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Abstract. Carrying out a suggestion by Kreisel, we adapt Gödel’s functional
interpretation to ordinary first-order predicate logic(PL) and thus devise an al-
gorithm to extract Herbrand terms from PL-proofs. The extraction is carried out
in an extension of PL to higher types. The algorithm consists of two main steps:
first we extract a functional realizer, next we compute the β-normal-form of the
realizer from which the Herbrand terms can be read off. Even though the extrac-
tion is carried out in the extended language, the terms are ordinary PL-terms.
In contrast to approaches to Herbrand’s theorem based on cut elimination or ε-
elimination this extraction technique is, except for the normalization step, of low
polynomial complexity, fully modular and furthermore allows an analysis of the
structure of the Herbrand terms, in the spirit of Kreisel ([13]), already prior to the
normalization step. It is expected that the implementation of functional interpre-
tation in Schwichtenberg’s MINLOG system can be adapted to yield an efficient
Herbrand-term extraction tool.

1. Introduction

Herbrand’s theorem states that for every proof in pure first-order logic
without equality of a sentence ∃xAqf (x) (Aqf always denotes a quantifier-
free formula), there is a collection of closed terms t1, . . . , tn witnessing that

proof, so that
n∨

i=1

Aqf (ti) is a tautology. Such a disjunction is called a Her-

brand disjunction of A and the terms t1, . . . , tn are called Herbrand terms.
Herbrand’s theorem easily generalizes to tuples of existential quantifiers
∃xAqf (x), where x = x1, . . . xk,1 and via the Herbrand normal form AH to
arbitrary formulas A in prenex normal form. Moreover, it extends to open
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first order theories T (i.e. theories whose axioms are purely universal sen-

tences), where then the disjunction is verifiable in T , i.e. T ⊢
n∨

i=0

AH(ti)

(and even is a tautological consequence of a conjunction of finitely many
closed instances of the non-logical axioms of T ). First order logic with equal-
ity can be treated as the special case, where T is an open axiomatization of
equality. For first order logic (with or without equality) the Herbrand terms
are built up out of A-material (resp. AH -material) only with possible help of
some distinguished constant symbol c in case A (resp. AH) does not contain
any constant. For open first order theories T they may in addition contain
some of the constants and function symbols occurring in the non-logical
T -axioms used in the proof. For more details see e.g. [20,3,6].

There are both model-theoretic and proof-theoretic proofs of Herbrand’s
theorem. But whereas the former proofs are ineffective the latter provide a
procedure for extracting Herbrand terms ti from a given proof of A. The
actual construction of Herbrand terms out of a given proof is of importance
in the area of computational logic and has also been used in significant
applications to mathematics (see [13,14]).

The existing proof-theoretic approaches to Herbrand’s theorem are based
on cut elimination or related techniques like ε-elimination which involve
global transformations of the given proof. In his review [12] of [20], G.
Kreisel suggested the possibility of using Gödel’s functional (‘dialectica’)
interpretation FI ([8,23]) to prove Herbrand’s theorem. To our knowledge
this suggestion has never been taken up in the literature and the present
note aims at filling this lacuna: We give an extraction algorithm of Herbrand
terms via functional interpretation in the variant developed in [20] which we
from now on also call FI. The verifiability of the extracted disjunction as a
tautology or T -provable disjunction is achieved by a simple model theoretic
argument. As the case for open theories T immediately reduces (via the
deduction theorem) to that of first order logic without equality PL, we only
treat the latter.

From a given PL-proof of a sentence ∃xAqf (x), FI extracts a closed term
t in an extension of typed λ-calculus by decision-by-case constants χA for
each quantifier-free formula A of L(PL). After computing the β-normal form
nf(t) of t, the Herbrand terms can be read off. The length of the resulting
Herbrand disjunction is bounded by 2#χ(nf(t)), where #χ(nf(t)) is the total
number of χ-occurrences in nf(t).

The significance of this FI-based approach to the extraction of Herbrand
terms is due to the following points:

1. FI has recently been successfully implemented by M.-D. Hernest ([9]) in
H. Schwichtenberg’s MINLOG system which also contains an efficient
normalization tool (‘normalization by evaluation’, see [2]). We expect
that this implementation can be adapted to yield a useful Herbrand-
term extraction tool.
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2. Suppose that in a PL-proof of (1) ∃xAqf (x) classical logic is only used to
infer (1) from (2) ∀xAqf (x) →⊥, where (2) is proved intuitionistically.
Then already the original direct Gödel functional interpretation (i.e.
without negative translation as a preprocessing step and also without
Shoenfield’s modification) can be used to extract a Herbrand disjunction
for (1) which will in general (though not always2) be simpler than the
detour through full classical logic. This is because the type levels will
be lower resulting in a more efficient normalization and hence a shorter
Herbrand disjunction.

3. When combined with known estimates ([1]) on the size of nf(t) we im-
mediately obtain bounds on Herbrand’s theorem which match the most
advanced estimates based on cut-elimination ([6,7,25]).

4. In [13] Kreisel discusses how to derive new results in mathematics by
analysing the structure of Herbrand terms, e.g. growth conditions, ex-
tracted from a given proof. This has been carried out in connection with
Roth’s theorem by Luckhardt in [14]. Often it will be possible to read off
some structural properties of the Herbrand terms already from the FI-
extracted E-PLω term t prior to normalization, e.g. by analysing which
constant and function symbols occur in the extracted term, thereby es-
tablishing bounds on the complexity or independence from parameters
for the Herbrand terms prior to their actual construction via nf(t).

2. An FI-based approach to Herbrand’s Theorem

FI is usually applied to (appropriate formulations of) intuitionistic arith-
metic (Heyting arithmetic) in all finite types. Already for the logical axioms
and rules the proof of the soundness of FI relies on some minimal amount of
arithmetic. Combined with negative translation FI extends to (higher type
extensions of) Peano arithmetic (PA). In the following we will use Shoen-
field’s variant which achieves this in one step and denote this form by FI as
well.

To apply FI to first-order predicate logic(PL), we will adapt the sound-
ness proof from Shoenfield [20]. Shoenfield gives a soundness proof of FI for
PA which for logical axioms and rules only uses properties of arithmetic to
ensure the existence of decision-by-case terms for quantifier-free formulas.
By explicitly adding decision-by-case constants χA for all quantifier-free for-
mulas A in L(PL) to the language of PLω, we can re-use Shoenfield’s proof
for the soundness of FI of PL in E-PLω :=PL extended to all finite types
(based on extensionally defined equality).

We then can, for proofs of sentences ∃xAqf (x) in the language L(PL),
extract realizing terms t in the extended language E-PLω. After normalizing
the E-PLω-term t one can read off from the normal form nf(t) a collection

2 In the Statman example discussed below the original functional interpretation
already creates as high types as the Shoenfield variant does. This is unavoid-
able here since the Statman example has the worst possible Herbrand complexity
despite the fact that its form (2) is provable in intuitionistic logic.
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of terms t1, . . . , tn for a Herbrand disjunction over A, where the ti again
are ordinary closed terms of PL without any higher type constructs and
without the decision-by-case constants.

Remark 1. At a first look one might think that the so-called Diller-Nahm
version ([5,4]) of Shoenfield’s variant might be more suitable in connection
with Herbrand’s theorem: it avoids definitions by cases which depend on
the prime formulas in favour of definition of case-functionals which do not
depend on Aqf but only on cases x =0 0 versus x 6= 0. However, our
technique of eliminating all definitions by cases by explicitly writing out
all cases as different terms does not distinguish between these two kinds of
case-definitions. In addition to not being beneficial, the Diller-Nahm variant
actually relies on a modest amount of arithmetic which is not available in
our context of pure logic.

We now describe the system of first-order predicate logic PL and its
extension E-PLω to all finite types, in which our proof will be carried out.

First-order predicate logic PL

I. The language L(PL) of PL:
As logical constants we use ¬,∨, ∀. L(PL) contains variables x, y, z, . . .
which can be free or bound, and constants c, d, . . .. Furthermore we have,
for every arity n, (possibly empty) sets of function symbols f, g, . . . and
predicate symbols P, Q, . . .. Formulas and terms are defined in the usual
way.
Abbreviations:
A → B :≡ ¬A ∨ B, A ∧ B :≡ ¬(¬A ∨ ¬B), ∃xA(x) :≡ ¬∀x¬A(x).

II. Axioms of PL

(i) ¬A ∨ A
(ii) ∀xA(x) → A[t/x] (t free for x in ∀xA(x))

III. Rules of PL

(i) A ⊢ B ∨ A (expansion)
(ii) A ∨ A ⊢ A (contraction)
(iii) (A ∨ B) ∨ C ⊢ A ∨ (B ∨ C) (associativity)
(iv) A ∨ B,¬A ∨ C ⊢ B ∨ C (cut)
(v) A ∨ B ⊢ ∀xA(x) ∨ B (∀ -introduction), where x is not free in B.

Note 2. As will be seen later, the degree of the terms extracted by FI
depends on the ¬-depth of formulas. We treat only Shoenfield’s calcu-
lus, but when translating other calculi for PL into Shoenfield’s calculus,
we extend Shoenfield’s quantifier axioms and rules and the translation
∃xA(x) :≡ ¬∀x¬A(x) to blocks of quantifiers, i.e.∃xA(x) :≡ ¬∀x¬A(x), to
avoid an artificial blow-up of the degrees when treating blocks of existential
quantifiers.

Note 3. We assume w.l.o.g. that there exists at least one constant symbol,
c, in our language, as Herbrand’s theorem would fail otherwise.
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Extensional predicate logic in all finite types
The set T of all finite types is defined inductively:

(i) 0 ∈ T, (ii) ρ, τ ∈ T => ρ → τ ∈ T

For convenience we write 0n → 0 for

n
︷ ︸︸ ︷

0 → (0 → (. . . (0 → 0) . . .).
The language of E-PLω

The language E-PLω is based on a many-sorted version PLω of PL which
contains variables xρ, yρ, zρ, . . . and quantifiers ∀ρ, ∃ρ for all types ρ. As
constants E-PLω contains the constants c, d, . . . (at least one: c) of PL as
constants of type 0, and the function symbols f, g, . . . of PL as constants of
type 0n → 0 for functions of arity n. Furthermore E-PLω contains decision-
by-case constants χA of type 0n → 0 → 0 → 0 for all quantifier-free formulas
A in the original language L(PL), where n is the number of free variables
in A. E-PLω, moreover, contains a λ-abstraction operator. The predicate
symbols of E-PLω are the predicate symbols of PL and equality of type 0
(denoted by =0).

Higher type equality in E-PLω is defined extensionally over type 0 equal-
ity:

s =ρ t :≡ ∀xρ1

1 , . . . , xρn
n (sx =0 tx),

where ρ = ρ1 → . . . → ρn → 0.
Formulas are defined in the usual way starting from prime formulas

s =0 t and P (t1, . . . , tn).

Remark 4. Below we often refer implicitly to the obvious embedding of PL
into E-PLω, where constants and variables of PL represented by their type
0 counterparts in E-PLω and (n-ary) function symbols of PL as constants
of type 0n → 0, in particular PL terms f(t1, . . . , tn) are represented by
((. . . (ft1) . . .)tn). Recall that the predicate symbols of E-PLω are those of
PL plus =0.

Terms of E-PLω

(i) constants cρ and variables xρ are terms of type ρ (in particular the
constants c, d, . . . of PL are terms of type 0),

(ii) if xρ is a variable of type ρ and tτ a term of type τ , then λxρ.tτ is a
term of type ρ → τ,

(iii) if t is a term of type ρ → τ and s is a term of type ρ, then (ts) is a
term of type τ. In particular, if t1, . . . , tn are terms of type 0 and f is an
n-ary function symbols of PL, then ((. . . (ft1) . . .)tn) is a term of type 0
which we usually will write as f(t1, . . . , tn).

Axioms and Rules of E-PLω

(i) axioms and rules of PL extended to all sorts of E-PLω,
(ii) axioms for β-normalization in the typed λ-calculus: (λx.t)s =ρ t[s/x] for

appropriately typed x, t and s,
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(iii) equality axioms for =0,
(iv) higher type extensionality:

Eρ : ∀zρ, xρ1 , yρ1 , . . . , xρk , yρk(

k∧

i=1

(xi =ρi
yi) → zx =0 zy),

where ρ = ρ1 → (ρ2 → (. . . → ρk) → 0) . . .),
(v) axioms for the constants χAqf

: Aqf (x) → χAqf
xyz =0 y and ¬Aqf (x) →

χAqf
xyz =0 z, where x are the free variables of the quantifier-free for-

mula Aqf of L(PL).

Definition 5. We define the type level lv(t) of a term t inductively over
the type of t as follows: lv(0) := 0 and lv(ρ → τ) := max(lv(τ), lv(ρ) + 1).
The degree dg(t) of a term t is then the maximum over the type levels of all
subterms of t.

Definition 6. Let M = {M,F} be a model for L(PL). Then Mω = {Mω,Fω}
is the full set-theoretic type structure over M , i.e. M0 :≡ M , Mρ→τ :≡
Mρ

Mτ and Mω :≡
⋃

ρ∈T Mρ. Constants, functions and predicates of M
retain their interpretation under F in Fω. λ-terms are interpreted in the
obvious way. Furthermore, Fω defines the following interpretation of χA:

For a, b, c ∈ M we define [χA]Mωabc :=

{
b if M |= Aqf (a)3

c otherwise.

Proposition 7. Mω is a model of E-PLω. If A is a sentence of L(PL) and
Mω |= A, then M |= A.

Proof. Obvious from the construction of Mω.

In the following ∃xAqf (x) will denote a closed formula. For open for-
mulas one can replace each free variable with new distinct constants, carry
out the extraction procedure and then reintroduce the variables to get a
corresponding Herbrand disjunction for the open case.

Lemma 8. If PL ⊢ ∃xAqf (x) then FI extracts a closed term t0 of E-PLω

s.t. E-PLω ⊢ Aqf (t).
The proof of Aqf (t) can actually be already carried out in the quantifier-free
fragment qf-WE-PLω (in the sense of [23]) of WE-PLω, where the latter is
the fragment of E-PLω which results by replacing the extensionality axioms
by the quantifier-free weak rule of extensionality due to [21] (see also [11]).

Proof. This is essentially Shoenfield’s proof in [20]. The only two cases to
note are the expansion rule and the contraction rule.

If B ∨ C has been inferred from B by the expansion rule we need an
arbitrary closed term of suitable type to realize C. Since we assumed there

3 More precisely, M |= Aqf (a) means that Aqf (x) holds in M provided the free
variables xi get assigned the element ai ∈ M.
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exists at least one constant c of type 0, we can, using lambda abstraction,
construct closed terms λx.c0 of suitable type to realize C.

For the contraction rule the argument is somewhat more involved: Let
A(a) be an arbitrary formula with a denoting the free variables of A. To each
formula A Shoenfield assigns a formula A∗ ≡ ∀x∃yA′(x, y, a), where A′ is
quantifier-free. The quantifier-free skeleton Aqfs of A ∈ L(PL) is the formula
A with all quantifiers removed and distinct new variables substituted for the
quantified variables of A, i.e. Aqfs(b, a), where b are the new variables and a
are the original free variables of A. The formula A′ is a substitution instance
Aqfs([x, y], a) of Aqfs(b, a), where [x, y] denotes some tuple of terms which
do not contain any constants but are built up exclusively out of x, y. These
terms have been substituted for b. For simplicity we will in the following
consider only single variables x, y and a single parameter a, as the argument
easily generalizes to tuples of variables.

To interpret the contraction rule A∨A ⊢ A we have to produce a realizer
for the conclusion

∀x3∃y3A
′(x3, y3, a)

from realizers of the premise

∀x1, x2∃y1, y2(A
′(x1, y1, a) ∨ A′(x2, y2, a)),

where in general xi, yi will be of arbitrary type. However, the terms
composed of xi, yi instantiating Aqfs to yield A′ are of type 0, since A∗

interprets the first order formula A ∈ L(PL). The functional interpretation
of the premise yields closed terms t1, t2 s.t.

∀x1, x2, a
(
A′(x1, t1x1x2a, a) ∨ A′(x2, t2x1x2a, a)

)
.

Substituting x1 for x2 gives

∀x1, a
(
A′(x1, t

′
1x1a, a) ∨ A′(x1, t

′
2x1a, a)

)
,

where t′1x1a := t1x1x1a and t′2x1a := t2x1x1a.

Hence, after renaming x3 in the conclusion into x1, a term t3 realizing
y3 (when applied to x1, a) must satisfy:

t3x1a =

{
t′1x1a if A′(x1, t

′
1x1a, a)

t′2x1a otherwise,

i.e.

t3x1a =

{
t′1x1a if Aqfs([x1, y](y/t′1x1a), a)
t′2x1a otherwise.

This term t3 can be defined via our decision-by-case constants for the
quantifier-free skeleton Aqfs of A as follows:

t3 := λx1, a, v.χAqfs
([x1, y](y/t′1x1a), a, t′1x1av, t′2x1av),
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where v is a tuple of fresh variables of appropriate types such that t′1x1av
is of type 0.

Hence it is sufficient to have decision-by-case constants χA for each
quantifier-free formula A of L(PL). These have been explicitly added to
the language of E-PLω.

Example. As an example, consider the formula A ≡ ∃x∀y(P (x) ∨¬P (y)).
The Shoenfield translation A∗ of A is A∗ ≡ ∀f∃x¬¬(P (x) ∨ ¬P (f(x))),
which is classically equivalent to ∀f∃x(P (x) ∨¬P (f(x))). The matrix A′ ≡
(P (x) ∨ ¬P (f(x))) is an instance of Aqfs(b1, b2) ≡ P (b1)∨¬P (b2), namely
Aqfs(x, f(x)).

Functional interpretation will extract from a proof of A, which neces-
sarily must use the contraction rule at least once, a functional Φ realizing
x in f . The term will also use some constant c, since A itself contains no
constants. An obvious Φ is the following:

Φ(f) :=

{
c if P (c) ∨ ¬P (f(c))
f(c) otherwise.

Lemma 9. If E-PLω ⊢ Aqf (t) and nf(t) is the β-normal form of t, then
E-PLω ⊢ Aqf (nf(t)).

Proof. Since t reduces to nf(t), we have E-PLω ⊢ t =ρ nf(t).

Lemma 10. If t is of type 0, closed and in β-normal form, then there exist
closed terms t1, . . . , tn ∈ L(PL), s.t. Mω |= t = t1 ∨ . . . ∨ t = tn. Moreover,
n ≤ 2#χ(nf(t)), where #χ(nf(t)) is the total number of all χ-occurrences in
nf(t).

Proof. Since t is of type 0, closed and in β-normal form and has only con-
stants of degree ≤ 1 it contains no more λ-expressions: Assume there still
is a λ-expression λx.r left and assume w.l.o.g. that it is not contained in
any other λ-expression. Then if λx.r occurs with an argument (λx.r)s it
could be further reduced, which contradicts that t is in normal form. If λx.r
occurs without an argument it must be at least of type 1, and then since t
is closed either λx.r must occur in another λ-expression, since the function
symbols of PL only take arguments of type 0, or t ≡ λx.r. But this contra-
dicts that λx.r was not contained in any other term and that t was of type
0. Similarly, one infers that the function symbols f always occur with a full
stock of arguments in t.

To read off the terms ti by consider a tree constructed from t by “eval-
uating” the χ’s : choose any outermost χ and build the left (resp. right)
subtree by replacing the occurance of the corresponding term χ(s, t1, t2) in
t with t1 (resp. t2). Continue recursively on the left and right subtrees until
all χ’s have been evaluated. Every path in the tree from the root to a leaf
then represents a list of choices on the χ’s and thus every leaf is a term
ti ∈ L(PL).

It follows trivially that Mω |= t = t1 ∨ . . .∨ t = tn. As a simple estimate
on the length n we get n ≤ 2#χ(nf(t)).



Extracting Herbrand Disjunctions by Functional Interpretation 9

Theorem 11. Assume that PL ⊢ ∃xAqf (x). Then there is a collection of
closed terms t1, t2, . . . , tn in L(PL) which can be obtained by normalizing

a FI extracted realizer t of ∃x s.t.
n∨

i=1

Aqf (ti) is a tautology. The terms ti

are built up out of the Aqf -material (possibly with the help of the distin-
guished constant c in case Aqf does not contain any constant). Moreover,
n ≤ 2#χ(nf(t)).
The theorem also extends to tuples ∃x of quantifiers.

Proof. The theorem follows from the above propositions and lemmas. By
the soundness of FI we can extract a closed term t in E-PLω realizing
‘∃x’. We can assume that t consists exclusively of constants and function
symbols for L(PL) and some decision-by-case constants χB, restricted to
quantifier-free formulas B built up from predicates occurring in A by
means of propositional connectives. This restriction can be verified by a
simple model-theoretic argument: give all predicates not occurring in A
a trivial interpretation, e.g. interpret them as “always true”, and replace
decision-by-case expressions over such predicates by appropriate constants.
In decision-by-case constants over combinations of predicates occurring and
predicates not occurring in A, those not occurring in A can be absorbed.

We then normalize t to nf(t) and read off the terms t1, . . . , tn from
nf(t) as in lemma 10. Let M be an arbitrary model of L(PL), then Mω |=
n∨

i=1

Aqf (ti). As the ti are already closed terms of L(PL), also M |=
n∨

i=1

Aqf (ti).

Since M was an arbitrary model, the completeness theorem for PL yields

that also PL ⊢
n∨

i=1

Aqf (ti). Since
n∨

i=1

Aqf (ti) is quantifier-free it follows that

it is a tautology (note that PL is predicate logic without equality).
The FI-extracted term t consists of Aqf -material, decision-by-case con-

stants and λ-abstractions. The normal form nf(t) contains no more λ, the
extracted ti no more decision-by-case constants, so the result follows.

Corollary 12. Let T ω := WE-PLω + Γ , where all additional axioms of
the set Γ have a functional interpretation in by closed terms of WE-PLω

(provably in WE-PLω + Γ ). If T ω ⊢ ∃x0Aqf (x), then there is a collection

of terms t1, . . . , tn in L(PL), extractable via FI, s.t. T ω ⊢
n∨

i=1

Aqf (ti). The

terms ti are built up out of the constant and function symbols of L(PL)
which occur (modulo the embedding of PL into WE-PLω) in Aqf and Γ .

Proof. It is sufficient to note that extending E-PLω with the axioms Γ adds
no new constants to the language. The corollary then follows by the same

arguments as in the proof of Theorem 11, except that
n∨

i=1

Aqf (ti) is no longer

a tautology, but provable in T ω.

Example (continued). For A ≡ ∃x∀y(P (x) ∨ ¬P (y)) the functional Φ
realizing x in f can be defined in E-PLω as Φ :≡ λf.χAqfs

(c, f(c), c, f(c)).
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This new decision-by-case term is then applied to f , so that after normal-
ization and unfolding of the χA the Herbrand disjunction will be:

(P (c) ∨ ¬P (f(c))) ∨ (P (f(c)) ∨ ¬P (f(f(c))))

In order to give an estimate on the number of extracted PL-terms, we
need an estimate on the degree dg(t) of the FI-extracted E-PLω-term t.

Definition 13. Let A be a formula, then we define the degree dg(A) to be
the ¬-depth of A. Let φ be a proof, then dg(φ) is the maximum degree of
cut formulas occurring in φ and the end-formula of φ. The end-formula
always is purely existential, hence dg(φ) = max{1, dg(A1), . . . , dg(An)} for
cut formulas Ai in φ.

In Shoenfield’s variant of FI only negation increases the type of the
functional realizers. Since none of the derivation rules further increase the
types, dg(φ) correctly estimates degree of the FI-extracted E-PLω-term t.
Refining a result by Schwichtenberg [18,19], Beckmann [1] proves the fol-
lowing bound on normalization in the typed λ-calculus (which applies to
our ‘applied’ λ-calculus by treating our constant symbols as free variables):

Theorem 14. (Beckmann,[1]) Let t be a term in typed λ-calculus, then the

length of any reduction sequence is bounded by 2
‖t‖
dg(t)

Corollary 15. The number of terms extracted in Theorem 11 from a proof

φ can be bounded by 2
3‖t‖
dg(φ)+1.

Proof. To give a bound on #χ(nf(t)) we use the following trick : from t con-
struct a term t′ by replacing every occurrance of χ by a term ((λx0.χ)c0).
Then ‖t′‖ ≤ 3 · ‖t‖ and t, t′ have the same normal form. For t′ consider a
normalization sequence of the following kind : first perform all possible re-
duction steps except those on the terms substituted for the χ, then perform
the reductions on the ((λx0.χ)c0) terms. The length of such a reduction
sequence trivially is an upper bound on #χ(nf(t′)) = #χ(nf(t)).

By Definition 13 and Theorem 14 we can bound the length of any reduc-

tion sequence of t′ and hence #χ(nf(t)) by 2
3·‖t‖
dg(φ). The result then follows

from Theorem 11.

Remark 16. The dependence of the size of the Herbrand disjunction ex-
tracted by FI on the ¬-depth of cut formulas directly corresponds to the
dependence of the complexity of cut elimination (and hence the length of
Herbrand disjunctions extracted by cut elimination) on the quantifier alter-
nations in the cut formulas.

As mentioned above, the extraction of realizing terms generalizes to tu-
ples, i.e. to formulas ∃xAqf (x). For arbitrary prenex formulas we first con-
struct the Herbrand normal form which then is a purely existential state-
ment.
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3. Discussion of bounds on Herbrand’s Theorem

By an analysis of the E-PLω terms extracted by FI and using Beckmann’s
bounds on normalisation in the typed λ-calculus, we can extract bounds
on the size of a Herbrand disjunction (i.e. the number of disjuncts), which
match the best known bounds obtained via the cut elimination theorem [6,
7].

In [24,25], Zhang gives a very technical proof that the hyperexponen-
tial complexity of cut elimination and the length of Herbrand disjunctions
depend primarily on the quantifier alternations in the cut formulas, while
quantifier blocks and propositional connectives do not contribute to the
height of the tower of exponentials. These results on the length of the Her-
brand disjunction follow easily from the extraction of Herbrand terms via
FI, the bound on the degree of extracted terms and Beckmann’s bounds on
normalization.

In [22], Statman shows a hyperexponential lower bound on Herbrand’s
theorem, by describing formulas Sn for which there exist short proofs, but
every Herbrand disjunction must have size at least 2n. Later presentations
of Statman’s theorem are due to Orevkov and Pudlak [15–17]. The short
proofs given by Pudlak are of size polynomial in n, yielding FI-extracted
terms of size exponential in n (by [10]). The formulas occurring in the proof
can be shown to have ¬-depth at most n, but by careful analysis of the
extracted FI terms one can bound their degree by n − 1. Together with
Corollary 15 this yields a match between an upper bound on the size of a
Herbrand disjunction for Sn and Statman’s lower bound as good as those
obtained via cut-elimination.
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