which is the analog to equation (5). The remainder of the proof is then the same.

As a corollary to the proof of Theorem 2.8 we get the following transformation of an assumed rate
of metastability for (zn) into one for (xn) in general Banach spaces:

Corollary 2.10. In the situation of Theorem 2.6 (so X is not necessarily a Hilbert space), suppose
that for all g : N→ N and ε > 0,

∃n ≤ Ω (d, g, ε)∀i, j ∈ [n;n+ g(n)] (‖zi − zj‖ ≤ ε) ,

and let χM (n) := R1(1/n). Then, for all ε > 0 and g : N→ N,

∃n ≤ χM (Ω(d, g, ε/2)) + Ψ(ε) + 1 ∀i, j ∈ [n;n+ g (n)]∀l ≥ n (‖xi − xj‖ ≤ ε ∧ ‖Txl − xl‖ ≤ ε) .

Remark 2.11. For the canonical choice λn = 1
(n+1)a and θn = 1

(n+1)b
, where 0 < b < a and

a+ b < 1, the bound is as stated in Corollary 2.9.
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