Rate of metastability for Bruck's iteration of pseudocontractive mappings in Hilbert space

Daniel Körnlein and Ulrich Kohlenbach*

Department of Mathematics Technische Universität Darmstadt Schlossgartenstraße 7, 64289 Darmstadt, Germany

May 24, 2013

Abstract

We give a quantitative version of the strong convergence of Bruck's iteration schema for Lipschitzian pseudocontractions in Hilbert space.

Keywords: Accretive mappings, pseudocontractive mappings, fixed points, asymptotic regularity, metastability, proof mining.

Mathematics Subject Classification (2010): 47H06; 47H05; 47H10; 03F10

1 Introduction

Let X be a normed linear space and $S \subseteq X$ be a subset of X. In 1967, Browder introduced an important generalization of the class of nonexpansive mappings, namely the *pseudocontractive* mappings $T: S \to S$ defined by

$$\forall u, v \in S \,\forall \lambda > 1 \,\left((\lambda - 1) \| u - v \| \le \| (\lambda I - T)(u) - (\lambda I - T)(v) \| \right),$$

where I denotes the identity mapping.

Apart from being a generalization of nonexpansive mappings, the pseudocontractive mappings are also closely related to accretive operators, where an operator A is called accretive if for every $u, v \in S$ and for all s > 0,

$$||u - v|| \le ||u - v + s (Au - Av)||.$$

Observe that T is pseudocontractive if and only if I - T is accretive. Therefore, any fixed point of T is a root of the accretive operator I - T.

In a Hilbert space, ${\cal T}$ is pseudocontractive iff

$$\forall u, v \in S\left(\langle Tu - Tv, u - v \rangle \le \|u - v\|^2\right)$$

(see e.g. [5]).

In [4], Bruck introduced the following iteration schema for pseudocontractive mappings:

Definition 1.1 ([4]). Let C be a nonempty convex subset of a real normed space and let $T : C \to C$ be a pseudocontraction. Let $(\lambda_n), (\theta_n)$ be sequences in [0,1] with $\lambda_n(1+\theta_n) \leq 1$ for all $n \in \mathbb{N}$. The **Bruck iteration scheme** with starting point $x_1 \in C$ is defined as

$$x_{n+1} = (1 - \lambda_n) x_n + \lambda_n T x_n - \lambda_n \theta_n (x_n - x_1).$$

^{*}The authors have been supported by the German Science Foundation (DFG Project KO 1737/5-1, 1737/5-2).

Among many other things, Bruck showed that in Hilbert spaces and for bounded closed and convex subsets C this iteration strongly converges for so-called acceptably paired sequences $(\lambda_n), (\theta_n)$. Moreover the limit is a fixed point of T provided that T is demicontinuous (in addition to being pseudocontractive).

In [6], it is shown that Bruck's iteration (with more natural conditions on $(\lambda_n), (\theta_n)$) is asymptotically regular, i.e.

$$||x_n - T(x_n)|| \stackrel{n \to \infty}{\to} 0,$$

in **arbitrary** Banach spaces provided that T is a Lipschitzian pseudocontractive mapping which still includes the important class of strictly pseudocontrative mappings in the sense of Browder and Petryshyn [3] (see [5]).

Definition 1.2 ([6]). The real sequences (λ_n) and (θ_n) in (0,1] are said to satisfy the Chidume-Zegeye conditions if

- 1. $\lim_{n\to\infty} \theta_n = 0;$
- 2. $\sum_{n=1}^{\infty} \lambda_n \theta_n = \infty;$
- 3. $\forall \varepsilon > 0 \exists m \in \mathbb{N} \forall n \ge m \ (\lambda_n \le \theta_n \varepsilon);$

4.
$$\forall \varepsilon > 0 \exists m \in \mathbb{N} \forall n \ge m \left(\frac{\left| \frac{\theta_n - 1}{\theta_n} - 1 \right|}{\lambda_n \theta_n} \le \varepsilon \right);$$

5.
$$\lambda_n (1 + \theta_n) \leq 1$$
 for all $n \in \mathbb{N}$.

Notation: For $T: C \to C$ let F(T) be the set of fixed points of T.

Theorem 1.3 ([6]). Let C be a nonempty closed convex subset of a real Banach space X. Let $T: C \to C$ be a Lipschitz pseudocontractive map with Lipschitz constant L and $F(T) \neq \emptyset$. Let (x_n) be the Bruck iteration with starting point $x_1 \in C$, where the parameters (λ_n) and (θ_n) satisfy the Chidume-Zegeye conditions. Then $||x_n - Tx_n|| \to 0$ as $n \to \infty$.

Remark 1.4. Instead of $F(T) \neq \emptyset$ one can also assume that C is bounded.

In fact, Theorem 1.3 is shown as a consequence of the fact that $||x_n - z_{n-1}|| \to 0$, where z_n is the unique point (whose existence is guaranteed by [12]) satisfying

$$z_n = t_n T(z_n) + (1 - t_n) x_1$$
, where $t_n := \frac{1}{1 + \theta_n}$.

In particular, (x_n) strongly converges towards a fixed point of T provided that (z_n) does. The latter is known to be the case e.g. for reflexive Banach spaces X with uniformly Gâteaux differentiable norm provided that T has a fixed point (or C being bounded) and every nonempty bounded closed convex subset of X has the fixed point property for nonexpansive self-mappings (see [12,13]). So, in particular, (z_n) (and consequently (x_n)) strongly converges to a fixed point of T if X is a uniformly smooth Banach space, T has a fixed point and C is closed and convex (see Corollary 11.8 in [5]).

In [10], we extracted from the proof in [6] explicit and highly uniform rates of convergence for $||x_n - Tx_n|| \to 0$ (asymptotic regularity) and $||x_n - z_{n-1}|| \to 0$.

Effective uniform rates on the strong convergence of (z_n) , however, in general do not exist even in the special case of Hilbert spaces. Nevertheless, one can obtain effective uniform rates Φ of so-called metastability in the sense of Tao, i.e. (here $[n; n+g(n)] := \{n, n+1, n+2, \ldots, n+g(n)\}$)

$$\forall \varepsilon > 0 \,\forall g : \mathbb{N} \to \mathbb{N} \,\exists n \le \Phi(\varepsilon, g) \,\forall i, j \in [n; n + g(n)] \,(\|z_i - z_j\| < \varepsilon)$$

which we extract for the Hilbert space case. We then combine this with our asymptotic regularity rate to obtain (again for Hilbert spaces) a rate of metastability Ω for (x_n) , in fact we get

$$(1) \ \forall \varepsilon > 0 \ \forall g : \mathbb{N} \to \mathbb{N} \ \exists n \le \Omega(\varepsilon, g) \ \forall i, j \in [n; n + g(n)] \ \forall l \ge n \ (\|x_i - x_j\| < \varepsilon \land \|Tx_l - x_l\| < \varepsilon).$$

Here Ω only depends (in addition to ε, g) on a Lipschitz constant L for T, an upper bound $d \ge ||x_1 - p||$ for some T-fixed point p and some moduli related to the scalars $(\lambda_n), (\theta_n)$. (1) trivially implies the finitary (in the sense that only a finite initial segment of (x_n) is mentioned)

(1) trivially implies the finitary (in the sense that only a finite initial segment of (x_n) is mentioned) statement

 $(2) \ \forall \varepsilon > 0 \ \forall g : \mathbb{N} \to \mathbb{N} \ \exists n \le \Omega(\varepsilon, g) \ \forall i, j \in [n; n + g(n)] \left(\|x_i - x_j\| < \varepsilon \land \|Tx_i - x_i\| < \varepsilon \right)$

which - in turn - trivially implies that (x_n) strongly converges to a fixed point of T as metastability ineffectively is equivalent to the usual Cauchy property. In this sense, our quantitative form also constitutes a finitary version (in the sense of Tao [14, 15]) of that strong convergence theorem.

2 Quantitative Analysis

2.1 Resolvent Convergence

The following result is closely related to results of Browder [1] and Bruck [4]. It has been shown by Lan and Wu in [11] using techniques similar to those of Browder [2]. Although Browder's proof (for the nonexpansive case) has been analyzed by Kohlenbach in [9], it is considerably more difficult to treat than our proof below which follows the ideas of [4] (which in turn is based on [7]).

Theorem 2.1. Let H be a Hilbert space, $C \subseteq H$ be a nonempty bounded closed convex subset and $T: C \to C$ be a demicontinuous pseudocontraction. Then, for each $x \in C$ and $t \in [0,1)$, there exists a unique path (z_t) in C such that $z_t = tTz_t + (1-t)x$. Moreover, the strong

$$\lim_{t \to 1^-} z_t = z,$$

exists and is the fixed point of T closest to x.

Proof. For each $x \in C$ and nonnegative t < 1, the mapping $T_t : C \to C, z \mapsto tTz + (1-t)x$ satisfies

$$\langle T_t x_1 - T_t x_2, x_1 - x_2 \rangle = \langle t T x_1 + (1 - t) x - t T x_2 - (1 - t) x, x_1 - x_2 \rangle$$

= $t \langle T x_1 - T x_2, x_1 - x_2 \rangle$
 $\leq t ||x_1 - x_2||^2.$ (1)

Therefore, T_t is pseudocontractive. It is also demicontinuous: for any sequence (x_n) in C with $x_n \to x$, we have

$$\langle y, T_t x_n - T_t x \rangle = t \langle y, T x_n - T x \rangle \to 0 \quad \text{for all } y \in H$$

since T was demicontinuous. We conclude by Corollary 4 of [4] that T_t has a fixed point $z_t \in C$, *i.e.*, a point satisfying the equation

$$z_t = tTz_t + (1-t)x.$$

Moreover, by (1), T_t is even strongly pseudocontractive, so z_t is unique. To see this, suppose that z_t and z'_t are two fixed points of T_t . Then, by (1),

$$||z_t - z'_t||^2 = \langle z_t - z'_t, z_t - z'_t \rangle = \langle T_t z_t - T_t z'_t, z_t - z'_t \rangle \le t ||z_t - z'_t||^2.$$

Since t < 1, this implies $z_t = z'_t$. That (z_t) is continuous in t follows as in [12]. Strong convergence of (z_t) will be established in the course of the proof of Theorem 2.3. That the strong limit is a fixed point of T follows from (here we use that C is bounded)

$$|\langle Tz_t - z_t, Tz - z \rangle| \le ||Tz_t - z_t|| \cdot ||Tz - z|| \stackrel{t \to 1}{\to} 0$$

and that (using that T is demicontinuous)

$$\langle Tz_t - z_t, Tz - z \rangle \stackrel{t \to 1^-}{\to} \langle Tz - z, Tz - z \rangle.$$

We now proceed to show that the strong limit is the fixed point of T with minimal distance from x. Suppose that y is a fixed point of T. Then y = tTy + (1-t)x for t = 1. Repeating the calculations leading to (3) further below with $z_t = y$ and t = 1, we obtain

$$||y - x||^2 \ge ||z_s - x||^2 + ||y - z_s||^2$$
, for all $0 < s < 1$.

Taking the strong limit $s \to 1$ implies

$$||y - x||^2 \ge ||z - x||^2 + ||y - z||^2$$

showing that z is the (unique) fixed point of T that is closest to x.

In the following we present an effective rate of metastability for the strong convergence of (z_t) . Provided that we assume the existence of (z_t) we not even need that T is demicontinuous (nor that X is complete or C closed).

Notation: Let $f : \mathbb{N} \to \mathbb{N}$ and $n, m \in \mathbb{N}$, then $f^{(n)}(m)$ denotes the result of *n*-times applying f starting from m, i.e. $f^{(0)}(m) := m, f^{(n+1)}(m) := f(f^{(n)}(m))$. f^M denotes the function $f^M(n) := \max\{f(i) : i \leq n\}$.

We use the following

Lemma 2.2 ([8]). Let $D \in \mathbb{R}_+$ be a nonnegative real number and (a_n) be a nondecreasing sequence in the interval [0, D], i.e. $0 \le a_n \le a_{n+1} \le D$. Then the following holds

 $\forall \varepsilon > 0 \,\forall g : \mathbb{N} \to \mathbb{N} \,\exists n \leq \tilde{g}^{(\lceil D/\varepsilon \rceil)}(1) \,\forall i, j \in [n; n + g(n)] \,(|a_i - a_j| \leq \varepsilon),$

where $\tilde{g}(n) := n + g(n)$. Moreover, n can be taken as $\tilde{g}^{(i)}(1)$ for some suitable $i \leq \lfloor D/\varepsilon \rfloor$.

Theorem 2.3. Let X be a real inner product space and $C \subseteq X$ be a convex subset. Let $T : C \to C$ be a pseudocontraction which possesses a fixed point $v \in C$. Let $x \in C$ and assume that there exists (z_t) for x such that

$$z_t = tTz_t + (1-t)x, \quad t \in [0,1).$$

Let (t_n) be a sequence in (0,1) that converges towards 1 and $h: \mathbb{N} \to \mathbb{N}$ be such that $t_n \leq 1 - \frac{1}{h(n)+1}$ for all $n \in \mathbb{N}$. Set $z_n := z_{t_n}$. Then, for all $\varepsilon > 0$, all $g: \mathbb{N} \to \mathbb{N}$ and all $\mathbb{N} \ni d \geq ||v - x||$

$$\exists n \leq \Phi\left(\varepsilon, g, \chi_{g}, h, d\right) \forall i, j \in [n; n + g\left(n\right)] \left(\left\| z_{i} - z_{j} \right\| \leq \varepsilon \right),$$

where

$$\Phi\left(\varepsilon, g, \chi_g, h, d\right) := \chi_g^M\left(g_{h, \chi_g}^{\left(\left\lceil 16d^2/\varepsilon^2 \right\rceil\right)}\left(1\right)\right)$$

with

$$g_{h,\chi_{g}}\left(n\right) := \max\left\{h\left(i\right) : i \leq \chi_{g}\left(n\right) + g\left(\chi_{g}(n)\right)\right\}$$

and $\chi_g : \mathbb{N} \to \mathbb{N}$ is any function satisfying

$$\forall n \in \mathbb{N} \forall i \in [\chi_g(n); \tilde{g}(\chi_g(n))] \left(|1 - t_i| \le \frac{1}{n+1} \right).$$
(2)

If (t_n) is a nondecreasing sequence in (0,1) (not necessarily converging towards 1), then the bound can be simplified to $\Psi(\varepsilon, g, d) := \tilde{g}^{(\lceil 4d^2/\varepsilon^2 \rceil)}(1)$, where $\tilde{g}(n) := n + g(n)$.

Proof. Assume that $z_t \in C$ satisfies the equation

$$z_t = tTz_t + (1-t)x$$

for all $t \in [0,1)$. For 1 > t > s > 0, we carry out a calculation similar to [9] and [7]; Since $Tz_t = \frac{1}{t}z_t - \frac{1-t}{t}x$ and T is pseudocontractive,

$$\begin{split} \|z_t - z_s\|^2 &\ge \langle Tz_t - Tz_s, z_t - z_s \rangle = \left\langle \frac{1}{t} z_t - \frac{1-t}{t} x - \frac{1}{s} z_s + \frac{1-s}{s} x, z_t - z_s \right\rangle \\ &= \left\langle \frac{1}{t} z_t - \frac{1}{t} z_s + \frac{1}{t} z_s - \frac{1}{s} z_s, z_t - z_s \right\rangle + \frac{t-s}{ts} \langle x, z_t - z_s \rangle \\ &= \frac{1}{t} \|z_t - z_s\|^2 + \left\langle \frac{s-t}{st} z_s, z_t - z_s \right\rangle + \frac{t-s}{ts} \langle x, z_t - z_s \rangle, \end{split}$$

and since 0 < t < 1,

$$\left\langle \frac{t-s}{st} z_s, z_t - z_s \right\rangle \ge \left(\frac{1}{t} - 1\right) \left\| z_t - z_s \right\|^2 + \frac{t-s}{ts} \left\langle x, z_t - z_s \right\rangle \ge \frac{t-s}{ts} \left\langle x, z_t - z_s \right\rangle.$$

Since s < t, we conclude

$$\langle z_s - x, z_t - z_s \rangle \ge 0.$$

Therefore,

$$||z_t - x||^2 = \langle z_t - x, z_t - x \rangle = \langle z_s - x + (z_t - z_s), z_s - x + (z_t - z_s) \rangle$$

= $\langle z_s - x, z_s - x \rangle + \langle z_t - z_s, z_t - z_s \rangle + 2 \langle z_s - x, z_t - z_s \rangle$
 $\ge ||z_s - x||^2 + ||z_t - z_s||^2.$ (3)

Therefore, $(||z_t - x||^2)_t$ is nondecreasing (as $t \nearrow 1^-$) and

$$||z_t - z_s||^2 \le ||z_s - x||^2 - ||z_t - x||^2|.$$
(4)

 (z_t) is also bounded as follows from the existence of a fixed point $v \in C$ reasoning as in Proposition 2(iv) of [12]: If $v \in F(T)$, then

$$\begin{aligned} \|z_t - v\|^2 &= \langle tTz_t + (1 - t) \, x - v, z_t - v \rangle \\ &= t \, \langle Tz_t - Tv, z_t - v \rangle + (1 - t) \, \langle x - v, z_t - v \rangle \\ &\leq t \|z_t - v\|^2 + (1 - t) \, \langle x - v, z_t - v \rangle \,, \end{aligned}$$

which implies

$$(1-t) \|z_t - v\|^2 \le (1-t) \|x - v\| \cdot \|z_t - v\|$$

Since t < 1, this implies that $||z_t - v|| \le ||x - v||$. Hence

$$||z_t - x|| \le ||z_t - v|| + ||v - x|| \le 2 ||v - x|| \le 2d$$
, i.e.

 $(||z_t - x||^2)_t$ is bounded by $4d^2$.

Together with Lemma 2.2 applied to $(||z_{t_n} - x||^2)_n, 4d^2$ and ε^2 and (4) above the theorem now follows in the case where $1 > t_{n+1} \ge t_n > 0$ for all $n \in \mathbb{N}$. For the case of a general sequence (t_n) which is assumed to converge to 1 one reasons literally as in the proof of Theorem 4.2 in [9]. \Box

Remark 2.4. Theorem 4.2 of [9] establishes the same result for nonexpansive mappings.

Remark 2.5. It is not hard to show that Theorem 2.3 also holds with the assumption $F(T) \neq \emptyset$ being replaced by $\forall \varepsilon > 0 \exists v_{\varepsilon} \in C(||x - v_{\varepsilon}|| \leq d \land ||Tv_{\varepsilon} - v_{\varepsilon}|| \leq \varepsilon)$.

2.2 Asymptotic Regularity of the Bruck Iteration

Theorem 2.6 ([10]). Let C be a nonempty, closed and convex subset of a real Banach space X and $x \in C$. Let $T: C \to C$ be a Lipschitzian pseudocontractive mapping with Lipschitz constant L and for some d > 0 assume that T possesses arbitrarily good ε -fixed points $p_{\varepsilon} \in C$ with $||x - p_{\varepsilon}|| < d$. Let (x_n) be the Bruck iteration (Definition 1.1) with starting point $x_1 := x$. Let z_n be the unique element in C satisfying $z_n = t_n T(z_n) + (1 - t_n)x_1$ with $t_n := 1/(1 + \theta_n)$. Given rates of convergence/divergence $R_i: (0, \infty) \to \mathbb{N}$ for the Chidume-Zegeye conditions 1.2, we get

$$\forall \varepsilon > 0 \forall n \ge \Psi \left(d, L, R_1, R_2, R_3, R_4, \varepsilon \right) \left(\| x_n - T x_n \| < \varepsilon \right)$$

and

$$\forall \varepsilon > 0 \forall n \ge \chi \left(d, L, R_1, R_2, R_3, R_4, \varepsilon \right) \left(\| x_n - z_{n-1} \| < \varepsilon \right)$$

where

$$\Psi\left(d,L,R_{1},R_{2},R_{3},R_{4},\varepsilon\right) = \max\left\{N_{2}\left(C\right)+1,R_{1}\left(\frac{\varepsilon}{4r}\right)+1\right\}$$

and

$$\chi(d, L, R_1, R_2, R_3, R_4, \varepsilon) = N_2(C) + 1$$

with

$$\begin{split} N_1(\varepsilon) &:= \max\left\{ R_3\left(\frac{2\varepsilon s}{3r^2}\right), R_4\left(\sqrt{\frac{\varepsilon}{r^2} + \frac{9}{4}} - \frac{3}{2}\right) \right\},\\ N_2(x) &:= R_2\left(\frac{x}{2}\right) + 1,\\ C &:= \frac{8\left(1+L\right)^2 r^2}{\varepsilon^2} + 2\left(N_1\left(\frac{\varepsilon^2}{8\left(1+L\right)^2}\right) - 1\right),\\ r &:= \max\left\{\frac{\left(2+L\right)^{R_3(d)} - 1}{1+L}d, 2d\right\},\\ s &:= \frac{1}{2\left(\frac{5}{2}+L\right)\left(2+L\right)}. \end{split}$$

Proof. The first claim is Theorem 1 in [10] and the second claim follows from formula (24) in the proof of that theorem (even with ε being replaced by $\varepsilon/(2(1+L))$ in the definition of χ). \Box

Corollary 2.7 ([10]). In the situation of Theorem 2.6, one may drop the condition that T has arbitrarily good approximate fixed points and instead require diam $(C) \leq d$. In this case,

 $\chi(d, L, R_1, R_2, R_3, R_4, \varepsilon) := N_2(C) + 1 \text{ and } \Psi(d, L, R_1, R_2, R_3, R_4, \varepsilon) = \max\left\{\chi(\varepsilon), R_1\left(\frac{\varepsilon}{2d}\right) + 1\right\}$

and

$$N_{1}(\varepsilon) := \max\left\{R_{3}\left(\frac{\varepsilon}{4d^{2}(2+L)}\right), R_{4}\left(\sqrt{\frac{\varepsilon}{d^{2}}+1}-1\right)\right\}$$
$$N_{2}(x) := R_{2}\left(\frac{x}{2}\right)+1,$$
$$C := \frac{8\left(1+L\right)^{2}d^{2}}{\varepsilon^{2}}+2\left(N_{1}\left(\frac{\varepsilon^{2}}{8\left(1+L\right)^{2}}\right)-1\right).$$

2.3 Strong Convergence of the Bruck Iteration

Theorem 2.8. If, in the situation of Theorem 2.6, X is a Hilbert space, then (assuming w.l.o.g. $L \ge 1$) for all $\varepsilon > 0$ and all $g : \mathbb{N} \to \mathbb{N}$

$$\exists n \leq \chi^{M} \left(g_{h,\chi}^{(\lceil 64d^{2}/\varepsilon^{2} \rceil)}(1) \right) + \Psi(\varepsilon) + 1 \,\forall i, j \in [n; n+g(n)] \,\forall l \geq n \left(\|x_{i} - x_{j}\| \leq \varepsilon \land \|Tx_{l} - x_{l}\| \leq \varepsilon \right)$$

where $h: \mathbb{N} \to \mathbb{N}$ is a function such that $h(n) \ge 1/\theta_n$ for all $n \in \mathbb{N}$ and $\chi(n) := R_1(1/n)$,

$$g'(n) := g\left(n + 1 + \Psi\left(\varepsilon\right)\right) + \Psi\left(\varepsilon\right) + 1, \quad g_{h,\chi}(n) := \max\left\{h\left(i\right) : i \le \chi(n) + g'\left(\chi(n)\right)\right\},$$

and R_1 and Ψ as in Corollary 2.7.

Proof. In Theorem 2.6, the resolvent z_t is instantiated with the sequence $t = t_n = \frac{1}{1+\theta_n}$ and the starting point x_1 . We now show how to apply Theorem 2.3 to this instantiation; if we set $\chi(n) := R_1(1/n)$, then $\theta_i \leq 1/n$ for all $i \geq \chi(n)$. Since $\theta_n \in (0, 1]$, this implies

$$|1 - t_i| = 1 - \frac{1}{1 + \theta_i} \le 1 - \frac{1}{1 + \frac{1}{n}} = \frac{1}{n+1}, \text{ for all } i \ge \chi(n).$$

Since this holds for all $i \ge \chi(n)$, the function χ satisfies (2) independently of the counter-function g and we may set $\chi_g := \chi$ in Theorem 2.3.

Moreover, for all $n \in \mathbb{N}$, $h(n) \ge 1/\theta_n$ implies $1 + h(n) \ge \frac{1+\theta_n}{\theta_n}$, whence

$$\frac{1}{h(n)+1} \le \frac{\theta_n}{1+\theta_n} = 1 - \frac{1}{1+\theta_n}.$$

Therefore,

$$t_n = \frac{1}{1+\theta_n} \le 1 - \frac{1}{h(n)+1}, \text{ for all } n \in \mathbb{N}.$$

Now observe that, by Theorem 2.3 and Remark 2.5 applied to the counter-function g' and error $\varepsilon/2$, there exists an $n \leq \chi^M \left(g_{h,\chi}^{(\lceil 64d^2/\varepsilon^2 \rceil)}(1)\right)$ such that

$$||z_i - z_j|| \le \frac{\varepsilon}{2}, \quad \text{for all } i, j \in [n; n + g'(n)].$$
(5)

Since $[n; n + g'(n)] = [n; n + 1 + \Psi(\varepsilon) + g(n + 1 + \Psi(\varepsilon))] \supseteq [n + \Psi(\varepsilon); n + 1 + \Psi(\varepsilon) + g(n + 1 + \Psi(\varepsilon))]$, we conclude that if we set $n_0 := n + 1 + \Psi(\varepsilon)$, then

$$||z_{i-1} - z_{j-1}|| \le \frac{\varepsilon}{2}$$
, for all $i, j \in [n_0; n_0 + g(n_0)]$.

Since $n_0 \ge \Psi(\varepsilon)$, we conclude from (24) of [10] for all $n \ge n_0$, $||x_n - z_{n-1}|| \le \frac{\varepsilon}{2(1+L)} \le \varepsilon/4$, since we may w.l.o.g. assume $L \ge 1$. Thus,

$$||x_i - x_j|| \le ||x_i - z_{i-1}|| + ||z_{i-1} - z_{j-1}|| + ||z_{j-1} - x_j|| \le \varepsilon, \quad \text{for all } i, j \in [n_0; n_0 + g(n_0)].$$

Moreover, we get from Theorem 2.6

$$||x_n - Tx_n|| \le \varepsilon$$
, for all $n \ge \Psi(\varepsilon)$.

This completes the proof.

Corollary 2.9. If (θ_n) is nondecreasing, then for all $\varepsilon > 0$ and $g : \mathbb{N} \to \mathbb{N}$

$$\exists n \leq \tilde{g}^{\prime(\lceil 16d^2/\varepsilon^2 \rceil)}(1) + \Psi(\varepsilon) + 1 \,\forall i, j \in [n; n+g(n)] \,\forall l \geq n \,(\|x_i - x_j\| \leq \varepsilon \land \|Tx_l - x_l\| \leq \varepsilon)$$

where $\tilde{g}^{\prime}(n) = g^{\prime}(n) + n \text{ and } g^{\prime}(n) = g(n+1+\Psi(\varepsilon)) + \Psi(\varepsilon) + 1.$

Proof. Since (θ_n) is nondecreasing, the second part of Theorem 2.3 implies that there exists an $n \leq \tilde{g}^{\prime(\lceil 16d^2/\varepsilon^2 \rceil)}(1)$ such that

$$||z_i - z_j|| \le \frac{\varepsilon}{2}$$
, for all $i, j \in [n; n + g'(n)]$,

which is the analog to equation (5). The remainder of the proof is then the same.

As a corollary to the proof of Theorem 2.8 we get the following transformation of an assumed rate of metastability for (z_n) into one for (x_n) in general Banach spaces:

Corollary 2.10. In the situation of Theorem 2.6 (so X is not necessarily a Hilbert space), suppose that for all $g : \mathbb{N} \to \mathbb{N}$ and $\varepsilon > 0$,

$$\exists n \leq \Omega (d, g, \varepsilon) \,\forall i, j \in [n; n + g(n)] \,(\|z_i - z_j\| \leq \varepsilon) \,,$$

and let $\chi^M(n) := R_1(1/n)$. Then, for all $\varepsilon > 0$ and $g : \mathbb{N} \to \mathbb{N}$,

$$\exists n \leq \chi^{M} \left(\Omega(d, g, \varepsilon/2) \right) + \Psi(\varepsilon) + 1 \,\forall i, j \in [n; n + g(n)] \,\forall l \geq n \left(\|x_{i} - x_{j}\| \leq \varepsilon \land \|Tx_{l} - x_{l}\| \leq \varepsilon \right).$$

Remark 2.11. For the canonical choice $\lambda_n = \frac{1}{(n+1)^a}$ and $\theta_n = \frac{1}{(n+1)^b}$, where 0 < b < a and a + b < 1, the bound is as stated in Corollary 2.9.

References

- F. E. Browder. Existence of Periodic Solutions for Nonlinear Equations of Evolution. Proceedings of the National Academy of Sciences, 53:1100–1103, 1965.
- [2] F. E. Browder. Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces. Archive for Rational Mechanics and Analysis, 240:82-90, 1967.
- [3] F. E. Browder and W. V. Petryshyn. Construction of fixed points of nonlinear mappings in Hilbert spaces. Journal of Mathematical Analysis and Applications, 20:197-228, 1967.
- [4] R. E. Bruck. A strongly convergent iterative solution of $0 \in U(x)$ for a maximal monotone operator U in Hilbert space. Journal of Mathematical Analysis and Applications, 48:114–126, 1974.
- [5] C. Chidume. Geometric Properties of Banach Spaces and Nonlinear Iterations. Springer Lecture Notes in Mathematics, 2009.
- [6] C. E. Chidume and H. Zegeye. Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps. *Proceedings of the American Mathematical Society*, 132:831–840, 2004.
- [7] B. Halpern. Fixed points of nonexpanding maps. Bulletin of the American Mathematical Society, 73:957–961, 1967.
- [8] U. Kohlenbach. Arithmetizing proofs in analysis. In: Larrazabal, J.M., Lascar, D., Mints, G. (eds.), Logic Colloquium '96, Springer Lecture Notes in Logic, 12:115-158, 1998.
- [9] U. Kohlenbach. On quantitative versions of theorems due to F.E. Browder and R. Wittmann. Advances in Mathematics, 226:2764–2795, 2011.
- [10] D. Körnlein and U. Kohlenbach. Effective rates of convergence for Lipschitzian pseudocontractive mappings in general Banach spaces. *Nonlinear Analysis*, 74:5253–5267, 2011.
- [11] K. Q. Lan and J. H. Wu. Convergence of approximants for demicontinuous pseudo-contractive maps in Hilbert spaces. *Nonlinear Analysis*, 49:737–746, 2000.

- [12] C. H. Morales and J. S. Jung. Convergence of paths for pseudocontractractive mappings in Banach spaces. Proceedings of the American Mathematical Society, 128:3411–3419, 2000.
- [13] S. Reich. Strong convergence theorems for resolvents of accretive operators in Banach spaces. Journal of Mathematical Analysis and Applications, 75:287–292, 1980.
- [14] T. Tao. Soft analysis, hard analysis, and the finite convergence principle. Essay posted May 23, 2007. Appeared in: T. Tao, Structure and Randomness: Pages from Year One of a Mathematical Blog. AMS, 298pp., 2008'.
- [15] T. Tao. Norm convergence of multiple ergodic averages for commuting transformations. Ergodic Theory and Dynamical Systems, 28:657-688, 2008.