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Abstract

This paper provides an explicit polynomial rate of asymptotic regularity for (in

general inconsistent) feasibility problems in Hilbert space. In particular, we give a

quantitative version of Bauschke’s solution of the zero displacement problem as well as
of various generalizations of this problem. The results in this paper have been obtained
by applying a general proof-theoretic method for the extraction of effective bounds from

proofs due to the author (‘proof mining’) to Bauschke’s proof.
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1 Introduction

In a remarkable paper [3], Bauschke showed the following result: let H be a real Hilbert
space, C1, . . . , CN ⊆ H be nonempty closed and convex subsets and PC1 , . . . , PCN

the

corresponding metric projections, then the composition T = PCN
◦. . .◦PC1 is asymptotically

regular (in the sense of [8]), i.e.

‖Tn+1x− Tnx‖ n→∞→ 0

for each x ∈ H.
This is relatively easy to show under the assumption that T possesses a fixed point which
e.g. is trivially the case if the convex sets have a nonempty intersection. In the latter
case the fixed points of T are in fact precisely the points in that intersection and the
problem to find such a point is often referred to as an ‘image recovery problem’ or as
a ‘convex feasibility problem’. To show the asymptotic regularity of some appropriate
iteration procedure involving T usually is the first step in proving that the iterations at least
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weakly converge to a fixed point of T with strong convergence in the boundedly compact
case or under additional metric regularity assumptions on C1, . . . , CN .

The problem of whether the above stated asymptotic regularity holds without assuming at
least the existence of a fixed point of T, in fact, the question of whether T has approximate
fixed points at all, had remained open (except for the case N = 2) until [3] and was

referred to as the ‘zero displacement conjecture’ (see [4] for this and for general background

information on the topic of this paper). In this situation one also speaks of a potentially
‘inconsistent feasibility problem’.

While the result proved by Bauschke is very concrete and easy to state, the proof uses a
variety of nontrivial results from the abstract theory of maximal monotone operators as well
as from the fixed point theory of firmly and strongly nonexpansive mappings and Bauschke
does not provide any rate of convergence.

In this paper we construct such a rate of convergence ϕ(ε, b,N,K) which only depends

on the error ε, a norm upper bound b ≥ ‖x‖ on the starting point of the iteration, the

number N of sets and a norm upper bound K ≥ ‖(c1, . . . , cN )‖ on some arbitrary point

c = (c1, . . . , cN ) ∈ C1 × . . . × CN ⊆ HN , where HN is equipped with the induced inner
product:

∀ε > 0∀x ∈ H (‖x‖ ≤ b→ ∀n ≥ ϕ(ε, b,N,K) (‖Tn+1x− Tnx‖ ≤ ε)).

The bound ϕ is a simple polynomial in the data ε, b,N,K.

The rate of convergence is easier to state if we add as an additional input an upper bound
D ≥ ‖x − Tx‖ on the initial displacement which, however, can be computed in terms of

N, b,K, e.g. D := 2b+NK (see Remark 2.16), and so is actually redundant.

In [5], the asymptotic regularity result from [3] is extended to arbitrary firmly nonexpansive
mappings T1, . . . , TN : H → H provided that each Ti has approximate fixed points. Our
quantitative analysis easily extends to this situation. In the case, where each Ti possesses
even a fixed point pi, the bound from the case for projections actually applies unchanged
if we replace K ≥ ‖c‖ by K ≥ ‖(p1, . . . , pN )‖. The general case needs some refinement of
our analysis and the bound will depend on norm bounds for approximate fixed points of
T1, . . . , TN .

The results in this paper are obtained as an instance of a general methodology, called ‘proof
mining’, which uses tools from mathematical logic to extract explicit effective bounds from
proofs (see [17]). In fact, general logical so-called metatheorems guarantee the extractability
of such bounds in quite general situations and actually provide an algorithm which in
principle allows one to carry out such an extraction from a given proof. In practice, however,
one will mostly follow this general algorithm as a guideline for the extraction with many
optimizations tailored to the specific case at hand. That the general framework of abstract
real Hilbert spaces, convex subsets and nonexpansive operators nicely fits into the logical
methodology was already established in [16, 12, 17]. That metric projections can be handled

was shown in [14].

The central conditions for the extractability of effective bounds (for x ∈ X,T : X → X
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with majorants b ≥ ‖x‖ and T ∗ : N→ N for x and T, see below)

∀n ∈ N (A∀(n, x, T )→ ∃k ≤ Φ(n, b, T ∗)B∃(n, x, T, k))

from a proof of

∀n ∈ N ∀x ∈ X ∀T : X → X (A∀(n, x, T )→ ∃k ∈ NB∃(n, x, T, k))

are that

• X belongs to a suitable uniform class of structures,

• A∀ can be written (maybe with additional moduli witnessing some property) as a

purely universal condition, i.e. a condition of the form ∀xAqf (x), where x is a tuple

of variables and Aqf a formula without quantifiers.

• the condition A∀ guarantees that T is effectively majorizable (in the input data), i.e.
one can construct a mapping T ∗ : N→ N s.t.

∀n ∈ N ∀x ∈ X (n ≥ ‖x‖ → T ∗(n) ≥ ‖T (x)‖),

• the property B∃ is purely existential, i.e. a condition of the form ∃xBqf (x), where x

is a tuple of variables and Bqf a formula without quantifiers.

These first two conditions are satisfied for Hilbert spaces X (see [17]) and metric projections

onto closed and convex subsets (see [14]) as well as for firmly nonexpansive mappings (and

also for strongly nonexpansive mappings with SNE-modulus, see below and [18]). The
majorizability for nonexpansive mappings and so, in particular, for metric projections in
Hilbert space and firmly or strongly nonexpansive mappings is easily seen. In the case of
a metric projection PCi : X → Ci onto a nonempty closed and convex subset Ci ⊆ X one

just needs a norm upper bound K ≥ ‖ci‖ for some arbitrary ci ∈ Ci since for all n ∈ N and
x ∈ X

n ≥ ‖x‖ → n+K ≥ ‖PCix− PCi0‖+ ‖PCi0‖ ≥ ‖PCix‖.

The existential property B∃(n, T, k) is ‖T kx − T k+1x‖ < 2−n and, due to the fact that

(‖T kx − T k+1x‖)k∈N is decreasing, ∃k ≤ ϕ(n, b,K) (‖T kx − T k+1x‖ < 2−n) implies that

∀k ≥ ϕ(n, b,K) (‖T kx− T k+1x‖ < 2−n).

These general logical facts already predict (modulo the formalizability of Bauschke’s proof

in the formal framework to which the aforementioned logical metatheorems apply) that an
effective rate of convergence in the above case which only depends on ε, b,K,N must be in
principle extractable from Bauschke’s proof. In this paper, we present the result of such an
extraction and prove the correctness of the rate of convergence thus obtained without any
reference to tools from logic.

We believe that this is a particularly convincing application of the logic-based methodology
for the following reasons:

1. The asymptotic regularity problem solved by Bauschke is extremely natural and easy
to state, as it only involves projections in Hilbert space and has a long history going
back to von Neumann.
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2. While the result proven is very concrete, the proof uses a large arsenal of abstract
tools from the theory of maximally monotone operators and the theory of strongly
nonexpansive mappings which do not have an obvious numerical content.

3. The result obtained is a low complexity and completely explicit rate of convergence
which is a simple polynomial in the data.

4. The proofs are reasonably short and easy to formulate without any explicit reference
to logic.

Finally, let us remark that asymptotic regularity is a central property in metric fixed point
theory which has been intensively studied. E.g. deep optimal rates of asymptotic regularity
of bounded sequences of Mann iterations (in arbitrary Banach spaces) are given in [2, 9].
Note, however, that the main problem in the situation of Bauschke’s result stems from the
fact that (xn) may be unbounded.

In [1] (further extended recently by [11]) it is shown that also techniques from continuous
model theory can in some cases been used to show noneffectively the existence of uniform
bounds (depending as in our result only on general norm upper bounds). However, the
proof-theoretic approach followed in this paper explicitly extracts a concrete such bound
from a proof which then can be verified (as done in this paper) by an ordinary analytical
proof.

Notations: R+,R∗+ denote the sets of nonnegative and strictly positive real numbers resp.

N := {0, 1, 2, . . .}. For a set-valued operators A : X → 2X the range of A is denoted by

ran(A) and its closure (in norm) by cl(ran(A)). G(A) denotes the graph of A.

2 Main results

The proof by Bauschke proceeds by using abstract operator theory to show that T has
approximate fixed points and then uses results due to Bruck and Reich to conclude from
this fact that T - as a strongly nonexpansive mapping - is asymptotically regular. We start
by giving a quantitative version of the latter argument. In fact, the asymptotic regularity
follows from a result in [19](Proposition 2.1) stating that Tnx/n converges to 0 (if T has
approximate fixed points, where here one may have an arbitrary normed space and T can be
any nonexpansive mapping) and a result in [10](Proposition 1.2) which says that for strongly

nonexpansive mappings T (again in arbitrary normed spaces) one has limn→∞ ‖Tn+1x −
Tnx‖ = limn→∞ ‖Tnx/n‖.
The following lemma is an easy quantitative version of Proposition 2.1 in [19] (for the special

case where cn = 1 needed in our paper):

Lemma 2.1. Let (X, ‖ · ‖) be a normed space, C ⊆ X an arbitrary nonempty subset

and T : C → C be a nonexpansive mapping satisfying inf{‖x − Tx‖ : x ∈ C} = 0. Let
α : R∗+ → R∗+ be such that

∀ε > 0 ∃y ∈ C (‖y‖ ≤ α(ε) ∧ ‖y − Ty‖ ≤ ε) .

4



Then for all b > 0 and x ∈ C with ‖x‖ ≤ b and xk := T kx one has

∀ε > 0 ∀k ≥ ϕ(ε, b, α)

(
‖xk+1‖
k + 1

≤ ε
)
,

where

ϕ(ε, b, α) =

⌈
6b+ 4α(ε/2)

ε
− 1

⌉
.

Proof: As in the proof of [19](Prop.2.1, for ck := 1) one shows that for all y ∈ C, k ∈ N

‖xk+1 − x‖ ≤ 2‖x− y‖+ (k + 1)‖y − Ty‖

and so
‖xk+1‖
k + 1

≤ ‖x‖+ 2‖x− y‖
k + 1

+ ‖y − Ty‖.

Applied to yε ∈ C with ‖yε‖ ≤ α(ε/2) and ‖yε − Tyε‖ ≤ ε
2 this gives

‖xk+1‖
k + 1

≤ 3b+ 2α(ε/2)

k + 1
+
ε

2

and so

∀k ≥
⌈

6b+ 4α(ε/2)

ε
− 1

⌉ (
‖xk+1‖
k + 1

≤ ε
)
.

�

Remark 2.2. The above lemma also holds (with the same proof) if inf{‖x−Tx‖} = ξ > 0,
where then α is such that

∀ε > 0∃y ∈ C (‖y‖ ≤ α(ε) ∧ ‖y − Ty‖ ≤ ξ + ε)

and the conclusion says

∀ε > 0 ∀k ≥ ϕ(ε, b, α)

(
‖xk+1‖
k + 1

≤ ξ + ε

)
.

More information on strongly nonexpansive mappings can be found in [21].

Definition 2.3 ([18], Definition 2.4). Let C ⊆ X be an arbitrary set. A mapping T : C → X

is called strongly nonexpansive (SNE) with SNE-modulus ω : R∗+ × R∗+ → R∗+ if

∀d ∈ R∗+ ∀ε > 0 ∀x, y ∈ C
(‖x− y‖ ≤ d ∧ ‖x− y‖ − ‖Tx− Ty‖ < ω(d, ε)→ ‖(x− y)− (Tx− Ty)‖ < ε) .

Remark 2.4. 1. Note that the above definition implies that T is nonexpansive: suppose
otherwise, i.e. ‖Tx − Ty‖ > ‖x − y‖ for some x, y ∈ C. Take d > ‖x − y‖. Then

‖x − y‖ − ‖Tx − Ty‖ < 0 < ω(d, ε) and so ‖(x − y) − (Tx − Ty)‖ < ε for all ε > 0,
i.e. x− y = Tx− Ty which is a contradiction.
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2. As shown in [18], a mapping T : C → X is strongly nonexpansive in the sense intro-

duced in [10] iff it possesses an SNE-modulus in the above sense.

A proof-theoretic analysis of the proof of Proposition 1.2 in [10] together with the quanti-

tative analysis of strongly nonexpansive mappings from [18] results in:

Theorem 2.5. Under the assumptions of Lemma 2.1, if T is additionally strongly nonex-
pansive with SNE-modulus ω, then for x ∈ C, xn := Tnx and any upper bound D > 0 on
‖x− Tx‖ one has

∀ε > 0 ∀n ≥ ψ(ε, b,D, α, ω) (‖xn+1 − xn‖ < ε) ,

where

ψ(ε, b,D, α, ω) :=

⌈
18b+ 12α(ε/6)

ε
− 1

⌉⌈(
D

ω(D, ε̃)

)⌉
with

ε̃ :=
ε2

27b+ 18α(ε/6)
.

Note that ψ depends on x only via an upper bound D ≥ ‖x− Tx‖.

Proof: Consider yn := xn+1 − xn = Tn+1x − Tnx and let k ∈ N. Since T is in particular

nonexpansive, the sequence (‖yn‖)n∈N is decreasing and ‖yn‖ ≤ ‖y0‖ ≤ D for all n ∈ N.
Hence by [17](Prop.2.27 and Rem.2.29.1) applied to g(n) := k (and so g̃(n) = n + k) one
gets

∃n ≤ k
⌈
D

ε

⌉ (k−1∧
i=0

(‖yn+i‖ − ‖yn+i+1‖ < ε)

)
.

Applying this to ω(D, ε̃) as ε and using that ω is an SNE-modulus for T and that yn+i =
xn+i+1 − xn+i, yn+i+1 = Txn+i+1 − Txn+i one obtains

∀0 ≤ i ≤ k − 1 (‖yn+i − yn+i+1‖ < ε̃)

and so
∀1 ≤ i ≤ k (‖yn+i − yn‖ < i · ε̃) .

For ε̃ ≤ 2(k+ 1)ε/(3(k+ 1)k) = 2ε/(3k) (if k ≥ 1 and ε̃ > 0 arbitrary if k = 0) we then get

∃n ≤ k
⌈

D

ω(D, ε̃)

⌉ ( k∑
i=1

‖yn+i − yn‖ < (k + 1)
ε

3

)
.

Note that

Tn+k+1x− Tnx =
k∑
i=0

yn+i =
k∑
i=1

(yn+i − yn) + (k + 1)yn.

Hence ∥∥∥∥Tn+k+1x− Tnx
k + 1

− (Tn+1x− Tnx)

∥∥∥∥ < ε

3
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and so (using again that T is nonexpansive)

‖Tn+1x− Tnx‖ < ‖T
n+k+1x− Tnx‖

k + 1
+
ε

3
≤ ‖T

k+1x− x‖
k + 1

+
ε

3
≤ ‖T

k+1x‖
k + 1

+
‖x‖
k + 1

+
ε

3
.

Now let k :=
⌈
3(6b+4α(ε/6))

ε − 1
⌉
≥ 3b

ε − 1, then using Lemma 2.1

‖T k+1x‖
k + 1

≤ ε

3
and

‖x‖
k + 1

≤ b

k + 1
≤ ε

3

and so by the above

∃n0 ≤ k
⌈

D

ω(D, ε̃)

⌉ (
‖Tn0+1x− Tn0x‖ < ‖T

k+1x‖
k + 1

+
‖x‖
k + 1

+
ε

3
≤ ε
)
.

Since

k ≤ 18b+ 12α(ε/6)

ε
,

the theorem now follows because the (‖Tn+1x− Tnx‖)n∈N is decreasing. �

Remark 2.6. In the situation of Remark 2.2, Theorem 2.5 holds with ‖xn+1−xn‖ < ξ+ ε.

We now come to the main part of Bauschke’s proof where the theory of maximally monotone
operators is used to show that T has approximate fixed points.

In the following, H is a real Hilbert space and C1, . . . , CN ⊆ H are nonempty closed and

convex subsets of H. Let C := C1× . . .×CN . Following [3], we consider HN equipped with
the induced inner product

〈x, y〉 :=
N∑
n=1

〈xn, yn〉 for all x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ HN .

We will need the following notions

R : HN → HN , R(x1, x2, . . . , xN ) := (xN , x1, . . . , xN−1) (right-shift),

L : HN → HN , L(x1, x2, . . . , xN ) := (x2, x3, . . . , xN , x1) (left-shift),

M := I −R and S := 1
2M + 1

2M
∗ = I − 1

2R−
1
2L

(symmetric part of M , M∗ adjoint operator),

q : HN → R, q(x) := 1
2〈x,Mx〉,

q∗(x∗) := sup
x∈HN

{〈x∗, x〉 − q(x)} (conjugate function of q),

NCx :=

{
{u ∈ HN : sup〈C − x, u〉 ≤ 0}, if x ∈ C,
∅, otherwise.

(normal cone of C)

Lemma 2.7 ([3], Fact 2.2(ii)). q∗ ◦ S = q.

The next lemma is a quantitative version of the relevant part of Proposition 2.3 in [3]:
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Lemma 2.8. Let y = (y1, . . . , yN ) ∈ HN be such that
∑N

n=1 yn = 0 and ‖y‖ ≤ K with

K ≥ 1. Then q∗(y) ≤ N3(N−1)2
4 ·K2.

Proof: As in the proof of Proposition 2.3 in [3] one defines for 1 ≤ n ≤ N − 1

zn := y1 + 2y2 + . . .+ nyn.

Then for n = 1, . . . , N − 1

‖zn‖ =

∥∥∥∥∥
n∑
i=1

iyi

∥∥∥∥∥ ≤
n∑
i=1

i‖yi‖ ≤ K
n∑
i=1

i =
Kn(n+ 1)

2
.

Again as in [3], one now defines by backwards recursion x = (x1, . . . , xN ) as

xN := 0 and (n+ 1)xn − nxn+1 = zn for 1 ≤ n ≤ N − 1.

As shown in [3], y = S(2x) and so by Lemma 2.7 q∗(y) = q(2x).
One easily verifies that

‖xn‖ ≤
‖zn‖
n+ 1

+ ‖xn+1‖ for 1 ≤ n ≤ N − 1

and so for n = 1, . . . , N

‖xn‖ ≤
N−1∑
i=1

‖zi‖
i+ 1

≤ 1

2

N−1∑
i=1

i ·K =
N(N − 1)

4
·K

and in turn

‖x‖ ≤
√
N ·N(N − 1)

4
·K and |q(2x)| ≤ 2‖x‖ · ‖M(x)‖ ≤ 4‖x‖2 ≤ N3(N − 1)2

4
·K2.

�

Lemma 2.9. Let c = (c1, . . . , cN ) ∈ C with ‖c‖ ≤ K,K ≥ 1. Then

sup
w∈HN

〈w − c,−Mw〉 ≤ N3(N − 1)2

2
·K2.

Proof: As in ‘Step 3’ in the proof of Theorem 3.1 in [3] one shows (for the relevant case

where x := c and y := 0 and so My = 0) that

sup
w∈HN

〈w − c,−Mw〉 ≤ 2q∗(
1

2
M∗c),

where M∗c = z = (z1, . . . , zN ) = (c1−c2, c2−c3, . . . , cN−1−cN , cN−c1). Since
∑N

n=1 zn = 0

and ‖12z‖ ≤ K, Lemma 2.8 implies that

q∗((1/2)z) ≤ N3(N − 1)2

4
·K2

and so the lemma follows. �
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Lemma 2.10. With c,K as before, if for L ≥ 0

sup
w∈HN

〈w − c,−Mw〉 ≤ L,

then

∀ε ∈ (0, 1)∃b ∈ HN , x ∈ C (b ∈ NC(x) +M(x) ∧ ‖x‖ ≤ (K2 + 2L)/ε ∧ ‖b‖ ≤ ε).

Proof: As in the proof of Theorem 3.1 in [3] (Steps 1 and 2) one shows that NC + M is

maximal monotone. Clearly, 0 = 0 + 0 ∈ NC(c) +M(0). We now follow the reasoning from

the proof of Theorem 4 in [6] (adapted to the special case at hand; for generalizations of

the work in [6], see e.g. [20]): By the monotonicity of NC is follows that

〈h1, z − c〉 ≥ 0, ∀(z, h1) ∈ G(NC),

where G(NC) denotes that graph of NC .
By the assumption in the lemma we have

〈Mw,w − c〉 ≥ −L, ∀w ∈ HN

and so, adding these inequalities,

(∗) 〈h,w − c〉 ≥ −L, ∀(w, h) ∈ G(NC +M).

We now follow quantitatively the proof of Lemma 1 in [6]: Since NC + M is maximal

monotone, εI + (NC + M) has full range (by Minty’s theorem) and so, in particular, 0 ∈
ran(εI + (NC +M)) for all ε > 0, i.e.

∀ε > 0 ∃uε ∈ HN (0 ∈ εuε + (NC +M)(uε)).

In fact, uε ∈ C. By (∗) we have

∀(w, h) ∈ G(NC +M) (〈−h,w − c〉 ≤ L).

Applied to w := uε, h := −εuε, this gives us 〈εuε, uε − c〉 ≤ L and so

1

2
ε‖uε‖2 ≤

1

2
ε‖c‖2 + L ≤ 1

2
εK2 + L.

Hence (using that ε ∈ (0, 1))

√
ε · ‖uε‖ ≤

√
ε ·K2 + 2L ≤

√
K2 + 2L.

Now take ε̃ := ε2/(K2 + 2L). Then ‖ε̃ · uε̃‖ ≤ ε and

‖uε̃‖ ≤
√
K2 + 2L√

ε̃
=
K2 + 2L

ε
.

The lemma is now satisfied with b := −ε̃uε̃ and x := uε̃. �

The next theorem is a quantitative version of the zero displacement conjecture (proved in

[3]). Note that it is not needed to actually construct an ε-fixed point y of T but only to

construct a norm bound αK(ε) ≥ ‖y‖ of such a point since the rate of asymptotic regularity
in Theorem 2.5 only depends on such a bound but not on y itself.
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Theorem 2.11. Let H be a real Hilbert space and C1, . . . , CN ⊆ H be nonempty closed and
convex subsets and PCi the metric projections onto Ci for i = 1, . . . , N. Let c = (c1, . . . , cN )

be an arbitrary element of C := C1 × . . . × CN and K ≥ ‖c‖ (with K ≥ 1). Let T :=

PCN
◦ . . . ◦ PC1 . Then for every ε ∈ (0, 1) there exists a point y ∈ CN with

‖y‖ ≤ αK(ε) and ‖Ty − y‖ ≤ ε,

where

αK(ε) :=
(K2 +N3(N − 1)2K2)N2

ε
.

Proof: For given ε ∈ (0, 1), let x be as in Lemma 2.10. Inspecting the proofs of ‘Steps 6-9’

in the proof of Theorem 3.1 in [3] shows that for the N -th component xN of x one has that

‖xN − TxN‖ ≤ N2ε.

The theorem now follows from Lemma 2.9 and Lemma 2.10. �

Definition 2.12 ([7]). A mapping T : H → H is called firmly nonexpansive if

∀x, y ∈ H (‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉).

Remark 2.13. For information on firmly nonexpansive mappings in Hilbert space, see [13].

Lemma 2.14. Let T be as in Theorem 2.11. Then T is strongly nonexpansive with SNE-
modulus

ωT (d, ε) :=
1

16d

( ε
N

)2
.

This modulus also holds for T = TN ◦ . . . ◦ T1 for any firmly nonexpansive mappings
T1, . . . , TN : H → H.

Proof: Metric projections in Hilbert space are firmly nonexpansive and so by Corollary

2.18 in [18] (applied to λ := 1/2) have 1
16dε

2 as SNE-modulus. The lemma now follows from

[18](Theorem 2.10). �

Corollary 2.15. Under the conditions of Theorem 2.11, the sequence (xn) := (Tnx) is

asymptotically regular with rate of convergence ψ(ε, b,D, αK , ωT ) with ψ as in Theorem 2.5,
αK as in Theorem 2.11 and ωT as in Lemma 2.14, i.e.

∀ε ∈ (0, 1)∀n ≥ ψ(ε, b,D, αK , ωT ) (‖xn+1 − xn‖ < ε),

where b,D > 0 with b ≥ ‖x‖ and D ≥ ‖Tx− x‖.

Proof: By Theorem 2.11, αK(ε) is a norm upper bound for some ε-fixed point of T. By
Lemma 2.14, ωT is an SNE-modulus of T. Hence the Corollary follows from Theorem 2.5
applied to αK and ωT . �
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Remark 2.16. 1. The input D in the Corollary 2.15 actually is redundant as such a D
can be computed in terms of b,K,N : ‖c‖ ≤ K implies that ‖ci‖ ≤ K for 1 = 1, . . . , N
and so

‖PCi0‖ ≤ ‖ci‖ ≤ K

and -using that PCi is nonexpansive - in turn

∀y ∈ H (‖PCiy‖ ≤ ‖PCiy − PCi0‖+ ‖PCi0‖ ≤ ‖y‖+K).

Inductively, it now follows that for all i = 1, . . . , N

‖(PCi ◦ . . . ◦ PC1)x‖ ≤ b+ iK

and so, in particular, ‖Tx‖ ≤ b+NK and, consequently,

‖Tx− x‖ ≤ ‖Tx‖+ ‖x‖ ≤ 2b+NK.

So we may always take D := 2b+NK.

2. By an affine shift one can always reduce the general situation to the case where x = 0.
Hence the bound in Corollary 2.15 also holds if we take b := 0 but then require that
K ≥ ‖(c1, . . . , cN ) − (x, . . . , x)‖, i.e. the bound then only depends on the relative
distances between each ci and x.

In [5], it is observed that the approach in [3] extends to arbitrary firmly nonexpansive
mappings T1, . . . , TN : H → H as long as each Ti possesses arbitrary good approximate
fixed points. One then uses instead of NC the maximal monotone operator

A(x) := (A1x1, . . . , ANxN ), where Ai := T−1i − I.

The quantitative analysis given above is largely independent of whether one has NC or
A except the issue that we now only have 0 ∈ cl(ran(A)) instead of 0 ∈ ran(A). Let us
first consider the case where each Ti actually possesses a fixed point pi ∈ H. Then for
p = (p1, . . . , pN ) we have 0 ∈ A(p) (and so 0 = 0 + 0 ∈ A(p) + M(0)) and the proofs of
Theorem 2.11 and Corollary 2.15 go through with the only change that we now need a norm
bound K on p = (p1, . . . , pN ) rather than on c ∈ C1 × . . .× CN . In particular we have

Theorem 2.17. Let H be a real Hilbert space and T1, . . . , TN : H → H be firmly nonexpan-
sive mappings which posses fixed points p1, . . . , pN ∈ H resp. Let K ≥ ‖p = (p1, . . . , pN )‖
(with K ≥ 1). Then for T := TN ◦ . . . ◦ T1 and xn := Tnx for x ∈ H with b ≥ ‖x‖ and

D ≥ ‖Tx− x‖

∀ε ∈ (0, 1)∀n ≥ ψ(ε, b,D, αK , ωT ) (‖xn+1 − xn‖ ≤ ε)

with ψ as in Theorem 2.5, αK as in Theorem 2.11 and ωT as in Lemma 2.14.

If we only have the existence of ε-approximate fixed points p1,ε, . . . , pN,ε ∈ H for T1, . . . , TN
resp. for every ε > 0, i.e.

‖Tipi,ε − pi,ε‖ < ε for i = 1, . . . , N,

then we have to refine Lemma 2.9 and Lemma 2.10:
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Lemma 2.18. Let x = (x1, . . . , xN ) ∈ HN with ‖x‖ ≤ K (with K ≥ 1) and f =

(f1, . . . , fN ) ∈ HN with ‖f‖ ≤ 1. Then

sup
w∈HN

〈w − x,Mf −Mw〉 ≤ N3(N − 1)2

2
· (K + 1)2 + 2K.

Proof: As in ‘Step 3’ in the proof of Theorem 3.1 in [3] one shows that

sup
w∈HN

〈w − x,Mf −Mw〉 ≤ −〈x,Mf〉+ 2q∗
(

1

2
Mf +

1

2
M∗x

)
,

where

1

2
Mf+

1

2
M∗x =

1

2
z :=

1

2
(x1−x2+(f1−fN ), x2−x1+(f2−f1), . . . , xN−x1+(fN−fN−1)).

Since
∑N

n=1 zn = 0 and 1
2‖z‖ ≤ K + 1, Lemma 2.8 implies that

q∗((1/2)z) ≤ N3(N − 1)2

4
· (K + 1)2.

Also
−〈x,Mf〉 ≤ ‖x‖ · ‖Mf‖ ≤ 2‖x‖ ≤ 2K

and so the lemma follows. �

Lemma 2.19. Let ε ∈ (0, 1), x be as in the previous lemma and assume that T̃ (x) :=

(T1x1, . . . , TNxN ) possesses ε-approximate fixed points pε = (p1,ε, . . . , pN,ε) ∈ HN for every

ε ∈ (0, 1) with ‖T̃ pε‖ ≤ K(ε), where K : (0,∞) → [1,∞). If L ≥ 0 is such that for all

g ∈ H with ‖g‖ ≤ 1

sup
w∈HN

〈w − T̃ pε/4,Mg −Mw〉 ≤ L,

then

∀ε ∈ (0, 1) ∃b, x ∈ HN (b ∈ A(x) +M(x) ∧ ‖x‖ ≤ 4(K(ε/4)2 + 2L)/ε ∧ ‖b‖ ≤ ε).

Proof: By Corollary 2.6 in [5] A + M is maximal monotone. By the existence of ε-fixed

points of T̃ one has, taking an ε/4-fixed point p with ‖T̃ p‖ ≤ K(ε/4), the existence of

q ∈ A(T̃ p) with ‖q‖ ≤ ε/4 ≤ 1, namely q = p− T̃ p. Hence f := q+Mq ∈ A(T̃ p) +Mq with

‖f‖ ≤ 3‖q‖ ≤ 3ε/4. We now follow again the reasoning from the proof of Theorem 4 in [6]:
By the monotonicity of A it follows that

〈h1 − q, z − T̃ p〉 ≥ 0, ∀(z, h1) ∈ G(A).

By the assumption in the lemma we have

〈Mw −Mq,w − T̃ p〉 ≥ −L, ∀w ∈ HN
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and so
(∗) 〈h− f, w − T̃ p〉 ≥ −L, ∀(w, h) ∈ G(A+M).

We now follow quantitatively the proof of Lemma 1 in [6]: Since A+M is maximal monotone,

ε̃I + (A + M) has full range for every ε̃ > 0 by Minty’s theorem and so, in particular,

f ∈ ran(ε̃I + (A+M)), i.e.

∀ε̃ > 0 ∃uε̃ ∈ HN (f ∈ ε̃uε̃ + (A+M)(uε̃)).

By (∗) we have

∀(w, h) ∈ G(A+M) (〈f − h,w − T̃ p〉 ≤ L).

Applied to w := uε̃, h := f − ε̃uε̃, this gives us 〈ε̃uε̃, uε̃ − T̃ p〉 ≤ L and so

1

2
ε̃‖uε̃‖2 ≤

1

2
ε̃‖T̃ p‖2 + L ≤ 1

2
ε̃K(ε/4)2 + L.

Hence (for ε̃ ∈ (0, 1))

√
ε̃ · ‖uε̃‖ ≤

√
ε̃ ·K(ε/4)2 + 2L ≤

√
K(ε/4)2 + 2L.

Now take ε̃ := (ε/4)2/(K(ε/4)2 + 2L). Then ‖ε̃uε̃‖ ≤ ε/4 and so ‖f − ε̃uε̃‖ ≤ ε and

‖uε̃‖ ≤
√
K(ε/4)2 + 2L√

ε̃
=

4(K(ε/4)2 + 2L)

ε
.

The lemma is now satisfied with b := f − ε̃uε̃ and x := uε̃. �

Theorem 2.20. Let H be a real Hilbert space, K : (0,∞) → [1,∞) be a mapping and
T1, . . . , TN : H → H be firmly nonexpansive mappings s.t. for each ε > 0 the mapping

T1× . . .× TN : HN → HN has an ε-fixed point pε with ‖pε‖ ≤ K(ε). Let T := TN ◦ . . . ◦ T1.
Then for every ε ∈ (0, 1) there exists a point y ∈ H with

‖y‖ ≤ αK(ε) and ‖Ty − y‖ ≤ ε,

where

αK(ε) := 4((K(ε/4) + 1)2 +N3(N − 1)2(K(ε/4) + 2)2 + 4K(ε/4) + 4)N2/ε.

Proof: For given ε ∈ (0, 1), let x be as in Lemma 2.19. Inspecting the proofs of Theorem

3.1(ii)-(v) in [5] one shows that for the N -th component xN of x one has that

‖xN − TxN‖ ≤ N2ε.

The theorem now follows from Lemma 2.18 (applied to x := T̃ pε/4 and K := K(ε/4) + 1)

and Lemma 2.19 (applied to K ′(ε) := K(ε) + 1) noticing that

‖T̃ pε/4‖ ≤ ‖pε/4‖+ ε/4 ≤ K(ε/4) + 1.

�
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Corollary 2.21. Under the conditions of Theorem 2.20, the sequence (xn) := (Tnx) is

asymptotically regular with rate of convergence ψ(ε, b,D, αK , ωT ) with ψ as in Theorem 2.5,

αK as in Theorem 2.20 and ωT as in Lemma 2.14, i.e. for b,D > 0 with b ≥ ‖x‖ and

D ≥ ‖Tx− x‖

∀ε ∈ (0, 1)∀n ≥ ψ(ε, b,D, αK , ωT ) (‖xn+1 − xn‖ < ε).

Remark 2.22. Also in Theorem 2.17 and in Corollary 2.21 one can compute the upper
bound D already in terms of the other data: let p = (p1, . . . , pN ) be a 1-approximate fixed

point of (T1, . . . , TN ) with ‖p‖ ≤ K(1). Then, in particular, ‖Tipi−pi‖ ≤ 1 and so ‖Tipi‖ ≤
‖pi‖+ 1 ≤ K(1) + 1 for i = 1, . . . , N. Hence for all y ∈ H

‖Tiy‖ ≤ ‖Tiy − Tipi‖+ ‖Tipi‖ ≤ ‖y − pi‖+K(1) + 1 ≤ ‖y‖+ 2K(1) + 1

and so ‖Tx‖ ≤ b+N(2K(1) + 1) and, finally, ‖Tx− x‖ ≤ 2b+N(2K(1) + 1).

As follows from [18], the asymptotic regularity of SNE-mappings T (in arbitrary Banach

spaces) and hence of compositions of firmly nonexpansive mappings (in uniformly convex

Banach spaces) is much easier when T is assumed to have a fixed point. We state here this
only for the case of a Hilbert space H :

Theorem 2.23. Let C ⊆ H be any subset of a real Hilbert space H and let T1, . . . , TN :
C → C be firmly nonexpansive mappings. Let T := TN ◦ . . . ◦ T1 possess a fixed point p ∈ C
and, for x ∈ C, let b ≥ ‖x− p‖, b > 0. Then for xn := Tnx :

∀ε > 0 ∀n ≥ db/ωT (b, ε)e (‖xn+1 − xn‖ < ε),

where

ωT (b, ε) :=
1

16b
(ε/N)2.

Proof: The theorem is immediate from Theorems 2.8, 2.10 and Corollary 2.18 in [18]. �

If T1, . . . , TN have common fixed points then one has explicit bounds on the number of
T -iterations needed to obtain a common ε-fixed point of T1, . . . , TN : see [18] and - for the

case of convex combinations of projections in Hilbert space - [15].
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